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Thermal corrections for positronium
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Temperature-dependent corrections to energy levels, including relativistic effects, for the positronium atom
are discussed. The theoretical description of the thermal environment impact on atomic characteristics is carried
out within the framework of rigorous relativistic quantum electrodynamics. As a result, the finite temperature
corrections to the fine and hyperfine structure of positronium levels are evaluated. In addition, the annihilation
rates of a positronium atom placed in an equilibrium thermal environment (blackbody radiation field) are studied.
The numerical results are discussed throughout the paper in view of modern experiments.
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I. INTRODUCTION

The continuous development of methods of quantum me-
chanics (QM) and quantum electrodynamics (QED) for the
detailed description of processes occurring in atomic systems
and the estimation of the corresponding relativistic QED cor-
rections to bound energies [1–7] play a crucial role in modern
physics. Theoretical calculations combined with increasing
experimental precision allow one to test our understanding
of physics up to 4.2×10−15 by measuring the transition fre-
quency in hydrogen [8,9] or, even better, in atomic clocks
2.3×10−16 [10,11]. The experiments with such extraordinary
precision required theoretical calculations of various QED
effects at the α6m2/M and α7m levels (see [12] and references
therein), where α is the fine-structure constant, and m and M
are the electron and nuclear masses, respectively. However, in
a number of cases, theoretical calculations at this level cannot
adjust the existing inconsistencies in predicted and measured
physical quantities [13–18].

Such a discrepancy has been reported recently for the fine
interval 23S1 − 23P0 in a positronium atom in [19], where the
deviation of the experimental value 18 501.02 ± 0.61 MHz
and the theoretical value 18 498.25 ± 0.08 MHz exceeds the
corresponding uncertainties. The explanation of this discrep-
ancy prompts a theoretical revision of the relevant quantities
and provides a basis for searching and testing various physical
effects and hypotheses.

The effects caused by blackbody radiation (BBR) can
serve this purpose since the appropriate theoretical analysis
can hardly be found in the literature. Starting with [20,21],
thermal effects consisting of the Stark shift and induced line
broadening are well known and have been widely discussed
for various atomic systems. Calculations of the Stark shift
and line broadening caused by BBR are generally based on
the QM approach and are extended to many-electron systems
[22]. However, the theory of thermal action on atomic systems
can be defined within the framework of the QED at finite
temperature; see [23–25] and references therein.
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Recently, to study the effects caused by BBR, a rigorous
QED approach was used in [26,27], where, in addition to the
known effects, a thermal correction to the Coulomb interac-
tion of two charges was introduced. The thermal correction
was found to depend cubically on the temperature at the
lowest order, while the thermal Stark shift is proportional to
the fourth power under laboratory conditions. Being of the
same order of magnitude, this temperature behavior shows
a fundamental difference in effects, and the atomic energy
level shifts caused by this correction turn out to be more
significant than the corresponding Stark shift (see [27] for
one-electron atoms, and [28] for heliumlike systems). The
hypothesis established in [27,28] can be indirectly confirmed
by the theoretical prediction in [25] as well as by the ex-
perimentally observed thermal effect, scaled as T 2.7 in [29].
Finally, the relativistic thermal corrections to the Coulomb
interaction of bound particles were considered in [30].

In view of the existing discrepancy between the theoretical
and experimental value of the transition frequency found in
[19], the derivation of leading-order thermal corrections for
a positronium atom is of considerable interest. This prob-
lem can be solved with the formalism presented in [27,30],
which is valid up to temperatures where r/β < 1 (r is the
radius vector of the bound particle, β = 1/(kBT ), kB is the
Boltzmann constant, and T is the temperature) in relativistic
units. In this work, the thermal corrections resulting from the
scalar and transversal parts of the thermal photon propagator
are evaluated for the Ps atom. All derivations are carried out in
the framework of rigorous quantum electrodynamics at finite
temperatures. In addition, the thermal corrections to the two-
and three-photon annihilation probabilities of the positronium
atom are briefly discussed to provide a detailed description of
the lowest-order thermal effects.

