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Since the 4He dimer supports only one weakly bound state with an average interatomic distance much larger
than the van der Waals length and no deeply bound states, 4HeN clusters with N > 2 are a paradigmatic model
system with which to explore foundational concepts such as large s-wave scattering length universality, van der
Waals universality, Efimov physics, and effective field theories. This work presents structural properties such as
the pair and triple distribution functions, the hyper-radial density, the probability to find the N th particle at a given
distance from the center of mass of the other N − 1 atoms, and selected contacts. The kinetic energy release,
which can be measured via Coulomb explosion in dedicated size-selected molecular beam experiments—at least
for small N – is also presented. The structural properties are determined for three different realistic 4He-4He
interaction potentials and contrasted with those for an effective low-energy potential model from the literature
that reproduces the energies of 4HeN clusters in the ground state for N = 2 to N = ∞ at the �95% level with
just four input parameters. The study is extended to unitarity (infinite s-wave scattering length) by artificially
weakening the interaction potentials. In addition to contributing to the characterization of small bosonic helium
quantum droplets, our study provides insights into the effective low-energy theory’s predictability of various
structural properties.
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I. INTRODUCTION

Bosonic helium droplets, i.e., clusters consisting of a finite
number of 4He (helium-4) atoms, have captivated physicists’
interest over many decades [1–34]. They provide a bridge
between the microscopic and macroscopic worlds, with the
helium dimer being bound by just 1.6 mK [35,36] and the
binding energy per particle reaching about 7 K in bulk liquid
helium-4 [37]. Mesoscopic helium-4 droplets are essentially
incompressible and a subset of their properties is captured
accurately by a “bare bone” liquid drop model, which contains
a volume term, a surface term, and two additional terms that
are treated as fitting parameters [12]. We note that liquid drop
models that contain volume, surface, Coulomb, pairing, and
asymmetry terms provide a starting point for understanding
key properties of nuclei, including the stability of highly de-
formed nuclei and nuclear fission [38]. The roton minimum,
the smoking gun of superfluid bulk helium-4 [39,40], has
been found theoretically to first emerge for N ≈ 60 atoms
[41], motivating the term microscopic superfluidity. Experi-
mentally, the prediction was verified by embedding a small
helium-4 cluster of varying size into a much larger helium-3
droplet [42]. Large helium-4 droplets with more than about
N = 1000 atoms, in turn, have been employed as microlabo-
ratories with which to capture, cool, and equilibrate impurities
of varying size, from single atoms to proteins [43–49].

This paper provides a detailed analysis of various observ-
ables of small pristine 4HeN clusters, N = 2–10, that interact
either through a sum of realistic two-body potentials [50–52]

or an effective low-energy model potential that includes two-
and three-body terms [33]. Emphasis is placed on structural
properties, including the long-distance tail and the short-
distance correlations (on the scale of the van der Waals length
rvdW) of the pair, Jacobi, and hyper-radial distribution func-
tions. The long-distance tails are expected to be governed by
the effective low-energy model, i.e., the large-distance fall-off
should be fully governed by the binding energy, which was
matched for N = 2–4 when constructing the effective low-
energy model and reproduces the exact binding energies at
the �95% level for N > 4 [33].

The short-distance correlations are expected to be gov-
erned by the two-body wave function for an attractive van
der Waals potential, i.e., a potential with −C6/r6 tail [53,54].
For helium clusters that have been “artificially” scaled to
the unitary point, this has previously been confirmed through
dedicated calculations [53,54]. For the physical point, this is
demonstrated in this work. The collapse of the pair, triple, and
higher-order distribution functions for interatomic distances
around r ≈ rvdW was noted in the literature, motivating the
adaption of the n-body Tan contact (n = 2, 3, . . . ) [55–60]
to quantum clusters that exhibit weak universality (two-body
potentials with van der Waals tail and strongly repulsive hard-
wall-like short-distance repulsion) [34]. This work compares
the two-body contact with results from the literature and
additionally introduces a (2 + 1) contact. We note that short-
distance correlations, or generalizations of the Tan contact
from zero- to finite-range interactions, are also being actively
investigated in nuclei [61–65].
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Since the effective low-energy potential model does not
“know” about rvdW, the short-distance or high-energy corre-
lations are not captured by that model despite the fact that
the short-distance physics is universal, i.e., governed by the
s-wave scattering length as and the van der Waals length rvdW.
Thus, the development of a low-energy van der Waals theory
is highly desirable. While this is beyond the scope of the
present paper, we note that first steps in this direction were
recently taken [66]. Our aim in the present work is to pro-
vide a careful analysis of the different “universality regimes,”
providing a comprehensive study of the structural properties
of pristine helium-4 clusters at the physical point and at
unitarity.

Many naturally occurring systems are characterized by
competing length or energy scales. The helium-helium in-
teraction is unique in that its naturally occurring s-wave
scattering length as is more than an order of magnitude larger
than its effective range. Even though as is large, it is not
infinitely large. The regime where as goes to infinity and the
effective range goes to zero has been studied quite extensively,
not only in the context of bosons but also in the context of
fermions. Correspondingly, a comparison of the behaviors
of small helium clusters at the physical point and those of
helium clusters at unitarity provides insights into developing
universal van der Waals theories. The lessons learned have im-
portance beyond atomic droplets—some findings carry over to
the nuclear chart, with the weakly bound triton, alpha-particle,
and halo-nuclei playing loose analogs of weakly bound atomic
clusters.

The remainder of this paper is organized as follows.
Section II introduces the system Hamiltonian, describes the
numerical techniques employed to solve the time-independent
Schrödinger equation for clusters consisting of up to N =
10 atoms, and defines several structural observables of inter-
est. Section III presents and interprets our results. Connections
with the literature are established throughout. Finally, Sec. IV
summarizes and offers an outlook.

II. THEORETICAL BACKGROUND

A. Hamiltonian

Each 4He atom is treated as a point particle with position
vector �r j ( j = 1, . . . , N) and mass m [67]. The nonrelativistic
N-atom Hamiltonian Ĥ reads

Ĥ =
N∑

j=1

−h̄2

2m
�∇2

�r j
+ Vint(r1,2, . . . , rN−1,N ). (1)

The interaction potential Vint depends on the interatomic dis-
tances r j,k , where r j,k is equal to |�r j − �rk|. We consider two
different classes of interaction potentials Vint, referred to as
model I and model II. For model I, Vint consists of a sum over
two-body Born-Oppenheimer potentials VBO(r j,k ), which have
a repulsive core at small interatomic distances due to the elec-
tron repulsion and Pauli exclusion principle and an attractive
van der Waals tail with leading-order term −C6/(r j,k )6,

Vint(r1,2, . . . , rN−1,N ) =
N−1∑
j=1

N∑
k> j

VBO(r j,k ). (2)

Calculations for model I are performed for three variants;
specifically, we consider the Born-Oppenheimer potentials by
Aziz et al. [50] (HFD-HE2 potential, model IA), Cencek et al.
[51] (CPKMJS potential, model IB), and Tang et al. [52] (TTY
potential, model IC).

