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A time-dependent equation-of-motion coupled-cluster singles and doubles (TD-EOM-CCSD) method is
implemented, which uses a reduced basis calculated with the asymmetric band Lanczos algorithm. The approach
is used to study weak-field processes in small molecules induced by ultrashort valence pump and core probe
pulses. We assess the reliability of the procedure by comparing TD-EOM-CCSD absorption spectra to spectra
obtained from the time-dependent coupled-cluster singles and doubles method, and observe that spectral features
can be reproduced for several molecules, at much lower computational times. We discuss how multiphoton
absorption and symmetry can be handled in the method, and general features of the core-valence separation
projection technique. We also model the transient absorption of an attosecond x-ray probe pulse by the glycine

molecule.
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I. INTRODUCTION

Stimulated by the recent experimental realization of vari-
ous laser pulses with durations on the attosecond (1x 1078 s)
time scale [1-5], capable of monitoring electronic motion,
the theoretical simulation of coherent electron dynamics is
currently an active field of research [6].

Real-time electronic structure theory considers the explicit
time dependence of the electronic system by evolving the
time-dependent Schrédinger equation in the time domain [6].
Explicitly time-dependent methods can directly provide the
time-domain evolution of electronic wave functions together
with nuclear motion, representing a versatile way of tracking
ultrafast phenomena in both perturbative and nonperturbative
regimes [7,8].

The development of real-time methods commenced in the
late 1970s and early 1980s in the field of nuclear physics
[9-11]. Despite these early endeavors, real-time methods did
not become practical at that time due to the lack of electron
correlation effects at the Hartree-Fock level and the high com-
putational cost associated with propagation of correlated wave
functions. However, decades of steady advancements in com-
puting power and numerical algorithms have led to a renewed
interest in explicit time propagation in correlated methods like
density-functional theory [12,13], multiconfigurational self-
consistent-field [14-16], configuration-interaction [17-20],
algebraic diagrammatic construction [21,22], and coupled-
cluster [23-33] methods.
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In this paper, we present an implementation and represen-
tative case studies of the time-dependent equation-of-motion
coupled-cluster (TD-EOM-CC) model for simulating weak-
field attosecond valence pump-core probe processes. In
conjunction with a reduced-space band Lanczos algorithm for
obtaining the valence and core excited states, this model offers
results similar to its time-dependent coupled-cluster (TDCC)
counterpart in weak fields, at significantly lower computa-
tional costs. The reduction in cost enables the study of larger
systems.

The paper is organized as follows. In Sec. II we detail the
theory behind TD-EOM-CC and the asymmetric band Lanc-
zos algorithm. Here, we also discuss a strategy used in order
to guide the reduced space solver to directly obtain the tran-
sitions between excited states. The computational procedure
used is detailed in Sec. III. In Sec. IV, simulations for various
molecular systems are presented. First a benchmark study is
presented for LiF, validating our proposed method. Second,
the applicability of the core-valence separation (CVS) scheme
is tested for LiH. Then, a two-photon absorption phenomenon
has been captured using a stepwise procedure emulating the
actual physical process for C,Hy. Finally, we put forward
a theoretical assessment of pump-probe absorption for the
glycine molecule, which is deemed suitable for further experi-
mental investigations. The findings are summarized in Sec. V.

II. THEORY

A. System

We model the system, composed of a molecule and its
interaction with laser pulses, with the Hamiltonian

Ht)=H? +Vv(), (1)

©2022 American Physical Society
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where the field-free Hamiltonian H® describes the molecule
with fixed nuclei and without interactions with the exter-
nal electromagnetic field. The semiclassical time-dependent
interaction term, written in the dipole approximation and
length gauge, is

V()= —d-E@1) ()

and describes the interaction between the molecular elec-
trons and the external electromagnetic field. The latter is
represented by the electric field E(r) = [E:(t) &(t) E.(1)]"
and electronic dipole operator vectors, d = [d; d, d.]". We
assume that the molecule is initially in the ground state of
the field-free Hamiltonian, and take the electric field to be a
linear combination of the electric fields of any number of laser
pulses:

E(t) = Eoncoslwont — ton) + Gulfut).  (3)

The field of laser pulse n has an associated carrier frequency
won, peak strength |Eg,|, polarization £, /|Ep,|, and an 8o,,-
truncated Gaussian envelope function

o= t—tn/(202)

if |t - t0n| < 8Gn
otherwise

“4)

with duration specified by o,, the temporal rms width. It is
also specified by the central time f, and the carrier-envelope
phase ¢,. We assume the carrier-envelope phase to be zero for
all pulses, meaning that the maximum values of the envelope
and cosine carrier functions belonging to pulse n coincide at
Ton-

The energy absorbed during the interaction can be given by
[28,34]

AE = /OO wS(w)dw, 5)
0

where S(w) is the response function
S(w) = —2Im[(d)w) - £*(w)] @ > 0. (6)

The vectors (H)(a)) and € (w) are the Fourier transforms of the
time-dependent dipole moment expectation value and electric-
field vectors, respectively, and the asterisk denotes complex
conjugation. A positive or negative value of the function S(w)
describes the probability of absorption or emission of light
with frequency w, respectively [34].

B. TD-EOM-CC states

The time-dependent ket and bra of a TD-EOM-CC state
can be expressed as

W) =Y 1¥psi0)., (B@I =Y k)@l ()
J i

where the italic indices i and j are used to denote general
equation-of-motion coupled-cluster (EOM-CC) states, includ-
ing the ground state with index zero. The time-independent
EOM-CC kets and bras are given by

1)) = ¢"R;[HF), (Y;| = (HF|Lie " ®)
We assume that the EOM-CC states are biorthonormal:
(Wilws) = 8. )

In the following, we let the indices x and A denote general
determinants in the projection space, including the reference
Hartree-Fock determinant with index zero. We use the indices
u and v, on the other hand, to denote excited determinants.

The cluster operator 7 and the right and left operators
R; and L; of Eq. (8) can be expressed as linear expansions in
a finite set of operators t; and r,j s

T=) uwh, Ri=) un L= Lzl (10
v A K

where the operator with index zero is the unit operator,
=71 =1, (11)

and the 7, and ‘L’Z operators generate excited determinants
from the ket and bra reference Hartree-Fock determinants,

respectively:

©,|HF) = |v), (HF|t} = (ul, 12)

7! [HF) = 0, (HF|t, = 0. (13)

We assume that the determinants are biorthogonal:
(k[A) = Bin. (14

If all possible electronic excitations are included in the
summations in Eq. (10), the method is equivalent to full
configuration interaction. The sum can also be restricted to
given excitation levels, giving approximate methods that scale
polynomially with the system size. This includes the coupled-
cluster singles and doubles method, where summation is only
done over single and double excitations. We do not explicitly
state the excitation levels included in the following expres-
sions, since they hold for both restricted and unrestricted
summation.

