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Diamagnetic susceptibility from a nonadiabatic path-integral simulation of few-electron systems
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Diamagnetism is the response of dynamical compositions of charged particles, electrons, and nuclei, to an
incident magnetic field. In this paper, we study how the finite temperature and finite nuclear masses affect
the diamagnetic susceptibilities of selected small atoms and molecules, as limiting cases of dilute gas. We use
nonrelativistic path-integral Monte Carlo simulation (PIMC), where both electrons and nuclei are treated on
equal footing at finite temperatures in sampling exact Coulomb pair density matrices. The PIMC estimator of
diamagnetic susceptibility has been briefly introduced in Ceperley [D. M. Ceperley, Rev. Mod. Phys. 67, 279
(1995)], but here we present a comprehensive derivation, discussion of practical effects, and proof-of-concept
results for selected few-body Coulomb systems. Our results are in perfect agreement with high-accuracy
literature references, where available, but also demonstrate additional thermal effects of the diamagnetic response
of low-mass systems.

DOI: 10.1103/PhysRevA.105.022816

I. INTRODUCTION

Diamagnetism is a basic property of matter, describing its
response to an incident magnetic field. According to a semi-
classical picture, magnetic fields have an effect on charged
particles to induce changes in their dynamics, namely, their
orbital magnetic moments. The zero-field diamagnetic sus-
ceptibility is a linear measure of this change in the limit of
weak magnetic perturbations. The diamagnetic susceptibility
characterizes atomic species, and it therefore plays a role in
derived models, such as nuclear magnetic resonance parame-
ters [1,2]. Phenomena due to paramagnetism, ferromagnetism,
or strong magnetic fields are not considered in this paper.

The diamagnetic susceptibility of quantum states can be
derived from first principles, based on knowledge of the elec-
tronic orbitals. The problem is often simplified by making
the common Born-Oppenheimer approximation (BO), where
the electronic and nuclear degrees of freedom are treated
separately. Then, the central challenges boil down to finding
highly accurate representations of the electronic many-body
wave function [3], and modeling the effects of the nuclear
degrees of freedom, including quantum rovibration, centrifu-
gal distortion, and coupling to finite temperatures [1,4–8].
However, full accuracy of the electron-nucleus coupling calls
for breaking down of the BO approximation and embracing
a nonadiabatic treatment of the many-body problem between
the electrons and nuclei. This is especially important re-
garding the diamagnetic susceptibility, which arises from the
dynamical interactions of the charged particles. However, the
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studies pursuing fully nonadiabatic treatment of the diamag-
netic susceptibilities of few-body systems are rare [9] and
leave room for improvement.

In this paper we consider diamagnetism in terms of
the Feynman path-integral representation of quantum parti-
cles at thermal equilibrium [10,11]. The finite-temperature
path-integral formalism has inherent accounts of thermal
effects and exact many-body correlations, including those
between electrons and finite-mass nuclei. The numerical im-
plementation is called the path-integral Monte Carlo method
(PIMC) [12]. It faces well-known challenges in treating dy-
namical effects, such as the magnetic-field coupling, which
have been studied by others [13]. However, the diamagnetic
susceptibility can be obtained in the zero-field limit using a
well-known estimator [12,14], based on the Green’s-function
theorem.

The PIMC approach enables statistically exact simulation
of thermal density matrices [15] but also various response
properties [16–18] of real few-body Coulomb systems, as long
as the particles are distinguishable. Much larger systems [21]
with indistinguishable fermions can also be simulated exactly,
but only with exponentially decreasing numerical efficiency.
This so-called fermion sign problem intensifies at low tem-
peratures and high densities [19,20]. Many strategies have
been demonstrated to circumvent it (e.g., Refs. [20,22–24]),
but they generally complicate the simulation and estimation
of observables, such as susceptibilities [25], and will not
be considered in this paper. We will instead concentrate on
few-particle systems, essentially small atoms and H2 iso-
topologues, including the dipositronium dimer, Ps2. Even
these modest problems still puzzle the fundamental theoretical
understanding of diamagnetism, as there has been no control-
lable or satisfactory approaches to address effects due to the
finite temperature or ionic masses. Thus, it is our aim to gain
insight and intuition from the accurate and straightforward
path-integral approach.
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The rest of the paper is organized as follows: In Sec. II, we
discuss the theory of diamagnetism and present a derivation
and practical notes regarding the PIMC estimator [12,14].
In Sec. III we overview the technical details of the method
and simulations. Section IV presents validation of accu-
racy, where our results are benchmarked against well-known
high-accuracy references. In Sec. V we present results and
discussion of the finite-mass effects to the diamagnetic sus-
ceptibility of hydrogenlike molecules. A brief summary and
outlook are given in Sec. VI.

II. PATH-INTEGRAL ESTIMATOR OF THE
DIAMAGNETIC SUSCEPTIBILITY

Let 〈m〉 denote here the total orbital magnetic moment
vector of a system of electrons and ions at thermal equilib-
rium. We will not consider the paramagnetic properties due to
intrinsic magnetic moments of the particles, namely, the spins.
For isotropic systems, such as gaseous atoms and molecules,
〈m〉 = 0 due to rotational symmetry.

In the presence of an external magnetic field B, the orbital
magnetic moment is changed to 〈m〉B, which induces a change
in the Helmholtz free energy F :

�F = −〈m〉B · B. (1)

The induction of magnetic moment is described to the first
order by the diamagnetic susceptibility χ , so that

〈m〉B ≈ χB/μ0, (2)

where μ0 is the vacuum permeability. These two equa-
tions can be used to define the static zero-field diamagnetic
susceptibility as (see Ref. [26], pp. 21 and 23)

χi = μ0 lim
B→0

(
∂〈mi〉Bi

∂Bi

)
(3)

= −μ0 lim
B→0

(
∂2F
∂B2

i

)
, (4)

where indices i ∈ {x, y, z} point, for simplicity, to appropriate
positions on the diagonal of the χ tensor. We will not consider
off-diagonal susceptibilities in the notation of this paper, but
they are equally straightforward to derive and estimate. In fact,
for all the systems in this paper, we consider the rotational
averages of the susceptibility, given by [27]

χ = 1
3 (χx + χy + χz ), (5)

which holds, because the susceptibilities χ are second-order
products of directional quantities, as seen later.

