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Improving the statistical analysis of antihydrogen free fall by using near-edge events
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An accurate evaluation of the gravity acceleration from the timing of free fall of antihydrogen atoms in the
Gravitational Behaviour of Anti-hydrogen at Rest (GBAR) experiment requires one to account for obstacles
surrounding the antimatter source. These obstacles reduce the number of useful events but may improve accuracy
since the edges of the shadows of obstacles on the detection chamber depend on gravity, bringing additional
information about the value of g. We perform Monte Carlo simulations to obtain the dispersion and give a
qualitative understanding of the results by analyzing the statistics of events close to an edge. We also study
the effect of specular quantum reflections of antihydrogen on surfaces and show that they do not degrade the
accuracy that much.
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I. INTRODUCTION

One of the fascinating questions which remain open in
modern physics is the asymmetry between matter and antimat-
ter observed in the universe but not fully accounted for in the
standard model [1–4]. In particular experimental tests of the
effect of gravity on antimatter must still be improved [5]. Am-
bitious projects are currently being developed at new CERN
facilities to produce low-energy antihydrogen (H) atoms [6]
and measure g, the gravity acceleration of neutral H atoms
[7–9]. Among these projects, the Gravitational Behaviour of
Anti-hydrogen at Rest (GBAR) experiment aims at a relative
accuracy of 1% on g by timing the free fall of ultracold H
atoms [10,11]. Knowing the sign and order of magnitude of
g would already be an important achievement, and improv-
ing the accuracy of its measurement would be crucial for
advanced tests of the equivalence principle along the line of
the many high-precision tests performed on matter objects
[12–16].

The principle of the GBAR experiment is based upon an
original idea of Walz and Hänsch [17]. Antihydrogen ions H

+

are cooled in an ion trap by using laser-cooling techniques.
The excess positron is photodetached with a laser, forming
a neutral antihydrogen atom H, with the laser pulse marking
the start of the free fall. The end of free fall is timed by the
annihilation of H on the detection surface, and the acceleration
g is deduced from a statistical analysis of annihilation events.
In a previous work [18], we analyzed the accuracy of g to
be expected in a simple geometry for the GBAR experiment,
taking into account the impact of the photodetachment pro-
cess on the initial velocity distribution and the statistics of
annihilation events. We also noticed that the accuracy could
be improved by considering the ceiling that intercepts some
of the trajectories.

In the present paper, we go further in this analysis by tak-
ing into account the obstacles surrounding the antihydrogen
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source, required for the experiment [19,20]. These obstacles,
such as the electrodes of the ion trap, intercept some tra-
jectories of H atoms. As for the ceiling in [18], one might
think that it degrades the accuracy as it reduces the number of
annihilation events used for the measurement. We show that
the opposite happens, with the accuracy of the measurement
of g improved thanks to the additional information gained
from events close to the edges of the shadow of obstacles.

We will first specify the geometry (Sec. II) and present
a detailed simulation of annihilation events in the pres-
ence of obstacles to calculate the dispersion of the free-fall
measurement (Sec. III). We will then provide a qualitative un-
derstanding of the results by analyzing the statistics of events
close to an edge of the shadow of obstacles (Sec. IV). We
will finally make the analysis more complete by evaluating the
effect of quantum reflection of H atoms on the Casimir-Polder
potential in the vicinity of matter surfaces [21]. Including this
effect in the statistical analysis of the experiment, we will
show that quantum reflection does not degrade the accuracy
that much (Sec. V). We assume quantum reflection is specular,
which requires the surfaces exposed to antiatoms to be well
polished.

II. GEOMETRY OF THE EXPERIMENT

The source of H atoms is placed at the center of the
cylindrical vacuum chamber (radius Rc and free-fall height
Hf ) in which the free-fall measurement is performed. This
source is surrounded by obstacles such as the electrodes of
the trap [19,20]. We define a cleaner geometry by hiding
obstacles with two symmetrically positioned disks of radius
Rd placed above and below the trap at a distance Hd. The
resulting geometry is shown schematically in Fig. 1, with
trajectories to the surfaces of the chamber represented as
blue lines [21].