The cluster amplitudes ¢, in Eq. (10) can be found
from solving equations involving the similarity-transformed
field-free Hamiltonian operator H® projected onto the right
reference and left excited determinants

(ulH©HF) = 0, (15)

where the similarity transformation of an operator X is de-
noted by an overbar:

X =eTXe. (16)

After the optimal cluster amplitudes #, have been deter-
mined, the right and left vectors of EOM-CC state i, with
components r;; and /;., can be found as right and left eigen-
vectors of the field-free Hamiltonian matrix, with elements

HY = (c|AO5). (17)

The right and left eigenvectors of the matrix in Eq. (17)
with the lowest eigenvalue, specifying the ground EOM-CC
state with index zero, have the following structure:

roo=1, ro=0, (18)

o = 7. (19)

The multipliers 7, are solutions to the equations

loo =1,

(HF|H®|v) + Y 7,40 =0, (20)

28
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where elements of the field-free coupled-cluster Jacobian ma-
trix A9 are given by

AD) = (u|[A®, 7, ] HF). 1)

The other right and left eigenvectors of the matrix in Eq. (17)
correspond to excited EOM-CC states, denoted by the italic
indices m and n. The eigenvectors have the following refer-
ence determinant components:

op = — tyFon, (22)

Imo = 0. (23)

These components enforce the biorthogonality between the
ground and excited states, in accordance with Eq. (9). The
vectors R, and L,,, containing the components r,,, and I,
of excited EOM-CC state m, are right and left eigenvectors of
A© with eigenvalue w,,.

C. Derivation of TD-EOM-CC equations

The time derivative of the coefficients of the TD-EOM-
CC ket can be found from projecting the ket time-dependent
Schrodinger equation (TDSE)

0
Lo V@) = HOW (). (24)

where ¢ denotes the imaginary unit, onto the bra of EOM-CC
state i, giving

as;i(t)
I o = ;Hij(l‘)Sj(l), (25)

where the matrix elements of an operator X (¢) are given by

Xi;(t) = (Yl X O)19)). (26)

Likewise, the time derivative of the coefficients of the TD-
EOM-CC bra can be found from projecting the bra TDSE,

J ~ ~
—ta AV O = (YOIH @), 27

onto the ket of EOM-CC state j, giving

—z$ = Zk,-(t)Hij(t). (28)

The TD-EOM-CC equations (25) and (28) were to our
knowledge first presented in Ref. [18], and have also been
used in Ref. [19]. In those works, the matrix elements d;; of
the dipole moment operator, entering in the time-dependent
Hamiltonian, are approximated by discarding non-Hermitian
components. This was achieved by using the Hermitian (d;; +
d7;)/2 instead of the d;; given by Eq. (26). In the present paper,
however, the full non-Hermitian d;; are used in the solution of
Eqgs. (25) and (28). After the time-dependent coefficients k;(t)
and s;(¢) have been obtained, the time-dependent expectation
value of a time-independent operator X can be calculated
according to

(X)) = ki()Xijs;(1). (29)

i

D. Asymmetric band Lanczos algorithm

We use the asymmetric band Lanczos algorithm to generate
approximate eigenvalues @, and right R, and left L, eigen-
vectors of the field-free Jacobian matrix A”). As outlined in
Sec. I F, the approximate eigenvectors are used as a reduced
basis for solving Egs. (25) and (28).

The algorithm is a generalization of the simple asymmetric
Lanczos algorithm, employing m right (b, ..., b,,) and p left
(c1, ..., cp) starting vectors instead of single ones [35-37]. A
sequence of right vectors is constructed by transforming the
right starting vectors by increasing powers of a given square
asymmetric matrix M. For our purpose, M = A", The i first
vectors in the sequence, which can be linearly dependent, span
the n-dimensional right band Krylov subspace,

9bm)
by, Mby, ..

i

KM, by, ...

= span{b, .. .,Mb,,, M°b;, ...}, (30)

where i —n is the number of redundant vectors in the se-
quence. Likewise, a sequence of left vectors is constructed by
transforming the left starting vectors by increasing powers of
the transpose matrix M” . The j first vectors in the sequence,
which can be linearly dependent, span the n-dimensional left
band Krylov subspace,

ICj(MT,cl,...,cp)

T T T2
=span{cy,...,cp,M'¢ci,.... M c,, M" )c,...},

J
(€29)
where j —n is the number of redundant vectors in the se-
quence. Note that the subspaces can be regarded as block
Krylov subspaces [37] whenever i and j are multiples of the
number of starting vectors. The n right (vy, ..., v,) and left
(wy, ..., w,) Lanczos vectors, which form respective bases
for IC;(M, by, ...,b,) and ICj(MT, i, ...,cp), are obtained
by discarding redundant vectors of the sequences in Egs. (30)
and (31). A n x n-dimensional band Krylov subspace approx-
imation of M can then be obtained by expressing the matrix
in the Lanczos vector bases.
The right and left Lanczos vectors can be generated itera-
tively with the recurrence relations [35]

MV, =V,T,+VS+V7, (32)
T ~ ~ C ~ D
MW,=W,T,+W, +W,_, (33)

where the right and left Lanczos vectors form the matrices

Vo=[vy --- wv,] and W, = [w wy], respec-

tively. The un-normalized vectors that form the nonzero
A C N N

columns of V,=[0 --- 0 D, Vy+m,] and

A C N N .

w,=1[0 0 d, W,4p ] serve as candi-

dates for the next right and left Lanczos vectors, respectively.

The sparse matrices V,L,) and WnD contain un-normalized can-
didates from previous iterations that have been deflated (i.e.,
discarded) due to linear dependence on already accepted right
and left Lanczos vectors, respectively. Finally, the nonzero
elements of T, and T, are used to enforce the biorthogonality
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between the m 4 p 4 1 vectors that can overlap in exact arith-
metic at each iteration [35].

In numerical implementations, vectors are usually deflated
when linear independence is below a given threshold, since
inexact arithmetic prevents the description of exact linear
dependence. The numbers m,. and p., initially equal to the
number of right and left starting vectors m and p, give the
current number of vectors available for deflation. We say that
the sequence in Egs. (30) and (31) is fully exhausted when
m or p deflations have occurred, respectively. The iterative
procedure is then terminated, giving equal numbers of right
and left Lanczos vectors.