Let us consider evaluation of χi from thermal density
matrices that are represented by path integrals in imaginary
time. The imaginary-time path integrals describe statistical
properties of the quantum system by propagating forward
in time with the imaginary-time period �t = −ih̄β. Let
the real-space trajectories of N particles be represented by
an imaginary-time path R(τ ) = [r1(τ ) . . . rN (τ )], where τ ∈
[0, β] is the magnitude of imaginary time so that t = −ih̄τ .
The thermal density matrix for nonrelativistic, distinguishable

particles can be written as an imaginary-time path inte-
gral [28]

ρ(Ra, Rb, β ) =
∫ R(β )=Rb

R(0)=Ra

DR(τ ) Ae−S[R(τ )], (6)

where DR(τ ) denotes functional integration, A is a normal-
ization constant, and S[R(τ )] is the imaginary-time action. Let
Ṙ denote real-time velocities of the particles. The imaginary-
time action is determined by the classical Lagrangian L(Ṙ, R)
as

S[R(τ )] = −
∫ β

0
dτ L

(
1

−ih̄

dR(τ )

dτ
, R(τ )

)
, (7)

where the real-time velocity has been rotated to the imaginary
time with Ṙ = dR(τ )

dt = − 1
−ih̄

dR(τ )
dτ

.
The classical Lagrangian for charged particles in an exter-

nal magnetic field B is

L(Ṙ, R) = L0(Ṙ, R) + m(Ṙ, R) · B, (8)

where L0 is the Lagrangian of an unperturbed system, and m
is the total magnetic dipole moment. Splitting the action along
with the Lagrangian gives

S[R(τ )] = S0[R(τ )] − βm̃[R(τ )] · B, (9)

where S0 is the action of an unperturbed system, and

m̃[R(τ )] = 1

β

∫ β

0
dτ m

(
1

−ih̄

dR(τ )

dτ
, R(τ )

)
(10)

describes the path average of m.
Let us express the susceptibility from Eq. (4) by using the

path integrals. By utilizing

F = − 1

β
ln Z,

.we can write Eq. (4) as

χi = μ0

β

(−1

Z2
lim

Bi→0

(
∂Z

∂Bi

)2

+ 1

Z
lim

Bi→0

(
∂2Z

∂B2
i

))
, (11)

where

Z =
∫

dR ρ(R, R, β ) (12)

is the partition function. The partial derivatives in Eq. (11)
can be obtained by differentiating the term e−S = e−S0+βm̃·B in
Eq. (6). In the limit of B → 0, the partial derivatives become

∂Z

∂Bi
=

∫
dR

∫ R(β )=R

R(0)=R
DR(τ ) Ae−S0[R(τ )]βm̃i[R(τ )]

and

∂2Z

∂B2
i

=
∫

dR
∫ R(β )=R

R(0)=R
DR(τ ) Ae−S0[R(τ )]β2m̃2

i [R(τ )].

Either of the terms can be expressed as a generic expectation
value, because the instantaneous magnetic moment m(Ṙ, R)
does not depend on velocity in the second power or higher.
Thus, we can write (see Ref. [11], pp. 172 and 178)

〈Õ〉 = 1

Z

∫
dR0

∫ R(β )=R0

R(0)=R0

DR(τ ) Ae−S0[R(τ )]Õ[R(τ )], (13)
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where Õ corresponds to either βm̃i or β2m̃2
i . Then, Eq. (11)

becomes a well-known relation (see Ref. [26], p. 23)

χi = μ0β
(〈

m̃2
i

〉 − 〈m̃i〉2
)

(14)

= μ0β
〈(

m̃2
i − 〈m̃i〉

)2〉
, (15)

which shows that the diamagnetic susceptibility is determined
by the fluctuation of magnetic moment at the equilibrium.

The magnetic moment functional m̃i can be expressed by
applying the classical magnetic dipole moment

m(Ṙ, R) =
N∑
n

qn

2
(rn × ṙn) (16)

to Eq. (10), which gives

m̃[R(τ )] = 1

β

∫ β

0
dτ

N∑
n

qn

2

(
rn ×

(
1

−ih̄

drn

dτ

))
(17)

= i

h̄β

N∑
n

qn

2

∮
∂Sn

rn × drn, (18)

where on the last line the integration variable has been
changed according to dτ drn

dτ
= drn. This results in integration

over real-space trajectories ∂Sn that are closed, because of
evaluating the trace of the density matrix in Eq. (12). Let
Sn denote some filling surface of the trajectory. By using the
Green’s-function theorem (see Ref. [29], p. 1058), the closed
line integral can be also written as

m̃[R(τ )] = i

h̄β

N∑
n

qnAn, (19)

where An is the “vector-valued area” of the surface Sn. Each
coordinate component An,i of An is formed by projecting the
surface Sn along the coordinate axis. The projection An,i can
be negative depending on the choice of handedness. Taking
Eq. (14), and inserting 〈m〉 = 0 and Eq. (19) to it, we arrive at

χi = − μ0

h̄2β

〈(
N∑
n

qnAn,i

)2〉
. (20)

This is an estimator of the diamagnetic susceptibility that
has also been presented in earlier works (see Refs. [12,14]),
only with few details of the derivation. It is worth noting that
this estimator is gauge invariant [14]. It can also be readily
applied to groups of indistinguishable particles with boson or
fermion statistics, if the summation over individual particle
trajectories is replaced by a summation over closed loops of
permuting particles. However, such direct sampling of the
fermion statistics remains severely undermined by the sign
problem. Imposing fixed-node constraints on the trajectories
may lead to biases, the assessment and possible corrections of
which to the estimator are beyond the scope of this paper.