For model II, Vint is taken to be the effective low-energy
potential developed by Kievsky et al. [31,33],

Vint(r1,2, . . . , rN−1,N ) =
N−1∑
j=1

N∑
k> j

V2,G(r j,k )

+
N−2∑
j=1

N−1∑
k> j

N∑
l>k

V3,G(Rj,k,l ), (3)

where V2,G(r j,k ) and V3,G(Rj,k,l ) denote two- and three-body
Gaussian potentials,

V2,G(r j,k ) = w0 exp[−(r j,k/r0)2] (4)

and

V3,G(Rj,k,l ) = W0 exp[−(Rj,k,l/R0)2], (5)

with

R2
j,k,l = 1

9

(
r2

j,k + r2
j,l + r2

k,l

)
. (6)

Reference [33] adjusted the parameters w0, r0, W0, and R0

such that the low-energy Hamiltonian reproduces the “ex-
act” two-body s-wave scattering length and the N = 2, 3,
and 4 ground-state energies of the realistic HFD-HE2 Born-
Oppenheimer potential (model IA) [68]. While the two-body
potential V2,G is attractive for all distances r j,k (i.e., w0 is
negative), the three-body potential is purely repulsive for all
hyper-radii Rj,k,l (i.e., W0 is positive). The effective three-body
repulsion “counteracts” the strong short-distance attraction
of V2,G. For W0 = 0, the Gaussian interaction model yields
a ground-state energy that scales as N2 [30,69]. The finite
repulsive three-body term changes the scaling for N up to
about 10 to approximately N [31,33,69,70], in agreement with
what is being observed for the realistic interaction potentials
(model IA, model IB, and model IC).

The 4He-4He potential is characterized by a large s-wave
scattering, i.e., a scattering length that is about 35 to 45
times larger than the van der Waals length rvdW, rvdW ≈ 5
a0 (the exact ratio depends on the interaction potential);
see, e.g., Refs. [18,71]. We employ the definition rvdW =
(mC6/h̄2)1/4/2. The scale separation is a key requirement
for the emergence of Efimov physics in the three-body sec-
tor [72–74]. Indeed, the first-excited state of the 4He trimer,
which has been probed experimentally [26], has been identi-
fied as an essentially pure Efimov state, i.e., a state that can
be described with high accuracy by just two input parameters
(the s-wave scattering length and a three-body parameter)
[4,5,8,23,25,27,29,72]. In contrast, finite-range effects enter
into the description of the 4He trimer ground state [25,26,75].
Despite this, the low-energy model (model II) reproduces the
ground-state energies of 4HeN clusters with N = 2 to N = ∞
remarkably well (i.e., at the �95% level) [33].

To investigate the regime where the two-body s-wave scat-
tering length as diverges, we follow the literature and scale Vint

by λ (λ < 1); we do this for model IA and model IB, choosing
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TABLE I. Ground-state energies, in atomic units (columns 2–5), and selected energy ratios, in percent (columns 6 and 7), at the physical
point for various interaction models. The two-body s-wave scattering lengths are as = 234.84, 170.86, 188.20, and 235.24 a0 for model IA,
model IB, model IC, and model II, respectively. (a) The N = 2 energies are calculated using a grid-based approach. The extrapolated zero
imaginary time-step DMC growth energies are −2.638(10) × 10−9, −5.11(3) × 10−9, −4.166(10) × 10−9, and −2.632(6) × 10−9 a.u. for
model IA, model IB, model IC, and model II, respectively. The comparatively large errors for the N = 2 DMC energies are due to the large
fluctuations associated with extremely weakly bound systems. (b) For N = 3, extrapolated zero imaginary time-step DMC growth energies are
reported. (c) For N = 4–10, finite imaginary time-step DMC growth energies are reported; the errors only account for the statistical uncertainty
and not for the extrapolation error (the extrapolation to the zero imaginary time step is estimated to lead to a correction that is smaller than
0.5%). (d) The HFD-HE2 energies differ slightly from those reported in Ref. [33] due to the difference in m [67]. When we use the same mass
as Ref. [33], our energies agree within errors with those of Ref. [33].

E (d)
HFD-HE2 ECPKMJS ETTY EGAUSS ECPKMJS/EHFD-HE2 EGAUSS/EHFD-HE2

N (Model IA) (Model IB) (Model IC) (Model II) (in percent) (in percent)

2(a) −2.645 × 10−9 −5.147 × 10−9 −4.183 × 10−9 −2.6357 × 10−9 195 100
3(b) −3.713(3) × 10−7 −4.174(5) × 10−7 −4.006(3) × 10−7 −3.715(1) × 10−7 112 100
4(c) −1.688(1) × 10−6 −1.815(1) × 10−6 −1.768(1) × 10−6 −1.6984(1) × 10−6 108 101
5(c) −3.966(1) × 10−6 −4.201(1) × 10−6 −4.112(1) × 10−6 −3.9622(3) × 10−6 106 100
6(c) −7.102(2) × 10−6 −7.467(2) × 10−6 −7.325(1) × 10−6 −7.0166(4) × 10−6 105 99
7(c) −1.0986(5) × 10−5 −1.150(1) × 10−5 −1.130(1) × 10−5 −1.0737(1) × 10−5 106 98
8(c) −1.5531(6) × 10−5 −1.621(1) × 10−5 −1.594(1) × 10−5 −1.5030(1) × 10−5 104 97
9(c) −2.066(1) × 10−5 −2.152(1) × 10−5 −2.1176(8) × 10−5 −1.9830(2) × 10−5 104 96
10(c) −2.631(1) × 10−5 −2.736(1) × 10−5 −2.694(1) × 10−5 −2.5083(2) × 10−5 104 95

λ such that the s-wave scattering length of VBO is infinitely
large. For model IA, we use λ = 0.979 244 5 [33]; because
our mass is slightly different than that used in Ref. [33],
the resulting scattering length is large but not infinitely large
(1/as ≈ 10−5 a−1

0 ). For model IB, we use λ = 0.971 366 5
[25], resulting in 1/as ≈ 10−7 a−1

0 . We note that the scaling
changes the van der Waals length and effective range of VBO

only slightly [76]. For model II, we again use the parameters
from Kievsky et al. [33]; while r0 and R0 remain the same as
at the physical point, |w0| and W0 are, respectively, slightly
smaller and slightly larger at unitarity than at the physical
point. As stated, the scaling factors λ and the parameters of the
effective low-energy model are taken from the literature. Since
the m values employed in the literature differ, the resulting
scattering lengths are very large but not infinitely large; we
emphasize that this does not impact the conclusions of the
paper.