II. THERMAL NONRELATIVISTIC AND RELATIVISTIC
LOWER-ORDER CORRECTIONS

Starting with the description of the interaction of two
charges, one can use the relation from textbooks (see, for
example, [2,4,7]) connecting the nuclear current, jν (x′), with
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the field, Aμ(x), it creates:

Aμ(x) =
∫

d4xDμν (x, x′) jν (x′), (1)

where x = (t, �r) represents the four-dimensional coordinate
vector (t represents time and �r denotes a space vector),
Dμν (x, x′) is the Green’s function of the photon, and μ, ν are
the indices running the values 0,1,2,3. Then, the zero com-
ponent of Aμ(x) corresponds to the Coulomb interaction, and
the components 1,2,3 are the transversal part, which gives the
interaction of retardation and advance. According to [23–25],
the photon Green’s function (also called photon propagator
or photon propagation function) is represented by the sum
of two contributions, which are the result of the expectation
value with the states of zero and heated vacuum, Dμν (x, x′) =
D0

μν (x, x′) + Dβ
μν (x, x′).

Inclusion of the zero component D0
μν (x, x′) into Eq. (1)

yields the Coulomb interaction, while the second part,
Dβ

μν (x1, x2), provides thermal interaction. Analytical calcula-

tions for the Dβ

00(x, x′) component were recently presented in
[27], where the thermal interaction corresponding to the one

thermal photon exchange diagram was obtained in a closed
form. Relativistic corrections arising through the transversal
part of Eq. (1), i.e., thermal Breit interaction, were discussed
in [30], where the contributions proportional to 1/c2 (c is the
speed of light) were determined. There are several ways to get
these corrections [2,4,6,7]. One of them corresponds to the use
of the ladder approximation and the subsequent application of
unitary transformations; see pp. 374–379 in [7]. Another one
can be attributed to the evaluation of the scattering amplitude
in the momentum representation; see Secs. 83 and 84 in [4].
The latter was used in [30] and is more convenient for the
thermal case due to the presence of the Planck distribution
function, nβ (k) = (eβk − 1)−1, which depends on the fre-
quency of the photon responsible for the exchange interaction.
In the case of the photon propagation function D0

μν (x, x′),
the coordinate representation arises through the Fourier trans-
form, but in the thermal case, it should be doubled; see [30]
for details.

Repeating the calculations performed in [30] for particles
with the same masses, the total contribution to the binding
energy in the lowest order in temperature for the positronium
atom can be written as

U ( �p1, �p2, �r12) = −4ζ (3)e2

3πβ3
r2

12 + 8ζ (3)e2

5πβ3m2c2
r2

12( �p1 · �p2) + 8ζ (3)e2

15πβ3m2c2 �r12(�r12 · �p2) �p1 − 2ζ (3)e2

3πβ3m2c2
[�σ1 · (�r12 × �p1)]

+ 2ζ (3)e2

3πβ3m2c2
[�σ2 · (�r12 × �p2)] + 4ζ (3)e2

3πβ3m2c2
[�σ1 · (�r12 × �p2)] − 4ζ (3)e2

3πβ3m2c2
[�σ2 · (�r12 × �p1)], (2)

where e and m are the charge and mass of the electron, re-
spectively, c is the speed of light (these constants are written
out explicitly for clarity), �σi with i = 1, 2 is the Pauli matrix,
�ri represents the radius vector of the corresponding particle,
r12 ≡ |�r1 − �r2|, and ζ (s) gives the Riemann zeta function [31].

However, the expression (2) corresponds to the “direct”
scattering diagram. For positronium, there is also a second
independent contribution corresponding to the “exchange”
or “annihilation” diagram since the wave function of the
electron-positron system need not be antisymmetric [4]. Eval-
uation of the corresponding operator can be found in Sec. 84
of [4]. Then, applying the Fourier transform as in [30], we find
the annihilation amplitude in a coordinate space,

U (ann) = πe2

m2c2

∫
d3k

(2π )3
ei�k(�r1−�r2 )nβ (|�k|)[3 + �σ1 · �σ2]. (3)

Performing the remaining integrations, we obtain

U (ann) = ie2[3 + �σ1 · �σ2]

4πm2c2β2 r12

[
ψ (1)

(
1 + ir

β

)
− ψ (1)

(
1 − ir

β

)]

≈
[

e2ζ (3)

πβ3c2m2
− 2e2ζ (5)

πβ5c2m2
r2

12

]
(3 + �σ1 · �σ2), (4)

where ψ (1)(x) represents the first derivative of the Digamma
function. The first term in square brackets is state independent
(in the sense of r12) and can simply be omitted or canceled by
the coincidence limit; see [27,30] for details. The second con-
tribution is β2 times smaller [β−1 ∼ mα2(kBT ) in relativistic

units and is about 9.5×10−4 in atomic units at 300 K] and
therefore insignificant at low temperatures.