In practical calculations, particle trajectories in the imag-
inary time are discretized by using a small but finite time
step �τ = β

M , where M is called the Trotter number. The
discretization of Eq. (18) is done according to

χi = −μ0

h̄2β

〈(
N∑
n

qn

2

M∑
k=1

(rn,k × (rn,k − rn,k−1))i

)2〉
, (21)

FIG. 1. Linear extrapolation to zero time step �τ = 0 is done to
mitigate the estimator error for χ . In the figure, a line (dashed) is
fitted to PIMC data (dots) of the hydrogen atom. The extrapolated
mean matches the reference value (cross) within confidence intervals
(68.3%) of the linear fit.

where rn,0 = rn,M . We observe that the discretization error
of the estimator has a linear dependence on the finite time
step �τ , which needs to be taken into account in one way or
another [14]. Here we routinely perform linear extrapolation
to the limit of �τ = 0 based on multiple time steps. This is
illustrated in Fig. 1 for the hydrogen atom: linear extrapolation
to the zero time step is needed to match the exact result.

III. SIMULATION DETAILS

We use PIMC [12] as implemented in Refs. [15,25].
The PIMC algorithm uses Markov chain metropolis Monte
Carlo with the multilevel bisection algorithm [30] to sam-
ple the thermal many-body density matrix of a system of
quantum electrons and nuclei at finite temperatures. The
many-body density matrix is based on multiplying exact
Coulomb pair density matrices that are obtained by matrix
squaring [12,15,31]. With PIMC, it is possible to simulate
fully nonadiabatic coupling between the electrons and the
nuclei. We refer by all-quantum (AQ) to simulations with
fully quantized nuclei, and by BO to fixed, pointlike nuclei.
To avoid complications and degradation of performance due
to the Fermion sign problem, we only consider systems with
distinguishable particles, namely, those with at most one up-
and one down-spin electron, positron, or nucleus.

We focus our simulations on light nuclei, where the nona-
diabatic effects are the most significant. BO simulations are
done on H, He, and H2, and AQ simulations are done on H,
H2, HD, D2, Ps, Ps2, and a range of fictitious nuclear masses,
where D is deuterium and Ps is positronium. The simulations
are carried out in the atomic units, where me = 1 and the
following particle masses were used: mp = 1836.1528me for

022816-3



TOLVANEN, TIIHONEN, AND RANTALA PHYSICAL REVIEW A 105, 022816 (2022)

TABLE I. Total energies E (in units of Eh) and isotropic diamagnetic susceptibilities χ (−10−11 m3

mol ) of H, He, and H2 (r = 1.4 a0) based
on the BO approximation of the electronic ground states. The values are from fixed-nuclei PIMC simulations and selected literature references
from 0 K [4–6,32–38]. H and Ps are also presented using the nonadiabatic nucleus along with the analytical reference value. Where multiple
reference values are listed, the first one is considered the most accurate. The PIMC data are extrapolated to 0 K and they match the most
accurate reference values within the statistical uncertainties.

PIMC Reference
0 K 300 K 1000 K 3000 K 0 K

E (Eh )
H −0.49993(10) −0.49997(6) −0.49995(8) −0.50007(11) −0.5a

H (AQ) −0.49978(14) −0.49978(9) −0.49979(11) −0.49978(13) −0.49973a

Ps (AQ) −0.249981(29) −0.249972(24) −0.249991(24) −0.249967(26) −0.25a

He −2.9037(8) −2.9030(6) −2.9040(7) −2.9023(6) −2.9037 [33]
H2 −1.1758(23) −1.1753(18) −1.1763(20) −1.1755(19) −1.1745 [34]

χ ( − 10−11 m3

mol )
H 2.9866(27) 2.9870(22) 2.9841(19) 2.9825(25) 2.98583a

H (AQ) 2.990(4) 2.9891(35) 2.9919(28) 2.9915(25) 2.99071a

Ps (AQ) 23.853(13) 23.654(16) 23.175(11) 21.822(9) 23.88663a

He 2.376(5) 2.376(6) 2.373(4) 2.3713(22) 2.37569 [35]
4.9690[38], 4.9701 [7],

H2 4.960(13) 4.965(15) 4.957(9) 4.969(7) 5.037 [37], 5.0534 [5],
4.9522 [6], 4.789 [4], 5.0699b

aAnalytical result, Eq. (25).
bRef. [9] with 〈r2〉 from Ref. [39].

protons, 2mp = 3672.3056 ≈ mD for deuterons, and mē = me

for positrons. The simulation temperatures vary between 100
and 3000 K, depending on the system.

Two observables are presented from the simulations: total
energies and diamagnetic susceptibilities. The total energies
are given in hartree atomic units and calculated using a virial
energy estimator [12,15], and the diamagnetic susceptibilities
are calculated using Eq. (21), as described in Sec. II. The
susceptibilities are given in the SI unit convention [ m3

mol ]. This
can be converted from susceptibilities in the Gaussian-cgs
unit system [ cm3

mol ] or from magnetizabilities in the atomic unit

system [ e2a2
0

me
], respectively, with

χ ≡ χSI
mol = 4π × 10−6 χ

cgs (Gaussian)
mol (22)

= 5.971653 × 10−11μa.u.
0 χ

a.u. (SI)
system . (23)

Both of the observables are calculated using three different
time steps and they are linearly extrapolated to the limit �τ =
0. In the BO simulations and the protonic AQ simulations,
the time steps are �τ ∈ {0.01, 0.03, 0.05} (E−1

h ). In the AQ
simulations of the positron systems the time steps are �τ ∈
{0.1, 0.2, 0.3} (E−1

h ), because light particles allow the use of
the longer time step for increased statistical efficiency.

