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Imprints of multielectron polarization effects in odd-even harmonic generation from CO molecules
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Dynamic core-electron polarization (DCeP) is a correction to the single-active electron (SAE) approximation
by considering a response of the core electrons to the time-dependent laser field. Despite being initially construed
as a perturbative correction, in some cases especially atoms and molecules with large polarizabilities, DCeP can
qualitatively alter predictions produced by the bare SAE theory. In this study, we unambiguously demonstrate
the nonperturbative role of DCeP in the resolved odd-even high-order harmonic generation (HHG) of the CO
molecule. In particular, we find that the even-to-odd ratio, i.e., the ratio between the harmonic intensities of
even order and average of the two adjacent odd orders, changes by as much as one order of magnitude when
DCeP is included, making the theoretically predicted values remarkably consistent with the experimental ones.
This strong manifestation allows us to verify the DCeP role in HHG by experimental data. Furthermore, our
analysis of the harmonic time profile shows that this agreement is not an artifact of the numerical method but
reflects relevant physics, establishing that DCeP must be incorporated into the standard framework for strong-
field physics.

DOI: 10.1103/PhysRevA.105.023106

I. INTRODUCTION

Over the past few decades, advances in intense ultrashort
laser technologies have enabled unprecedented nonlinear
laser-matter interactions [1–3], which motivate theoretical
frameworks to evolve rapidly. The simplest model is prob-
ably the single-active electron (SAE) approximation [4–10],
where the least-bound electron moves in the effective potential
forming by the nuclei and frozen core electrons. However,
for some atoms and molecules with large polarizabilities,
this approach produces unacceptable mismatches with exper-
imental observation, raising the question of the role of the
multielectron effect [11–15]. An obvious way to improve the
predictive power of the SAE theory is to relax one or several
of its assumptions. Instead of assuming frozen core electrons,
we allow them to dynamically respond to the external laser
field; thus, the field induced by core electrons over the active
electron now contains an extra time-modulated term.
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In a strong laser field, core electrons are periodically
shaken by the external laser field, causing the dynamic
core-electron polarization (DCeP) [16]. The core-electron po-
larization is particularly strong for polar molecules, making
them suitable platforms to study the effect of this phe-
nomenon. Many studies demonstrate that DCeP improves
the quantitative agreement with experimental measurements
in many aspects, including the ionization rate [15,17–20],
photoelectron distribution of above-threshold ionization (ATI)
[14,15], and Coulomb-explosion image of highly charged
molecules [21]. In theory, the effect can be resolved in the
intensity and shape of the high-order harmonic generation
(HHG) spectra [22,23], but the magnitude is too small, pre-
venting comparison with experimental data. In this paper, we
aim at a different aspect of HHG spectra, the even harmonic
orders. This feature is distinctive to polar molecules, which
are also known to have strong DCeP manifestation, making it
a good candidate to study the signature of DCeP.

The presence of both odd and even harmonic orders is
due to the symmetry breaking of the laser-molecule system
[24–26] (unpolarized targets in linearly polarized laser only
emit odd orders). The richer resolved odd-even spectra from
polar molecules thus can be used to study various molecular
properties [27–30]. Features of the resolved odd-even spectra
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FIG. 1. The CO model and molecular frame. An electric field
aligned along the unit vector e makes with the molecular axis an
orientation angle θ .

can be captured through the even-to-odd ratio defined as the
ratio between HHG intensities of the even and the average of
the two adjacent odd orders [24,25,31,32]. It is then natural
to ask whether the even-to-odd ratio is sensitive to multielec-
tron effects. Our earlier work [33] has introduced the DCeP
effect on the even-to-odd ratio of fixed harmonic orders with
varying CO molecular orientation. In the present work, we
comprehensively investigate the imprint of the DCeP effect in
the even-to-odd ratio from CO molecules exposed to a linearly
polarized laser pulse. The influence is not only analyzed the-
oretically but also compared with the available experimental
measurements [24,25]. We also establish that the strong man-
ifestation of DCeP in the even-to-odd ratio is a consequence
of the DCeP influence on the magnitude and phase of the
harmonic time profile.