B. Monte Carlo techniques

Our N � 3 results are obtained by the diffusion Monte
Carlo (DMC) method [77–79], which yields the ground-state
energies and structural properties of the ground state. The
DMC method with importance sampling utilizes a guiding or
trial wave function ψT that is optimized using the variational
Monte Carlo (VMC) technique [80]. The nodeless guiding
or trial wave function ψT , which depends on a set of non-
linear variational parameters �p, is optimized by minimizing
the energy expectation value, which is evaluated stochastically
using Metropolis sampling [81]. If the walker number is suffi-
ciently large and the imaginary time step τ sufficiently small,
the DMC energies are, within statistical uncertainties, exact.
We use between 2000 and 5000 walkers for all N consid-
ered. The energy is calculated using the growth estimator and
the mixed estimator, yielding the growth energy Eg and the

mixed energy Em, respectively. For the calculations reported in
Tables I and II, the two estimators yield consistent energies,
i.e., the distribution of the energies and errors are consistent
with the fact that the errors indicate a 68% confidence interval.
For N = 2, a statistically significant time-step dependence is
observed (see Fig. S1 in the Supplemental Material [82] for
details); the caption of Table I reports the extrapolated zero
imaginary time-step energies Eg. The time-step dependence
for N = 3 is smaller than for N = 2, but still, at least for
models IA–IC, statistically significant (see Fig. S2 of the
Supplemental Material [82]). Correspondingly, Tables I and II
report extrapolated zero imaginary time-step growth energies
Eg. For N > 3, the time-step dependence is estimated to be
smaller than 0.5% and Tables I and II report growth energies
that are obtained for a fixed imaginary time-step (τ between
200 and 400 a.u., where a.u. stands for atomic units).

To obtain essentially unbiased structural properties, we
use the “forward walking (tagging) scheme” introduced in
Refs. [83,84]. We find that the structural properties calculated
in this manner agree, except for regimes where the sampling
probability is extremely low, with those obtained by subtract-
ing the VMC estimate 〈Â〉VMC from twice the mixed DMC
estimate 〈Â〉DMC [83]; here, 〈Â〉VMC and 〈Â〉DMC denote expec-
tation values of the operator Â that are calculated with respect
to |ψT |2 and ψT �0, respectively, where �0 denotes the exact
real ground-state wave function.

The trial wave function ψT is taken to be of the Bijl-Jastrow
form for all four models [7,21,80],

ψT (r1,2, . . . , rN−1,N ) =
N−1∏
j=1

N∏
k> j

exp[ f (r j,k )]. (7)

For model I, the two-body correlation function f (r j,k ) con-
tains five variational parameters (pα , pβ , pγ , p0, and p1) that
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TABLE II. Ground-state energies, in atomic units (columns 2–4), and selected energy ratios, in percent (columns 5 and 6), at unitarity for
various interaction models. The superscripts (b)–(d) have the same meaning as in Table I.

E (d)
HFD-HE2 ECPKMJS EGAUSS ECPKMJS/EHFD-HE2 EGAUSS/EHFD-HE2

N (Model IA) (Model IB) (Model II) (in percent) (in percent)

3(b) −2.656(6) × 10−7 −2.65(1) × 10−7 −2.665(1) × 10−7 100 100
4(c) −1.391(1) × 10−6 −1.395(5) × 10−6 −1.4028(1) × 10−6 100 101
5(c) −3.411(3) × 10−6 −3.418(4) × 10−6 −3.4130(2) × 10−6 100 100
6(c) −6.235(6) × 10−6 −6.241(4) × 10−6 −6.1642(4) × 10−6 100 99
7(c) −9.764(9) × 10−6 −9.773(4) × 10−6 −9.5379(6) × 10−6 100 98
8(c) −1.391(1) × 10−5 −1.392(8) × 10−5 −1.3446(1) × 10−5 100 97
9(c) −1.861(1) × 10−5 −1.863(10) × 10−5 −1.7824(1) × 10−5 100 96
10(c) −2.379(2) × 10−5 −2.382(12) × 10−5 −2.2626(2) × 10−5 100 95

are optimized for each N ,

fI(r) = −pαr−α − pβr−β − pγ r−γ − p0ln(r) − p1r. (8)

Two combinations for α, β, and γ are considered. The first
combination (α = 5, β = 4, and γ = 2) is similar to what has
been used frequently in the literature [7,21,80], namely, the
same α and γ , but β = 0. The second combination (α = 4.6,
β = 1.2, and γ = 0) was found to result in comparable or
lower variational energies with one less variational parameter.

Table S1 in the Supplemental Material [82] reports the
variational parameters for model IB, using α = 4.6, β = 1.2,
and γ = 0 for all N . The VMC energy EVMC for N � 4
reaches between 91% and 96% of the DMC energy at the
physical point and between 91% and 97% of the DMC energy
at unitarity.

The pair correlation function for the effective low-energy
model (model II) is known to differ from that for the van der
Waals potentials. Correspondingly, the functional form of the
correlation function needs to be adjusted to capture the short-
distance characteristics of the two-body Gaussian potential.
For model II, the two-body correlation function f (r j,k ) takes
the form

fII(r) =
{ −∑8

k=3 pkrk−7 − p9ln(r) for r > rm

−p2r2 for r < rm.
(9)

The parameters p3 and p7 are chosen such that fII(r) and its
first derivative with respect to r are continuous at r = rm; the
matching distance rm and the parameters p2, p4, p5, p6, p8,
and p9 are optimized for each N by minimizing the energy
(see Table S2 in the Supplemental Material [82]). The VMC
energy EVMC for N � 4 reaches between 97% and 98% of the
DMC energy at both the physical point and at unitarity.

For both the realistic van der Waals and low-energy mod-
els, we checked carefully that the structural properties are
independent of the trial wave function. Specifically, we com-
pared results for fully optimized and not fully optimized
parameters and we compared structural properties obtained by
the VMC method, the mixed estimator, and a forward walking
scheme (see next section).

C. Structural observables

This section defines several structural observables that are
analyzed in Sec. III as a function of N for different Vint. As
mentioned above, our DMC implementation determines the

structural properties using a forward walking scheme that
ensures that the excited-state contributions contained in the
mixed density ψT �0 decay prior to measuring the observable
during the DMC run.

The pair distribution function P(2)
N (r) of the N-body cluster,

which has units of (length)−3 and is normalized according to∫ ∞

0
P(2)

N (r)r2dr = 1, (10)

is obtained by calculating the expectation value of the operator
P̂(2)

N (r),

P̂(2)
N (r) = 2

N (N − 1)

N−1∑
j=1

N∑
k> j

δ(r j,k − r)

r2
. (11)

The short-distance behavior of P(2)
N (r) enters into the defini-

tion of the r-independent scalar two-body contact C(2)
N [34].