All margins of error are expressed with a 68.3% confi-
dence interval, which corresponds to a 1σ interval of the
Gaussian distribution. However, the properties based on lin-
ear or nonlinear extrapolations are not normally distributed.
Uncertainties of linear fits follow Student’s t-distribution with
two degrees of freedom (see Ref. [40], p. 559), which is less
localized than the Gaussian distribution. For instance, 95%
confidence intervals on linear estimates can be obtained by
scaling up the presented margins of error with ≈3.4. On the
other hand, uncertainties of the nonlinear fits are obtained by
using jackknife resampling.

IV. VALIDATION OF ACCURACY

Let us validate the accuracy of the estimator of diamagnetic
susceptibility and the simulation method that were laid out
in earlier sections. This is easy to do based on simple atoms
and molecules, namely, H and He atoms and H2, within the
BO approximation, where reference values are known to high
accuracy. AQ simulations of the H and Ps atoms are also con-
sidered, because their reference values are known analytically,
as seen later. The PIMC results in this section are statisti-
cally indistinguishable from the 0-K ground state, because the
lowest-lying electronic excitations correspond to temperatures
in the order of 104 K. To illustrate this, we present PIMC
results at various temperatures (300, 1000, and 3000 K) that
turn out to be statistically indistinguishable, as expected, be-
cause the thermal effect is negligible. We then extrapolate to
0 K using a linear fit, which effectively lowers the statistical
uncertainty with little effect on the mean. The 0-K extrapolant
can be meaningfully compared to reference values from 0-K
methods.

The total energy E is a common benchmark quantity that
represents the accuracy of the simulation itself. The energies
estimated from PIMC and selected references [33,34] are
presented in Table I. The reference values can be considered
exact for the purposes of this paper, and the PIMC values
match them within the statistical uncertainty. Linear extrap-
olation of E to the zero time-step limit, �τ → 0, mitigates
the remaining systematic error due to interactions of three or
more bodies [15], as the pair density matrices are numerically
exact. In practice, the time steps used in this paper are already
so small that the bias due to higher-body interactions is statis-
tically insignificant in all cases.

The diamagnetic susceptibilities χ are presented in Ta-
ble I along with selected reference values from the liter-
ature [4–7,9,33–35,37–39]. The PIMC values are linearly
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extrapolated to zero time step, �τ → 0, to control the es-
timator error that, unlike with energies, is significant. The
susceptibilities of atoms, H and He, are in excellent agreement
with the reference values, which can be considered numeri-
cally exact. For H2 we consider the isotropic average of the
χ tensor. The PIMC extrapolant at 0 K is in good agreement
with probably the most accurate reference values based on the
coupled-cluster method [38] and full configuration interac-
tion [7]. We also compare to other selected values from the
literature [4–6,37], which are based on methods and wave
functions that are generally less accurate. Values based on a
nonadiabatic theory of diamagnetism [9] lead to large overes-
timation of χ even when high-accuracy expectation values for
〈r2〉 are used [41]. This indicates that a lacking description
of the electronic many-body correlation on the theoretical
level [9] carries over to the estimates of χ .

Let us then consider control systems for the fully nonadia-
batic simulation: finite-mass H and the positronium atom. The
simulations are labeled AQ, because the positive charges are
given fully quantum-mechanical treatments due to their finite
masses. This gives rise to a reduced mass μ = meM/(me +
M ), where M denotes the mass of the positive charge. In
the low-temperature limit, the total nonadiabatic diamagnetic
susceptibility of hydrogenlike atoms is known to become a
function of μ, as follows [9]:

χH (μ) = −μ0q2

6μ
〈r2〉 (24)

where 〈r2〉 is the mean-squared electron-nucleus distance.
While it is known that 〈r2〉 = 3m2

ea2
0/μ

2, it is easy to see that

χH (μ) =
(

me

μ

)3

χH (μ = me ), (25)

where χH(μ = me ) = −μ0q2a2
0/(2me ) is the BO limit with

an infinite-mass nucleus. Using the finite proton mass leads
to χH(μ = 0.999 455me ) = −2.990 71 × 10−11 m3

mol , which is
reproduced within the statistical uncertainties by a fully
nonadiabatic PIMC simulation of H(AQ) at low enough tem-
peratures, as seen in Table I. Using M = mē = me for the
positron mass gives the 0-K diamagnetic susceptibility of
positronium as χPs(μ = 0.5me ) = −23.886 63 × 10−11 m3

mol .
This is also recovered from the PIMC simulation of Ps. How-
ever, we will consider the thermal dependence of χPs more
in the next section, where we study nonadiabatic diamagnetic
response of hydrogen molecule isotopologues between the
bounding limits of the Ps2 and the BO approximation.

V. DIAMAGNETIC SUSCEPTIBILITY OF
HYDROGENLIKE MOLECULES

In this section we study how the finite nuclear mass af-
fects the diamagnetic response of hydrogenlike molecules at
finite temperatures. Unlike most of the previous section, the
PIMC results here are based on the fully nonadiabatic, AQ,
PIMC simulation of quantized electrons and nuclei, as de-
scribed in Sec. III. The PIMC results implicitly contain exact
nonrelativistic quantum effects of the finite nuclei, including
zero-point vibration, rotation, and centrifugal distortion of the
mean bond length. Because of this, there will be significant

FIG. 2. The diamagnetic susceptibility χ of H2 at various tem-
peratures based on the electronic ground state (BO) and rovibrational
state (AQ). The PIMC data (dots) and fits used for extrapolation to
0 K (dashed lines), and the various reference values, are specified in
Tables I and II.

effects in the many-body density matrix due to activation of
the rotational states in the species where M � me.

