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Multiconfiguration Dirac-Hartree-Fock theory for copper Kα and Kβ diagram lines,
satellite spectra, and ab initio determination of single and double shake probabilities
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The x-ray spectra of copper Kα and Kβ remain a topic of great interest due to the complex open-shell
processes involved, with many discrepancies among theories and experiments. We present high-accuracy theory
of copper Kα and Kβ diagram and satellite spectra in the multiconfiguration Dirac-Hartree-Fock method.
Diagram spectra are expanded to 5s with simultaneous convergence of 28 000 configuration state functions
(CSFs) (Kα) and to 6g with simultaneous convergence of 91 000 CSFs (Kβ), achieving eigenvalue convergence
to ±0.03 eV or 0.000 25%, approximately a factor of 10 improvement over past work. It is necessary to
invoke biorthogonalization, developments of the active space approach, analysis of markers for theoretical
convergence of eigenvalues, and the question of self-consistency for both Kα and Kβ spectra. We make use
of gauge convergence, eigenvalue convergence, and A-coefficient convergence. The satellite spectra are a major
outcome—without these, it is not possible to make use of the increased accuracy of the diagram computations.
The Cu Kα 3d8 double shake satellite spectrum alone contains 1506 unique eigenvalues (transitions) and required
simultaneous convergence of 593 000 CSFs. Ab initio shakeoff probabilities for 1s, 2s, 2p, 3s, 3p, 3d , and 4s
subshells as a result of the K-shell photoionization process are presented. Portable spectral representations are
provided in the supplemental material, discussed in the text. We investigate the meaning behind shake, shakeoff,
and shakeup processes and the computational potential to investigate these at the current time. We separate
the notions of total shake, single shake, and double shake, explain how these are observable in high-quality
experimental spectra, and how these calculations can be used experimentally.
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I. INTRODUCTION

An understanding of characteristic radiation due to inner-
shell processes of open-shell systems is vital across many
research disciplines, spanning from medical [1] to fusion
studies [2]. The most intense and widely used x-ray emis-
sion line is the Kα transition, which features prominently in
many laboratory-based experiments [3–5], and in much as-
trophysical research, such as probing galactic variabilities [6]
and diagnosing black hole spin [7]. Despite its multitudinous
applications, the structure of Kα photoemission spectra, and
that of its closest relative, Kβ, are among the longest-running
unsolved open-shell challenges in atomic physics. Open-shell
systems are notoriously complex, demanding some of the
most advanced theoretical framework to model, and even then
success is not guaranteed. The last high-accuracy theoretical
work on copper Kα was carried out about a decade ago [8],
employing advanced relativistic techniques to obtain some
of the best results at the time. However, computational con-
straints permitted only a partial set of results, with further
approximations required to complete the set. The latest high-
accuracy theoretical work on copper Kβ was published in
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2016 [9]. This overcame the earlier challenges and was able
to obtain a full set of spectra, yet other approximations had
to be made to obtain convergence [9]. Herein, we use one
of the most advanced relativistic atomic theories and compu-
tational frameworks available for the computation of copper
Kα and Kβ spectra within a uniform approach. This work
obtains a complete set of spectra, achieving a high degree of
convergence while avoiding the earlier approximations [8,9].
Consequently, these results are much more robust with high
accuracy, probing further into the characteristic spectra.

The primary Kα process involves an electronic transition
from the 1s1 2s2 2p6 core (or 1s−1 for short) to the 1s2 2s2 2p5

core (or 2p−1). Under the j j-coupling scheme, the 2p subshell
is split into two levels: 2p1/2 and 2p3/2. The energy separation
depends on relativistic effects. In a simplistic framework, the
Kα inner-shell photoemission spectrum would be composed
of a few primary diagram lines derived from relativistic quan-
tum theory—corresponding to transitions from 2p3/2 (Kα1)
or 2p1/2 transitions (Kα2). Similarly, the Kβ spectrum is a
result of the electronic transition 1s−1 → 3p−1, where the
3p subshell is also split into two levels, 3p3/2 and 3p1/2.
1s−1 → 3p−1

3/2 is Kβ1, whereas 1s−1 → 3p−1
1/2 is Kβ3. While

the copper Kα spectrum shows two distinctive peaks as a
result of the primary diagram lines arising from the 2p1/2

and 2p3/2 transitions, the Kβ diagram lines are extremely
close together, unresolved with present technology. Analysis
of copper Kβ requires highly accurate theoretical calcula-
tions as a tool to overcome the resolution challenge. Copper
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Kα and Kβ spectra are asymmetric [10], beyond the simple
bound-bound diagram transitions. There are other transitions
involved across the energy spectrum, commonly referred to as
satellite lines.

Many theories have attempted to explain the additional
structure and asymmetry [11–13]. The interpretation that the
satellite lines are caused by shake processes [14] is the most
prominent and widely accepted view. Following the ionization
of a core 1s electron by x-rays, the outer-shell electrons are no
longer in the eigenstate of the atom, and additional electrons
might be shaken up or ejected. Then, when a 2p electron
decays to the 1s level, the spectrum might have already shifted
relative to the diagram lines. The photoionization of the 1s
electron may result in the ejection of an additional electron
into the continuum (shakeoff). A popular model for shake
processes is the sudden approximation model. This proposes
that in the high-energy limit, the initial ionization and subse-
quent shake processes occur within a much shorter time frame
than the relaxation time. Consequently, the orbital relaxation
results in transition lines in addition to the diagram lines.

It is important to understand all the processes and
transitions involved with the copper x-ray spectrum,
especially for high-accuracy investigations. The complexity of
the additional shake processes must be investigated. There are
large discrepancies between ab initio calculations of shakeoff
probabilities and experimental results. Groundbreaking work
on copper Kα on both theory and experiment was performed
by Deutsch et al. in the 1990s [10]. However, there were
some limitations due to the lack of computational resources
[15,16]. One of the major approximations made was to
ignore the 4s electron, which effectively treated the copper
atom as a closed-shell problem. This significantly simplified
the computational challenge, resulting in an accuracy of
perhaps 1–2 eV. Later work [15] has claimed an accuracy
level <0.1 eV by including the 4s as well as transforming
two nonorthogonal basis sets into a single biorthogonal set,
allowing for the calculation of transition matrix elements.
Now, further improvements have been developed, allowing for
more highly accurate calculations with fewer approximations.