II. NUMERICAL METHODS

To simulate HHG, we numerically solve the time-
dependent Schrödinger equation (TDSE) in the framework
of SAE approximation, incorporating the DCeP potential.
Although all-electron methods of time-dependent density
functional theory [34] and multiconfiguration time-dependent
Hartree-Fock [35] can capture multielectron dynamics, the
TDSE method saves computational resources, and the roles
of physical processes, particularly the DCeP, are more trans-
parent.

The TDSE method for the system of CO molecule and
a linearly polarized laser pulse is presented in detail in our
previous works [23,32,33,36]. Accordingly, the potential of
the CO molecule is constructed within the SAE approximation
[37,38]. The SAE potential gives the 5σ energy of −0.510 a.u.
in good consistency with the experimental value of
−0.514 a.u. for CO [39]. The 5σ permanent dipole of 1.55 a.u.
well matches 1.57 a.u. obtained by the time-dependent density
functional theory [40]. For establishing the calculation, the
CO molecular axis is aligned along the z axis, as exhibited
in Fig. 1.

The coupling of the active electron and the time-dependent
electric field is written as

VL(r, t ) = r · E(t ), (1)

where the electric field has the following form,

E(t ) = e f (t )E0sin(ω0t + ϕ), (2)

in which, E0, ω0, ϕ, and f (t ) are respectively the peak ampli-
tude, carrier frequency, carrier-envelope phase, and envelope
function of the laser pulse. e is a unit vector located in the xz

plane, as shown in Fig. 1. The angle θ between the z axis and
vector e is called the orientation angle.

Besides the SAE component, we add an extra term de-
scribing the interaction between the active electron with the
dynamically polarized core electrons, i.e., DCeP potential

VP(t ) = −E(t )α̂cr
r3

. (3)

Here, α̂c is the total polarization tensor of the core electrons
whose values are taken from Ref. [18]. Specifically, αcxx =
αcyy = 6.72 a.u. and αczz = 12.22 a.u. It is worth noting that
within a small distance near the core, i.e., r � rc with rcx =
rcy = α1/3

cxx and rcz = α1/3
czz , the polarization potential should

cancel the external laser field [16,17]. Operationally, both
the external and DCeP potentials are turned off at r � rc to
avoid the singularity and also minimize the unphysical dipole
coupling of the highest occupied molecular orbital (HOMO)
to the lower lying bound states [20].

After getting the time-dependent wave function ψ (r, t ) by
solving the TDSE, we calculate the induced dipole accelera-
tion as

a(t ) = d2

dt2
〈ψ (r, t )|r|ψ (r, t )〉 . (4)

The HHG spectra are obtained by taking the square modulus
of the Fourier transform of the acceleration dipole. We are in-
terested in both parallel and perpendicular HHGs, i.e., whose
polarization is respectively parallel and perpendicular to the
external electric polarization.

To analyze the spectral and temporal behaviors of HHG,
we utilize the Gabor transform with the following form,

A(�, t ) =
∫

dt ′a(t ′)
exp[−(t ′ − t )2/2σ 2]

σ
√

2π
exp(i�t ′), (5)

where � is the harmonic frequency; σ = (3ω0)−1 ensures
the impartiality between the resolutions in the temporal and
frequency domains [41]. Through this analysis, we easily
obtain both the numerical amplitude and phase of the attosec-
ond bursts from the induced dipole acceleration simulated by
TDSE; see Eq. (4).

To ensure the numerical convergence for all laser param-
eters used in this study, we perform the calculation with 380
radial grid points and 180 B-spline functions in a spherical
box within the radius of 100 a.u., 50 partial waves, and the
time step of 0.055 a.u. The total basis set is 395 213. To
prevent the artificial reflections from the grid boundary, the
cos1/8 mask function [42] is applied at a distance beyond rmask.
If both the short and long trajectories are to be kept, we set
rmask = 60 a.u., which equals 3/5 radius of the simulated box.

Throughout this study, to obtain sharp peaks at integer
harmonic orders, we adopt a 10-cycle laser pulse with the
trapezoidal envelope, in which two optical cycles linearly
ramp up and down, and eight cycles in the flat part. We have
examined for laser pulse with a larger number of optical cycles
and obtained the same conclusion. The carrier-envelope phase
ϕ is set to π .