Let us begin by considering the 0-K limits of the total
energies E and total diamagnetic susceptibilities χ of selected
hydrogen isotopologues, namely, H2, HD, and D2. Again, the
susceptibilities are isotropic averages of the tensorial χ , but
unlike earlier, they now contain contributions from the nuclear
degrees of freedom. As seen in Table II, the PIMC data points
at 300-, 1000-, and 3000-K temperatures are subject to signifi-
cant thermal effects. Exponential fits are used in extrapolation
of the PIMC data to T → 0, to allow meaningful comparison
to the 0-K reference data. The total energies are are in excel-
lent agreement with the high-accuracy nonadiabatic reference
values [41,42], validating proper simulation of the density
matrix.

The values of χ show large variations between PIMC and
various literature references [4–7,9,39,44]. The disagreements
reflect deficiencies of the electronic wave function in some of
the reference studies [4–6]. However, even the highly accurate
reference using full configuration interaction [7] is only based
on model treatment, or the BO approximation, of the nuclear
rovibration. The only fully nonadiabatic theoretical reference
value, to the best of our knowledge, is based on Ref. [9] but
it again overestimates χ even when based on highly accurate
auxiliary data for 〈r2〉 [41,43]. The PIMC data of H2 from both
the BO and AQ simulations, including the exponential fits
(dashed lines), are plotted in Fig. 2, along with the reference
values listed in Tables I and II. The figure illustrates how
the zero-point vibration of H2 (AQ; blue) sets the 0-K value
of χ higher than the corresponding BO simulation (orange).
The activation of rotational states will further increase χ as T
increases. Most discrepancies in the reference values are of the
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TABLE II. Total energies E (in units of Eh) and isotropic diamagnetic susceptibilities χ (−10−11 m3

mol ) of H2, HD, and D2 based on
rovibrational states of the molecules at 0 K and finite temperatures. The values are from all-quantum (AQ) PIMC simulations and selected
literature references from 0 K or finite temperatures [4,6,7,9,41–44], where available. Where multiple reference values are listed, the first one
is considered the most accurate. The PIMC data are extrapolated to 0 K and match high-accuracy reference values of E , which are also based
on nonadiabatic treatment of the electrons and nuclei. The PIMC values of χ are slightly smaller, and thus closer to the experiment [44], than
any of the theoretical references, which only consider the rovibrational effects within the BO approximation.

PIMC Ref.
0 K 300 K 1000 K 3000 K 0 K

E (Eh )
H2 −1.1646(6) −1.16408(34) −1.1618(5) −1.1508(5) −1.1640 [42]
HD −1.1665(10) −1.1646(6) −1.1624(8) −1.1520(10) −1.1655 [41]
D2 −1.1679(7) −1.1660(6) −1.1633(8) −1.1526(9) −1.1672 [41]

χ ( − 10−11 m3

mol )
H2 5.062(16) 5.063(14) 5.075(11) 5.200(8) 5.032b, 5.0769 [7], 5.093 [4],

5.1131 [6], 5.2065a

HD 5.037(26) 5.050(27) 5.084(19) 5.174(16) 5.0828 [4]
D2 5.024(19) 5.039(18) 5.082(15) 5.190(11) 5.0715 [4], 5.0650 [6], 5.1642a

aRef. [9] with 〈r2〉 from Ref. [41] (H2) or Ref. [43] (D2).
bExperiment, 300 K [44].

same order of magnitude as the rovibrational and nonadiabatic
effects. Yet, the AQ result from PIMC stands out as being the
closest to the experimental value from Ref. [44] at 300 K.

Therefore, let us discuss how the diamagnetic susceptibil-
ity of hydrogenlike molecules depends on the joint effects
of the temperature and finite nuclear masses M. Table III
contains PIMC simulation data of χ (M ) at temperatures 300,
1000, and 3000 K. The nuclear masses are varied over the
range M = me . . . 8mp, where me and mp are the respective
masses of an electron and a proton. Apart from the lower limit
M = me, which corresponds to Ps2, and the realistic isotopes
H2 and D2, the systems are fictitious. The lower limit for χ (M )
corresponds to the BO limit with an infinite mass and is de-
noted χ∞. The convergence of χ (M ) − χ∞ to zero is plotted
in Fig. 3 on a logarithmic scale at each temperature. Curves

TABLE III. The diamagnetic susceptibilities χ (−10−11 m3

mol ) of
hydrogenlike particles with two electrons and two positive charges
with a variable finite mass M. The masses are given in the units of
the electron mass me or the proton mass mp. The last row denotes the
estimated value χ∞ of the BO limit.

M 300 K 1000 K 3000 K

1 me 49.15(4)
3 me 14.56(12) 14.34(4) 13.61(5)
9 me 8.13(6) 8.15(26) 8.068(27)
27 me 6.31(4) 6.283(19) 6.308(24)
81 me 5.634(35) 5.604(18) 5.704(17)
1
8 mp 5.317(17) 5.315(11) 5.401(10)
1
4 mp 5.213(19) 5.216(12) 5.302(11)
1
2 mp 5.126(19) 5.157(12) 5.249(13)
1 mp 5.063(14) 5.108(11) 5.200(9)
2 mp 5.039(18) 5.082(15) 5.190(11)
4 mp 4.986(22) 5.072(16) 5.183(15)
8 mp 4.994(23) 5.054(17) 5.167(11)
H2 (BO) 4.965(15) 4.957(9) 4.969(7)

of the form
∑

a ca
∑

M−a, where a ∈ {2, 1, 1/2, 1/16} and
ca are fitting coefficients, are fitted to the data in an attempt to
analyze its behavior. The dependency on M−2 comprises the
most significant but also the fastest decaying term, as seen in
the low-mass region. This is consistent with the dependence
of χ on the squared cross-sectional area A2, and of the area
A on the squared thermal wavelength 
2 ∼ M−1, where 
 =
h̄
√