The premise is that the short-distance pair correlations of the
N-body cluster, if scaled by an overall factor, collapse approx-
imately. Specifically, the dimensionless two-body contact C(2)

N
of the N-atom cluster is found by enforcing [34,55–57]

P(2)
N (r) →

small r
C(2)

N P(2)
2 (r). (12)

The operator P̂(2)
N (r) defined in Eq. (11) differs by an overall

factor from the operator employed in Ref. [34]. Corre-
spondingly, we convert the results from Ref. [34] to our
definition when comparing our two-body contacts with theirs.
Equation (12) implies C(2)

N = 1 for N = 2. In practice, C(2)
N

is treated as a fit parameter when matching the left- and
right-hand sides of Eq. (12), including only the short-distance
region where P(2)

N (r) (N > 2) takes values between about 5%
and 95–100% of its maximum. Reference [34] extracted the
two-body contact for helium clusters interacting through the
realistic LM2M2 potential [85], an interaction model that is
similar to models IA, IB, and IC used in our work. Section III
determines the two-body contact at the physical point for
models IA, IB, and IC and, furthermore, discusses that the
two-body contact has limited meaning for N-atom clusters
interacting through model II. This is not unexpected since Vint

for model II includes a three-body potential.
In addition to the pair distribution function, we monitor the

probability ρ2P(jacobi)
N (ρ) to find one of the particles located

at a distance ρ from the center of mass of the other N − 1
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particles. The corresponding operator is P̂(jacobi)
N (ρ),

P̂(jacobi)
N (ρ) = 1

N

N∑
j=1

δ(ρ j − ρ)

ρ2
, (13)

where

ρ j =
∣∣∣∣∣∣�r j − 1

N − 1

N∑
k=1,k 	= j

�rk

∣∣∣∣∣∣. (14)

Since the lowest breakup threshold of the N-particle cluster
corresponds to the breakup into a cluster consisting of N − 1
atoms and a single far-separated atom, P(jacobi)

N (ρ) should—in
the large-ρ limit—fall off as

P(jacobi)
N (ρ) →

large ρ
ANρ−2 exp(−2κNρ), (15)

where the binding momentum κN is defined through√
2μNεN/h̄, the binding energy εN of the N-particle cluster

is defined with respect to the ground-state energy EN−1 of the
N − 1 cluster, and μN is equal to (N − 1)m/N . By comparing
the tail of P(jacobi)

N (ρ) with the expected asymptotic behav-
ior, the extent of the universal, binding-energy-dominated
regime can be determined. We note that limr→∞ P(2)

N (r) and
limρ→∞ P(jacobi)

N (ρ) behave, except for an overall normaliza-
tion constant, identically. For ground-state helium clusters
with N � 3, the r region over which P(2)

N (r) is governed by
the binding momentum is notably smaller than the ρ region
over which P(jacobi)

N (ρ) is governed by the binding momentum.
This can be seen by rewriting ρ j ,

ρ j =
∣∣∣∣∣∣

1

N − 1

N∑
k=1,k 	= j

�r j,k

∣∣∣∣∣∣. (16)

For ρ j → ∞, the vectors �r j,k are all parallel and P(jacobi)
N (ρ)

and P(2)
N (r) agree, except for an overall normalization fac-

tor. When ρ j is finite, the vectors �r j,k with k = 1, . . . , j −
1, j + 1, . . . , N are not all parallel and P(2)

N (r) deviates from
P(jacobi)

N (ρ).
To quantify the three-body correlations of the 4HeN clus-

ters, we monitor two complementary distribution functions,
P(3,jacobi)

N (ρ3) and P(3,shape)
N (x̄, ȳ). The three-body Jacobi dis-

tribution function P(3,jacobi)
N (ρ3), which is measured by the

operator P̂(3,jacobi)
N (ρ3), is

P̂(3,jacobi)
N (ρ3) = 2

N (N − 1)(N − 2)

N−2∑
j=1

N−1∑
k> j

N∑
l>k

×
[
δ(ρ jk,l − ρ3)

(ρ3)2
+ δ(ρ jl,k − ρ3)

(ρ3)2

+ δ(ρkl, j − ρ3)

(ρ3)2

]
, (17)

where

ρ jk,l = ∣∣�rl − 1
2 (�r j + �rk )

∣∣. (18)

The quantity (ρ3)2P(3,jacobi)
N (ρ3) tells us, for each triple within

the N-body cluster, the likelihood to find one of the particles at

distance ρ3 from the center of mass of the other two particles
of the triple. In analogy to the two-body contact C(2)

N , we
define a (2 + 1) or pair-atom contact C(2+1)

N for N � 3 through

P(3,jacobi)
N (ρ3) →

small ρ3

C(2+1)
N P(3,jacobi)

3 . (19)

Equation (19) defines the pair-atom contact C(2+1)
N through

the short-range behavior of the distribution function. Alterna-
tively, we may define C(2+1)

N by assuming that the many-body
wave function � factorizes when ρ jk,l takes on small values,

�(�r1, . . . , �rN ) →
small ρ jk,l


(�ρ jk,l )B
(2+1)
N (�r j,k, �Rj,k,l , {�rn;n 	= j,k,l}), (20)

where �Rj,k,l = (�r j + �rk + �rl )/3. The function B(2+1)
N is

nonuniversal and the limit in Eq. (20) is taken while keep-
ing �r j,k , �Rj,k,l , and all {�rn;n 	= j,k,l} unchanged. If the pair-atom
function 
(�ρ jk,l ) is universal, then the pair-atom contact is a
meaningful quantity and can be related to 
(�ρ jk,l ) following
the same steps as when relating the two-body contact, the
relevant product ansatz, and the pair distribution function
(see, e.g., Ref. [34]). While the (2 + 1) contact character-
izes three-body correlations of N-particle systems, it differs
conceptually from the three-body contact considered in the
literature [59,60].

Since the distribution function P(3,jacobi)
N (ρ3) does not cap-

ture the relative orientation of the subtrimers (the angles are
being averaged over), we additionally monitor the normalized
trimer correlation function P(3,shape)

N (x̄, ȳ), which captures the
relative orientation of any three atoms within the N-atom
cluster [26]. For each triple spanned by �r j , �rk , and �rl , we
determine the maximum of r j,k , r j,l , and rk,l and scale all
lengths by this value. For concreteness, let us assume that
r j,k is larger than r j,l and rk,l . Next, we rotate the triangle
spanned by �r j , �rk , and �rl so that it lies in the xy plane, so
that the normalized position vectors of particles j and k are
equal to (x, y, z) = (±1/2, 0, 0), and so that the y coordinate
of particle l is positive. The distribution P(3,shape)

N (x̄, ȳ) yields
the likelihood that the lth particle has the normalized, rotated
position vector (x̄, ȳ, 0).

The hyper-radial distribution function P(hyper)
N (ρN ) is mea-

sured by the operator P̂(hyper)
N (ρN ),

P̂(hyper)
N (ρN ) = δ(ρN − R)

R3N−4
, (21)

where R is the hyper-radius,

R2 = 1

N2

N−1∑
j=1

N∑
k> j

r2
j,k . (22)

The normalization is such that∫ ∞

0
P(hyper)

N (ρN )(ρN )3N−4dρN = 1. (23)

The quantity (ρN )3N−4P(hyper)
N (ρN ) tells one the likelihood that

the N-atom cluster has the hyper-radius ρN . The hyper-radius
provides a measure of the cluster size [32,86,87]. Our defini-
tion of the hyper-radius implies a hyper-radial mass of M,

M = Nm. (24)
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Section III uses the hyper-radial distribution functions to de-
termine approximate effective hyper-radial potential curves
assuming separability of the hyper-radial and hyperangular
degrees of freedom. Despite the crudeness of the approach
(the coupling of the hyper-radial and hyperangular degrees
of freedom can, in general, not be neglected), the resulting
approximate hyper-radial potential curves provide, as shown
in Sec. III, some insight.