II. THEORY AND CALCULATIONS

Atomic wave functions are calculated using the mul-
ticonfiguration Dirac-Hartree-Fock (MCDHF) method, im-
plemented computationally by GRASP2K, a fully relativistic
atomic structure package [17]. Ab initio shakeoff probabilities
and relativistic atomic wave functions are generated using a
modified version of the GRASP2K package [18] built upon
a QED ansatz [19], verified to be consistent with some of
the best experimental data available [20]. Breit [21] and
QED effects [19] are added perturbatively, which presents
no limitation compared with incorporating these effects at
the self-consistent stage of calculation [21]. The MCDHF
method is an extension to the relativistic Dirac-Hartree-Fock
(DHF) method for many-electron systems. The widely known
single-configuration DHF method requires solving a single
determinant as a solution to the usual central field problem,
whereas the multiconfiguration framework demands a linear
combination of determinants as a solution to the problem.
Thus, the total wave function, or the atomic state function

(ASF), is a linear combination of configuration state functions
(CSFs):

�Eκm =
∑

q

cq �qEκm(r), (1)

where cq is the mixing coefficient which can be found by
diagonalizing the Dirac-Coulomb Hamiltonian,

HDC =
N∑
i

{
c αi · pi + βimc2 + Vnuc(ri ) +

N∑
i< j

1

ri j

}
, (2)

for an N-electron system. Each CSF, �, is an antisymmetrized
determinant built from single electronic Dirac central field
orbitals,

φEκm = 1

r

(
PEκ (r)χκm(θ, ϕ)

iQEκ (r)χ−κm(θ, ϕ)

)
, (3)

which contains all the necessary information such as quantum
numbers and parity, Eκm, to distinguish between the different
states. P and Q are the complex radial wave function, and
χ is the angular wave function for each component. For-
mally, GRASP2K uses the development of Racah algebra using
quasi-spin space to aid in the orthogonalization, particularly
of f -states compared with the more simple, older, Slater
operation, for the spin-angular-momentum parts of the wave
function and matrix elements [22,23].

A single configuration calculation where we only use
the first-order, base electronic structure of copper, namely
1s2 2s22p6 3s23p63d10 4s1, yields a decent approximate
result, perhaps to 1 eV accuracy, but insufficient for the
purpose of high-accuracy investigations. Hence, various
possible configurations are combined with the base
configuration to build up a more complete wave function—a
multiconfiguration approach. Our higher-order configuration
expansions are obtained using the active-space approach,
where the CSFs are generated by single or double excitations
from the reference (first-order) configuration to an active
set of orbitals. Double excitations allow for correction of
deficiencies within the radial wave function and to account
for electron-electron correlation. Triple excitations can
account for electron-electron-electron correlation, yet these
higher-order effects are extremely small [24,25] and not
included in the present calculations. The active set should be
expanded in a systematic way, yet the method of expansion
can greatly affect the system in question. In addition to
the transition energies, Einstein A-coefficients are calculated.
Results can be obtained in both relativistic length and velocity
gauges (Babushkin and Coulomb gauges). More detailed
discussions of the MCDHF framework can be found in
advanced relativistic atomic texts [26]. Details specific to the
theoretical approach presented here can be found in [8,9,24].

A. Methodology for Kα calculations

Our method involves sequentially expanding the reference
configuration, while also keeping the inner core of n = 1, 2
effectively frozen or inactive. Two separate atomic states
were built: the “initial” state with 1s1 2s2 2p6, and a “final”
state with 1s2 2s2 2p5 to emulate the Kα transition. This
captures the wave function just after the copper atom has
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been ionized with the removal of the 1s electron. For general
advanced computation methods, it has become essential to
invoke biorthogonalization, as in GRASP2K, when the scalar
product of vectors formed is a linear combination of two sets
of linearly independent vectors, e.g., for overlap probabilities.
If one wants the scalar product to have the usual form, the two
sets of basis vectors should be biorthogonal. The maximum
total angular momentum number, J , was restricted to a set
of values determined from the dominant single configuration.
More explicitly, Jinitial ∈ {0, 1} and Jfinal ∈ {0, 1, 2} for all
cases, even after expansion to the multiconfiguration level.
Thus, the number of diagram transitions is restricted to 6.
If all possible excitations to the active set are allowed, we
would have a complete active space. A complete active
space for few-electron atoms is feasible but for copper is
computationally infeasible. Just after ionization, this would
demand all possible configurations of 28 electrons.

In our calculations, we expanded our active set up to 5s.
There is always a tradeoff between computation time and ac-
curacy. As we expand our active set n → ∞, the atomic wave
function should approach completeness. Moreover, there is no
single, general recipe for all atomic systems that guarantees
fast and stable convergence. For Cu Kα calculations, holding
the 1s 2s 2p subshells frozen at the multiconfiguration level
and expanding by principal quantum number leads to a fast
and stable convergence of results. After an expansion up to 4 f ,
an additional expansion to the 5s level makes little difference
to energy levels and convergence of the two gauges. This has
been used as a proxy signal that our results have reached a
sufficiently high level of convergence.

B. Methodology for Kβ calculations

The procedures for calculating the Cu Kβ spectrum is sim-
ilar to Kα. For the purpose of demonstrating some challenges
encountered with open-shell atomic transition calculations,
three alternative methods for calculating Cu Kβ are presented.
For Method 1, we have adopted the same procedure as for the
Cu Kα calculations. That is, we hold the subshells 1s 2s 2p
inactive while systematically expanding the active space. In
Method 2, we kept only the 1s and 3p subshells inactive, while
the rest were active. Finally, in Method 3 we hold all subshells
between 1s and 3p inactive. The common rationale among all
three methods in freezing the 1s shell is to provide added sta-
bility at the core level where the primary Kβ transition would
occur. The maximum total angular momentum number, J , was
restricted in the same fashion as those of Kα calculations,
yielding a total of six possible Kβ diagram transitions. In the
recent work of Cu Kβ [9], the method employed was similar
to Method 1. However, the authors encountered some difficul-
ties, namely false convergence, and at times nonconvergence,
requiring manual selection and ordering of dominant CSFs in
order to achieve reasonable convergence. We will demonstrate
this false convergence [9], as well as a more robust solution
that does not require manual selection of the CSFs.

C. Ab initio shake probabilities using the sudden approximation

Initially the atom is in the neutral ground state, with a
wave function �A(N + 1) being an eigenstate of the N + 1
Hamiltonian. The removal of a 1s electron causes a transfor-
mation in the wave function �A(N + 1) → �̃A(N ). The wave
function of the N-electron system is the same wave function
as the neutral N + 1 system except with one missing electron
(single-electron wave functions are the same for both systems,
but not the normalized atomic wave function). This is valid in
the high-energy limit because the wave function does not have
enough time to adjust. Upon relaxation, the transformation
�̃A(N ) → �B(N ) occurs, where the �B(N ) wave function
represents the relaxed 1s−1 atom. Under the sudden approx-
imation [27–29], the probability of finding the atom in the
stable 1s hole state, |�B〉, given that it was originally in the
|�̃A〉 state, is

P = |〈�B(N )|�̃A(N )〉|2. (4)

The probability of shakeup or shakeoff occurring is then the
probability of finding the atom in any other state:

Pshake
total = 1 − |〈�B(N )|�̃A(N )〉|2. (5)

By substitution using Eq. (1), we can write this as

Pshake
total = 1 −

∣∣∣∣∣∑
j

∑
k

c jdk 〈�Bk (N )|�̃A j (N )〉
∣∣∣∣∣
2

. (6)

Here j runs over each of the CSFs that make up the initial-
state wave function, and k runs through each of the CSFs that
make up the final-state wave function. Each of these individual
CSFs can be written in terms of a product of antisymmetrized
single-electron determinants:

�Enκ = A
[

N∏
i=1

φiEnκ (r)

]
, (7)

|�Anκ〉 = A
N∏

i=1

|φiAnκ〉 , |�Bnκ〉 = A
N∏

i=1

|φiBnκ〉 , (8)

where n is the principal quantum number and κ is the rela-
tivistic quantum number: κ = ∓( j + 1

2 ) for j = � ± 1
2 . The

antisymmetrizing operator A is defined using the permutation
operator P̂:

A = 1

N!