We also consider the macroscopic propagation, which can
be mimicked by selecting only short trajectories in theoretical
simulations [30,43–45]. In this case, we apply the trajectory-
resolved numerical procedure with restriction of the absorbing
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FIG. 2. The simulated even-to-odd ratios of the CO molecules
with DCeP (SAE + P) (solid line) and without DCeP (SAE) (dashed
line). The 800-nm laser pulse with the intensity of 1.5 × 1014 W/cm2

is used. The experimental data are taken from Refs. [24] (blue
crosses) and [25] (green open hexagons) for the 800-nm laser pulse
with intensities of 1.5 × 1014 W/cm2 and 2.2 × 1014 W/cm2, respec-
tively. The break interval in y axis is [2.5, 2.7], dividing the figure
into two spaces with different scales. The experimental even-to-odd
ratios match the theoretical ones with the DCeP effect.

boundary beyond the maximal displacement of the short elec-
tron trajectories in the laser field, rmask = 1.2E0/ω

2
0. As shown

in numerical simulations in Appendix A, this practice indeed
produces smooth even-to-odd ratios that are relatively inde-
pendent of the laser parameters. Remarkably, experimental
data that measured the even-to-odd ratio of CO molecule
when the laser intensity of 1.5 × 1014 W/cm2 [24] and
2.2 × 1014 W/cm2 [25], as shown in Fig. 2, also exhibits
stability against different laser intensities. Supported by this
experimental fact, in the rest of the paper, our simulations
only keep the short trajectories by restricting the absorbing
boundary. All the simulation results in the main body of this
paper are performed for the case of the CO molecule aligned
parallel to the incident laser field. Results for other angles are
presented in Appendix B.

III. EFFECT OF DCEP ON THE EVEN-TO-ODD RATIO

We first demonstrate the even-to-odd ratio by the TDSE
method for CO molecule without and with DCeP potential,
presented in Fig. 2 as SAE and SAE + P, respectively. The
10-cycle laser pulse with the wavelength of 800 nm and
intensity of 1.5 × 1014 W/cm2 is adopted. We also display
available experimental data reported in Refs. [24,25]. In these
experiments, the CO molecules are partially oriented with
degrees of orientation ζ of 0.24 [24] and 0.73 [25], but our
simulation is for perfect orientation. Therefore, we normalize
the experimental even-to-odd ratios by a factor of 1/ζ 2 [31].

The theoretical results with and without DCeP, together with
normalized experimental data, are shown in Fig. 2.

Dynamic core-electron polarization is usually thought of
as a small perturbation, only producing minuscule corrections
to the intensity and shape of HHG spectra [22,23,36]. Surpris-
ingly, Fig. 2 shows that DCeP modifies the even-to-odd ratio
as much as one order of magnitude, significantly improving
its consistency with experimental data. Specifically, when ig-
noring the DCeP, the even-to-odd ratio is around one order
of magnitude larger than unity for all harmonics, except ones
around 37 eV. With DCeP, the ratio only varies within the
range ≈[0, 2], matching the experimental energy-dependent
even-to-odd ratio in both magnitude and shape. Particularly,
with increasing harmonic energy, the even-to-odd ratio gradu-
ally grows near unity at harmonics around 21–31 eV and then
decreases until reaching the minimum near 37 eV. We also
observe an agreement at the peak around 28 eV related to the
shape resonance phenomenon [46].

We emphasize that the effect of DCeP in the even-to-odd
ratio is so pronounced that even if moderate experimental
noise is factored in, the agreement with experiments is still
undoubtedly superior to the simple SAE approximation. In
Appendix B, we also show that DCeP has a measurable effect
in the energy-dependent even-to-odd ratio at different orienta-
tion angles, in both parallel and perpendicular HHGs. We thus
recommend the even-to-odd ratio as a prospective experiment
to study DCeP.

This strong DCeP effect can be understood by estimat-
ing the molecular dipole in the external field. The adiabatic
electric dipole is approximately μp + μind, where μp and
μind = αczzE (t ) are respectively the permanent and induced
dipoles of the cation. The value μp = 1.07 a.u. is obtained
by the chemical code GAUSSIAN09 [47] with the DFT method
using the unrestricted hybrid B3LYP functional and the aug-
cc-pVQZ basis set. In the laser pulse with the intensity of
1.5 × 1014 W/cm2, i.e., 0.065 a.u., the electric dipole varies
between 0.28 and 1.86 a.u. This asymmetry-induced strong
variation results in a considerable effect of even and odd
harmonics.