The kinetic energy release (KER),

KER =
N−1∑
j=1

N∑
k> j

1

r j,k
, (25)

of the helium dimer as well as pure and mixed-isotope helium
trimers has been measured in Coulomb explosion experiments
[26,36,88]. While it is not clear that the experimental deter-
mination of the KER generalizes straightforwardly to larger
clusters [89,90], Sec. III reports and interprets the KER for
helium clusters with up to N = 10 particles.

III. RESULTS

This section presents results for the observables defined in
Sec. II C. In addition to tracking the structural properties as a
function of N , particular focus is placed on comparing

(i) the characteristics of helium clusters at the physical
point (“true” helium clusters) and quantum clusters at unitar-
ity (helium-helium interaction artificially tuned to unitarity);

(ii) the characteristics of helium clusters at the physical
point interacting through the three realistic interaction poten-
tials model IA, model IB, and model IC;

(iii) the characteristics of helium clusters at the physical
point interacting through the realistic HFD-HE2 potential
(model IA) and the effective low-energy potential (model II);
and

(iv) the characteristics of helium clusters at unitarity in-
teracting through the realistic HFD-HE2 potential and the
effective low-energy potential.

To put the structural properties into context, we discuss
a few characteristics of the energies at the physical point
(see Table I) and at unitarity (see Table II). Table I shows
that the two-body binding energy for the CPKMJS poten-
tial at the physical point is 1.95 times larger than that
for the HFD-HE2 potential. For N = 3, the difference in
the energy is notably smaller, namely, the energy for the
CPKMJS potential at the physical point is 12% larger than
that for the HFD-HE2 potential. As N increases, the differ-
ence decreases from 8% for N = 4 to 4% for N = 10. For
N = 10, this percentage difference between the energy for
model IB and model IA is similar to that between the energy
for the effective low-energy model II and model IA. Table II
shows that the dependence of the energy at unitarity is, for
the scaled realistic interaction potentials, notably suppressed
compared to the physical point. Specifically, the energies for
N = 3–10 for the CPKMJS potential are slightly larger than
those for the HFD-HE2 potential (rounding, the percentage
is 100%).

The solid lines in Fig. 1 show the likelihood ρ2P(jacobi)
N (ρ)

for realistic interaction models to find a particle at distance
ρ from the center of mass of the other N − 1 particles for

N = 3–10. The color of the lines changes nearly continuously
from green for N = 3 to dark red for N = 10. The top and
bottom rows show results at the physical point and at unitarity,
respectively. It can be seen that the distributions at unitarity
extend to somewhat larger ρ, owing to the smaller binding
energies εN at unitarity than at the physical point. The third
column compares results for the HFD-HE2 potential and the
effective low-energy model. It can be seen that the large-ρ
behavior of ρ2P(jacobi)

N (ρ) for the HFD-HE2 potential (model
IA, solid lines) and for the effective low-energy potential
(model II, dotted lines) agrees well. This is expected since the
effective low-energy potential has been shown to reproduce
the energies of the N-particle cluster interacting through the
HFD-HE2 potential at the 95% or higher level (see Ref. [33]
and Tables I and II).

The solid lines in the left and middle columns of
Fig. 1 show ρ2P(jacobi)

N (ρ) for the realistic CPKMJS potential
(model IB) on a linear and logarithmic scale, respectively.
The logarithmic representation allows us to visually quan-
tify the portion of the distribution that is governed by the
exponential binding momentum dominated fall-off. Specifi-
cally, the dotted lines show the expected fall-off, using the
binding momentum κN , obtained by combining DMC ener-
gies of clusters containing N and N − 1 atoms, as input. To
plot the dotted lines, the normalization constant AN , given
by Eq. (15), is treated as a fitting parameter to best match
the large-ρ tail, including ρ � ρm, where ρm is adjusted such
that

∫ ∞
ρm

P(jacobi)
N (ρ)ρ2dρ is equal to 0.2. The visual agreement

at large ρ between the solid and dotted lines in the middle
column of Fig. 1 is good.

Figure 2 shows the scaled pair distribution functions
r2P(2)

N (r) for N = 2–10 at the physical point (top row) and at
unitarity (bottom row). The scaled pair distribution functions
for the realistic interaction models display a clear maximum
for N � 6. For larger N , the maximum broadens and shifts to
larger r values; for these larger N , the scaled pair distribution
functions display a hint of a double-peak structure that can
be interpreted as a signature of the development of a “second
length scale or shell.” It is important to keep in mind that the
clusters at the physical point and at unitarity are extremely
floppy and diffuse and that the terms “second length scale”
and “second shell” should be contextualized within the frame-
work of extremely diffuse quantum liquids. The double-peak
structure is not reproduced by the low-energy model (dotted
lines in the third column).

The third column of Fig. 2 shows that the quantities
r2P(2)

N (r) for model IA (solid lines) and model II (dotted
lines) differ for small r (r � 20 a0). Interestingly, the scaled
pair distribution functions for the HFD-HE2 potential and
the CPKMJS potential (solid lines) rise at about the same
r value for all N , namely, at r ≈ 4.5 a0 or r ≈ 0.9 rvdW.
Careful inspection shows that the rise is shifted to somewhat
larger r values for the clusters at unitarity interacting through
realistic potentials than for the clusters at the physical point
interacting through realistic potentials. The scaled pair distri-
bution functions for the effective low-energy potential (model
II, dotted lines), in contrast, rise at much smaller r values.
The scaled pair distribution functions for model I and model
II are different at small r for two reasons: (i) The two-body
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FIG. 1. ρ2P(jacobi)
N (ρ ) for N = 3–10 at the physical point (top row) and at unitarity (bottom row). The solid lines in (a)–(d) show

ρ2P(jacobi)
N (ρ ) for model IB. At ρ = 20 a0, the curves are ordered, from top to bottom, from the smallest N (the curve for N = 3 is green)

to the largest N (the curve for N = 10 is dark red). Note that the data shown in the first and second columns are identical, but that the x
and y scales differ. The dotted lines in (b) and (d) show the asymptotic behavior AN exp(−2κNρ ), using the numerically determined binding
momentum κN and treating the “normalization constant” AN as a fitting parameter. The solid and dotted lines in (e) and (f) (third column) show
ρ2P(jacobi)

N (ρ ) for model IA and model II, respectively. The agreement between the dotted and solid lines is excellent at large ρ and deteriorates
for smaller ρ. The deterioration is due to the inability of the low-energy model to fully capture the small length scale correlations. The color
scheme used here is also used in Figs. 2, 3, 4(a), 6, and 7, and in the Supplemental Material [82], Figs. S3 and S4. The layout used here,
i.e., the top row showing results at the physical point and the bottom row showing results at unitarity, is also used in Figs. 2, 5–7, and in the
Supplemental Material [82], Fig. S4.