∑
P∈SN

(−1)π P̂, (9)

where P is a permutation in the set of N-element permuta-
tions SN , and π is the number of independent permutation
exchanges of particles. As A† = A and P̂P̂† = 1, we can
rewrite the overlap in Eq. (6) as

〈�Bk (N )|�̃A j (N )〉 =
〈∏

n′κ ′
φBkn′κ ′

∣∣∣∣∣∏
nκ

φ̃A jnκ

〉
. (10)

Under the assumption that inner-shell photoionization in-
cludes only shakeoff processes, any subshells with different
quantum numbers, n and κ , have zero overlap:

〈φBkn′κ ′ |φ̃A jnκ〉 =
{

0 for n 	= n′, κ 	= κ ′,
(1 − εnκ ) for n = n′, κ = κ ′; εnκ = 1 − 〈φBknκ |φ̃A jnκ〉 .

(11)
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For excitation energies well above threshold, this has been shown to be a good assumption [30–32]. Using this, we can simplify
the double product in Eq. (10) to

〈�Bk (N )|�̃A j (N )〉 =
∏
nκ

〈φBknκ |φ̃A jnκ〉Mnκ
, (12)

where Mnκ is the number of electrons with quantum numbers nκ . Substituting this into Eq. (6) gives the total shake probability,
Pshake, as

Pshake
total = 1 −

∣∣∣∣∣∑
j

∑
k

c jdk

∏
nκ

〈φBknκ |φ̃A jnκ〉Mnκ

∣∣∣∣∣
2

= 1 −
∣∣∣∣∣∑

j

∑
k

c jdk

∏
nκ

(1 − εnκ )Mnκ

∣∣∣∣∣
2

. (13)

The next step involves the following three Taylor series expansions, each to first order:

(1 − εnκ )Mnκ ≈ (1 − Mnκεnκ ),

∣∣∣∣∣∑
j

∑
k

c jdk

∏
nκ

(1 − Mnκεnκ )

∣∣∣∣∣
2

≈
∣∣∣∣∣ ∑

j j′kk′
c jdkc j′dk′

∏
nκ

(1 − 2Mnκεnκ )

∣∣∣∣∣,∏
nκ

(1 − 2Mnκεnκ ) ≈ 1 −
∑
nκ

2Mnκεnκ . (14)

Combining these and applying them to Eq. (13) gives

Pshake
total ≈ 1 −

∣∣∣∣∣∑
j

∑
k

c jdk

∏
nκ

(1 − Mnκεnκ )

∣∣∣∣∣
2

≈ 1 −
∣∣∣∣∣ ∑

j j′kk′
c jdkc j′dk′

∏
nκ

(1 − 2Mnκεnκ )

∣∣∣∣∣
≈ 1 −

∣∣∣∣∣ ∑
j j′kk′

c jdkc j′dk′

(
1 −

∑
nκ

2Mnκεnκ

)∣∣∣∣∣. (15)

We can expand the last line of Eq. (15), and the first
two terms combine to approximately zero. Therefore, we can
make the approximation

Pshake
total = 1 −

∑
j j′kk′

c jdkc j′dk′

︸ ︷︷ ︸
≈0

−
∑
nκ

∑
j j′kk′

c jdkc j′dk′2Mnκεnκ ,

1 −
∑
j j′kk′

c jdkc j′dk′ ≈
∑
nκ

(
1 −

∑
j j′kk′

c jdkc j′dk′

)
. (16)

Applying this approximation to the last line of (15) gives

Pshake
total ≈

∑
nκ

(
1 −

∑
j j′kk′

c jdkc j′dk′

)

−
∑
nκ

∑
j j′kk′

c jdkc j′dk′2Mnκεnκ ,

Pshake
total ≈

∑
nκ

(
1−

∑
j j′kk′

c jdkc j′dk′ −
∑
j j′kk′

c jdkc j′dk′2Mnκεnκ

)
,

Pshake
total ≈

∑
nκ

(
1 −

∑
j j′kk′

c jdkc j′dk′
(
1 − 2Mnκεnκ

))
. (17)

Similar to Eq. (14), consider the following two reversed
Taylor series expansions:

∑
j j′kk′

c jdkc j′dk′ (1 − 2Mnκεnκ ) ≈
∣∣∣∣∣ ∑

j

∑
k

c jdk (1 − Mnκεnκ )

∣∣∣∣∣
2

,

(1 − Mnκεnκ ) ≈ (1 − εnκ )Mnκ . (18)

Applying these to the last line of Eq. (17) gives

Pshake
total ≈

∑
nκ

∣∣∣∣∣1 −
∑

j

∑
k

c jdk
(
1 − εnκ

)Mnκ

∣∣∣∣∣
2

=
∑
nκ

∣∣∣∣∣1 −
∑

j

∑
k

c jdk 〈φBknκ |φA jnκ〉Mnκ

∣∣∣∣∣
2

=
∑
nκ

Pshake
nκ . (19)

We now have the total shake probability as a sum of shake
probabilities for each nκ subshell. The probability of electron
shakeoff from subshell nκ is given by

Pshake
nκ = 1 −

∣∣∣∣∣∑
j

∑
k

c jdk 〈φBknκ |φA jnκ〉Mnκ

∣∣∣∣∣
2

. (20)

Because the states are orthogonal, the double sum can
be reduced to a single sum. Furthermore, because the wave-
function components P and Q are independent of j, the
overlap 〈φB jnκ |φA jnκ〉 is a constant, and the j index can be
removed. Although the overlap does not depend on which
CSF we are considering, the occupation number of the nκ sub-
shell may be different for different CSFs, so the overlap must
remain inside the sum over j. This has been made explicit by
subscripting the occupation number with j:

Pshake
nκ = 1 −

∣∣∣∣∣ ∑
j

c jd j 〈φBnκ |φAnκ〉Mjnκ

∣∣∣∣∣
2

. (21)
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This is similar to the nonrelativistic analog of Carlson et al.
[28] and Mukoyama and Taniguchi [29],

Pshake
nl = 1 − (| 〈φBnl |φAnl〉 |2)Mnl − PF , (22)

where PF represented forbidden transitions where the upper
state is (already) occupied. Using Eqs. (20) and (21), we
have calculated each of the vacancy state probabilities in the
following sections, with Mjnκ being the occupation number of
the nκ state in the jth CSF. It is often useful to have this in the
form of probability per electron, pnκ :

pnκ = 1

Mnκ

(
1 −

∣∣∣∣∣∑
j

c jd j 〈φBnκ |φAnκ〉Mjnκ

∣∣∣∣∣
2)

. (23)

The overlap of the orbital radial wave functions in Eq. (21)
is

〈φBnκ |φAnκ〉 =
∫ ∞

0
(PBκPAκ + QBκQAκ ) dr, (24)

where dr is specific to the grid of the theory employed. In this
case, dr is defined as (ri+1 − ri−1)/2. The φ’s represent the
radial wave functions of the ground-state (or neutral) copper
atom and its ionized state immediately after the removal of
the 1s electron. The mixing coefficients of the two states are
represented by c j and ck . This equation describes the shakeoff
probability in the high-energy (sudden approximation) limit.
Given that the copper atom is initially assumed to be in a state
represented by 1s2 2s2 2p6, after the photoionization process
where the configuration becomes 1s1 2s2 2p6, what is the
probability that the orbitals actually relax to the 1s1 2s2 2p6

state? The squared term in Eq. (6) seeks to represent such a
probability. Consequently, when this probability is subtracted
from unity, what remains is the probability that the atom did
not relax to the 1s1 2s2 2p6 state, i.e., a shake probability.
Equation (20) describes the probability that an event has
occurred where an electron is shaken off from subshell n, κ

immediately after the photoionization but before orbital
relaxation could occur (sudden approximation), and thus
the atom would relax to a state configuration other than
1s1 2s2 2p6. All the inputs required by Eq. (20) are extracted
from GRASP2K calculations.