IV. DCEP EFFECT ON HARMONIC TIME PROFILE

To explain the prominent manifestation of DCeP in the
even-to-odd ratio, we start from the origin of even and odd
harmonics. Harmonic generation is a coherent interference
of the attosecond bursts emitted periodically with half-cycle
time translation [5]. Specifically, the complex spectral ampli-
tude of harmonic with frequency nω0 (ω0 is the fundamental
frequency determined by the laser frequency) is defined as
A(n) = A1(n) − A2(n)e−iπn, where A1(n), and A2(n) are the
complex amplitudes of the harmonic emitted from the op-
posite sites of the CO molecules [24]. As a result, the odd
(even) harmonics are caused by the constructive (destructive)
interference of the two successive attosecond bursts. Con-
sequently, we can derive the magnitude of the even-to-odd
ratio as

η(n) = 1 − 2 κ (n)cosφ(n)

1 + κ (n) cosφ(n)
, (6)

023106-3



HIEN T. NGUYEN et al. PHYSICAL REVIEW A 105, 023106 (2022)

FIG. 3. The time profile intensity [(a), (c)] and phase [(b), (d)] for
orders 16 and 22 from theoretical models without (SAE) and with
DCeP (SAE + P). The lasers with the same parameters as used in
Fig. 2 but with the laser intensity of 1.5 × 1014 W/cm2. The red and
black circles indicate the peaks of attosecond bursts when ignoring
and including DCeP, respectively.

where κ (n) = 2|A1(n)| |A2(n)|
|A1(n)|2+|A2(n)|2 ∈ [0, 1] is the intensity imbal-

ance, and φ(n) is the phase difference of the two adjacent
attosecond bursts. The complex spectral amplitude of the
attosecond bursts, A1(n) and A2(n), can be obtained from
induced dipole acceleration obtained from TDSE via the time-
frequency transform; see Eq. (5).

By reconstructing the amplitude and phase of the attosec-
ond bursts, we can identify the origin of the DCeP effect on the
even-to-odd ratios via their connection with the harmonic time
profile. The polar nature of the molecule CO breaks the sym-
metry between two consecutive laser half-periods, making the
destructive interference between two immediate attosecond
bursts imperfect. Even though the existence of this symmetry
breaking is standard in all theoretical models, its quantitative
characteristics strongly depend on the accuracy level of the
theory. We show in Fig. 3 the numerical magnitude and phase
of the time profile produced with and without DCeP at orders
16 and 22 as examples for low- and high-order harmonics.

As shown in Fig. 3(a) for low-order harmonics, the DCeP
enhances the attosecond-burst intensity emitted at the instants
t ≈ (1.25 + k)T0 (with k = 1 − 8 and T0 is the laser period),
while almost eliminates bursts at the half-cycle translation,

t ′ ≈ (1.76 + k)T0. Meanwhile, the intensity imbalance among
attosecond bursts produced by the bare SAE is negligible.
For high-order harmonic, as in Fig. 3(c), even though SAE
displays strong intensity imbalance, the time dependence is
opposite to the SAE with DCeP. In both examples, the differ-
ence between the two theories is clearly qualitative and can
be attributed to the fact that the DCeP significantly enhances
the ionization when the electric field points from C to O
(called parallel orientation) and depresses the ionization for
the inverse case (antiparallel orientation) [17,18]. Matching
with classical paths shows that the emission instants t (t ′) in
Fig. 3 correspond to the ionization instants whose electric
field has the parallel (antiparallel) orientation. As a result,
DCeP amplifies the bursts at t moments and weakens those
at t ′ moments. However, it is surprising that this effect is so
strong that it overrides the initial behavior without DCeP. In
addition, the DCeP shifts the emission times of the attosecond
bursts, for example, for order 22, about 20 as forward at the
instants t and about 60 as backward at t ′. This observation
closely relates to the detuning of emission times of synthe-
sized attosecond pulse for molecular parallel and antiparallel
orientations caused by the dynamic deformation of the elec-
tronic orbital, as stated in Ref. [22].