Gaussian potential used in model II does not have a hard wall
at small r. (ii) Model II contains a repulsive three-body Gaus-
sian potential, which alters the behavior when three particles
are in close vicinity to each other, impacting the short-distance
correlations of two-, three-, and higher-body subclusters.

To highlight the universality of the short-range behavior
of the scaled pair distribution function r2P(2)

N (r) for realistic
interaction models, Fig. 3 replots r2P(2)

N (r) at the physical
point—including the factor C(2)

N —for model IA (dash-dotted
lines) and model IB (solid lines). As discussed in Sec. II,
the two-body contact C(2)

N is determined by fitting the N > 2
curves for small r to the N = 2 curve. It can be seen that the
rise of the scaled curves collapses for N = 2–10 in the regime
r � 1.4 rvdW separately for both interaction models. The fact
that the curves for each of the interaction models collapse con-
firms that the two-body contact C(2)

N , determined in the manner
described in Sec. II, provides a meaningful characterization of
the short-distance behavior of van der Waals clusters.

Table S3 (see Supplemental Material [82]) reports C(2)
N for

helium clusters with N = 3–10 interacting through models
IA–IC at the physical point. The ratio of C(2)

N , N � 3, for
two different interaction potentials is approximately constant.
To leading order, this ratio is given by the ratio of as/rvdW

for the two different interaction potentials. Specifically, the
values for the HFD-HE2 potential are between 1.32 and 1.38
times larger than those for the CPKMJS potential; for com-
parison, (as/rvdW)HFD-HE2/(as/rvdW)CPKMJS is equal to 1.40.
Those for the TTY potential are between 1.09 and 1.10 times
larger than those for the CPKMJS potential; for comparison,
(as/rvdW)TTY/(as/rvdW)CPKMJS is equal to 1.10.

To understand this behavior, we recall that the pair distri-
bution functions for the realistic interaction potentials at the
physical point are, for N � 5, to a very good approximation
independent of the potential model [compare, e.g., the solid
lines in Figs. 2(a) and 2(e)]. The N = 2 pair distribution
functions, in contrast, differ notably. Because of this, the
difference between the contacts C(2)

N , N � 5, for model IA
and model IB predominantly reflects the difference between
the respective N = 2 pair distribution functions. Specifically,
using the fact that the dimers are weakly bound and the pair
distribution functions are normalized, the difference in the
height of r2P(2)

2 (r) at small r for different realistic potential
models can be expressed in terms of the binding momentum
and thus, using effective range theory, in terms of as/rvdW.
Assuming that the pair distribution functions for different
potential models agree for larger N , we find that the ratio of
the two-body contacts for larger N is given, to leading order,

022824-7



A. J. YATES AND D. BLUME PHYSICAL REVIEW A 105, 022824 (2022)

FIG. 2. r2P(2)
N (r) for N = 2–10 at the physical point (top row) and for N = 3–10 at unitarity (bottom row). The solid lines in (a)–(d) show

r2P(2)
N (r) for model IB. Note that the data shown in the first and second columns are identical: the first column shows r in units of a0 and the

second column shows r in units of rvdW, focusing on the small-r region. It can be seen that the scaled pair distribution functions for different
N collapse approximately for r ≈ rvdW. The solid and dotted lines in (e) and (f) (third column) show r2P(2)

N (r) for model IA and model II,
respectively. Differences are most pronounced in the r � 20 a0 region. The color scheme is the same as in Fig. 1.

by the ratio between as/rvdW for the two interaction potentials.
Our analysis indicates that the N dependence of the two-body
contact C(2)

N for helium clusters at the physical point interact-
ing through one realistic interaction model is, to a fairly good
approximation, universally linked to that for helium clusters
interacting through another realistic interaction model. The
arguments presented here are reminiscent of the discussion
of effective range corrections to the asymptotic normalization
constant, which is defined by relating the “true” nuclear wave
function to a wave function that is calculated assuming that the
effective interaction in the asymptotically dominant channel
has vanishing range [91,92].

Table S3 (see Supplemental Material [82]) also com-
pares our results with those obtained in Ref. [34] for the
LM2M2 potential. The C(2)

N values for the LM2M2 po-
tential are between 1.06 and 1.08 times larger than those
for the CPKMJS potential; this is quite a bit smaller than
(as/rvdW)LM2M2/(as/rvdW)CPKMJS = 1.13. We expect that the
LM2M2 data from Ref. [34] would follow the same trends as
displayed by our data; we speculate that the differences might
be related to the different data analysis strategies employed.

Last, we note that our analysis of the short-distance behav-
ior of the scaled pair distribution functions for the effective
low-energy model II reveals that the small-r behaviors of
r2P(2)

2 (r) and r2P(2)
N (r) with N � 3 do not collapse as neatly

by introducing an r-independent scaling factor for each N (see
Fig. S3 from the Supplemental Material [82]) as the corre-
sponding data for the realistic interaction models. Due to the
presence of the repulsive three-body potential, the low-energy

model does not capture the small-r, “high-energy” van der
Waals universality of the pair distribution function.

The fact that the curves for model IA in Fig. 3 are pushed
to larger r compared to those for model IB can be interpreted
as being due to model IA being characterized by a larger
effective repulsion than model IB: the two-body s-wave scat-
tering length for model IA is larger than that for model IB
(as = 234.84 a0 compared to as = 170.86 a0). Interestingly,
the rise of the scaled pair distribution functions is captured
quantitatively by the universal van der Waals function ϕvdW(r)
[93,94],

ϕvdW(r) = B[�(5/4)x1/2J1/4(2x−2)

− rvdW

as
�(3/4)x1/2J−1/4(2x−2)], (26)

which is obtained by solving the scaled radial Schrödinger
equation for a purely attractive −C6/r6 potential. In Eq. (26),
x is equal to r/rvdW. Thin black dash-dotted and solid lines in
Fig. 3 show the quantity |ϕvdW(r)|2 for model IA (as/rvdW =
46.95) and model IB (as/rvdW = 33.63), respectively. The
nodes of the wave function ϕvdW(r) in the r � rvdW region re-
flect the presence of deep-lying two-body bound states. For r
values beyond the last node, the density |ϕvdW(r)|2 agrees well
with r2P(2)

2 (r)/C(2)
N . For the infinite scattering length case,

Refs. [53,54] established the van der Waals universality of
the short-distance correlations of the scaled pair distribution
function of trimers interacting through realistic interaction
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FIG. 3. r2P(2)
N (r)/C (2)

N , N = 2–10, for two realistic interaction
potentials at the physical point. The sets of dash-dotted and solid
lines show results for model IA and model IB, respectively. The
color scheme is the same as in Fig. 1. The thin black dash-dotted
and solid lines show the universal van der Waals function |ϕvdW(r)|2,
given by Eq. (26), for model IA and model IB, respectively (these
two models are characterized by slightly different rvdW); the nor-
malization constant B is adjusted by fitting |ϕvdW(r)|2 to r2P(2)

2 (r),
including r values (r � 2rvdW) for which P(2)

2 (r) takes values that are
larger than 5% and smaller than the maximum of P(2)

2 (r) for model
IA and smaller than 95% of the maximum of P(2)

2 (r) for model IB,
respectively.

potentials. Figure 3 shows that |ϕvdW(r)|2 captures the short-
distance correlations of r2P(2)

N (r) also for helium clusters at
the physical point.