The symmetrical configuration produces a simple geom-
etry which will be more easily studied in Monte Carlo
simulations of the experiment. We will work with a horizontal
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FIG. 1. Schematic representation of the GBAR free-fall chamber
with two disks symmetrically positioned above and below the trap to
mask the obstacles surrounding it. Trajectories to the surfaces of the
chamber are represented as blue lines.

polarization of the photodetachment laser in order to launch
the atoms preferably in the free interval between the two
disks [18]. In the first part of the study we will generate
random events mimicking the forthcoming experiment with
a reference value g0 = 9.81 m/s2. In the second part, we will
present the statistical analysis of these events mimicking the
data analysis process to be developed at a later stage of the
experiment. The whole analysis will be done in a manner quite
analogous to that presented in [18], with, however, important
differences discussed now.

The evaluation of g from the analysis of annihilation data
involves the calculation of the probability current J (R, T )
(number per unit of surface and unit of time) to detect a parti-
cle at position R in space and T in time. In [18], we detailed
the calculation of the same quantity J0(R, T ) while ignoring
the presence of obstacles. In the presence of symmetrical
disks, in contrast, the reasoning has to consider separately the
annihilation events on the surfaces of the free-fall chamber,
which are used for estimating g, and those on the disks, which
contain essentially no information on g. Hence, we will be
mainly interested in the current on the surfaces of the free-
fall chamber with a probability integral Pc smaller than 1. In
the following we fix the initial number N of atoms, but our
analysis of dispersion accounts for the fact that the number of
events Nc = NPc detected on the surfaces of the chamber is
smaller than N .

At the end of the calculations, we will obtain the mean μg

and the standard deviation σg of the estimator defined for g,
simply denoted g from now on. In spite of the loss of useful
events, it will turn out that the standard deviation σg may be
smaller in the presence of the obstacles. The main reason for
this important result can already be understood by looking
at the detection current on the walls of the free-fall chamber
represented in Fig. 2. One clearly sees the sharp boundaries of
the shadow induced on the walls by the presence of the disks.
The position in space and time of this shadow depends on the
value of g, and its detection allows us to gain information on
the value of g.

The dispersion of the initial position of the ion in the trap
plays a negligible role in the problem, while the dispersion of

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
t (s)

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

z
(m

)

0

10

20

30

40

50

C
u
rr

en
t

(s
−

1
m

−
2
)

FIG. 2. Distribution of annihilation events j(R, t ) (in s−1 m−2)
on the wall as a function of t and position (X = 0,Y = R, Z) with
two disks. Parameters are Rd = 2 cm, Hd = 1 cm, Rc = 25 cm, f =
1 MHz, and δE = 30 μeV.

the photodetachment time t0 has to be accounted for as in [18].
The time of the annihilation event T is t + t0, where t is the
time of flight and t0 is the precise time of the photodetachment
event. Hence, the current J (R, T ) (taking into account the
dispersion on t0) is calculated as the convolution of a current
j(R, t ) neglecting this dispersion and the distribution of t0,
assumed to be a logistic distribution with width τ ,

J (R, T ) =
∫

j(R, T − t0) δτ (t0) dt0,

δτ (t0) = 1

4τ

1

cosh2
( t0

2τ

) . (1)

The current plotted in Fig. 2 was calculated before the
convolution, and the latter will round up the edges of the
shadow zone without suppressing the gain of information
associated with them. Currents calculated before and after
the convolution on a cut with fixed altitude (z = −0.17 cm)
are represented in Fig. 3. The effect of the dispersion on
t0, calculated here for τ = 500 μs, is visible at the steps
of the current corresponding to edges of the shadow of the
disks. We will see that it plays an important role in some
forthcoming calculations, while it can be neglected in other
ones.