In the center-of-mass reference frame, the electron and
positron momentum operators in positronium are �p1 =
−�p2 ≡ �p, where �p = −i �∇ is the operator of the momentum
of relative motion corresponding to relative position vector
�r ≡ �r12 = �r1 − �r2. Then the thermal contribution given by
Eq. (2) reduces to

U = −4ζ (3)e2

3πβ3
r2 − 16ζ (3)e2

15πβ3m2c2
r2 p2

− 8ζ (3)e2

15πβ3m2c2
�l2 − 4ζ (3)e2

πβ3m2c2
(�S · �l ), (5)

where we have introduced the operators of the total spin
�S = 1

2 (�σ1 + �σ2) and the orbital angular momentum �l=[�r × �p]

and used the relation �l2 ≡ [�r × �p]2=r2 p2 − (�r · �p)2 + i(�r · �p)
in combination with the commutator [ri, p j] = iδi j ; see [2,4]
for details.

Now an estimate of the average values of the operators
given by Eq. (5) can be done as follows. Since the reduced
mass of a bound electron in a positronium atom is half
that in hydrogen, the matrix element 〈a|r2|a〉 = 2n2

a[5n2
a +

1 − 3la(la + 1)] for an arbitrary a-state. The average value
of the third term in Eq. (5) gives la(la + 1) and the fourth
can be found as 〈a|(�S · �l )|a〉 = 1

2 [ ja( ja + 1) − la(la + 1) −
Sa(Sa + 1)].
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TABLE I. Numerical values of the energy shift corresponding to
thermal corrections given by Eq. (6) at room temperature (300 K) in
Hz. The first column indicates the specific state of the positronium
atom. The columns show the values obtained for the first, second,
and third contributions, respectively.

State 1 2 3

11S0 –84.33 0.0 0.0
13S1 –84.33 0.0 0.0
21S0 –1180.67 −4.491×10−4 0.0
23S1 –1180.67 −4.491×10−4 0.0
21P1 –843.34 −1.048×10−3 0.0
23P0 –843.34 −1.048×10−3 2.246×10−3

23P1 –843.34 −1.048×10−3 1.123×10−3

23P2 –843.34 −1.048×10−3 −1.123×10−3

Finally, to evaluate the second term, we take into ac-
count that p2ψa = (E + 1/r)ψa, which follows from the
Schrödinger equation for positronium, where E represents
the energy levels of positronium: Ena = −1/4n2

a. Then,
the average value of (r2 p2)ψa = [−r2/(4n2

a) + r]ψa can be
easily calculated using 〈a|r|a〉 = 3n2

a − la(la + 1) and, there-
fore, 〈a|r2 p2|a〉 = 1

2 [n2
a − 1 + la(la + 1)]. In total, we have

〈a|U |a〉 = −8ζ (3)α3

3πβ3
n2

a

[
5n2

a + 1 − 3la(la + 1)
]

− 8ζ (3)α5

15πβ3

[
n2

a − 1 + 2la(la + 1)
]

(6)

− 2ζ (3)α5

πβ3
[ ja( ja + 1) − la(la + 1) − Sa(Sa + 1)].

This expression is written in atomic units and 1/β = kBT =
3.16681×10−6T .

The numerical results for some low-lying states in the
positronium atom are given in Table I. The values listed in
Table I demonstrate that the effects described above are two
orders of magnitude smaller and thus fall outside the precision
of modern laboratory experiments, which is typically around
MHz for positronium [19].