The iterative solution of Eqs. (32) and (33) is done in
accordance with Algorithm 5.1 of Ref. [37], with two excep-
tions. The following biorthogonalization step is added at the
beginning of step 1:

if n > 1 then
for k = 1tomax{l,n— p.— 1} do
b, < 9, — ve(w! d,)
end for
end if

and the following at the beginning of step 2:
if n > 1 then
for k = 1 to max{l,n —m. — 1} do
W, < i, — (@7 v )w;
end for
end if

These additions lead to an algorithm that enforces the
biorthogonality between all Lanczos vectors in inexact arith-
metic,

WiV, = A, = diag(s;, 82, ..., 8»), (34)

and not just between the vectors that can overlap in exact
arithmetic. We observe that this modification of the algo-
rithm is important for numerical stability when the number
of iterations becomes large, but the modification also makes
the number of vector operations substantially higher. The
number of operations can potentially be reduced in future
implementations, e.g., by formulating a restarted asymmetric
band Lanczos algorithm, based on existing approaches [38].

The iterative procedure continues until a given maximum
chain length (i.e., number of iterations) n = n™** is reached,
unless the procedure is terminated at a lower n because of full
exhaustion of the sequence in Eq. (30) or (31). The algorithm
generates the n x n matrices

TP = A'WiMv,
=T,+A,'WivP, (35)

TP = (WIMv,A;")"

S I LAR S (36)

in accordance with Algorithm 5.1 of Ref. [37]. The matrices
T® and T? are related by

ATF = (TP)' A, (37)

and are banded when no deflations have occurred [35].

The matrix T 5 can be viewed as the oblique projec-
tion of M onto the n-dimensional C;(M,b,,...,b,) and
orthogonally to the n-dimensional C;(M T ey, .., c,) [37].
Diagonalization of the matrix yields n eigenvalues, which ap-
proximate the eigenvalues of M, and associated right and left
eigenvectors. The right eigenvectors can be transformed to ap-
proximate eigenvectors of M by premultiplication by V,,, and
the left eigenvectors to approximate eigenvectors of M’ by
premultiplication by WZA; 1 [35]. Approximate eigenvectors
with dominant (low- and high-lying) eigenvalues are typically
better converged than the ones in the middle [39—41].

E. Choice of starting vectors

In Appendix A, we demonstrate that operator matrix ele-
ments involving excited state n are linear in the right and left
vector components r,, and /,,. We assume that # is one of
the states targeted by the band Lanczos algorithm, and state
i is a previously calculated ground or excited state. Matrix
elements between n and i can thus be written as the product
of two vectors. The first vector is the right or left vector of
state n. The second vector, which we take to be the starting
vector of the algorithm, is based on state i and operator X . This
choice of starting vectors simplifies the calculation of operator
matrix elements, as will be shown in the following. Analogous
arguments have been used in previous work [42-45] to guide
the choice of start vectors for the simple Lanczos algorithm
for coupled-cluster response [42,43] and EOM-CC theories
[44,45].

The starting vectors based on the ground state i = 0, which
are similar to the starting vectors used in coupled-cluster lin-
ear response theory [42,43], are given by

by =&Y (38)

X
cyy = "OMpX — Xooty, (39)

and the starting vectors based on excited EOM-CC state i = m
are given by [44]

qum = Z (EOMAﬁV + (SﬂUX()() - Sl),_(fu)rvmv (40)

Xy =Dl (FOMAY, + 80 X00 — EXE). (4D
"

The specification of
Appendix A.

The starting vectors can be expressed in the Lanczos ba-
sis by inserting the resolution of identity in terms of the
biorthonormal Lanczos vectors:

b = v;(wlb))

Sff, EOMpX " X0, and EOMA’;U is given in

= bk, (42)

clwh. (43)
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The sum in Eq. (42) is restricted since bf € span{vy, ..., Uy}
while each (w41, ...) is biorthogonal to all (v, ..., v,).
Likewise, the sum in Eq. (43) is restricted since cf( €
span{wy, ..., w,} while each (v, .. .) is biorthogonal to all
(Wi, ..., wp).

Thus, the transition moments involving excited states can
be obtained by contracting the starting vectors with the vectors
of excited state n:

P
= SR, (44)
j=

m
= Lyb%. (45)

Rj, and L,; are simply the components of the right and left
eigenvectors of Ty, respectively, and b%; = w’b} and ¢}, =

(cX)"v; are products of starting Vectors and b10rth0n0rmal
Lanczos vectors.

F. Generation of a reduced basis

The iterative process that is used to calculate sets of excited
EOM-CC states is given below. The set J,. contains the indices
of already calculated EOM-CC states. At the beginning of
the procedure, where ¢ = 0, only the ground state has been
calculated, and Jy = {0}. The iterative procedure for the cth
EOM-CC state calculation is as follows.

(1) Choose a subset of the state indices from previous
calculations, I, € J._, and a set of operators X, based on the
final states that can be accessed by the operators (see Sec. IV).
Also choose a maximum chain length n"**, and maximum
eigenvalue o™ and minimum transition strength S“““ values.

2) Sequences of right and left starting vectors, (b )iel. xex,
and (c, )iel xex., are constructed in accordance with
Eqgs. (38)-(41).

(3) The band Lanczos algorithm described in Sec. IID is
run with the maximum chain length n"**, the field-free Jaco-
bian matrix A?, and the sequences of starting vectors. The
al}g)gorithm terminates at n. < ng™, constructing the matrix
T,

(4) The eigenvalues and corresponding right and left eigen-
vectors of T', P are calculated. Together, these determine a set
of n, approx1mate EOM-CC states indexed by N,.

(5) States n € N, with approximate eigenvalues @, of A
that are greater than " are discarded.

(6) Matrix elements for all operators X € X, and combi-
nations of final n € N, and initial i € I. states are calculated
in accordance with Eqgs. (44) and (45). States n € N, with

V

FIG. 1. Illustration of the structures of lithium fluoride (top left),
lithium hydride (top right), ethylene (bottom left), and glycine (bot-
tom right), together with the polarization of the valence-exciting
pump (orange arrow) and core-exciting probe (purple arrow) pulses.

transition strengths Si’f, = X;,X,; that are smaller than S;“i" for
all operators and initial states are discarded.

(7) For each nondiscarded state n € N,, the right and left
eigenvectors of TSL are transformed to approximate right and

left eigenvectors ﬁ and Z of A by premultiplication by V,,
and WT ! respectively.