III. DISPERSION OF THE ESTIMATOR

In this section, we present Monte Carlo simulations to
discuss the dispersion that should be expected on the measure-
ment of g with the obstacles taken into account. We rapidly go
over steps which were already discussed in [18] for the case
without obstacles and discuss mainly the differences with that
case.

Considering a draw of N H atoms that escape from the trap
after the photodetachment process, we calculate the trajectory
that depends on the random initial velocity v0 and the ran-
dom time of photodetachment t0 and deduce the annihilation
position in space Ri and time Ti. Trajectories hitting the disk
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FIG. 3. Comparison between the currents j(R, t ) and J (R, T )
for z = −17 cm calculated with the same parameters as in Fig. 2; the
first one is before the convolution (blue solid line), and the second
one is after the convolution with τ = 500 μs (orange dashed line).
The effect of the dispersion on t0 is visible on the edges of the shadow
zone induced by the obstacles.

lead to annihilation there and are discarded from the forth-
coming analysis as they contain no useful information on the
value of g.

We thus calculate the likelihood function L and normalized
likelihood function � for the draw of Nc events that annihilate
on the surfaces of the chamber,

L(g) =
Nc∏

i=1

J (Ri, ti ), �(g) = L(g)∫
L(g)dg

. (2)

Normalized likelihood functions �(g) are represented in Fig. 4
for a given set of parameters (Rd = 2 cm, Hd = 1 cm, Rc =
25 cm, f = 1 MHz, δE = 30 μeV) and four values of N . The
different functions �(g) plotted for each case are calculated for
independent random draws.

For N = 10 and N = 100, the likelihoods are mostly flat
with sudden drops to zero. This behavior is due to the ob-
stacles and can be qualitatively understood with τ = 0. Let
us consider an impact at R, t reached by an atom for g = g0.
If this impact is close to an edge of the allowed area, it may
fall in the shadow zone for a different value g �= g0, so that the
likelihood drops to zero. The drop to zero is rounded up by the
dispersion τ , with the rounding being negligible for N = 10 or
N = 100 but starting to become noticeable for N = 1000. For
N = 10 000, the likelihoods are closer to Gaussian functions
because the numerous annihilation events produce an efficient
sampling of the rounded step.

Although all likelihood functions are centered around the
expected value g0, their maximum will fall on either side

FIG. 4. Set of normalized likelihoods �(g) for different values of the initial number of atoms N . The parameters are the same as in Fig. 3.
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FIG. 5. Relative dispersion obtained with Monte Carlo simula-
tion of the experiment with two disks. Orange diamonds and blue
circles represent, respectively, the dispersion for τ = 1 ms and τ =
0.1 ms. The red solid line is the Cramer-Rao limit without disks. The
light gray lines are guides for the eye showing a 1/

√
N scaling.

of their plateau, so that the common maximum-likelihood
estimator will show large variations. In order to circumvent
this problem, we define another estimator ǧ as the mean
value of the likelihood � and will use it in all forthcoming
simulations,

ǧ =
∫

g�(g)dg =
∫

gL(g)dg∫
L(g)dg

. (3)

Figure 5 shows the relative dispersion of ǧ as a func-
tion of the number N of initial events. The dispersion of t0
is taken into account for all calculations, although it has a
small effect for a small value of N . We see that the vari-
ation of the dispersion versus N does not follow 1/

√
N

except for very large values of N . This behavior is an indi-
cation that the statistical efficiency is reached only for those
very large values. In the high-N regime the dispersion de-
pends on τ , and it is smaller than the dispersion without the
obstacles.

IV. STATISTICS OF EVENTS CLOSE TO AN EDGE

We now present two methods which are useful to un-
derstand the results of the simulations in the two regimes
discussed at the end of Sec. III. These two methods deal with
the statistics of events close to an edge, first in the sharp case
(τ = 0) better suited to small values of N and then in the
rounded case (τ �= 0) better suited to large N .