III. STARK SHIFT AND BBR-INDUCED WIDTH

In this part of the work, we briefly describe the thermal
Stark shift for Ps. The corresponding derivations can be at-
tributed to the earlier work [21], where a quantum mechanical
description of the ac-Stark shift and the transition rate induced
by blackbody radiation was given. However, here we apply
the QED formalism discussed in [26] for the appropriate
derivations and further calculations in the positronium atom.
According to [26], within the framework of the QED approach
at finite temperatures, it is sufficient to evaluate the one-loop
self-energy correction (see, also, [27]). Then, replacing the
“ordinary” photon line by a thermal one, the real part of this
correction gives the ac-Stark effect, while the imaginary part
is the level width (the sum of all partial transition to the lower
and upper states) induced by the BBR.

After several successive conversions, the thermal photon
propagator (see [26,27]) can be found as

Dβ
μ ν (x1, x2) = − gμ ν

πr12

∫ +∞

−∞
dωnβ (|ω|) sin |ω|r12e−iω(t1−t2 ).

(7)

The energy shift determined by the one-loop self-energy cor-
rection for an arbitrary state a is

�Eβ
a = e2

π

∑
n

[
1 − �α1 · �α2

r12
Iβ
na(r12)

]
anna

, (8)

where

Iβ
na(r12) =

∫ +∞

−∞
dωnβ (|ω|) sin |ω|r12

En(1 − i0) − Ea + ω
. (9)

Here the sum runs over the entire spectrum n, including the
continuum, and the matrix element is to be understood as
[Â(12)]abcd ≡ 〈a(1)b(2)|Â|c(1)d (2)〉 [6].

Omitting the description of the effect associated with the
finite lifetime of states (see [26] for details), the result can be
obtained using the Sokhotski-Plemelj theorem:

lim
ε→0

1

x ± iε
= P.V.

(
1

x

)
∓ iπδ(x), (10)

where P.V. means the principal value. Then, one can find

Iβ
na(r12) =

∑
±

P.V.

∫ ∞

0
dω nβ (ω)

sin ωr12

En − Ea ± ω

+ i πnβ (|Ean|) sin |Ean|r12, (11)

where Ena = En − Ea and
∑

± means the sum of two contri-
butions with − and + before ω in the energy denominator.

Equation (11) already demonstrates the existence of real
and imaginary contributions for the energy shift (8). To give
them a physical interpretation, it is useful to consider the
nonrelativistic limit that arises when using the Taylor series
expansion for sin ωr12 ≈ ωr12 − 1

6 (ωr12)3. Then the imagi-
nary part (see [26,27]) is

β
a ≡ −2Im�Eβ

a = 4

3
e2

∑
n

|〈a|�r|n〉|2nβ (|ωan|)ω3
an. (12)

The real part should be considered more carefully. By
truncating the sin Taylor series with two terms, the real
part is

Re�Eβ
a ≈ e2

π

∑
n

P.V.

∫ ∞

0
dωnβ (ω)

(
1

En − Ea − ω
(13)

+ 1

En − Ea + ω

)(
ω − ω�α1 �α2 − 1

6
ω3r2

12

)
anna

.

Hereafter, we use that the sum in square brackets is
2Ena/(E2

na − ω2). Then the first term is equal to zero due to
the orthogonality property of wave functions and the presence
of Ena = 0 in the numerator for n = a.

Using the relations (�α1 · �α2)anna = E2
an(�r1 · �r2)anna, r2

12 =
r2

1 + r2
2 − 2(�r1 · �r2) [6] and substituting ±ω3 for the term with
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TABLE II. The ac-Stark shift, given by Eq. (15), induced by
the blackbody radiation in Hz for the ns states in the positronium
atom for different temperatures T . The first column contains the
considered n values.

a T = 5.5 K T = 77 K T = 300 K T = 1000 K

1s −1.78×10−9 −8.41×10−5 −0.0194 −2.39
2s 1.09×10−6 −1.93×10−3 −0.495 −63.6
3s 1.83×10−6 −1.85×10−2 −4.47 −736.1
4s 5.76×10−7 −9.28×10−2 −25.2 −1467.5
5s −8.11×10−6 −0.342 −104.5 856.2

�α matrices, we find

Re�Eβ
a = 4e2

3π

∑
n

P.V.

∫ ∞

0
dω

ω3Eannβ (ω)

E2
an − ω2

|〈a|�r|n〉|2

+ 2e2

π

∑
n

P.V.

∫ ∞

0
dω

Enanβ (ω)

E2
na − ω2

× (
ω3 − ωE2

na

)|〈a|�r|n〉|2. (14)

The first contribution represents the well-known ac-Stark
shift induced by the blackbody radiation field,

�EStark
a = 4e2

3π

∑
n

P.V.