2πβ/M is the thermal wavelength. On the other hand, it

FIG. 3. Asymptotic convergence of the finite-mass diamagnetic
susceptibilities χ to the BO limit (χ∞ = −4.960 × 10−11 m3

mol ) is
considered by plotting χ∞ − χ on a logarithmic scale at various finite
temperatures. The data are given in Table III. The PIMC data are
from AQ simulations at 300 K (blue; dots), 1000 K (orange; pluses),
and 3000 K (green; crosses). The dashed lines are nonlinear fits to
guide the eye.
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TABLE IV. Total energies E (in units of Eh) and isotropic diamagnetic susceptibilities χ (−10−11 m3

mol ) of Ps and Ps2 from AQ PIMC
simulations at finite temperatures and the best available reference values [9,45].

PIMC Ref.
0 K 100 K 300 K 500 K 1000 K 3000 K 0 K

E (Eh )

Ps −0.249981(29) −0.24997(3) −0.249972(24) −0.249991(24) −0.249967(26) −0.25a

Ps2 −0.51580(11) −0.51578(6) −0.51581(7) −0.51575(9) −0.51600 [45]

χ (−10−11 m3

mol )

Ps 23.853(13) 23.77(6) 23.654(16) 23.175(11) 21.822(9) 23.88663a

Ps2 49.33(6) 49.29(5) 49.15(4) 49.085(34) 69.7449 [9]

aAnalytical result, Eq. (25).

seems arbitrary to fit low-order exponents M to the asymptotic
tail of the convergence variable χ (M ) − χ∞. The crossover
from M−2 does not appear to have a characteristic exponent,
but it depends on the temperature. Higher temperatures cause
centrifugal distortion of the molecule due to rotational excita-
tions, which effectively increase χ (M ). Hence, the curves of
χ (M ) − χ∞ with higher temperatures also lie higher, break
away from M−2 sooner as a function of M, and approach χ∞
on a lower slope. Finally, let us now take a closer look at the
two positronium systems, Ps and Ps2, which represent the ulti-
mate limit of nonadiabatic coupling with M = me. Their total
energies and diamagnetic susceptibilities are summarized in
Table IV at selected finite temperatures. Ps is strongly bound
and can be simulated at high temperatures, whereas the Ps2

dimer can only be simulated at 500 K or lower without a high
risk of dissociation. As seen earlier, the 0-K extrapolants of
E and χ of Ps from PIMC are in excellent agreement with
the analytic reference value from Eq. (25). The 0-K energy
of Ps2 also agrees with a high-accuracy reference value [45],
whereas χ deviates over 40% from Ref. [9], which to our best
knowledge remains the only reference value in the literature.
In the cases of H2 and D2 it has already been evident that the
theory, according to Ref. [9], leads to overestimation of χ and
is probably inaccurate. The susceptibility data are plotted in
Fig. 4 after rescaling χ/N , where N is the positron count. The
rescaling reveals that the χ of Ps2 is slightly higher than twice
the χ of Ps; the binding of Ps2 has an effect to increase the
diamagnetic susceptibility by about 3%.

The final question arises as to why the nonadiabatic sus-
ceptibilities of Ps and Ps2 have apparent linear trends with the
finite temperature, as also seen in Fig. 4. The properties of
both systems obey an effective model

χ (T ) ∼ χ (T = 0 K) + aT, (26)

where the first term is the 0-K diamagnetism. Linear fits to the
PIMC data yield a = 6.74(5) × 10−15 m3

mol/K for Ps and a =
5.2(1.9) × 10−15 m3

mol/K for Ps2. The result for Ps happens to

match a = bμ0kB ≈ 6.808 00 × 10−15 m3

mol/K, where b = 36
a.u., suggesting a relatively simple analytic expression. Since
the effect is only distinguishable in the low-mass systems, Ps
and Ps2, it seems likely that scaling with inverse total mass
is present in b. Ps2 has twice the mass of Ps, but its cross-
sectional area is also almost twice as large, yet slightly smaller
due to binding effects. Thus, the thermal effect might also
depend on the cross-sectional area of a spherically symmetric

system. However, we shall not pursue a rigorous derivation for
observed thermal dependence of the low-mass systems.

Yet, the effect is extraordinary, because the diamagnetism
is commonly considered independent of temperature. The
internal many-body density matrices and, hence, the total
energies of both systems are clearly invariant of the temper-
ature, as the excited states of the Hamiltonian are not yet
activated. This suggests that χ , as obtained from the PIMC
estimator, is not fully limited to the internal degrees of free-
dom of the system, but also coupled to thermal translation.
While the motion of a neutral particle is unaffected by a
uniform magnetic field, its diamagnetic susceptibility will be
affected by the mean velocity. The random thermal motion
interferes with the system’s diamagnetism, that is, induction
of an orbital magnetic moment against the incident field. If
this is correct, a modest thermal effect due to a finite mass is
expected in the diamagnetism of any gaseous system. This is
rarely observed, because the mean velocities are suppressed
by the large masses of most atomic particles. The positron

FIG. 4. The diamagnetic susceptibilities χ (−10−11 m3

mol ) of Ps
and Ps2, rescaled by the positron count N , are plotted vs the finite
temperature T . The dashed lines are linear fits to AQ PIMC data
(dots for Ps2, pluses for Ps), and used to extrapolate to 0 K, where Ps
in in good agreement with the reference value (cross).
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systems are different in this capacity, and hence their magnetic
response is significantly affected. This would be interesting,
albeit difficult, to observe in an experiment.