A. The min-max model

We first discuss the drop in the likelihood observed for
values of N such as N = 100. The sampling of the edges of
the shadow zone is not efficient in this case, so we can neglect
the dispersion τ of t0 and simplify calculations by using the
current j(R, t ) before convolution (so that T ≡ t).

For a given impact R, t , we calculate the initial velocity
assuming a value of g. We define a function λg(R, t ) that is
equal to 1 if the associated trajectory reaches the detection
point without hitting the disks and equal to 0 in the opposite

FIG. 6. Current j as a function of the altitude z and time of flight
t . The area with diagonal hatching represents the shadow from the
two disks for g0. The two dotted areas represent zones that are not in
the shadow for g = g0 but are in the shadow for g = 1.2g0 and g =
0.8g0. The probability of having an impact in this area corresponds
to Fmax(1.2g0) and Fmin(0.8g0 ).

case where H is annihilated on the disks. We get the current
j as the product of this function by the current j0 calculated
without obstacles,

j(R, t ) = λg(R, t ) j0(R, t ). (4)

For a random draw of N atoms, the likelihood function (2)
is then written as

L(g) = L0(g)π (g), L0(g) =
N∏

i=1

j0(Ri, ti ),

π (g) =
N∏

i=1

λg(Ri, ti ), (5)

with L0(g) being the likelihood function calculated without
obstacles. Meanwhile, π (g) is a rectangular function with
a unit value on the interval between minimal and maximal
values of g which are random variables depending on the full
set of impact parameters for the Nc events,

π (g) =
{

1 ifg ∈ [gmin, gmax],
0 otherwise. (6)

We now calculate the statistics of gmax, with the same
method being applicable for gmin. To this aim, we first de-
fine the following expectation taken over all possible impact
parameters without obstacles:

Fmax(g) = E(λg0 (1 − λg)), (7)

which is the probability to be in the allowed area for g0 and
in the shadow for g. The function Fmax(g), shown in Fig. 6, is
also the cumulative distribution function of gmax for a single
event and fmax(g) = F ′

max(g), the distribution function. For a
draw of N events, the distribution of gmax can then be written
as

fN,max(g) = N fmax(g)[1 − Fmax(g)]N−1. (8)
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For a large value of N and for (g − g0) fmax(g0) � 1, the
random variable (gmax − g0) follows an exponential distribu-
tion of parameters N fmax(g0),

fN,max(g) � N fmax(g0)e−N (g−g0 ) fmax(g0 ). (9)

The expected value of gmax is g0 + 1/[N fmax(g0)], and its
standard deviation is 1/[N fmax(g0)].

The likelihood L with obstacles is the product of the
likelihood L0 without obstacles and the rectangular func-
tion π limited by gmin and gmax. The width of L0 scales
as 1/

√
N , while the width of π scales as [1/ fmax(g0) +

1/ fmin(g0)]/N . When the width of π dominates the final
shape, the likelihood function L has a trapezoidal shape.
By disregarding the slope of the plateau of the trapeze, we
can approximate the estimator ǧ as (the label mm stands for
“min-max”)

ǧmm ≡ gmax + gmin

2
. (10)

For large enough values of N , the events that contribute
to gmax and gmin are different since they correspond to events
close to different edges and there is no overlap between the
areas in Fig. 6 with dots and stars. When this is the case, we
can assume that gmax and gmin are uncorrelated variables and
thus get the following expectation and variance for the min-
max estimator (10):

E(ǧmm ) = g0 + 1

2N

(
1

fmax(g0)
− 1

fmin(g0)

)
,

V ar(ǧmm ) = 1

4N2

(
1

fmax(g0)2
+ 1

fmin(g0)2

)
. (11)

With the two disks symmetrically positioned with respect
to the center of the trap and sufficiently close to it, fmax(g0) =
fmin(g0), and we call this quantity fmm(g0). The estimator ǧmm

is then unbiased, and its distribution is a Laplace distribution,

fǧmm (g) = 1√
2σmm

e− |g−g0 |√
2σmm ,

σmm = 1√
2N fmm(g0)

, (12)

where we have denoted σmm as the dispersion of ǧmm which
scales as 1/N .