Similar to the intensity, the phase also undergoes a sig-
nificant change as DCeP is taken into account, as shown
in Figs. 3(b) and 3(d). This impact is more apparent for
high harmonic orders. For low orders, the bursts at t ′ almost
vanish, making the phase difference meaningless. In partic-
ular, for order 22, the two bursts at ≈4.25T0 and ≈4.76T0

are almost in phase (� ≈ 44◦) in SAE but out of phase
(� ≈ 107◦) in SAE + P. For order 16, these bursts are
still in phase, with the phase differences being about 27◦
and 49◦ for SAE and SAE + P, respectively. According to
the strong-field approximation [5,48], the phase difference
between the two adjacent bursts of a polar molecule consists
of three terms representing the phase difference of electron
acquired on tunneling ionization, propagation, and recom-
bination steps. The phase differences accumulated during
photoionization and photorecombination steps depend on the
phase discrepancy between the molecular ground state and
the continuum state of a tunneled electron. The phase of the
propagation step is accumulated from the ionization to the
recombination instants, and relates to the Stark-shifted ion
ground state. Moreover, the DCeP deforms the HOMO or-
bital and changes HOMO energy in the opposite direction for
parallel and antiparallel orientations [17,22], and also affects
the recombination instants as shown in Figs. 3(a) and 3(c).
Consequently, the DCeP can change the phase differences at
each step and accordingly the phase differences between the
attosecond bursts. Again the effect of DCeP on the harmonic
phase is expected, but the surprising result we find is the very
high magnitude of this effect. Together with the aforemen-
tioned discussion on the harmonic intensity, we can assert that
DCeP must be considered not as a correction but on the same
level as other terms such as the kinetic energy or the laser
potential.

Given the strong effect of DCeP on the harmonic time
profile, we now identify the exact mechanism through which
DCeP significantly corrects the measurable even-to-odd ratio.
In Fig. 4, we present the components of Eq. (6), κ (n) and
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FIG. 4. The illustration of κ (n) (a) and − cos φ(n) (b) calcu-
lated from the two adjacent attosecond bursts emitted around 4.76T0

and 5.25T0 for the cases without (SAE) and with DCeP (SAE + P).
In panel (c), the even-to-odd ratio calculated by Eq. (6) is compared
to the result from TDSE when considering DCeP. The laser param-
eters are the same as in Fig. 3. The phase difference between the
adjacent attosecond bursts and the even-to-odd ratio have similar
modulation with harmonic energy.

−cosφ(n) reconstructed from the two adjacent attosecond
bursts around 4.76T0 and 5.25T0. Note that the phase differ-
ences here are subtracted by π phase compared with those
directly calculated from Gabor transform [Figs. 3(b), 3(d)]
due to the half-cycle time translation. Figure 4(a) shows that
within the bare SAE, κ (n) is close to unity for the most part
of the harmonic energy range; while with DCeP, κ (n) not only
changes its modulation with the harmonic energy but is also
significantly reduced in its magnitude. This difference has
an important implication to the even-to-odd ratio. The small
value of κ (n) means a large imbalance in the magnitudes
of two consecutive bursts, indicating that besides the region
around order 22, for instance, order 16 shown in Fig. 3(a),
DCeP almost eliminates the bursts at instants t ′. As a result,
the even-to-odd ratio produced with DCeP is close to unity as
the interference is dominated by bursts at t instants.

In addition to the magnitude imbalance, the bare SAE also
incorrectly estimates the phase difference between two con-
secutive bursts. For −cosφ(n), with increasing the harmonic
energy, the value when neglecting DCeP remains mostly pos-
itive close to unity (except a sharp dip at order 26). Together
with that κ (n) ≈ 1, this means the two consecutive bursts have
the same magnitude but opposite phase, resulting in the van-
ishing odd harmonics and an unphysically large even-to-odd
ratio. However, the inclusion of DCeP can correct both the
magnitude imbalance and the phase difference, leading to a
much more physical even-to-odd ratio.