∫ ∞

0
dω

Eannβ (ω)ω3

E2
an − ω2

|〈a|�r|n〉|2. (15)

Parametric estimation of Eqs. (12) and (15) is given as
mα5(kBT )4/Z4 in relativistic units, where the Boltzmann con-
stant should be taken in atomic units. To get the result in
completely atomic units, it is necessary to divide this estimate
by mα2.

Then, to evaluate the ac-Stark, Re�Eβ
a , and level width,

β
a , for the positronium atom, it is sufficient to take into

account the coefficient 1/2, arising from the reduced mass.
The calculated values are given in Tables II and III for the
Stark shift, given by Eq. (15), and depopulation rates induced
by BBR, given by Eq. (12), respectively. The numerical re-
sults listed in Tables II and III show that the ac-Stark shift
does not exceed a few Hz, while the line broadening remains
insignificant at room temperature for low-lying states.

The second term in Eq. (14) (indicated by a cross below) is
more delicate. First of all, the energy denominator is canceled
by the numerator, which gives

�Eβ,×
a = −2e2

π

∑
n

P.V.

∫ ∞

0
dω ωnβ (ω)Ean|〈a|�r|n〉|2. (16)

TABLE III. The BBR-induced depopulation rates in s−1 for the
ns states in the positronium atom, given by Eq. (12), for the different
temperatures T . The first column contains the considered n values.

a T = 5.5 K 77 K T = 300 K T = 1000 K

2s 1.310×10−7 1.826×10−6 7.114×10−6 1.012×10−2

3s 8.329×10−8 1.164×10−6 4.018×10−5 2172.99
4s 4.130×10−8 5.779×10−7 7.973 3.679×104

5s 2.432×10−8 5.102×10−6 598.2 9.034×104

Then, using the sum rule for the oscillator strength, one can
find that this contribution is constant and independent of
states. Thus, it represents an immeasurable contribution to
the atomic energy of the bound electron and can be thrown
away [32].

The results given by Eqs. (12), (15), and (16) are related to
the ‘direct” Feynman diagram. Along with this, the annihila-
tion diagram should be considered, when the thermal photon
loop connects the electron tail with the positron one. In this
case, the energy difference Ean ∼ 2mc2; see [4]. Then, for the
ac-Stark shift, given by Eq. (15), we have

�EStark (ann)
a = − 2e2π3

45β4mc4
〈a|r2|a〉 ∼ α7(kBT )4. (17)

The estimate in the expression above is written in atomic
units, where we took into account that 〈r〉 ∼ 1/mc for the
positronium; see [2]. This contribution is α4 times less and,
therefore, goes beyond the scope of interest. The same con-
clusion can be made for the imaginary part of Eq. (12), i.e.,
the broadening of the spectral emission line between bound
states due to the annihilation contribution can be neglected
since nβ (mc2) → 0.

The remaining second term in Eq. (14) turns out to be
important for the annihilation contribution. Replacing again
Ean by the 2mc2, we can sum over n and find

∑
n |〈a|�r|n〉|2 =

〈a|r2|a〉. Then, we arrive at

�Eβ(ann),×
a = e2πmc2

3β2
〈a|r2|a〉 ∼ α3(kBT )2 in a.u., (18)

which is opposite in sign to Eq. (16) due to the signs of the
charges. The final result for the thermal correction given by
Eq. (18) can be written using the analytical relation 〈a|r2|a〉 =
2n2

a[5n2
a + 1 − 3la(la + 1)] in a positronium:

�Eβ(ann)
a = 2πα3

3
n2

a

[
5n2

a + 1 − 3la(la + 1)
]
(kBT )2. (19)

Note that the expression (16) corresponds to a “direct”
particle-to-particle loop. Phenomenologically, to get the “an-
nihilation” diagram (particle-to-antiparticle loop) from the
direct one, one can change the sign in one of the energies in
Ean, which will lead to the sum of the energy modules. Then,
since we are considering a nonrelativistic atom, this sum is
almost equal to the rest mass of the positronium, which is
2mc2 up to relativistic corrections.