VI. CONCLUSIONS

We have demonstrated the evaluation of zero-field diamag-
netic susceptibilities of various light atoms and molecules
at finite temperatures using the fully nonadiabatic PIMC
method. We use a well-known estimator of the susceptibility,
for which we present a detailed derivation and discussion
of practical implementation. This paper also applies it in
exact nonrelativistic PIMC simulation of realistic Coulomb
systems.

Our results for χ show excellent agreement with well-
known analytical and high-accuracy benchmark values for the
hydrogen and helium atoms and H2 isotopologues. We point
out various unique effects due to the finite temperatures and
finite nuclear masses, and associate them with characteristics
of the path-integral simulation. We hope to contribute to un-
derstanding of the diamagnetism and promote development of
the approach to more complex systems.

ACKNOWLEDGMENT

The authors wish to acknowledge CSC-IT Center for Sci-
ence, Finland, for computational resources.

[1] J. Vaara, Theory and computation of nuclear magnetic reso-
nance parameters, Phys. Chem. Chem. Phys. 9, 5399 (2007).

[2] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P.
Granger, R. E. Hoffman, and K. W. Zilm, Further conventions
for NMR shielding and chemical shifts (IUPAC Recommenda-
tions 2008), Pure Appl. Chem. 80, 59 (2008).

[3] T. P. Das and R. Bersohn, Electric and magnetic properties of
the hydrogen molecule, Phys. Rev. 115, 897 (1959).

[4] W. T. Raynes, J. P. Riley, A. M. Davies, and D. B. Cook, A
note on the magnetic susceptibility, Chem. Phys. Lett. 24, 139
(1974).

[5] A. Alijah, J. C. L. Vieyra, D. J. Nader, A. V. Turbiner, and H. M.
Cobaxin, The hydrogen molecule H2 in inclined configuration
in a weak magnetic field, Journal of Quantitative Spectroscopy
and Radiative Transfer 233, 78 (2019).

[6] E. Ishiguro and S. Koide, Magnetic Properties of the Hydrogen
Molecules, Phys. Rev. 94, 350 (1954).

[7] K. Ruud, P.-O. Åstrand, T. Helgaker, and K. V. Mikkelsen,
Full CI calculations of the magnetizability and rotational g
factor of the hydrogen molecule, J. Mol. Struct. 388, 231
(1996).

[8] K. Ruud, J. Vaara, J. Lounila, and T. Helgaker, Vibrationally
averaged magnetizabilities and rotational g tensors of the water
molecule, Chem. Phys. Lett. 297, 467 (1998).

[9] T. K. Rebane, Nonadiabatic theory of diamagnetic susceptibil-
ity of molecules, Opt. Spectrosc. 93, 236 (2002).

[10] R. Feynman, Space-Time Approach to Non-Relativistic Quan-
tum Mechanics, Rev. Mod. Phys. 20, 367 (1948).

[11] R. Feynman, A. Hibbs, and D. Styer, Quantum Mechanics and
Path Integrals, Dover Books on Physics (Dover, New York,
2010).

[12] D. Ceperley, Path integrals in the theory of condensed helium,
Rev. Mod. Phys. 67, 279 (1995).

[13] B. Gaveau, E. Mihokova, M. Roncadelli, and L. S. Schulman,
Path integral in a magnetic field using the Trotter product for-
mula, Am. J. Phys. 72, 385 (2004).

[14] E. L. Pollock and K. J. Runge, Path-integral study of magnetic
response: Excitonic and biexcitonic diamagnetism in semicon-
ductor quantum dots, J. Chem. Phys. 96, 674 (1992).

[15] I. Kylänpää, First-principles finite temperature electronic struc-
ture of some small molecules, Ph.D. thesis, Tampere University
of Technology, 2011.

[16] J. Tiihonen, I. Kylänpää, and T. T. Rantala, Adiabatic and nona-
diabatic static polarizabilities of H and H2, Phys. Rev. A 91,
062503 (2015).

[17] J. Tiihonen, I. Kylänpää, and T. T. Rantala, Computation of
dynamic polarizabilities and van der waals coefficients from
path-integral Monte Carlo, J. Chem. Theory Comput. 14, 5750
(2018).

[18] C. W. Robson, Y. Tamashevich, T. T. Rantala, and M. Ornigotti,
Path integrals: From quantum mechanics to photonics, APL
Photonics 6, 071103 (2021).

[19] M. Troyer and U.-J. Wiese, Computational Complexity and
Fundamental Limitations to Fermionic Quantum Monte Carlo
Simulations, Phys. Rev. Lett. 94, 170201 (2005).

[20] D. M. Ceperley, Path integral monte carlo methods for
fermions, in Monte Carlo and Molecular Dynamics of Con-
densed Matter Systems, edited by K. Binder and G. Ciccotti
(Italian Physical Society, 1996).

[21] T. Dornheim, Z. A. Moldabekov, J. Vorberger, and B. Militzer,
Path integral Monte Carlo approach to the structural properties
and collective excitations of liquid 3He without fixed nodes, Sci.
Rep. 12, 708 (2022).

[22] C. H. Mak, R. Egger, and H. Weber-Gottschick, Multilevel
Blocking Approach to the Fermion Sign Problem in Path-
Integral Monte Carlo Simulations, Phys. Rev. Lett. 81, 4533
(1998).

[23] T. Dornheim, S. Groth, A. Filinov, and M. Bonitz, Permutation
blocking path integral Monte Carlo: a highly efficient approach
to the simulation of strongly degenerate non-ideal fermions,
New J. Phys. 17, 073017 (2015).