®) If an assessment of the convergence of the vectors is
requested, residual norms of all approximate right and left
vectors are calculated. All states with a left or right residual
norm exceeding a given threshold are discarded.

(9) Finally, nondiscarded states with vectors linearly in-
dependent of previously calculated vectors are stored, and
indexed by N/ € N,. The indices are added to the previous
index set J. = J._; UN..

The iterative procedure is repeated if states of higher
excitation levels are desired. Afterwards, the gxcited;state Ja-
cobian and overlap matrices, with elements A?) = LTAVR,
and 3;,1” =Z;§n, are constructed in the reduced basis of
the approximate eigenvectors. The right and left generalized
eigenvalue problems are solved, giving new sets of right and
left eigenvectors of A®. The dipole and field-free Hamil-
tonian matrices are then calculated in the basis of both the
ground and the newly generated excited states, in accordance
with Eq. (26), and used in solving the time-dependent prob-
lems defined by Egs. (25) and (28).

III. COMPUTATIONAL DETAILS

Experimental geometries from the NIST database [46] are
used for LiH, LiF, and C;H4. An optimized geometry from
the same database is used for glycine, obtained with the MP2
method with all electrons correlated and the cc-pVTZ basis
set. The linear molecules LiH and LiF are aligned along the z
axis, as done in Ref. [28]. The ethylene molecule is placed
in the xy plane, with the C-C bond along the x axis. The
glycine molecule is of C; symmetry for the chosen geometry,
with the xy plane as the mirror plane. An illustration of the
structures of the molecules, together with the polarizations of
the valence-exciting pump and core-exciting probe pulses, is
shown in Fig. 1.

In all following calculations, the aug-cc-pCVDZ basis set
[47,48] is used for atoms targeted by the core-exciting pulses;
the aug-cc-pVDZ [47] basis set is adopted for the remaining

023103-5



ANDREAS S. SKEIDSVOLL et al.

PHYSICAL REVIEW A 105, 023103 (2022)

—— TDCC
0.04
1.0 1 0.04 x10~4
57 1
0.5 0.00 A e 1 0.02 —_g :—“r——"‘!—*‘ﬁ
T T T T T
4 1 |
- , 68 10 | .. 680 685 s |
T T T T T T T T T T T T T T
— Vil 90 (3), CSVE, - 45 (4) Vil 100 (3), CSVE, ;50 (4) —-— Vi 110 (3), CYYE, - 55 (4)
0.04
1.0 ~ 0.04 x10~4
05 000 | 0.02 1 g "‘""‘r"—' +—1’_‘
!l T T T T T
4 1
00 f——— L 46 8 10 | o f 60 685 — —
T T T T T T T T T T T T T T
© — Vil 180 (5), CSVE, 180 (9) Vil 200 (5), CSVE, - 200 (9) —— Vil 220 (5), CSVE, ;220 (9)
N 0.04
1.0 0.04 x10~4
JH S — \
05 4 0.00 ————_—1L-— ]| 0.02 —72 TT “*"*"""“hﬁ
T T T T T
0.0 - — 4 6 8 10 0.00 - O 883 __z_j_s_._!.h_._
T T T T T T T T T T T T T T
—— Viull: 270 (6), CSVE, : 540 (9) Vil 300 (7), CSVE ;600 (9) —-— VI 330 (7), COVE, : 660 (9)
0.04
1.0 0.04 x10~4
5 A | |
i 1 o/ +—A——v—tp->yt—
05 0.00 - — | o2 4 9T — {‘:I
T T T T T l
\ 4 6 8 10 680 685 |
0.0 +¥——— — A ] 0.00 —————————————— ] -—.—h.‘.—n—_L_.—
T T T T T T T T T T T T T T
4 6 8 10 12 14 16 18 680 682 684 686 688 690 692 694
w (eV)

FIG. 2. LiF pump-probe absorption S(w) as a function of frequency w in the valence and core regions, normalized by the tallest peaks
in the spectra. The TDCC results are shown in the top left and right panels. TD-EOM-CC results, calculated at different band Lanczos chain
lengths, are shown in the lower panels. EOM-CC valence (V) states are calculated in the full projection space, while the core (C) states are
calculated within the CVS approximation. Valence states energetically inaccessible by a single pump photon y, are discarded, and so are core
states energetically inaccessible by subsequent absorption of a probe photon y, + y.. The chain lengths of the calculations are given, together

with the number of converged states (in brackets).

atoms in the molecules. Valence and core states are obtained
with the asymmetric band Lanczos algorithm with varying
chain lengths as specified in Sec. IV.

Lanczos vectors with Euclidian norms of less than 1x10~°
are deflated, but this did not occur in any of the calculations.
Final excited states that do not have a minimum transition
strength of at least 1x 1077 to any initial state, for any of the
operators used to construct the starting vectors, are discarded.
This is done to only keep states that give a non-negligible
contribution to the dynamics. Also, states with excitation en-
ergies above 0™ = Z?y E]'/f_‘a" are discarded, where E;‘i‘a" =
w; + 80 is an estimate of the maximum energy of photon
i involved in the n,-photon transition to the desired excited
states. The carrier frequency w; and the frequency rms width
0 = 1/(20}) are parameters of the pulse providing photon i

L

(see Sec. IT A).

CVS [49-51] projectors were used to calculate core states.
A “core-only” CVS projector is applied to remove excita-
tions that originate exclusively from valence orbitals. This is
done by zeroing out all right and left vector elements that
only involve molecular orbitals with energies greater than
the energy of the lowest core molecular orbital of a given
atom. This yields a Lanczos spectrum starting at the lowest
core excitation energy of the chosen edge. A complementary
“valence-only” CVS projector is used to obtain valence ex-
cited states that are orthogonal to the core excited states.

Except for the spectra presented in Fig. 2, only sufficiently
converged valence and core band Lanczos vectors are used for
calculating stationary states and corresponding Hamiltonian
and transition moment matrices. This is done by discarding
states with either right or left residual norms greater than
1x 1072 for valence states and 1x 10~! for core states.
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In all calculations, valence states are calculated first, with
starting vectors based on the ground state. All accepted va-
lence states are, together with the ground state, used to
construct starting vectors for the core state calculations (see
Sec. ITF). The energies and maximum transition strengths for
all accepted valence and core states are given in the Supple-
mental Material [52].

A fixed pump-probe delay of 40 a.u. (about 0.968 fs) is
used for lithium fluoride, lithium hydride, and ethylene. The
delay is varied for glycine, in order to calculate the transient
absorption of the molecule. In all calculations the central time
of the probe pulse is set to zero and the negative central times
of the pump pulses are set accordingly.