If the two disks are not symmetric, fmin(g0) and fmin(g0)
are different, and the estimator is biased. The bias is smaller
than the standard deviation of the estimator, and it converges
to zero with the same 1/N scale.

B. The Cramér-Rao bound

We now discuss the cases of large values of N for which
the dispersion scales as 1/

√
N and can be approximated by a

Cramér-Rao bound [22–24]. This corresponds to the limit of
an efficient sampling of the edges and requires to account for
the rounding up in J of the steps in j, thanks to the dispersion
τ of t0 [see Eq. (1)].

Due to the small value of τ compared to the timescale in
j, the convolution does not appreciably change the current,
except in the vicinity of the steps. An approximation of J is

thus given by the expressions

Jτ (R, T ) = J0(R, T )�τ,g(R, T ),

�τ,g(R, T ) =
∫

λg(R, T − u)δτ (u)du. (13)

Using Eq. (13), one can decompose the integral giving the
Fisher information as a sum of three terms,

Ig = Ig,1 + Ig,2 + Ig,3,

Ig,1 =
∫

dSdT
(∂gJ0)2

J0
�τ ,

Ig,2 =
∫

dSdT
(∂g�τ )2

�τ

J0,

Ig,3 = 2
∫

dSdT (∂g�τ )(∂gJ0). (14)

The first term, Ig,1, is the Fisher integral for the current
calculated without obstacles. The second term is the Fisher
information added by the steps in the current j. For this term,
the integrand is non-negligible only in the vicinity of the step,
with the extra information arising because the position of the
step depends on g.

We first calculate this integral for a single step at a time ts.
In this case, λ(t ) = θ (t − ts), where θ is the Heaviside func-
tion, and �τ (T ) = θτ (T − ts), where θτ (T ) = ∫ T

−∞ δτ (u)du.
Neglecting the variation of the current j0 over the step, this
integral can be obtained analytically,∫

dT
[δτ (ts − T )]2

θτ (ts − T )
= 1

2τ
. (15)

This integral has been calculated exactly for the logistic distri-
bution (1) of the photodetachment moment, but similar scaling
laws would hold for other models with a rounded step, with
the integrals being a definition of τ . Finally, Ig,3 contains all
other terms; it scales as τ 0 and is thus negligible with respect
to Ig,2.

We thus obtain a large contribution scaling as 1
τ

,

Ig,2 �
∫

dS
J0(ts)

2τ
(∂gts)2. (16)

In order to ease the calculation of the large Ig,2, an approx-
imation of ∂gts can be made when obstacles are close to the
source and gravity can be neglected during the flight between
the source and the disks, which leads to the simple relationship

∂gts � ts
2g

. (17)

This relationship can be seen in Fig. 6, where the hor-
izontal width of the dotted area (proportional to ∂gts) is
proportional to t .

Equation (16) gives an integral on the boundary defined
by the function λg. It can be replaced by an integral over the
volume of points that are within δg/2 from the boundary

Ig,2 � 1

4g0τ

Eg0 (t |λg0−δg/2 − λg0+δg/2|)
|δg| . (18)

Here the expectation used to represent the integral is taken for
impacts without obstacles. Choosing an adequate value of δg,
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FIG. 7. Relative dispersions obtained with Monte Carlo (MC)
simulations multiplied by

√
N and represented versus N (black dia-

monds). The dashed red line represents the Cramér-Rao (CR) bound
calculated with obstacles. The solid orange line is the limit given by
the min-max model in Eq. (11). Results are drawn for the default
configuration for the disks Rd = 2 cm, Hd = 1 cm, and τ = 200 μs.
The points whose normalized histograms are shown in Fig. 8 are
highlighted.

this formula can be used to numerically calculate Ig,2 with a
Monte Carlo method when no analytical formula for ts(R) is
available.