In Fig. 4(c), we show the even-to-odd ratio reconstructed
from components κ (n) and −cosφ(n) of adjacent attosec-
ond bursts using Eq. (6) when including DCeP, which agrees
well with the simulated data from TDSE both in magnitude
and shape. For low harmonic energy, the fluctuation of the
simulated from TDSE is not captured by the reconstruction
from Eq. (6) since this formula simply utilizes only two
adjacent out of a series of attosecond bursts; however, their
typical magnitudes are consistent with each other. Interest-
ingly, Figs. 4(b) and 4(c) reveal that − cos φ(n) and the
even-to-odd ratio have the same modulation with harmonic
energy. The turning point of the even-to-odd ratio from >1
to <1 exactly matches the turning point of − cos φ(n) from
positive to negative, as can be understood from Eq. (6). Re-
markably, this turning point is confirmed experimentally (see
Fig. 2 at around 31 eV), implying that other corrections to the
theory might only be of high orders. Following this argument,
we emphasize that the analogous turning point of − cos φ(n)
is absent in the bare SAE, consistent with the observation that
the even-to-odd ratio produced by bare SAE has not only the
wrong magnitude scale but also incorrect shape compared to
experiments. Our finding complements the DCeP effect on
the harmonic phase besides the knowledge on the harmonic
intensity found in previous studies [22,23,33,36]. We thus
recommend that the basic theoretical framework for polar
molecules should be SAE + P (instead of SAE) with the effect
of dynamic core polarization calculated unperturbatively.

V. CONCLUSION

In this paper, we have theoretically investigated the even-
to-odd ratio of CO molecule by solving the TDSE in
the framework of SAE approximation including DCeP. We
demonstrate the remarkable influence of the multielectron
effect via DCeP on the even-to-odd ratio of CO molecule.
Without DCeP, the even-to-odd ratio is much larger than
unity, in contrast to the case of including DCeP, where the
even-to-odd ratio is close to unity, significantly improving the
agreement with available experimental data.

Furthermore, we also explicitly show that the DCeP signifi-
cantly imprints in the harmonic time profile in both intensities
and phases, which directly causes the DCeP signature in an
even-to-odd ratio. Our finding complements the understand-
ing of the DCeP effect on the harmonic phase besides the
harmonic intensity found in previous studies. We emphasize
that the role of DCeP in the even-to-odd ratio is nonperturba-
tive and should be included in the standard theory.
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APPENDIX A: STABILITY OF EVEN-TO-ODD RATIO

In this Appendix, we prove that removing the long trajec-
tories leads to smooth even-to-odd ratios that are relatively
independent of the laser intensities and wavelengths. First,
we simulate the case of CO molecular orientation θ = 0◦
where only parallel HHG is generated. The simulated odd and
even HHG spectra, and even-to-odd ratios are presented in
Fig 5.

Figures 5(a) and 5(b) compare the separated odd- and
even-harmonic spectra when considering full trajectories
(dashed lines) and only the short ones (solid lines). The
laser wavelength and intensity are respectively 800 nm and
1.8 × 1014 W/cm2. The DCeP effect is included for sim-
ulating HHG. Figures 5(a) and 5(b) reveal that with full
trajectories, except the cutoff region, the intensities of both
even- and odd-harmonic spectra strongly fluctuate, thus lead-
ing to the oscillation of the energy-dependent even-to-odd
ratio, as shown by the blue dashed line in Fig. 5(c). This
fluctuation can be attributed to the interference of long and
short trajectories in each optical half-cycle of the laser pulse.

E
v
en

-t
o
-o

d
d
 r

at
io

 
H

ar
m

o
n
ic

 i
n
te

n
si

ty
 

  
  

  
  

(a
rb

. 
u
n
it

s) long+short

short

(a) odd, 1.8I0, 800 nm

10−2

10−1

100

101

long+short

short

(b) even, 1.8I0, 800 nm

(c) long+short, 800 nm

2.0I0

1.8I0

1.5I0

1.0I0

0.1

1

(d) long+short, 1.5I0

1100 nm

950 nm

800 nm

(e) short, 800 nm

2.0I0

1.8I0

1.5I0

1.0I0

0.1

1

Harmonic energy (eV)

20 25 30 35 40 45 50 55 60

(f) short, 1.5I0

1100 nm

950 nm

800 nm

Harmonic energy (eV)

20 25 30 35 40 45 50 55 60

FIG. 5. The separated odd- and even-harmonic spectra [(a), (b)]
and the even-to-odd ratios when considering both long and short
[(c), (d)], or only short [(e), (f)] trajectories of ionized electrons. In
panels (c)–(f), the horizontal dotted gray lines show the even-to-odd
ratio equals one. The laser parameters are wavelength of 800 nm
and various intensities [(c), (e)]; and intensity of 1.5 × 1014 W/cm2

and various wavelengths [(d), (f)]. The notation I0 in the figures
stands for 1.0 × 1014 W/cm2. The molecular orientation angle is 0◦.
The DCeP effect is included. The elimination of long trajectories
smooths the odd- and even-harmonic spectra and the even-to-odd
ratios. Moreover, the even-to-odd ratios are stable with changing
laser intensities (e) and wavelengths (f).