Unless otherwise stated, integration of the TD-EOM-CC
and TDCC equations is done using a Dormand-Prince 5(4)
integration scheme [53] with a maximum time step of 0.1
a.u., and maximum and minimum local errors of 1x10~7
and 1x 107?, respectively (see Appendix B). Each component
of the time-dependent dipole moment expectation value and
electric-field vectors is multiplied with the Hann window be-
fore Fourier transformation.

All calculations are performed using a development ver-
sion of the e’ program [54].

IV. RESULTS AND DISCUSSION

A. Lithium fluoride: Convergence and nonlinear
pump interaction

When discussing the applicability of the band Lanczos
algorithm for modeling attosecond pump-probe processes, a
key question is how spectra are affected by the chain length
used. With this in mind, a single TDCC LiF pump-probe
absorption spectrum, calculated with the RK4 integrator and
fixed time steps of 5x 1073 a.u., is in Fig. 2 compared to TD-
EOM-CC spectra calculated with the Dormand-Prince 5(4)
integration scheme and various band Lanczos chain lengths.
In all calculations, the pulses have the parameters used for the
LiF spectra in Sec. III B of Ref. [28], where the F K edge is
targeted by the probe pulse. Figure 1 illustrates the polariza-
tion of the pulses relative to the orientation of the molecule.
All states with energies inaccessible by the absorption of one
photon from each pulse are discarded from the TD-EOM-CC
calculations.

For lower chain lengths, the peaks of the band Lanczos
spectra shown in Fig. 2 both shift and scale significantly
with variations in the chain length, indicating that excitation
energies and dipole matrix elements are badly converged.
The convergence generally improves with the chain length,
and low-energy high-amplitude peaks seem to converge first.
Higher chain lengths are needed for good convergence of
high-energy low-amplitude peaks, as expected from the con-
vergence behavior of Lanczos algorithms.

As demonstrated, the inclusion of badly converged states
can give spectral peaks with incorrect positions and ampli-
tudes. In addition, these states can also increase the cost
of matrix element calculation and propagation, decrease the
convergence rate of consecutive band Lanczos calculations,
and cause serious numerical instabilities during propagation.
In order to avoid these adverse effects, states with badly con-

verged right or left vector residual norms will be discarded in
the following band Lanczos calculations.

In Fig. 3, the aforementioned TDCC LiF pump-probe ab-
sorption spectrum is compared to TD-EOM-CC spectra from
converged states only. Note that the three most dominant
peaks in the TDCC spectrum are present in the green spec-
trum, which is calculated with a valence chain length of 300,
but a chain length of 400 is needed in order to converge the
short peak at around 9.9 eV. The low amplitude peaks below
and around the tall peak at around 6.9 eV are missing.

In an earlier work [28], we speculated that the smaller
peaks below 6.9eV in the pump-only LiF spectrum could
originate from two-photon absorption. This claim was later
discussed by Pedersen et al. [32], where the TDCC state of
LiF interacting with the pump pulse was analyzed in terms of
stationary state populations. Their analysis supports the inter-
pretation that two photons are absorbed from the pump pulse.

In order to take two-photon absorption into account, spec-
tra are recalculated with the inclusion of valence states
energetically accessible by two pump photons and core states
accessible by an additional probe photon. The corresponding
results obtained with chain lengths of 300 and 400 are shown
in purple and red in Fig. 3, respectively. Note that the 300
valence chain length spectrum still lacks the smaller features
of the TDCC spectrum, but the 400 valence chain length
spectrum is practically indistinguishable from the TDCC one.
This similarity corroborates the claim that two photons are ab-
sorbed from the pump pulse. Furthermore, the results demon-
strate that reduced-basis TD-EOM-CC can faithfully repro-
duce TDCC results in particular systems, even when nonlinear
interactions are involved. The embedded Dormand-Prince
5(4) integrator is seen to perform well for TD-EOM-CC.

The bottom panel of Fig. 3 demonstrates the use of the
valence-only CVS projector to calculate the valence states.
The approximation seems to improve the rate of convergence
with respect to chain length, as a length of 300 is enough to
retrieve all the features of the TDCC spectrum while a higher
number is necessary in the nonprojected case. This improved
convergence can be explained by the reduction in dimension
from projecting out transitions from core orbitals. Moreover,
since the approximation does not seem to lead to significant
scaling or shifting of the valence peaks, it is adopted in the
following calculations.

B. Lithium hydride: Applicability of the CVS projectors

To further assess the performance of the proposed proce-
dure, as well as the applicability of the CVS projectors, we use
the TD-EOM-CC procedure to model the interaction of the
lithium hydride molecule with the pump-probe pair described
in Sec. III A of Ref. [28]. Figure 1 illustrates the polarization
of the pulses relative to the orientation of the molecule. Li
K-edge spectra are notoriously difficult to describe accurately
due to the small energy separation between the valence and
core excitation regions. This can be considered a challenging
test case for the applicability of the core-valence separation
scheme.

A comparison between TD-EOM-CC and TDCC spectra is
given in Fig. 4, where the latter is taken from Ref. [28]. In all
core state calculations a fixed band Lanczos chain length of
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FIG. 3. LiF pump-probe absorption S(w) as a function of frequency w in the valence and core regions, normalized by the tallest peaks
in the spectra. The TDCC results are shown in the top left and right panels. TD-EOM-CC results, calculated at different band Lanczos chain
lengths, are shown in the lower panels. EOM-CC valence (V) states are calculated in the full projection space (middle panels) or within the
CVS approximation (bottom panels), while the core (C) states are calculated within the CVS approximation only. Valence states energetically
inaccessible by a single or two pump photons, y, or 2y,, are discarded, and so are core states energetically inaccessible by subsequent
absorption of a probe photon, y, + y. or 2y, + .. The chain lengths of the calculations are given, together with the number of converged

states (in brackets).

400 is used. However, the number of converged core states,
given in brackets, differs due to the different starting vectors
employed.

Since TD-EOM-CC with energy-limited valence and core
states successfully reproduced the TDCC spectrum of LiF in
Sec. IV A, a similar procedure is attempted for calculating
the TD-EOM-CC LiH spectrum. That is, valence states in-
accessible by two pump photons and core states inaccessible
by an additional probe photon are discarded. The results are
shown in orange in the second topmost panels of Fig. 4. The
spectrum lacks some of the weaker features in the valence
excitation energy region, and, more notably, many of the dom-
inant features in the core excitation region. In other words,
a characteristic of the LiH molecule seemingly prevents us
from reproducing the TDCC spectrum using the procedure in

the previous section. In the following, we argue that the Li K
edge in LiH involves states that cannot be obtained with the
core-only CVS projector alone, since they do not correspond
to core excitations.