These discussions show that the large contribution Ig,2 to
the Fisher information is proportional to the density of events
close to the step weighted by the time of flight (the longer it
is, the higher is the information). Note also that the expected
value is taken on both sides of the step. This formula is similar
to (7), which is used to compute fmax, and leads to a rough
relationship between the two quantities,

gIg,2

fmm
≈ 〈T 〉

2τ
, (19)

where 〈T 〉 is a typical value of the time of flight Rc/v, with Rc

being the radius of the chamber (see Fig. 1).
When there is more than one step at a position R, the Fisher

integral is the sum over all steps of contributions (16) or (18).

C. Discussion

In order to assess the qualitative results of the min-max
and Cramér-Rao models presented in Secs. IV A and IV B,
we have performed full Monte Carlo simulations of the ex-
periment for different sets of parameters and for a simple
geometry without the floor and the ceiling of the chamber so
that atoms are detected only on the walls. The results of the
simulation are shown in Fig. 7.

Simulations correspond to the default configuration for the
disks (Rd = 2 cm, Hd = 1 cm) considered for all other figures
and to a starting time dispersion τ = 200 μs. Black diamonds
represent the relative standard deviation calculated without
approximation and multiplied by

√
N as a function of N . Two

limits are also plotted: the Cramér-Rao bounds with obstacles
(dashed red line) and the min-max model where ǧ is estimated
from Eq. (11) (solid orange line).

FIG. 8. Standardized histograms of ǧ for the points N = 200 and
10 000 highlighted in Fig. 7. The number of draws is 50 000 for
N = 200 and 12 000 for N = 10 000. The dashed red curves repre-
sent normal distributions, a fair approximation in the limit of efficient
statistics, and the solid orange curve represents Laplace distributions,
a fair approximation in the min-max model.

We note that the min-max model gives an approximation
of the dispersion even for small numbers N . The transition
between the min-max model (where the dispersion is inde-
pendent of τ ) and the Cramér-Rao bound is observed for
N ≈ 1000 with τ = 200 μs. Using Eq. (19), the intersection
N∗ of the two curves is found to be

N∗ � 〈T 〉
2τ

1

gfmm
. (20)

This equation essentially tells us that the Cramér-Rao bound
is reached when the number of atoms within a delay of less
than τ from the step crosses unity.

An interesting way to assess the quality of the analysis is
to look at histograms of estimators shown in Fig. 8 for two
different values of N (with the same parameters as in Fig. 7).
When the sampling of the edge is efficient, the distribution of
estimators tends to have the Gaussian shape indicated by the
dashed red curves in Fig. 8. In the opposite case, the statistics
tends to be given by the non-Gaussian min-max model, so
that the distribution of estimators tends to fit the Laplace
distribution indicated by the solid orange curves in Fig. 8.
These predictions of the simple models are approximately
met by the results of full simulations, with distributions for
N = 20 and N = 100 000 approaching, respectively, Gauss
and Laplace shapes.

A quantitative assessment of the shape of the distribution is
the kurtosis, which should be 3 for a Gauss shape and 6 for a
Laplace shape. Figure 9 shows the variation of the kurtosis
for the parameters corresponding to the black diamonds in
Fig. 7. When the sampling of the edge is efficient (i.e., for
large values of N), the distribution tends to have a Gauss
shape, and the kurtosis effectively approaches 3 (dashed red
line). When the statistics is, in contrast, dominated by the
non-Gaussian min-max model, the distribution tends to have
a Laplace shape, and the kurtosis approaches 6 (solid orange
line).