In previous work we utilized about 200 mixing coef-
ficients and electronic configurations [9]; however, in this
study we have used all available configurations. To accom-
plish this task, the mixing coefficients for both states and
their corresponding electronic configurations had to be or-
dered and aligned with each other. Without doing so, one
would certainly risk mismatching the mixing coefficients
and their corresponding CSFs between the two states, which
means that Eq. (20) would be applied incorrectly. Once
the coefficients are ordered and matched correctly, they are
normalized and used to calculate the final shakeoff probabil-
ities. The normalization process requires the summation of
the mixing coefficients to be divided by the normalization
factor,

Normalization factor =
√√√√ N∑

j

c2
j

N∑
k

d2
k , (25)

where N is the number of mixing coefficients used. In prin-
ciple, if all the mixing coefficients and configuration state
functions are used in the calculation, the normalization factor
would be unity and its inclusion would not alter the results.
However, depending on the type of transition in which we
are interested, it is not always possible to match up all the
configuration state functions and their corresponding mixing
coefficients, in which case a normalization factor should be
included.

III. Cu Kα CHARACTERISTIC EIGENVALUES
AND AMPLITUDES

Table I presents the results for the Kα diagram eigenval-
ues. Gauge convergence in atomic structure calculations is
a necessary but insufficient condition for accuracy. We use
it as a monitor on the quality and convergence of results.
Even with the single configuration calculations where only
the first-order term was used (no correlation), the gauges have
converged quite well to within less than a percent of unity.
Further expansion to 4 f and 5s shows that there is little
variation in the gauge ratio. This is an indicator that the wave

TABLE I. Calculated results of copper Kα diagram transitions, where the results of the single configuration as well as expansion up to 4 f
and 5s are included. At the 5s level, almost 28 000 CSFs were deployed. The ratio AL/AV is the gauge ratio between the relativistic length
(Babushkin) and velocity (Coulomb) gauges. A ratio that is close to unity is indicative of a high degree of gauge invariance, which also serves
as one of the proxy indicators of the level of convergence of the calculated results. The numbers in parentheses are the difference between the
current expansion compared to the previous one, which we have used as an approximation of the errors as well as an indicator of convergence.
The gf values in Coulomb gauge are also provided, which yields an I (Kα2) : I (Kα1) ratio of 0.5115. The full spectrum expanded to 5s is
included in text form in the Supplemental Material [33] as Kaicu-5s.fcu-5s.ct.

Single configuration Expansion to 4 f Expansion to 5s Chantler et al. [8]

Transition Energy (eV) AL/AV Energy (eV) AL/AV Energy (eV) AL/AV gf Energy (eV)

Kα1

J = 0 → J = 1 8047.17 1.0065 8047.92 (±0.75) 1.0067 8047.90 (±0.02) 1.0067 0.214935 8048.09
J = 1 → J = 1 8047.07 1.0065 8047.83 (±0.76) 1.0067 8047.80 (±0.03) 1.0067 0.108004 8047.88
J = 1 → J = 2 8047.16 1.0065 8047.86 (±0.70) 1.0067 8047.84 (±0.02) 1.0067 0.538166 8047.88
Kα2

J = 0 → J = 1 8027.11 1.0067 8028.01 (±0.90) 1.0070 8027.99 (±0.02) 1.0069 0.110581 8028.18
J = 1 → J = 0 8027.05 1.0067 8027.94 (±0.89) 1.0069 8027.92 (±0.02) 1.0069 0.109988 8027.95
J = 1 → J = 1 8027.01 1.0067 8027.93 (±0.92) 1.0069 8027.90 (±0.03) 1.0069 0.219854 8027.95
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FIG. 1. Demonstration of the convergence of the eigenvalues of
the Cu Kα diagram spectrum with expansion to outer orbitals.

function constructed from the start was robust and stable. The
gauge discrepancy is almost constant for all observed spectral
components, meaning that any relative g f structural variation
of components between gauges lies around 0.02% rather than
the gauge convergence level of 0.6–0.7 %.

The expansion from the single configuration (4s) to the
(4 f ) multiconfiguration level shows a change in energy of
almost 1 eV, even while the gauge ratios are stable. Between
the 4 f and 5s expansions, the energies did not change very
significantly and the gauge ratios hardly changed at all. This
is indicative of a satisfactory gauge and energy convergence
(Fig. 1). Further expansion would add hundreds of thousands
of additional higher-order terms (CSFs). We have included
the change in energy from one expansion to the next as an
error estimation, given in the parentheses. Table I illustrates
the change in energy from the 4s (single configuration SCF)
stage to the 4 f multiple configuration expansion. The changes
in energy for Kα1 are consistently around 0.70 eV, while

TABLE II. Copper Kβ diagram lines using Method 1 where sub-
shells 1s 2s 2p are frozen while the rest are active. The eigenvalues
are clearly wrong, and the convergence level between the gauges has
deteriorated at the first multiconfiguration expansion level to 4 f . By
the 4 f stage using Method 1, just over 13 000 CSFs were used for
the calculation.

Single configuration Expansion to 4 f

Transitions Energy (eV) AL/AV Energy (eV) AL/AV

Kβ1

J = 0 → J = 1 8902.76 1.0062 8953.92 1.0186
J = 1 → J = 1 8902.67 1.0063 8953.84 1.0186
J = 1 → J = 2 8902.92 1.0063 8954.15 1.0187
Kβ3

J = 0 → J = 1 8900.31 1.0065 8951.01 1.0179
J = 1 → J = 0 8900.36 1.0066 8950.71 1.0179
J = 1 → J = 1 8900.21 1.0066 8950.92 1.0179

those for Kα2 are around 0.90 eV. Although all transitions
eventually exhibit a similar change in energy by the 5s stage,
the initial results appear to suggest that Kα2 transitions may
suffer a higher instability than those of Kα1 when insufficient
CSFs are used. This may be related to the difference between
the 2p1/2 and 2p3/2 levels. Energies, gauges, and the g f values
in the Coulomb gauge for our final set of results (5s) are
provided.