TD-EOM-CC spectra calculated with states obtained with
the valence-only CVS projector, energetically accessible by
two pump and one probe photons, are shown in the three
middle rows of panels in Fig. 4. The valence chain lengths
used are 100 (green), 150 (red), and 200 (purple). The number
of converged states in the valence region increases with the
chain length. Remarkably, increasing the valence chain length
also leads to additional peaks in the core region, illustrated
in the right panels. This demonstrates that, apart from the two
intense peaks obtained at about 54.1 eV and 57.7 eV, the other
peaks are of pure valence excitation character.

023103-8



SIMULATING WEAK-FIELD ATTOSECOND PROCESSES ...

PHYSICAL REVIEW A 105, 023103 (2022)

—— TDCC —— V§YS - 150 (30), CEYS5, : 400 (10)
VEY/S: 200 (6), CEYS, 400 (30) —— VEVS_ : 200 (54), CSVS, . : 400 (11)
—== VY5 _ 1100 (20), CSYS | : 400 (27) -== VEVS 1200 (54)
1.0 A 0.04 - . 0.04
0.5 - 10.00 i 0.00 I I al s
T T T T
1.5 20 25 3.0 35 50 55 60
0.0 4— - = — = .
T T T T T T T T T T T
101 | 0.04 m 1 0.04
| ]
| | il |
| fl 'I |
| 4 I l‘\ | |A
05 - 000 el N | 0.00 1= L —
] \
: T T T T
o 15 20 25 30 3.5 50 55 60
0.0 4—— e i ——  P—— — —
T T T T T T T T T T T
1.0 A 0.04 - . 0.04
A 05 A 0.00 1 i 0.00 .
T T T T T
1.5 20 25 30 35 50 55 60
0.0 44— l At ‘
T T T T T T T T T T T
1.0 4 0.04 - 7 0.04
0.5 0.00 i 0.00 ——J—Jrl —ul
T T T T T
1.5 206 25 3.0 35 50 55 60
00 =1~ 41__—1—*:¥L + ,
T T T T T T T T T T T
1.0 A 0.04 w 7 0.04
i |
|
0.5 - B L e \ =4 . 0.00 F=——boch et
T L — T T
h 1.5 20 25 3.0 35 50 55 60
0.0 4——— e o || B — = — —
T T T T T T T T T T T
0 2 4 6 8 10 50.0 525 55.0 57.5 60.0 625 650 67.5 70.0
w (eV)

FIG. 4. LiH pump-probe absorption S(w) as a function of frequency w in the valence and core regions, normalized by the tallest peaks
in the spectra. The TDCC results are shown in the top left and right panels. TD-EOM-CC results, calculated at different band Lanczos chain
lengths, are shown in the lower panels. All EOM-CC valence (V) and core (C) states are calculated within the CVS approximation. For the
CVS valence calculation for the results shown in orange, states energetically inaccessible by two pump photons, 2y, are discarded. For all
other band Lanczos calculations, only the states inaccessible by two pump photons and one probe photon 2y, + y, are discarded. The results
shown in brown are calculated from CVS valence states only. The chain lengths of the calculations are given, together with the number of

converged states (in brackets).

The necessity to include high-energy states calculated with
the valence-only CVS projector is further validated by su-
perimposing a spectrum exclusively from valence-only CVS
states (brown) with the spectrum calculated from energy-
limited valence and core states (orange), shown in the bottom
panels of Fig. 4. The peaks of the composite spectrum are
in good agreement with the TDCC ones. Therefore, we as-
sert that use of both the core-only and the complementary

valence-only CVS projectors is necessary in order to accu-
rately capture the spectral features around the Li K edge
in LiH. Note that this should not be taken as a failure of
the CVS projectors, but as a consequence of the peculiar
electronic structure of LiH. In fact, the high-energy states of
pure valence character can be more easily calculated in the
dimension reduced by the valence-only CVS projector. One
may still question whether the corresponding peaks will be as
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FIG. 5. Ethylene pump-probe absorption S(w) as a function of frequency w in the valence and core regions, normalized by the tallest
peaks in the spectra. The TDCC results are shown in the top left and right panels, and TD-EOM-CC results are shown in the lower panels.
In the middle panels, a ground-state z dipole operator starting vector is used for calculating the valence (V) states. In the bottom panels, both
ground-state z dipole operator and z> quadrupole operator starting vectors are used. All valence and core (C) states are calculated within the
CVS approximation. The chain lengths of the calculations are given, together with the number of converged states (in brackets).

prominent in experimental spectra, since continuum electrons
are very crudely represented in the chosen basis set.

C. Ethylene: Nonlinear pump interaction for a different
symmetry group

For ethylene, rms widths of the z-polarized pump and
x-polarized probe pulses are set to 10 a.u. and 5 a.u., corre-
sponding to intensity full width at half maximum (FWHM)
durations of about 403 as and 201 as, respectively. Figure 1
illustrates the polarization of the pulses relative to the orienta-
tion of the molecule. The carrier frequency of the pump pulse
is set to 0.294 114 89 a.u. (about 8.0eV), and the probe pulse
is set to 10.495 830 66 a.u. (about 285.6eV, C K edge). The
field strengths of the pump and probe pulses are set to 0.01 a.u.
and 0.1 a.u., respectively. The time-dependent state is propa-
gated with the Dormand Prince 5(4) integration scheme, from
—2500 a.u. to 2500 a.u. of time. The TDCC spectrum, shown
in the top panel Fig. 5, is characterized by four dominant peaks
in the valence excitation region. A low amplitude peak at
around 7.3 eV is present in the TDCC spectrum, but missing in
the TD-EOM-CC spectrum calculated with a z dipole operator
starting vector, shown in the middle panels. In accordance
with the interpretation of the spectrum of LiF in Sec. IV B, we
attribute the missing peak to a two-photon excitation process,

even though valence states energetically accessible by two
photons are included. Note that quadratic functions of the z
dipole operator belong to the A, representation of Doy, the
point group of ethylene for the chosen geometry. Hence, we
should not expect the single starting vector, belonging to the
By, representation, to facilitate the convergence of the two-
photon peaks.