Only for the harmonics at the cutoff where these two kinds
of trajectories are merged, the smooth modulation is observed
in the HHG [Figs. 5(a) and 5(b)] and in the even-to-odd ratio
[Fig. 5(c)] (as opposed to the rapid oscillating HHG and even-
to-odd ratio at low harmonic orders when the long and short
trajectories are widely separated). Therefore, avoiding the
quantum path interference by removing the long trajectories
makes the odd and even spectra [Figs. 5(a) and 5(b)], as well
as the even-to-odd ratio [blue solid line in Fig. 5(e)], much
smoother. For comparison, we also present the even-to-odd
ratio with full trajectories when varying the laser intensities
(with the fixed wavelength of 800 nm) shown in Fig. 5(c),
and wavelengths (with the fixed intensity 1.5 × 1014 W/cm2)
shown in Fig. 5(d) within the tunneling ionization regime. The
results indicate that the fluctuation of the even-to-odd ratio
occurs disorderly with the changing of laser parameters. How-
ever, it is interesting that when restricted to only short electron
trajectories, the even-to-odd ratio is almost insensitive to the
laser intensities [Fig. 5(e)] and the wavelengths [Fig. 5(f)].
Our statement is supported by available experimental data
showing relatively similar even-to-odd measurements for the
CO molecule at different laser intensities (see Fig. 2).

We also examine the stability of the even-to-odd ratio
for other molecular orientations and obtain similar re-
sults. Macroscopically, this stability ensures that features
of the even-to-odd ratio still persist after integration over
the laser-focus volume. Therefore, the even-to-odd ratio
can be used as a tool to extract molecular asymmetricity
such as geometric structure or permanent dipole of polar
molecules.

FIG. 6. The simulated even-to-odd ratios for parallel (upper
panels) and perpendicular (lower panels) HHG spectra from CO
molecules without (SAE) and with the DCeP effect (SAE + P) in
the case of orientation angles of 30◦ [(a), (b)] and 75◦ [(c), (d)]. The
800-nm laser pulse with the intensity of 1.5 × 1014 W/cm2 is used.
The DCeP affects both the magnitude and shape of the even-to-odd
ratio of parallel and perpendicular HHGs.
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APPENDIX B: ORIENTATION ANGLES OTHER THAN 0◦

Besides the case of θ = 0◦ presented in Sec. III, we study
the signature of DCeP in the even-to-odd ratio for other
orientation angles, where HHG with both parallel and per-
pendicular polarizations are generated. Figure 6 shows the
even-to-odd ratios for the cases of θ = 30◦ and θ = 75◦ as
representatives. The results show that except θ = 90◦ whose
parallel and perpendicular HHGs contain respectively purely
odd and purely even harmonics [33,49,50], the DCeP strongly
affects the energy-dependent even-to-odd ratio in both mag-
nitude and shape (one to two orders of magnitude); see
Fig. 6. In particular, for small alignment angles with θ <

60◦ [Figs. 6(a) and 6(b)], the even-to-odd ratio with DCeP
is mostly around unity, while it is much greater than unity
when omitting DCeP. It means that the even harmonics sub-
stantially predominate the odd ones for the bare SAE, but

they are comparable in the whole plateau when including
DCeP.

For the orientation angle θ = 75◦ shown in Fig. 6(c), the
even-to-odd ratio of parallel HHG in both cases SAE and
SAE + P is less than unity, which implies that the intensity of
the odd harmonic orders is much greater than that of the even
ones. For the bare SAE, the even-to-odd ratio is extremely low
since the even harmonic orders almost vanish. In other words,
when the orientation angle approaches 90◦, the DCeP slows
down the diminishing of even orders for parallel HHG.

For the perpendicular HHG at θ = 75◦ presented in
Fig. 6(d), the even-to-odd ratio of the bare SAE is greater than
unity for high-order harmonics, meaning the intensity of even
harmonic orders predominates the odd ones. Meanwhile, the
odd harmonics still dominate the even ones when including
DCeP. In this case, the intensity of the odd harmonic orders
with DCeP decreases slower than those without DCeP.
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