In particular, from the expression (19) follows that this
thermal correction is different for the states with different
orbital angular momenta and does not depend on total angu-
lar momentum. To approximate the experimental conditions
[33–35] and visualize the behavior of the thermal correction
with temperature, the numerical results for some transition
intervals (or energy difference of atomic states) are collected
in Table IV at room T = 300 K, T = 600 K, and T = 1000 K
temperatures.

As follows from Table IV, the values obtained using
Eq. (19) are at the MHz level at room temperature and
have a temperature scaling factor T 2, increasing the cor-
rection to several MHz with increasing temperature. It can
be seen that the thermal correction (19) becomes essential,
reaching a level of experimental uncertainty for the 2s − 1s
transition frequency. Another significant result arises for
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TABLE IV. Numerical values of the energy shift of transition intervals corresponding to thermal corrections Eq. (19) at room (300 K),
T = 600 K and T = 1000 K temperatures in MHz (in the fourth, fifth and sixth columns, respectively). The first column indicates the specified
energy difference of the positronium atom. The second and third columns show the experimental and theoretical values of the transition
frequency with the corresponding uncertainties. Since the thermal correction Eq. (19) does not depend on total angular momentum and spin,
we present completely nonrelativistic hydrogen-like values for all transitions, including those between fine structure sublevels.

Transition Expt. value (MHz) Theory (MHz) MHz (300 K) MHz (600 K) MHz (1000 K)

2S − 1S 1 233 607 216.4 ± 3.2 1 233 607 221.7 ± 10a 0.754 3.016 8.378
23S1 − 23P0 18 501.09 ± 0.62stat ± 0.323sys 18 498.25 ± 0.08
23S1 − 23P1 13 014.13 ± 0.58stat ± 0.229sys 13 012.41 ± 0.08 0.232 0.928 2.578
23S1 − 23P2 8628.28 ± 0.35stat ± 0.157sys 8626.71 ± 0.08b

aThe values are borrowed from [36,37].
bThe values are borrowed from Table VI in [38].

the transition frequencies between fine-structure sublevels in
positronium, recently measured in [19,38]. The results of
Table IV show that this deviation is eliminated by thermal cor-
rection [Eq. (19)], at least partially. For comparison, Table IV
also lists theoretical values indicating the existing discrepan-
cies between theory and experiment.

To complete this part of the discussion, we additionally
point out that the partial transition rates between hyperfine
split bound states are of particular interest. According to
Eq. (12), the partial transition rate is determined with a fixed
value of n. To obtain the transition rate induced by black-
body radiation, it is sufficient to multiply the spontaneous
transition rate by nβ (ω0), where ω0 is the resonant frequency.
For example, for the transition 13S1 − 11S0, the coefficient
nβ (ω13S1−11S0

) = 4.408, and for the transition 23S1 − 12S0,
the coefficient nβ (ω23S1−21S0

) = 38.637 at room temperature,
which leads to significant thermal broadening of the corre-
sponding spectral lines.

IV. VACUUM POLARIZATION AND QUADRATIC
ZEEMAN SHIFTS: A BRIEF DISCUSSION

To maintain consistency, the effect of vacuum polarization
should be taken into account. However, as shown in [27], this
effect is proportional to β−5 and the additional α due to the
factor e2 in the vacuum polarization operator, so it leads to
an insignificant contribution. A similar result can be obtained
for the positronium atom. Using the thermal Coulomb gauge,
three possibilities arise: (i) the exchange of a thermal photon
between the bound particle and the loop, with the “ordinary”
photon propagator for the exchange between the loop and the
“external” charge; (ii) the reverse case when the thermal and
ordinary photon lines replace each other; (iii) both photon
lines correspond to the thermal part of the photon propagator.
For all these contributions, the estimates turn out to be propor-
tional to (kBT )5. Finally, the annihilation diagram remains the
subject of investigation. Our estimates show that the thermal
vacuum polarization is even smaller in this case since the
factor 2mc2 (representing the energy transfer for an electron
and a positron at rest) is included in the Planck’s distribution
function. It can be concluded that the thermal effect of vacuum
polarization is beyond the scope of current interest, at least at
room temperature.