In order to mimic the two pump photon absorption pro-
cess, we include a starting vector constructed from the 22
quadrupole operator in the valence-state calculation. The re-
sults, shown in the bottom panels of Fig. 5, now capture the
two-photon peak at around 7.3 eV. The amplitude yielded by
TD-EOM-CC is, however, underestimated compared to the
TDCC one, which might indicate that more secondary valence
excited states should be included in the computation. It might
also hint at differences in two-photon absorption as described
by TD-EOM-CC and TDCC.

D. Glycine: Transient absorption

As a final example, we use the computational proce-
dure to model attosecond transient absorption by the glycine
molecule. The polarization of the pump pulse is set to the
polarization of the EOM-CC transition dipole moment be-
tween the ground and first dipole allowed valence excited
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FIG. 6. Glycine. Top left: Pump pulse absorption from the ground state Sy(w), normalized by the tallest peak in the spectrum. Top right:
Probe pulse absorption from the ground state Sc(w), normalized by the tallest peak in the spectrum. Bottom left: Pump-probe absorption minus
the probe absorption from the ground state ASc(w) = S(w) — Sc(w), normalized by the tallest peak in the S¢(w) spectrum. The results for two
different pump-probe delays are shown. Bottom right: In blue, the numerically integrated probe absorption difference | ASc(w)dw is shown
as a function of pump-probe delay. In orange, the dipole induced by the pump pulse in the direction from the center of mass to the N atom,

(d)n, 1s shown as a function of time after the center of the pump pulse.

state, (0.490 072x + 0.871 682y), which is in the mirror plane
of the molecule (xy plane). The probe is z polarized. Figure 1
illustrates the polarization of the pulses relative to the ori-
entation of the molecule. The rms widths of the pump and
probe pulses are set to 20 a.u. and 10 a.u., corresponding
to intensity FWHM durations of about 806 as and 403 as,
respectively. The carrier frequency of the pump pulse is set
to 0.233 683 25 a.u. (about 6.4 V), and the probe pulse is set
to 14.894 57319 a.u. (about 405.3eV, N K edge). The field
strengths of the pump and probe pulses are set to 0.01 a.u.
and 0.1 a.u., respectively. The time-dependent state is propa-
gated with the Dormand Prince 5(4) integration scheme, from
—5000 a.u. to 5000 a.u. of time.

A single band Lanczos calculation is used for construct-
ing the valence states, where states energetically inaccessible
by two-photon transitions are discarded. Note that we do
not need to use quadrupole operators in order to get two-
photon valence states of glycine in the reduced basis, as
otherwise done for the ethylene valence states, since both
linear and quadratic functions of x and y dipole opera-
tors belong to the A’ representation of Cs. A valence-state
calculation, with ground-state starting vectors and a chain
length of 1500, gives 17 converged states. A subsequent
core state calculation, with ground- and valence-state start-
ing vectors and a chain length of 3000, gives 20 converged
states.

As a note of caution, all the converged valence states have
energies below 10.5 eV, which is below the double frequency
of the carrier photons. This indicates that two-photon absorp-
tion is not properly accounted for by the reduced basis, and

nonlinear features involving higher-energy valence states may
be missing in the spectra.

In the top left panel of Fig. 6, the absorption of the pump
pulse is shown as a function of frequency. Even though
the glycine molecule is substantially larger than the other
molecules considered, the spectrum is still dominated by a
small number of peaks. The number of dominant peaks is
also smaller than the number of converged states in the basis
(=17). The spectrum of the absorption of the probe pulse by
the ground state, shown in the top right panel, also has fewer
dominant peaks than the number of converged states (=20).

In order to calculate the transient absorption of the probe
pulse by the glycine molecule, absorption spectra are calcu-
lated with the pump-probe setup used for the other molecules,
with pump-probe delays varying from 0 a.u. to 120 a.u. (about
2.903fs) in intervals of 2.5 a.u. The reduced basis energies
and dipole matrix elements do not have to be recalculated be-
tween the different TD-EOM-CC calculations, since these are
independent of the pump-probe delay. Difference spectra are
then calculated by subtracting the ground-state probe absorp-
tion spectrum from the pump-probe absorption spectra, before
normalizing by the tallest peak in the ground-state probe
spectrum. In the bottom left panel, the difference spectra at
52.5 a.u. and 65 a.u. (about 1.270 fs and 1.572 fs) are shown
in blue and orange, respectively. Both spectra are dominated
by negative peaks, indicative of ground-state bleaching. In ad-
dition, the spectra vary slightly with pump-probe delay, which
is particularly visible for the peaks that are not energetically
accessible from the ground state, e.g., in the energy range from
395 eV to 405 eV shown in the inset.
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In order to quantify the delay-dependent difference in the
absorption of the full probe pulse, each of the 49 pump-probe
difference spectra are numerically integrated from 390 eV to
420 eV using the trapezoidal rule. The results are shown as
function of pump-probe delay in the bottom right panel of
Fig. 6, in blue. Note that the absorption difference is smaller
for short pump-probe delays, which can be explained by the
fact that ground-state bleaching happens gradually during the
pump pulse interaction. A shorter pump-probe delay implies
that the molecule is probed while bleaching still occurs, which
can lead to a smaller difference between the pump-probe
absorption and the ground-state probe absorption.

We have also calculated the pump-induced time-dependent
dipole moment in the direction from the center of mass to the
center of the N atom, as a way of quantifying the migration
of charge between the end containing the N atom and the
opposite end of the molecule. The dipole moment is shown
in the bottom right panel of Fig. 6, in orange.

Note that the dominant periods of both the time-dependent
dipole moment and the integrated absorption (after 1 fs),
shown in the bottom right panel of Fig. 6, fall within 0.57(4)
fs. This indicates that the pump-induced TD-EOM-CC state
is a coherent superposition dominated by states with energy
differences of 7.3(6) eV, which is in agreement with the
ground-state pump absorption spectrum (top left). It also indi-
cates that the dominant features of the time-dependent charge
migration and the delay-dependent K-edge absorption are cor-
related and can be measured with phase-controlled pulses
with finite duration, as has previously been demonstrated for
instantaneous pulses [55,56].

V. CONCLUSION

We have demonstrated the use of the asymmetric band
Lanczos algorithm to generate reduced TD-EOM-CC bases
for various molecules, taking the characteristics of pulses
suitable for probing attosecond phenomena into account. The
specific starting vectors used in the calculations direct the
band Lanczos algorithm towards states that are useful for
representing the interactions. The starting vectors also allow
for the affordable calculation of transition strengths, which are
used, together with excitation energies, to automatically select
the reduced basis. The basis is further reduced by removing
unconverged states.