Figures 4 and 5 as well as Fig. S4 in the Supplemental
Material [82] summarize the three-body correlations of N-
atom clusters. Figure S4 [82], which shows the quantity
(ρ3)2P(3,jacobi)

N (ρ3), highlights two key points. First, the scaled
three-body distributions (ρ3)2P(3,jacobi)

N (ρ3) for model IB and
model II (first and third columns) are visually indistinguish-
able, including in the small-ρ3 region; this is in clear contrast
to the behavior of the scaled pair distribution functions. Sec-
ond, the quantity (ρ3)2P(3,jacobi)

N (ρ3) becomes narrower as N
changes from N = 3 to N = 4 to N = 5, but changes compar-
atively little for N = 6–10. This indicates that the correlations
of the three-body subsystem saturate approximately for these
N values. This “saturation” is different from the behavior
of the scaled pair distribution functions, which show a more
pronounced N dependence for N = 6–10.

Figure 4(a) focuses on the small-ρ3 behavior at the
physical point. The solid and dash-dotted lines show
[(ρ3)2P(3,jacobi)

N (ρ3)/C(2+1)
N ]/r−1

vdW for N = 3–10 for model IA
and model II, respectively; to make the figure, the x and y
axes are scaled using the van der Waals length rvdW for the
HFD-HE2 potential (model IA). The collapse of the scaled
distribution functions is extremely clean for the realistic inter-
action potential (solid lines) and very clean for the low-energy
potential (dash-dotted lines). Differences between the scaled
curves for the realistic and low-energy models are clearly
visible for small ρ3. Figures 4(b) and 4(c) show the N depen-
dence of the (2 + 1) contact C(2+1)

N at the physical point and

FIG. 4. Triple correlations and (2 + 1) contact. (a) The solid
and dash-dotted lines show (ρ3)2P(3,jacobi)

N (ρ3)/C (2+1)
N for the real-

istic HFD-HE2 potential (model IA) and the effective low-energy
potential (model II), respectively, at the physical point for N = 3–10.
The color scheme is the same as in Fig. 1. (b) The squares, circles,
and triangles show the pair contact C (2+1)

N at the physical point as a
function of N for models IA, IB, and II, respectively. (c) The squares,
circles, and triangles show the pair contact C (2+1)

N at unitarity as a
function of N for models IA, IB, and II, respectively.

at unitarity, respectively, for three different interaction poten-
tials. The overall trends are the same for all three interaction
potentials: C(2+1)

N increases for N � 6 or 7 and then slowly
decreases. The contacts C(2+1)

N for the low-energy model
(triangles) are notably larger for N � 4 than those for the
realistic potentials (squares and circles). Interestingly, while
the contacts C(2+1)

N for the two realistic potentials (model
IA and model IB) differ by a small amount for N � 4 at
the physical point, they coincide, within our numerical accu-
racy, at unitarity (see numerical values of C(2+1)

N collected in
Table S4 of the Supplemental Material [82]). This behavior
of the contact is related to the three-body energies. The ratio
ECPKMJS/EHFD-HE2 is equal to 1.12 at the physical point (see
Table I) and 1.00 at unitarity (see Table II).

As already mentioned in Sec. II, the (2 + 1) contact inves-
tigated here differs from the three-body contact investigated
in Refs. [59,60] at the physical point. While the three-body
contact for realistic interaction models is, to a large degree,
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FIG. 5. P(3,shape)
N (x̄, ȳ) for model IB at the physical point (top row) and at unitarity (bottom row). The first, second, and third columns

show results for N = 3, N = 4, and N = 10, respectively. The color bar on the right applies to all six panels. Since the triangles are oriented
and normalized such that one particle sits at (x̄, ȳ) = (–1/2, 0) and the other at (x̄, ȳ) = (+1/2, 0) (with the interparticle distance vector
corresponding to the largest distance being oriented along the ±x̄ axis), the regions in the top left and top right of the panels are excluded by
construction.

governed by the short-distance two-body correlations, the
three-body contact for the low-energy model depends notably
on the repulsive three-body potential. The (2 + 1) contact, in
contrast, captures the behavior as a third particle approaches
the center of mass of a two-body subunit of any size. As such,
the (2 + 1) contact probes, on average, larger length scales
than the three-body contact. Correspondingly, the low-energy
model does a better job of reproducing the (2 + 1) contact
obtained for the realistic potentials than it does of reproducing
the three-body contact obtained for the realistic potentials (we
are not showing data for the three-body contact).

To gain insights into the distribution of the shapes that the
triples are arranged in, the first, second, and third columns of
Fig. 5 show the distribution function P(3,shape)

N (x̄, ȳ) for N = 3,
N = 4, and N = 10, respectively. We observe that the distri-
butions, and thus the structures, at the physical point (top row)
and at unitarity (bottom row) are very similar. The highest
probability is found at x̄ = 0 and ȳ ≈ 0.35, which corresponds
to a slightly elongated triangle. Even though the distributions
have a maximum, the clusters’ wave functions include essen-
tially all shapes, except for those where two particles sit on top
of each other (ȳ = 0 and arbitrary x̄) and where the triangles
are highly elongated (ȳ ≈ 0 and x̄ ≈ ±0.5). Figure 5 shows
that the distributions become more peaked with increasing
N and that the likelihood to find highly elongated triangles
becomes smaller with increasing N .

Figures 6(a) and 6(b) show the scaled hyper-radial den-
sity (ρN )3N−4P(hyper)

N (ρN ) for N = 3–10 clusters interacting

through the CPKMJS potential at the physical point and at
unitarity, respectively. The differences between the scaled
hyper-radial densities at the physical point and at unitarity for
fixed N are small. Careful inspection shows that the scaled
hyper-radial densities at unitarity extend to larger ρN and rise
at slightly larger ρN than those at the physical point. Corre-
spondingly, the maximum of (ρN )3N−4P(hyper)

N (ρN ) is located
at slightly larger ρN for the clusters at unitarity than for the
clusters at the physical point. The fact that the scaled hyper-
radial densities at unitarity extend to larger ρN than those at
the physical point is a consequence of the smaller binding
energy at unitarity than at the physical point. As N increases,
the scaled hyper-radial densities become more localized, with
their maximum shifting to larger ρN . To interpret this be-
havior, one needs to keep in mind that the definition of the
hyper-radius is intimately linked to the definition of the hyper-
radial mass M. Since the quantity Mρ2

N is an invariant but
not ρN and M separately, ρN can be multiplied by an overall
factor [32,86,87]. If all interparticle distances were equal to
r̄, then ρN [as defined in Eq. (22)] would approach r̄/

√
2

in the N → ∞ limit. Since helium clusters behave roughly
as incompressible liquids, the maximum of the hyper-radial
density is expected to occur at increasingly larger ρN as N
increases. Figures 6(a) and 6(b) confirm this notion.