Another effect in positronium that occurs in a thermal
environment can be easily obtained according to [2]. Since the

Ps atom lacks the Zeeman effect linear in the magnetic field,
the quadratic shift for S-states was found as

δE = ±
(

eh̄
mc H

)2

�E
, (20)

where H is the magnetic field strength and �E is the energy
difference between the singlet and triplet levels. The minus
sign corresponds to a singlet and the plus sign corresponds to
a triplet states (it is assumed that �E > 0). Then, following
[39], we can estimate field B with the use of relation

B2(ω)dω = 8α3

π

ω3dω

eβω − 1
〈B2(t )〉

= (2.775(×)10−2G)2

[
T (K )

300

]4

, (21)

where B is written in gauss (1G = 10−4T ) at room tem-
perature. The magnetic field strength H is connected
with the B field via the vacuum permeability μ0 =
1.256 637 062 12×10−6 H/m. Then, for the ground state
with �E = 203 389.10(74) MHz for the energy splitting, we
get 1650 Hz at room temperature and 0.204 MHz at T =
1000 K. In turn, for the 23S1 − 21S0 with the hyperfine struc-
ture energy about 25 422 MHz we obtain 13.204 kHz at
room temperature and 1.63 MHz at T = 1000 K, respectively.
These results demonstrate the importance of the Zeeman shift
induced by blackbody radiation for the hyperfine energy sub-
levels in the positronium atom.

From expressions (20) and (21), it is possible to determine
the influence of blackbody radiation on the decay probabili-
ties of ortho- and parapositronium. According to the theory
in Sec. 39.4 in [2], we can write down the decay rate of
positronium as

W = |C0|2W0 + |C1|2W1, (22)

where W0 and W1 are the decay rates of para- and orthopositro-
nium per unit time, respectively. The coefficients C0 and C1

can be found with

|C0|2 + |C1|2 = 1,

∣∣∣∣C0

C1

∣∣∣∣
2

=
(

eh̄
mc H

)2

�E2
. (23)

Then the result is C0 = 6.37×10−5 and C1 ≈ 1, which gives
the annihilation decay correction expressed in terms of the
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zero order for the ground state of orthopositronium: δW1 ≈
4.0574×10−9[ T (K )

300K ]4W0. Considering that the contribution in-
creases with the fourth power of the temperature, one can
find the coefficient 5.01×10−7 at 1000 K. This contribution
can be compared with the multiphoton decay modes (see
[40]), where the branching ratio of the 4γ decay to the
2γ annihilation of parapositronium is about 1.48×10−6 and
5γ /3γ for orthopositronium is 9.6×10−7. In the same way,
one can find a correction for the annihilation decay of the
2s triplet state in positronium determined by the coefficients
C0 = 5.096×10−4, C1 ≈ 1 at room temperature, leading to
δW1 ≈ 2.5969×10−7[ T (K )

300K ]4W0. Using the results τ ann.
21S0

= 1 ns
and τ ann.

23S1
= 1 136 ns [41], one can easily find the value δW1 ≈

259.69[ T (K )
300K ]4 s−1.

V. INDUCED ANNIHILATION DECAYS

As the next step of our study, the annihilation decays
of positronium induced by blackbody radiation should be
considered. Here we restrict ourselves to describing the
BBR-induced decays for two- and three-photon processes
only as the dominant contributions to the annihilation of para-
and orthopositronium, respectively. A large number of the-
oretical and experimental works are devoted to the study of
these processes and the corrections to them (see, for example,
works [40,42–47]), although the theory describing the domi-
nant processes can be found in the textbooks [2,4,7].

According to the quantum mechanical approach, stimu-
lated emission is taken into account by inserting the Planck
distribution function at the “resonant” frequency of the corre-
sponding process. Then, considering two-photon annihilation
in the positronium center-of-mass system, we immediately
find that ω = ω′ [2,4] and the presence of δ(ε−+ ε+− ω −
ω′), where ε−, ε+ are the rest energies of an electron and a
positron, respectively, leads to the fact that ω ≈ mc2. This ar-
gument of the Planck distribution function is large and lies in
the region of negligible values of nβ (mc2). Thus, a stimulated
two-photon process can be excluded from the consideration.