The energies are provided in units of cm−1, converted to
eV using the 2018 CODATA recommended values [34]. The
eigenvalues presented here are generally smaller than [8] by
around 0.03–0.19 eV, or around the anticipated accuracy of the
previous work. Reference [8] did not calculate the full set of
diagram lines simultaneously due to the difficulty in obtaining
convergence when handling a large basis set. Consequently,
the authors only calculated a few primary lines to a high
level of accuracy and then scaled the rest accordingly. In this
current work, all the diagram lines have been obtained simul-
taneously using the same basis set, and thus are likely to be
more accurate than the earlier approximations [8]. Our inten-
sity ratio for the theoretical diagram lines I (Kα2)/I (Kα1) is
0.5115, which is slightly lower than a much earlier theoretical
determination of 0.513 by Scofield [35], including exchange
interactions but not satellite contributions. If we define an
uncertainty by the variation from different expansions, we
may estimate a diagram line ratio of 0.5115 ± 0.0015.

Experimental fits of Hölzer et al. [36] report to-
tal spectra including satellites and experimental ratios of
I (Kα2)/I (Kα1) = 0.518(20), whereas Mendenhall et al. [37]
reported 0.520 00(22) in their Table IV, and 0.518 and 0.521
in their Table V, comparing data from different years. Hölzer
et al. discuss the consistency with earlier experimental inter-
pretations of Williams [38], Salem et al. [39,40], and McGrary
et al. [41], which obtained experimental results from 0.498
to 0.508 and 0.512(10), respectively [36]: “A more serious
problem for the accurate determination of I (Kα2)/I (Kα1) is
the partitioning of the intensity of the spectrum between the
two lines. The intensity between the doublet lines is nonzero
and thus its assignment is done using additional assumptions,
such as an identical peak shape or a fixed ratio of the FWHM
of the doublet peaks [41]. These assumptions are not univer-
sally valid, particularly in these cases where the shapes of
the Kα1 and the Kα2 peaks are significantly different.” These
comments remain fully valid and at this point are indicative
of consistency of theory without addressing the meaning of
experimental variation (see the Conclusion).

IV. Cu Kβ CHARACTERISTIC EIGENVALUES
AND AMPLITUDES

Three methods of calculation are deployed for Cu Kβ

(Tables II, III, and IV). While the idea of holding down
(freezing) 1s 2s 2p (Method 1) appears to have worked very
well for Cu Kα, it has failed for Cu Kβ (Table II). This is
similar to the technique employed by Pham et al. [9], with
the exception that we did not manually select the CSFs to
be used here. Our purpose here is to demonstrate that false
convergence occurs when an unoptimized technique is used,
even if that technique was reasonably valid for another sim-
ilar calculation. In this particular case, the only difference
between Cu Kβ and Cu Kα is the “final” state where Kα
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TABLE III. Copper Kβ diagram lines using Method 2, where the 1s and 3p subshells are held inactive. Eigenvalues are more stable
compared with Method 1. Gauges are also much more consistent and converged better. The change in energy between each iteration is
also consistent across all transitions, unlike the results of Kα at the 4 f level. Almost 142 000 CSFs were used by the 5g level when using
Method 2.

Single configuration Expansion to 4 f Expansion to 5s Expansion to 5 f Expansion to 5g

Transitions Energy (eV) AL/AV Energy (eV) AL/AV Energy (eV) AL/AV Energy (eV) AL/AV Energy (eV) AL/AV

Kβ1

J = 0 → J = 1 8902.76 1.0062 8902.09 (±0.67) 1.0061 8901.62 (±0.47) 1.0060 8902.28 (±0.66) 1.0061 8902.40 (±0.12) 1.0061
J = 1 → J = 1 8902.67 1.0063 8901.99 (±0.68) 1.0061 8901.51 (±0.48) 1.0060 8902.17 (±0.66) 1.0062 8902.29 (±0.12) 1.0062
J = 1 → J = 2 8902.92 1.0063 8902.20 (±0.72) 1.0061 8901.73 (±0.47) 1.0060 8902.38 (±0.65) 1.0062 8902.51 (±0.13) 1.0062
Kβ3

J = 0 → J = 1 8900.31 1.0065 8899.64 (±0.67) 1.0063 8899.18 (±0.46) 1.0062 8899.84 (±0.66) 1.0064 8899.97 (±0.13) 1.0064
J = 1 → J = 0 8900.36 1.0066 8899.66 (±0.70) 1.0064 8899.19 (±0.47) 1.0063 8899.85 (±0.66) 1.0065 8899.97 (±0.12) 1.0065
J = 1 → J = 1 8900.21 1.0066 8899.55 (±0.66) 1.0064 8899.07 (±0.48) 1.0063 8899.73 (±0.66) 1.0065 8899.85 (±0.12) 1.0065

has a hole at 2p while Kβ has one at 3p. On expansion to
the multiconfiguration level 4 f , the convergence between the
two gauges suffers dramatically, and the energies are clearly
incorrect compared with the experimental Cu Kβ spectra. In-
deed, the single configuration result at the 4s level is preferred
to the multiconfiguration result. Our wave function has been
quite robust during the buildup of the copper atom using a
single configuration method, but an erroneous application of
multiconfiguration expansion can lead the entire calculation
astray. Despite this gauge divergence between 4s and 4 f , they
are still within less than 2% of one other. However, despite
a relatively good degree of convergence between the gauges,
the eigenvalues have converged poorly. Clearly, gauge conver-
gence is a necessary but insufficient condition for assessing
the quality of atomic calculations.

Table III summarizes the results of Method 2, where only
the 1s and 3p subshells were frozen. Energies are well be-
haved compared with Method 1. The gauge convergence, at
around 0.6%, is far superior and consistent at all levels. The
changes in energy at each stage of expansion are consistent
with each other, and the differences observed between Kα1

and Kα2 are not seen here between Kβ1 and Kβ3. However,
the trend of convergence here is not monotonic, seen by the
change in direction between 4 f , 5s, and 5 f multiconfiguration
expansions. Results for both Kα and Kβ suggest that, at least
prima facie, the best convergence might be obtained when the
two subshells involved with the primary transition are kept
inactive (frozen). In this case, the subshells to be kept inactive
are {1s, 2p} for Kα, and {1s, 3p} for Kβ. In Method 1 of
Kβ when we replicated the technique of Kα, the 3p subshell

TABLE IV. Cu Kβ diagram lines using Method 3 where we have held 1s 2s 2p 3s 3p fixed. Both energy and gauge convergence are excellent
as we expanded to higher-order terms. Method 3 is more stable and robust than Method 2. Some transition eigenvalues are almost degenerate
due to the rounding of the results, such as the case of J = 0 → 1 and J = 1 → 0 for Kβ at the 6g level. Approximately 91 000 CSFs were
used by the 6g level when using Method 3, which is considerably less than method 2 yet allows for higher-level expansion. The full spectrum
expanded to 6g is included in text form in the Supplemental Material [33] as Kbicu-6g0.fcu-6g0.ct.