We finally show in Fig. 10 the standard deviation multi-
plied by

√
N as a function of the dispersion τ . This quantity

tends to a limit independent of N for large values of τ , which
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FIG. 9. Kurtosis of the histograms of ǧ in the configuration in
Fig. 7, drawn as a function of N . The horizontal lines represent
the limiting values of 3 and 6 obtained, respectively, for the Gauss
distribution (dashed red line) and the Laplace distribution (solid
orange line). Highlighted points correspond to those shown in Figs. 7
and 8.

corresponds to a statistical efficiency close to 1 and a disper-
sion approaching the Cramér-Rao bound. On the other hand,
the Fisher information scales as 1/τ for small values of τ ,
where the estimator is efficient only for very large values of
N . For τ around 1 × 10−3 s, there is good agreement with the
model in Eq. (18).

V. EFFECT OF QUANTUM REFLECTIONS

Ultracold antihydrogen atoms falling onto the detection
plate suffer a quantum reflection (QR) on the Casimir-Polder
potential before touching the surface, and this could affect the
free-fall measurement [21,25]. As quantum reflections could
change the results of the discussions presented up to now, we
have repeated the analysis by taking QR into account.

FIG. 10. Relative dispersion σ multiplied by
√

N as a function
of τ for different values of N . For small values of τ , this quantity
tends to a finite value depending on N . For large values of τ , the
Cramér-Rao bound is reached, and the quantity tends to a universal
curve, meaning that σ scales as

√
τ/N . The dashed line represents

the Cramér-Rao limit obtained using the Fisher information given in
Eq. (18).

The probability of quantum reflection on the plate depends
on the component of velocity orthogonal to the plate and
on the optical properties of the material. Here we assume
that the boundaries of the free-fall chamber are well-polished
stainless-steel plates behaving like a mirror of good opti-
cal quality. A good approximation of quantum reflection
probabilities is thus obtained by taking the values calcu-
lated for a mirror that perfectly reflects electromagnetic
fields [21].

For simplicity, we use an interpolation formula which was
designed to reproduce accurately the full range of numerically
calculated curves [26],

|r|2 = exp

[
−4κ/

(
1 + ακ2/3

1 + βκ−1

)]
,

κ ≡ k|b| = m|b|
h̄

|V⊥|, α � 0.7088, β � 0.5163.

(21)

Here k is the atomic wave vector determined by the orthogonal
velocity V⊥, and b is the imaginary part of the scattering
length deduced from the optical properties of the surfaces.
For a mirror that perfectly reflects electromagnetic fields,
|b| � 28.75 nm [27]. The constants α and β were obtained
by a least-squares fit to the numerically calculated curves.
Formula (21) reproduces the analytical asymptotic behaviors
known at low and high energies, and it gives an estimate of
the reflection probability with a relative dispersion better than
1 × 10−4 at all energies.

As different velocities correspond to neatly different prob-
abilities, it is necessary to calculate the quantum reflection
probability for each individual trajectory. Although quantum
reflection probabilities are small, they can give rise to system-
atics of the same order of magnitude as the statistical accuracy
looked for in the GBAR experiment, and it is necessary to take
them into account in the analysis.

From a detection at positions (R, T ) in space and time,
we have to find the initial velocity of the trajectory. There
is a one-to-one matching between those values, which, how-
ever, depends on reflections in the interval between the initial
launch and detection on a surface of the free-fall chamber.
Precisely, a detection point on a surface of the chamber can be
reached by a direct trajectory or by a trajectory that contains
one or several reflections on the disks or on another surface of
the chamber. As elementary quantum reflection probabilities
are small, we disregard here the case of multiple quantum
reflections.

The probability current is obtained by adding the different
contributions

J (R, T ) = Jdir (R, T ) +
∑
surf

J (s)
QR(R, T ), (22)

where Jdir (R, t ) corresponds to direct trajectories and each
J (s)

QR describes the case with one quantum reflection on the sur-
face s. Each of the latter expressions contains the associated
quantum reflection probability.