The picture is different for three-photon annihilation decay.
According to [2], the total probability of three-photon annihi-
lation is

W 3γ = α3

16πm4

∫ ∞

0
dω1

∫ ∞

0
dω2

∫ π

0
dθ sin θ

× ω1ω2

ω3
(1 − cos θ )2δ(ω1 + ω2 + ω3 − 2m), (24)

where θ is the angle between the photon wave vectors �k1 and
�k2. The evaluation of these integrals was presented in [48].

To obtain the correction caused by the stimulated emission,
we should insert the [1 + nβ (ω1)][1 + nβ (ω2)][1 + nβ (ω3)]
into Eq. (24). Numerical calculation of the modified expres-
sion (24) leads to the correction δW 3γ ≈ 5.28×10−6W 3γ at
room temperature, which can be directly compared to five-
photon annihilation W 5γ ≈ 0.96×10−6W 3γ [40].

VI. CONCLUSIONS AND DISCUSSION

This work is devoted to the thermal effects of various
types on the positronium atom. First, we briefly discussed

the effect of thermal one-photon exchange; see Sec. II. In
contrast to the results of [27,28] for hydrogen and helium
atoms, the lower-order thermal correction and the relativis-
tic corrections resulting from the Bethe-Salpeter equation go
beyond the current measurement accuracy for the positro-
nium atom, reaching values around kHz. The results are
summarized in Table I. Although the values given in Table I
correspond to room temperature (300 K), they can easily be
extended to higher temperatures using the scale factor T 3. At
the same time, corrections related to the fifth power of temper-
ature (which are not considered in this article) are not interest-
ing for positronium: although they grow faster with tempera-
ture, they contain an additional factor α and are much smaller.

The most significant result comes from the description of
the thermal one-loop self-energy correction; see Sec. III. As
described in [26], the real part of this correction represents
the BBR-induced Stark effect, while the imaginary part gives
the induced widths of the excited atomic levels corresponding
to the transitions between bound states. It is found that the
BBR-induced Stark shift for highly excited states cannot ex-
ceed a few kHz at room temperature, and the rates of the
induced transitions between bound states hardly reach the
values of the Doppler broadening [49].

However, the positronium atom is a more specific atomic
system with an additional annihilation channel that should
be taken into account. In the case of the thermal one-photon
exchange between an electron and a positron, this channel
does not make a significant contribution, but it is strong in
the thermal one-loop self-energy correction. The dominant
temperature contribution is expressed by Eq. (18). The numer-
ical values are collected in Table IV at different temperatures
for some transition energies. In particular, Table IV shows
that this correction is about 1 MHz at room temperature. The
values T = 600 and 1000 K were chosen to match experimen-
tal settings where the target was heated to this temperature
range [33–35].

Another remarkable result was obtained by consider-
ing the quadratic Zeeman shift; see Sec. IV. A simple
quantum mechanical description (see [2]) gives a correction
that is quadratic in the magnetic field. The correction, given by
Eq. (20), can be fitted to the energy shift caused by blackbody
radiation [39]. For the hyperfine splitting of the ground state
and the n = 2 state in the Ps atom, an additional energy split-
ting of the order of a few kHz is found at room temperature.
The scaling factor T 4 can be used to obtain the corresponding
contribution at different temperatures, which increases up to
MHz at 1000 K. Moreover, the effect expressed by formula
(20) can be taken into account to determine the corrections
to the annihilation probabilities; see Eqs. (22) and (23). As
mentioned in [2], even a weak magnetic field can significantly
increase the annihilation probability of the triplet state due
to the admixture of the singlet state. We have found that in
the blackbody radiation field at room temperature, the effect
is of the order of δW1/W1 ∼ 4×10−9 for the 13S1 state and
δW1/W1 ∼ 2.6×10−7 for the 23S1 state.

Finally, in Sec. V, we briefly discussed the stimulated
annihilation probabilities induced by blackbody radiation. It
was found that in the case of two-photon annihilation, the
contribution is completely insignificant. On the contrary, a
rough estimate of the probability of stimulated three-photon
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annihilation at room temperature is comparable to five-photon
annihilation.

Summarizing all the results, one can conclude that ther-
mal effects are of particular importance in experiments with
positronium. Their contribution can reach a magnitude that
can at least partially resolve the disagreement (about 2 MHz)
between experiment and theory [19]. The development of
positronium experiments at cryogenic temperatures and lower

[50] is even more important for the matching between theo-
retical and experimental results.
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