We now use the hyper-radial densities to calculate approx-
imate hyper-radial potential curves. We note that Ref. [32]
obtained the effective hyper-radial potential curves of helium
clusters with N = 3–10 at the physical point following an
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FIG. 6. Hyper-radial properties for N = 3–10 at the physical point (top row) and at unitarity (bottom row). The first column shows
P(hyper)

N (ρN ) for model IA. The second column shows the (approximate) effective potential curves Veff(ρN ) for model IA, calculated using
Eq. (27). For comparison, the third column shows Veff(ρN ) for model II (the model II plots are made using the van der Waals length for model
IA as a scale). The color scheme is the same as in Fig. 1.

alternative and more rigorous approach; in addition, Ref. [32]
presented careful benchmark calculations of the different
approaches for N = 3. The approach pursued here yields
potential curves that agree semiquantitatively with the more
accurate potential curves presented in Ref. [32]. If the hyper-
radial and hyperangular degrees of freedom separate, the
effective one-dimensional Schrödinger equation for the lowest
effective hyper-radial potential curve Veff(ρN ) can be written
in terms of FN (ρN ) [59,95–98],

[
− h̄2

2M

∂2

∂ρ2
N

+ Veff(ρN )

]
FN (ρN ) = EN FN (ρN ), (27)

where FN (ρN ) = [(ρN )3N−4P(hyper)
N (ρN )]1/2. For the N-particle

clusters (N � 3) at unitarity, the separability is broken due
to the finite-range nature of the two-body interactions. At the
physical point, the finiteness of the scattering length provides
an additional separability-breaking mechanism. Even though
Eq. (27) is not strictly valid for the potential models con-
sidered in this work, we “invert” it to obtain approximate
effective hyper-radial potentials Veff(ρN ). The same strategy
was pursued in Ref. [98] for N = 3 and 4. Figures 6(c) and
6(d) show the results for model IB at the physical point and at
unitarity, respectively. The differences between the potential
curves at the physical point and at unitarity are very small.
Reference [98] conjectured, based on results for N = 3 and
N = 4, that the location of the repulsive inner wall of the
hyper-radial potential curves varies as (N − 1)rvdW/

√
2N ;

this scaling accounts for an effective nontrivial reduction of
the configuration space due to an energy cost associated with

adiabatic deformation [53,54]. This scaling was contrasted
with an alternative scaling of

√
N − 1rvdW/

√
2N , which arises

assuming that the minimum average interparticle spacing is
given by rvdW. For N = 10, the inner wall would be located,
according to these two scalings, at 0.671rvdW and 2.01rvdW.
Figures 6(c) and 6(d) show that the scaling is somewhere in
between.

The corresponding effective hyper-radial potential curves
for model II are shown in Figs. 6(e) and 6(f). The effective
potential curves for model II are significantly softer (less
steep) at small ρN (ρN/rvdW between about 0.6 and 1.2) than
those for model IB; this is consistent with what was discussed
above for the pair distribution functions.

Last, Fig. 7 presents the KER distribution functions at
the physical point (top row) and at unitarity (bottom row).
While small helium clusters have been isolated in molecular
beam experiments [26,88], Coulomb explosion experiments
for N � 4 are expected to be complicated by the fact the ions
leaving the helium clusters might be undergoing additional
collisions [89,90]. Despite this challenge, we find it useful to
analyze the dependence of the KER distribution functions on
the various interaction models. Since the number of interpar-
ticle distances increases as N2 with increasing N , the KER
distribution functions move to larger KER with increasing N .
The KER distribution functions for model IA (first column)
and model IB (second column) are nearly indistinguishable on
the scale shown. Careful inspection reveals small differences
between the KER distribution functions of clusters interacting
through realistic interaction potentials at the physical point
and at unitarity.
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FIG. 7. KER for N = 3–10 at the physical point (top row) and at unitarity (bottom row). The first, second, and third columns show the
KER for models IA, IB, and II, respectively. The color scheme is the same as in Fig. 1.

The KER distribution functions for clusters interacting
through model II extend to significantly larger KER; this
behavior is linked to the enhanced probability for clusters
interacting through model II, relative to those interacting
through realistic interaction potentials (model I), to find two
particles at small interparticle distances. The broader KER
distribution functions for model II also lead to peak values of
the KER distribution functions compared to those for model
I. We note that the KER distribution functions for model II
do not only differ in the tail region from those for model I
(high-energy region or short-distance region), but also in the
“rising portion” of the KER distribution function (large dis-
tance region); these deviations are more pronounced for larger
N than for smaller N . The deviations arise because the KER
distribution functions in the rising portion are not dominated
by configurations in which all interparticle distances are large,
but by configurations where N − 1 interparticle distances are
large and the remaining N (N − 1)/2 − (N − 1) interparticle
distances are not particularly large.

IV. CONCLUSIONS

This paper presented a comprehensive study of the struc-
tural properties of small bosonic helium clusters consisting
of up to N = 10 atoms and interacting through realistic in-
teraction potentials. In addition to helium clusters at the
physical point, characterized by a two-body s-wave scatter-
ing length that is positive and finite (and notably larger than
the van der Waals length), clusters interacting with an infi-

nite s-wave scattering were investigated. To reach unitarity,
the realistic helium-helium interaction potential was multi-
plied by an overall factor that is close to, but smaller than,
one.

For comparison, the properties of the systems at the physi-
cal point and at unitarity were also calculated for an effective
low-energy interaction model that was introduced in the liter-
ature [33]. The model’s strictly attractive two-body potential
reproduces the two-body s-wave scattering length and two-
body binding energy obtained for the HFD-HE2 potential. A
strictly repulsive three-body potential is added to reproduce
the three- and four-body energies obtained for the HFD-HE2
potential. Importantly, there is a difference between the effec-
tive low-energy model construction for clusters at the physical
point and at unitarity. At the physical point, the require-
ments for matching the two-body s-wave scattering length
and two-body binding energy are two distinct requirements.
At unitarity, in contrast, the two requirements are equivalent,
i.e., fulfilling one of these requirements implies that the other
requirement is fulfilled automatically.

A detailed analysis of the structural properties at small and
large length scales was presented, with a focus on comparing
the results for different realistic interaction potentials and
those for the HFD-HE2 potential and the effective low-energy
model. Several small distance behaviors were found to be
described accurately by the two-body correlation function for
a purely attractive −C6/r6 potential. The small length scale
behavior of the pair distribution functions for the realistic
interaction models at the physical point was summarized by
the two-body contact and the (2 + 1) contact for each cluster
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size. The two-body contacts for different realistic interaction
potentials were found to be related to each other through,
roughly, N-independent scaling factors. Following the spirit
of Ref. [34], it would be interesting to extend the current study
to larger clusters and to extract, using the liquid drop model,
the bulk pair-atom contact both at the physical point and at
unitarity. It would also be interesting to investigate mixed
clusters that contain bosonic 4He and fermionic 3He atoms.
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