[24] T. Dornheim, M. Invernizzi, J. Vorberger, and B. Hirshberg,
Attenuating the Fermion sign problem in path integral
Monte Carlo simulations using the Bogoliubov inequality
and thermodynamic integration, J. Chem. Phys. 153, 234104
(2020).

[25] J. Tiihonen, Thermal effects in atomic and molecular polariz-
abilities with path integral Monte Carlo, Ph.D. thesis, Tampere
University, 2019.

[26] W. Nolting and A. Ramakanth, Quantum Theory of Magnetism
(Springer-Verlag, Berlin, 2009).

[27] G. Wagnière, The evaluation of three-dimensional rotational
averages, J. Chem. Phys. 76, 473 (1982).

022816-8

https://doi.org/10.1039/b706135h
https://doi.org/10.1351/pac200880010059
https://doi.org/10.1103/PhysRev.115.897
https://doi.org/10.1016/0009-2614(74)80236-8
https://doi.org/10.1016/j.jqsrt.2019.05.010
https://doi.org/10.1103/PhysRev.94.350
https://doi.org/10.1016/S0166-1280(96)04627-1
https://doi.org/10.1016/S0009-2614(98)01155-5
https://doi.org/10.1134/1.1503752
https://doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.1103/RevModPhys.67.279
https://doi.org/10.1119/1.1630334
https://doi.org/10.1063/1.462451
https://doi.org/10.1103/PhysRevA.91.062503
https://doi.org/10.1021/acs.jctc.8b00859
https://doi.org/10.1063/5.0055815
https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1038/s41598-021-04355-9
https://doi.org/10.1103/PhysRevLett.81.4533
https://doi.org/10.1088/1367-2630/17/7/073017
https://doi.org/10.1063/5.0030760
https://doi.org/10.1063/1.442747


DIAMAGNETIC SUSCEPTIBILITY FROM A … PHYSICAL REVIEW A 105, 022816 (2022)

[28] J. Shumway and D. M. Ceperley, Path integral Monte Carlo
simulations for fermion systems : Pairing in the electron-hole
plasma, J. Phys. IV France 10, Pr5-3 (2000).

[29] J. Stewart, Calculus: Early Transcendentals, 6th ed. (Brooks-
Cole, Belmont, MA, 2008).

[30] C. Chakravarty, M. C. Gordillo, and D. M. Ceperley, A compar-
ison of the efficiency of Fourier- and discrete time-path integral
Monte Carlo, J. Chem. Phys. 109, 2123 (1998).

[31] R. G. Storer, Path-integral calculation of the quantum-statistical
density matrix for attractive Coulomb forces, J. Math. Phys. 9,
964 (1968).

[32] P. W. Atkins and R. Friedman, Molecular Quantum Mechanics,
5th ed. (Oxford University, New York, 2011).

[33] G. W. F. Drake, High precision theory of atomic helium, Phys.
Scr. T83, 83 (1999).

[34] L. Wolniewicz, Nonadiabatic energies of the ground state
of the hydrogen molecule, J. Chem. Phys. 103, 1792
(1995).

[35] M. I. Haftel and V. B. Mandelzweig, Precise nonvariational
calculations on the helium atom, Phys. Rev. A 38, 5995
(1988).

[36] L. W. Bruch and F. Weinhold, Diamagnetism of helium, J.
Chem. Phys. 113, 8667 (2000).

[37] B. M. Ludwig and J. Voitländer, The magnetic properties of the
hydrogen molecule, Z. Naturforsch. A 24, 471 (1969).

[38] S. M. Cybulski and D. M. Bishop, Calculation of magnetic
properties. VI. Electron correlated nuclear shielding constants
and magnetizabilities for thirteen small molecules, J. Chem.
Phys. 106, 4082 (1997).

[39] S. A. Alexander and R. L. Coldwell, Rovibrationally averaged
properties of H2 using Monte Carlo methods, Int. J. Quantum
Chem. 107, 345 (2007).

[40] G. Casella and R. Berger, Statistical Inference, 2nd ed.
(Duxbury Thomson Learning, 2002).

[41] S. A. Alexander and R. L. Coldwell, Fully nonadiabatic prop-
erties of all H2 isotopomers, J. Chem. Phys. 129, 114306
(2008).

[42] S. Bubin and L. Adamowicz, Variational calculations of excited
states with zero total angular momentum (vibrational spectrum)
of H2 without use of the Born-Oppenheimer approximation, J.
Chem. Phys. 118, 3079 (2003).

[43] S. Bubin, M. Stanke, M. Molski, and L. Adamowicz, Accurate
non-Born–Oppenheimer calculations of the lowest vibrational
energies of D2 and T2 with including relativistic corrections,
Chem. Phys. Lett. 494, 21 (2010).

[44] G. G. Havens, The magnetic susceptibilities of some common
gases, Phys. Rev. 43, 992 (1933).

[45] S. Bubin, M. Stanke, D. Kędziera, and L. Adamowicz, Rela-
tivistic corrections to the ground-state energy of the positronium
molecule, Phys. Rev. A 75, 062504 (2007).

022816-9

https://doi.org/10.1051/jp4:2000501
https://doi.org/10.1063/1.476725
https://doi.org/10.1063/1.1664666
https://doi.org/10.1238/Physica.Topical.083a00083
https://doi.org/10.1063/1.469753
https://doi.org/10.1103/PhysRevA.38.5995
https://doi.org/10.1063/1.1318766
https://doi.org/10.1515/zna-1969-0335
https://doi.org/10.1063/1.473123
https://doi.org/10.1002/qua.21130
https://doi.org/10.1063/1.2978172
https://doi.org/10.1063/1.1537719
https://doi.org/10.1016/j.cplett.2010.05.081
https://doi.org/10.1103/PhysRev.43.992
https://doi.org/10.1103/PhysRevA.75.062504