Single configuration Expansion to 4 f Expansion to 5s Expansion to 5 f Expansion to 5g

Transitions Energy (eV) AL/AV Energy (eV) AL/AV Energy (eV) AL/AV Energy (eV) AL/AV Energy (eV) AL/AV

Kβ1

J = 0 → J = 1 8902.76 1.0062 8903.04 (±0.28) 1.0063 8903.06 (±0.02) 1.0063 8903.44 (±0.38) 1.0064 8903.58 (±0.14) 1.0064
J = 1 → J = 1 8902.67 1.0063 8902.95 (±0.28) 1.0064 8902.96 (±0.01) 1.0064 8903.34 (±0.38) 1.0064 8903.48 (±0.14) 1.0065
J = 1 → J = 2 8902.92 1.0063 8903.15 (±0.23) 1.0063 8903.18 (±0.03) 1.0063 8903.52 1.0064 8903.66 1.0065
Kβ3

J = 0 → J = 1 8900.31 1.0065 8900.60 (±0.29) 1.0066 8900.62 (±0.02) 1.0066 8901.00 (±0.38) 1.0067 8901.15 (±0.15) 1.0067
J = 1 → J = 0 8900.36 1.0066 8900.62 (±0.26) 1.0066 8900.64 (±0.02) 1.0066 8901.00 (±0.36) 1.0067 8901.14 (±0.14) 1.0067
J = 1 → J = 1 8900.21 1.0066 8900.50 (±0.29) 1.0066 8900.52 (±0.02) 1.0066 8900.90 (±0.38) 1.0067 8901.04 (±0.14) 1.0068

Expansion to 6s Expansion to 6g

Kβ1 g f

J = 0 → J = 1 8903.59 (±0.01) 1.0064 8903.61 (±0.02) 1.0064 0.0209132
J = 1 → J = 1 8903.49 (±0.01) 1.0065 8903.51 (±0.02) 1.0065 0.0131888
J = 1 → J = 2 8903.67 (±0.01) 1.0065 8903.70 (±0.03) 1.0065 0.0568483
Kβ3

J = 0 → J = 1 8901.15 (±0.00) 1.0067 8901.18 (±0.03) 1.0067 0.0134186
J = 1 → J = 0 8901.15 (±0.01) 1.0067 8901.18 (±0.03) 1.0067 0.0116048
J = 1 → J = 1 8901.05 (±0.01) 1.0068 8901.05 (±0.00) 1.0068 0.0213909
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FIG. 2. A comparison of the Cu Kβ1(J = 0 → J = 1) transition convergence for Methods 2 and 3. Both methods initially shift in opposite
directions, but Method 2 (blue, lower line) changed course from the 5s level. Method 2 is less robust and stable than Method 3 (red, upper
line). With further expansion, Method 2 should (we believe) eventually converge to the same results obtained using Method 3.

was left active, despite it being involved with the primary
diagram transition, resulting in unsatisfactory outcomes. Us-
ing Method 2 resulted in over 166 000 CSFs by the 5g stage.
This is unsurprising because there are more expansions than
Method 1 (now up to 5g instead of 4 f ) and there are also more
active subshells (an addition of 2s and 2p).

Table IV details copper Kβ diagram lines using Method
3, acting as an analog of the technique used for Kα. While
Method 2 appears to have worked well, it is quite novel.
Our past experience suggests that having active subshells in
between two layers of inactive ones can give rise to noncon-
vergence and even false convergence. In the case of Method
2, we have the active subshells of 2s 2p 3s bound between the
inactive 1s and 3p subshells. For copper Kα, we purposely

FIG. 3. Demonstration of the convergence of the eigenvalues of
the Cu Kβ diagram spectrum with expansion from single configura-
tion (4s) to outer orbitals (6g).

built up an atom with a frozen core that would encompass
the two subshells that give rise to the primary diagram lines
(1s, 2p), along with everything in between, namely the 2s
subshell. Doing the same thing for Kβ would require the
freezing of both 1s and 3p, along with everything in between,
which include 2s, 2p, and 3s. Consequently, only the 3d and
4s subshells are active in the core copper atom. Hence, there
are fewer active electrons to be excited into the higher-level
subshells in order to generate higher-order terms to the atomic
wave function, which allowed us to push the multiconfigura-
tion computation to the 6g level.

The transition energies and gauges obtained using Method
3 appear to have converged well. From the 6s to the 6g ex-
pansion, the energies only changed by up to 0.02 or 0.03 eV.

FIG. 4. Convergence of the eigenvalues of the dominant Cu
Kα 3d-hole spectrum (3d9) with expansion to outer orbitals.
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FIG. 5. Convergence of the Cu Kα 4s-hole spectrum (4s0) with
expansion to outer orbitals.

Such a small change between expansions is an indication
that eigenvalues have converged, and that further expansion
would not yield significant benefit. Results of Methods 2
and 3 may appear equally competitive in terms of quality
and robustness, despite the differences in the eigenvalues.
However, their trends show significant difference [Fig. 2,
where we have used the Kβ1 (J = 0 → J = 1) transition for
illustrative purposes—other transitions show a similar overall
trend]. The two methods diverge from each other; then at
the 5s expansion, Method 2 shows a reversal and the trend
appears to converge towards Method 3. As Method 2 only had
the 1s and 3p subshells inactive, expansion to 6s and 6g is
computationally prohibitive due to the high number of active
electrons. However, the expansion to 5g allows us to conclude
that Method 3 is far superior than Method 2. Between the

FIG. 6. Convergence of the Cu Kα 3p-hole spectrum (3p5) with
expansion to outer orbitals.

FIG. 7. Convergence of the Cu Kα 2p-hole spectrum (2p5) with
expansion to outer orbitals.

single configuration at the 4s level and the 6g multiconfigu-
ration expansion, the energy changed by less than 1 eV for
all the diagram transitions (see Fig. 3). This indicates that our
wave functions are robust: less than 1 eV separates our single
configuration solution from the more advanced multiconfig-
uration solution. By the 6g expansion, (only) about 78 000
CSFs were required using Method 3, compared with more
than 140 000 using Method 2 to 5g. Table IV also presents g f

using Method 3. On both stability and speed of computation,
these results for Cu Kα and Kβ suggest that approaches
analogous to Method 3 might be promising for other transition
metals.

We find an intensity ratio I (Kβ3)/I (Kβ1) of 0.510 33 after
expansion to 6g (Table IV). Our ratio agrees very well with
the theory of Pham et al. [9], reporting a ratio of 0.5107,

FIG. 8. Convergence of the Cu Kα 3s-hole spectrum (3s1) with
expansion to outer orbitals.
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TABLE V. Convergence of the strongest Kα transition for each of the satellite spectra. The energy and gauge convergence are excellent.
With the exception of 3d8, all Kα satellites were calculated using the same method as the diagram lines. The 4s0 satellite requires a very low
number of CSFs, which makes it an ideal candidate for an approximation for the diagram line spectrum, as employed in previous studies [10].
Even with the restriction of the 3d subshell, the number of CSFs required to the 5s expansion (No. of CSFs) reaches 593 000. The number of
eigenvalues for the satellite spectra range from 2 (4s satellite) to 6 (diagram spectrum) to 1506 (3d8 double shake). The full spectra expanded
as indicated are included in text form in the Supplemental Material [33] as Kaicu3d9-5s.fcu3d9-5s.ct and similarly.