In Sec. IV A, we demonstrated how lithium fluoride spec-
tral peaks can converge towards peaks calculated with TDCC
by increasing the band Lanczos chain length and taking a
sufficient number of relevant states into account. In particular,
we showed that two-photon absorption has to be taken into
account in order to reproduce the smaller features of the
TDCC spectrum, as speculated in Ref. [28].

In Sec. IV B, we demonstrated that the core-only CVS
projector eliminates several of the peaks around the K edge of
lithium in lithium hydride. The missing peaks can be captured
with the complementary valence-only CVS projector, which
enabled us to target high-energy states of pure valence charac-
ter. This observation indicates that care should be taken when
the CVS scheme is used for light elements such as lithium,
where the energy separation of the core and valence orbitals
is small, so that pure valence excitations can fall within the
region of core excitations.

In Sec. IVC, we used starting vectors constructed from
both dipole and quadrupole operators, in order to converge
ethylene valence states that are dark with respect to one-
photon transitions from the ground state.

In Sec. IVD, pump and probe pulses with varying time
delays were used to assess the transient absorption of a K-
edge probe pulse as a function of pump-probe delay. We
showed how the transient absorption seems to correlate with
the migration of charge induced by the pump, and how both
quantities seem to reveal the dominant timescale in the coher-
ent superposition.
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APPENDIX A: REWRITING EOM-CC MATRIX
ELEMENT EXPRESSIONS

The matrix element X;; of the operator X and the left and
right vectors of EOM-CC states i and j, respectively, can be
written as

Xij = WilX 1)
=Y LilklX )r
KA
=Y Lo(HFIX )roj + Yl (ulX [v)r;
v i

+ (lioxoo + ) luEy )ro,-
ow

=Y lio(HF|[X, ,][HF)r,;
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+Zlm ("%, + (X HE)r,;

+ (liOXOO + Z lmé,)f)"op (AD)
"
where
MRAY, = (ul[X, 7, ][HF), (A2)
Xo0 = (HF|X |HF), (A3)
£ = (u|X|HF). (A4)

1. Excited-state left and ground-state right vectors

The left vector of excited state m has the reference com-
ponent [,,0 =0 [see Eq. (23)], while the right vector of
the ground state has components roo = 1 and r,o = 0 [see
Eq. (18)]. Inserting this into Eq. (A1), we obtain

m0 = Zlmuéify
n

which is also the expression appearing in CC response theory
[42]. Note that this expression is linear in the excited determi-
nant components /,,,,.

(A5)

2. Ground-state left and excited-state right vectors

The left vector of the ground state has the components
loo=1 and Iy, =1, [see Eq. (19)], while the right vec-
tor of excited state n has the reference component ry, =
— >, fyru, [see Eq. (22)]. Inserting this into Eq. (Al), we
obtain

Xon =) (“‘nu + Z&(MITUXIHF))FW

v w

- <X()0 + Zf//_%‘,f) Zt_urvna (A6)
" v
where
= (HF[X, 7,JHF) + ) "7, "RA% . (A7)
n
The term Y, "Ry, r,, appears in CC response theory [42],

and the other terms are specific to EOM-CC. Equation (A6)
is equivalent to Eq. (65) in Ref. [57] and can also be written
as

Xo, = Z (EOMnf

v

XOOfv)rvn’ (A8)

where

FOMpX = WRyX 3 " fu (ul T X |HF) — (Ztus )rv (A9)

m

[see Eq. (18) of Ref. [58]]. Note that Eq. (A8) is linear in the
excited determinant components r,,,.

3. Excited-state left and right vectors

The left vector of excited state m has the reference com-
ponent 1,0 = 0, while the right vector of excited state n has
ron = — 3, furun [see Eqgs. (22) and (23)]. Inserting this into
Eq. (A1), we obtain

mn — Z lmp,(LRAfw +
j73Y
- Z lmu.éj_l)f Z furvn
n v

(|t X [HF))r,,

= (AL, + (ul, X [HF) — £X7,) 1
3y
= Z lmu(EOMAﬁv + 6/J.VXOO - E;:fv)rvn, (A10)
where
FOMAX | = <M|X|V> - SMUXOO
= "RA%, + (uIT. X HF) — 8,,,X00 (A11)
[see Eq. (20) in Ref. [58]]
The term ) w Ly “RAX v on appears in CC response theory,

and the other terms are specific to EOM-CC [44,58]. Note that
all matrix elements in Eq. (A10) are linear in both /,,, and r,,.

APPENDIX B: INTEGRATION SCHEME

In order to limit the error of the time-dependent results, the
integration of the TDCC and TD-EOM-CC equations is done
with the embedded Dormand-Prince method of order 5(4)
[53]. This method yields both fourth- and fifth-order accurate
solutions at each time step, and is specified by the Butcher
tableau [53,59]

0

1] o1

3 3

30 3 o

0| 0

4| 4 6

3 e 5 9

8 | 19372 25360 64448 212

9 | 6561 T 2187 6561 729 (BD)

|| 17 355 ae732 49 _ 5103
3168 33 5047 116 18636

L3 o swo s s n
384 i3 192 6784 84
35 9 S0 125 _287 1 g
384 i3 192 6784 84
SI9 g ISTL 393 _ 92007 187 1
57600 16695 640 339200 2100 20

where the next-to-last and last rows give the coefficients of
the fifth- and fourth-order solutions, respectively. Although
the method has seven stages, its first same as last property
assures that only six function evaluations are needed per time
step.

The Euclidean distance between the solutions gives a
fourth-order estimate of the local integration error:

€o) = Vo) — Yowll2- (B2)

This local error estimate is kept below a given maximum
value by adapting the time step during the integration. The
fifth-order solution is accepted as the solution at the beginning
of the next step whenever the error estimate satisfies this
condition.
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The following adaptive time-stepping scheme was de-
signed, implemented, and used together with the Dormand-
Prince 5(4) method for the relevant calculations in Sec. IV.
At the start of the integration, the step size is set to a given
maximum value. During the integration, the variable step size
is halved, and the integration step redone, whenever the error
estimate exceeds the given maximum error. After a successful
integration step, the step size is doubled whenever the error

estimate is below a given minimum value, provided that the
doubled step size is smaller than the maximum step size and
also a submultiple of the elapsed time. This is in order to
increase the efficiency of the integration while ensuring that
the solution is evaluated at times corresponding to integer
increments of the maximum time-step size. Evaluation of
time-dependent observables is done using the solutions at
these integer increments.
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