For the configuration of a cylindrical chamber with disks
(with the same parameters as in the default configuration
considered above), with parameters f = 1 MHz and δE =
30 μeV and horizontal polarization of the laser, the fraction

022821-7



OLIVIER ROUSSELLE et al. PHYSICAL REVIEW A 105, 022821 (2022)

FIG. 11. Particle current J incident on the walls calculated taking
into account quantum reflections. The limit of the shadow zone is
represented by dotted lines.

of atoms that reach the surfaces of the detection cham-
ber is about 66% (the other 34% are annihilated on the
disks and are useless for the measurement of g), while
∼18% of the atoms annihilated on the surfaces of the free-
fall chamber are reflected on another surface before their
detection.

We represent in Fig. 11 the current on the walls as a
function of time t and position coordinate z, with the choice of
parameters corresponding to that in Fig. 2 except for the fact
that quantum reflection is now accounted for. The essential
information in the new plots is that quantum reflections allow
atoms to reach the shadow zone, which was previously for-
bidden. We also observe that there remains a small forbidden
zone which cannot be reached by any trajectory even when
taking into account quantum reflections.

We repeat all steps in the calculations described in Sec. III
now taking into account quantum reflections in the simulation
as well as in the estimation stages.

We represent in Fig. 12 the likelihood functions calculated
for random draws of N = 1000 H atoms. We clearly see that

FIG. 12. Sample of normalized likelihoods including quantum
reflections calculated for independent random draws of 1000 atoms.
The parameters are the same as in Fig. 11.

FIG. 13. Normalized histogram of 10 000 estimators ǧ obtained
with quantum reflection. The parameters are the same as in Fig. 11.

the likelihoods are not Gaussian and contain different steps,
in particular due to the interception of some trajectories by
the disks. We also notice that some likelihood functions are
significantly biased.

We then show in Fig. 13 a histogram of the estimator ǧ
obtained by repeating the process presented in Sec. III. We
deduce the average μg and the standard deviation σg of the
estimators of g. The relative statistical bias (μg − g0)/g0 and
relative dispersion σg/g0 are found to be, respectively, 0.03%
and 0.54%.

As could be expected, the presence of quantum reflection
degrades the dispersion, but the degradation is limited when
considering that the expected relative dispersion was 0.36%
with the same experimental conditions (the initial velocity dis-
tribution and parameters of the photodetachment laser) with
quantum reflection not accounted for.

For completeness, we also evaluated the confidence inter-
vals containing 95% of the probability in the histogram of
the estimators ǧ. We found [9.751; 9.868] for the confidence
interval with no quantum reflection and [9.739; 9.891] for the
confidence interval including quantum reflection. As could be
expected, the confidence intervals are larger than if they were
calculated for a Gaussian distribution with the known standard
deviations. However, there is no significant difference in this
respect associated with quantum reflection.

VI. CONCLUSION

In this paper we have studied in a detailed manner the
effect of the obstacles present in the vicinity of the source
on the dispersion of the free-fall acceleration measurement of
H atoms to be performed by the GBAR experiment. In order
to ease the discussion, we have considered a clean geometry
with two disks symmetrically positioned above and below the
source to hide the obstacles.

We first performed Monte Carlo simulations in order to
discuss the accuracy to be expected for the measurement. We
showed that the accuracy is improved thanks to the additional
information about the value of g gained from the presence of
shadow edges, the positions of which depend on g. We have
also studied the statistics of events close to an edge to obtain
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a quantitative understanding of the different regimes observed
for the variation of the dispersion versus the number N of H
atoms.

We finally took into account quantum reflection processes
on the Casimir-Polder potential above matter surfaces. These
processes lead to detection of H atoms in the shadow zones,
which could have been detrimental for the accuracy. We,
however, showed that quantum reflection only slightly reduces
the advantage coming from the gain of information associated
with shadow edges.
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