Copper Kα Single configuration Expansion to 4 f Expansion to 5s

Satellite Energy (eV) AL/AV Energy (eV) AL/AV Energy (eV) AL/AV No. of CSFs No. of transitions

3d9 8048.18 1.0069 8048.76 ± 0.58 1.0071 8048.73 ± 0.03 1.0070 258 000 131
4s0 8047.36 1.0065 8048.10 ± 0.75 1.0067 8048.06 ± 0.04 1.0067 10 000 2
3p5 8052.15 1.0072 8052.66 ± 0.51 1.0074 8052.64 ± 0.03 1.0073 185 000 102
2p5 8083.45 1.0057 8079.17 ± 4.28 1.0042 8079.85 ± 0.68 1.0071 124 000 47
3s1 8049.13 1.0066 8046.63 ± 2.50 1.0058 8046.77 ± 0.14 1.0059 59 000 19

3d4s 8048.47 1.0069 8049.08 ± 0.61 1.0071 8049.04 ± 0.04 1.0071 138 000 36
3d8 8046.40 1.0066 8046.97 ± 0.57 1.0067 8046.94 ± 0.03 1.0067 593 000 1506

as well as Deutsch et al. [10], who reported a ratio of 0.51.
Earlier theoretical work of Scofield [35] reported 0.511 for the
diagram ratio, while Table 2 in [9] reports earlier experimental
measurements of 0.5, 0.51, and 0.63. More recent work by Ito
et al. [42] appears to state that the ratio is 0.596, which likely
requires more rigorous examination. Omitting the anomalous
extractions [42,43], these ratios for experiment and theory are
in very good agreement, noting that experimental work will
include satellites as well as the same difficulties mentioned
above for Kα ratios (see the Conclusion).

V. Cu Kα CHARACTERISTIC EIGENVALUES
AND AMPLITUDES: SATELLITE SPECTRA

Ab initio calculations of shakeoff satellite spectra for Cu
Kα are presented in Figs. 4–10. The methodology is as in the
previous section, with the particular exception of the 3s1 satel-
lite spectrum. This spectrum did not converge at the single

FIG. 9. Convergence of the dominant double shake Cu Kα 3d4s-
hole spectrum (3d94s0).

configuration level using the basic Kα characteristic expan-
sion, which led to a collapse of the two distinct peaks into a
single peak at an energy level that is about 50 eV above where
the Cu Kα peaks are expected. To overcome this issue, we
kept the 3s subshell inactive for the 3s1 satellite calculation.
Furthermore, the method of integration was changed to the
nondefault “method 2” GRASP2K. The four different methods
of integration available are relativistic versions of those de-
scribed in [44]. Calculation for the 3d8 satellite (the 3d2 hole)
required the suppression (freezing) of the 3d subshell; without
such a constraint, the calculation for 3d8 at the 5s level would
require in excess of 1 million CSFs.

There is a high level of convergence, and the theoretical
(atomic) satellite spectra are well-defined. Calculations in-
volving the 4s hole, namely the Kα 4s0 satellite, require minor
adjustments compared to the usual approach: As there is no
electron in the n = 4 shell for this particular case, we have a
complete open shell, rather than a partial open shell with the
usual 4s1. Thus, the copper atom is treated as a closed-shell

FIG. 10. Convergence of the internal double shake Cu Kα 3d2-
hole spectrum (3d8).
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FIG. 11. Convergence of the eigenvalues of the dominant Cu Kβ

3d-hole spectrum (3d9) with expansion to outer orbitals.

problem, with only two satellite transitions (Fig. 5). Removing
the 4s electron has a relatively small effect on the spectra, as
the satellite lines are located at almost exactly where the Kα1

and Kα2 should be. This is similar to approximations made
in earlier work where the authors neglected the 4s electron in
order to achieve convergence [10]. It explains why, despite
that approximation, previous authors were able to achieve
relatively good agreement with their experimental results. De-
tailed spectra are presented in the Supplemental Material [33]
for the (converged) expansion to 5s orbitals. An anomaly in
these results is the 2p satellite computation, where the most
dominant transition at the single-configuration level appears
to have shifted by about 4 eV at the multiconfiguration stage,
whose intensity also decreased (Fig. 7). As such, the detailed
spectra for 4s, 4 f , and 5s expansions are given for the Kα 2p
satellite in the Supplemental Material [33] to aid further inves-
tigations. The relative intensities of satellite contributions are
not defined by eigenvalue convergence or anomaly, but rather
they are defined by the A-coefficients and g f -values. From
later sections it is expected, not just on the basis of degeneracy,
that the 3d-hole satellites are dominant. We present predicted
and converged spectra for the two (dominant) double shakeoff
spectra, namely 3d4s double hole and 3d2 double shakeoff.
The significance of these two particular satellites is explained
below. Table V provides a brief numerical summary of the
satellite convergence where the strongest transition of each set
is selected as representative of the entire group. Eigenenergies
have converged to within less than an eV, and gauge ratios are
virtually at unity by the 5s expansion.

VI. Cu Kβ CHARACTERISTIC EIGENVALUES
AND AMPLITUDES: SATELLITE SPECTRA

Figures 11–17 present theoretical shakeoff spectra for Cu
Kβ. The expansion method is the same as for the diagram
Cu Kβ lines, where the subshells 1s 2s 2p 3s 3p were all

FIG. 12. Convergence of Cu Kβ 4s-hole spectrum (4s0) with
expansion to outer orbitals.

kept inactive (Method 3). Hence, the number of CSFs re-
quired for these calculations is much lower than those used
for Kα satellite lines. Just under 4000 CSFs were required
for the calculation of the 4s0 Kβ satellite at the 5p level,
compared with about 10 000 CSFs for Kα at the 5s level.
About 170 000 CSFs were required for the Kβ 3d8 satellite
at the 5p level compared with the Kα 3d8 satellite, which
required 593 000 CSFs. Convergence of all satellite spectra
was smooth. Convergence issues observed with Kα are likely
due to the partially filled subshells of 3s and 3p. There was no
issue with the 3d satellites (3d9 and 3d8), which are also par-
tially filled: robust convergence was achieved without freezing
the 3d subshell. Table VI provides the strongest transitions
of the Cu Kβ satellite lines, demonstrating numerical conver-
gence. Energies of the 2p satellite transitions appear 60 eV

FIG. 13. Convergence of Cu Kβ 3p-hole spectrum (3p5) with
expansion to outer orbitals.
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FIG. 14. Convergence of Cu Kβ 2p-hole spectrum (2p5) with ex-
pansion to outer orbitals. These eigenvalues are significantly higher
than the main spectrum.

higher than other satellite spectra, approximately as expected
(Fig. 14, Table VI). Curiously, this is located at around the
same energy region where Ito et al. claim to have detected the
Cu Kβ5 peak [42]. Given the modest (relatively poor) level of
gauge convergence for the Kβ 2p5 satellite, it is possible that
the 2p5 calculation has not converged completely.

VII. AB INITIO SHAKE CALCULATIONS

Ab initio calculations of shakeoff probabilities are calcu-
lated for each nκ subshell: the probability of an electron
from any one of these subshells being shaken off, following
the photoionization event, but before the orbital relaxation.
Following Eq. (20), the shake probabilities are extracted from
the atomic wave functions at the ground (or neutral) state
and immediately after the 1s electron has been removed. The

FIG. 15. Convergence of Cu Kβ 3s-hole spectrum (3s1) with
expansion to outer orbitals.

shake probabilities should, in principle, be independent of
whether the process is Kα or Kβ because they occur before
the actual diagram transition in the sudden approximation
limit. How should the wave functions φA jnκ and φBknκ be
constructed in order to apply Eq. (20)? This leads us back to
our earlier premise—that there is no single method guaranteed
to work for all situations. Hence, we have constructed the
wave functions using two different methods: Method 1 (from
Kα) and Method 3 (used for Kβ). Tables VII and VIII present
shake probabilities calculated using these two methods of
expansion.

Results at the single configuration level are unreliable
and incomplete and thus should be disregarded, but they
are included here for completeness. Method 1 is clearly not
appropriate for a shake computation even though it works
relatively well for Cu Kα eigenenergies and satellites. The

TABLE VI. Convergence of the strongest Kβ transition for each of the satellite spectra. These results have been obtained using Method
3 where we have held 1s 2s 2p 3s 3p fixed. The number of CSFs required at the 5p level was between approximately 4000 (4s0) and about
170 000 (3d8). For 3d4s extended to 6g, ca 233 341 CSFs were used. The energy and gauge convergence are excellent as we expand to
higher-order terms. The 2p5 satellite lines have relatively poor gauge convergence. The full spectra expanded as indicated are included in text
form in the Supplemental Material [33] as Kbicu3d9-5p.fcu3d9-5p.ct and similarly. Two expansions are included for 3d4s given the discussion
in the text.

Single configuration Expansion to 4 f Expansion to 5s Expansion to 5p No. of

Kβ Satellite Energy (eV) AL/AV Energy (eV) AL/AV Energy (eV) AL/AV Energy (eV) AL/AV No. of CSFs transitions

3d9 satellite 8908.93 1.0074 8908.98 ± 0.06 1.0074 8909.00 ± 0.01 1.0074 8909.00 ± 0.001 1.0074 74699 131
4s0 satellite 8902.97 1.0063 8903.18 ± 0.21 1.0063 8903.17 ± 0.01 1.0063 8903.18 ± 0.0005 1.0060 3986 2
3p5 satellite 8907.60 1.0051 8907.56 ± 0.04 1.0051 8907.56 ± 0.01 1.0051 8907.57 ± 0.001 1.0051 55455 47
3s1 satellite 8912.80 1.0082 8912.96 ± 0.16 1.0082 8912.99 ± 0.02 1.0082 8912.99 ± 0.003 1.0082 30320 19
2p5 satellite 8975.29 0.8692 8975.43 ± 0.14 0.8692 8975.47 ± 0.04 0.8692 8975.47 ± 0.003 0.8692 125404 102

3d4s satellite 8909.20 1.0074 8909.22 ± 0.02 1.0074 8909.22 ± 0.005 1.0074 8909.22 ± 0.001 1.0074 36
3d8 satellite 8908.60 1.0069 8908.64 ± 0.05 1.0069 8908.65 ± 0.0104 1.0069 8908.65 ± 0.001 1.0069 169569 1506

Expansion to 5g Expansion to 6s Expansion to 6g

3d4s satellite 8909.41 ± 0.20 1.0075 8909.41 ± 0.0008 1.0075 8909.41 ± 0.000 1.0074 233341 36
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TABLE VII. Ab initio shake probabilities for each nκ subshell calculated at different levels of expansion using Method 1, where the 1s 2s 2p
subshells were kept inactive. At the single configuration (4s) level, results are not sensible—higher-order terms are required. However, these
shake probabilities appear to diverge as we expand to higher order.

Shake Probabilities (%) 1s 2s 2p1/2 2p3/2 3s 3p1/2 3p3/2 3d3/2 3d5/2 4s

Single config (4s) −0.0641 −0.0037 0.1145 0.2157 0.155 0.354 0.361 1.351 1.405 8.827
Pnκ expanded to 4 f 3.139 3.197 3.312 3.410 3.501 3.898 4.565 8.326 11.078 11.746
Pnκ expanded to 5s 3.580 3.638 3.752 3.849 3.940 4.335 4.999 8.743 11.483 12.147
Pnκ expanded to 5 f 4.512 4.569 4.682 4.779 4.868 5.260 5.918 9.625 12.338 12.997
Pnκ expanded to 6s 4.867 4.924 5.037 5.133 5.222 5.612 6.267 9.961 12.664 13.320
Pnκ expanded to 6d 6.633 6.689 6.800 6.894 6.982 7.365 8.008 11.633 14.286 14.929

different methods of expansion dramatically affect the distri-
bution of the mixing coefficients and hence the apparent shake
probabilities. For the spectral calculations, we have achieved
convergence via a number of metrics, such as low fluctuation
of eigenenergy of the transition lines, as well as the relativistic
gauge ratio reaching unity. The idea of convergence in the pre-
vious sections referred to the various outputs (energy, gauges,
etc.) that are directly affected as the total atomic wave function
was being changed, primarily through the addition of higher-
order terms in the form of CSFs. For shake computations, even
though we are adding more terms and changing the total wave
function, the component of the wave function we are using to
calculate the shake probabilities remains the same throughout
all multiconfiguration stages. Hence φA jnκ and φBknκ at the
4 f level would look exactly the same as those at the 6g
level, irrespective of how the multiconfiguration expansion
was performed. The only difference is the distribution of the
mixing coefficients. Irrespective of the method of expansion,
the shake probabilities should be the same assuming that our
wave function is complete. The converged shake probability
results at the 6g expansion in Table VIII will therefore be used
henceforth, unless stated otherwise.

After the departure from a single configuration at the 4s
level, convergence is smooth and monotonic. The only large

FIG. 16. Convergence of the dominant double shake Cu Kβ

3d4s-hole spectrum (3d94s0).

jump is at the transition from single configuration to multicon-
figuration, i.e., between 4s and 4 f . Hence multiconfiguration
results should be preferred over the single configuration re-
sults. Unsurprisingly, the 1s subshell has the lowest shakeoff
probability among all the subshells due to the higher bind-
ing energy, whereas 3d and 4s are much more likely to be
involved in shakeoff. The 3d shakeoff probability is among
the largest satellite contributors to the copper Kα spectrum.
Many studies only investigate the 3d satellite (Table IX). Yet
Table IX reveals that there is much disagreement between
the various studies on the 3d shakeoff probability. Results
from theoretical calculations have historically been lower than
those of experiments. The extraction of satellite contributions
from experimental spectra is nontrivial due to the overlapping
transition energies displayed earlier. Therefore, experimental
spectra are often analyzed through the broadening of theo-
retically calculated transition lines, which implicitly assumes
that the theoretical calculations are accurate. Another rea-
son for discrepancies between theory and experiment is that
experiment generally fitted only the 3d satellite, rather than
including other significant satellites. Consequently, this often
artificially inflates the experimental estimate of the 3d satellite
probability, and the experimental estimate is more representa-
tive of total shake probability, excluding the 4s probability,
which is almost degenerate to the diagram lines. Theory has

FIG. 17. Convergence of the internal double shake Cu Kβ 3d2-
hole spectrum (3d8).
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TABLE VIII. Ab initio shake probabilities for each nκ subshell calculated at different levels of expansion using Method 3, where the
1s 2s 2p 3s 3p subshells were kept inactive. The shake probabilities converge well compared with Method 1 (Table VII).

Shake Probabilities (%) 1s 2s 2p1/2 2p3/2 3s 3p1/2 3p3/2 3d3/2 3d5/2 4s

Single config (4s) −0.0641 −0.0037 0.1145 0.2157 0.155 0.354 0.361 1.351 1.405 8.827
Pnκ expanded to 4 f 2.35667 2.4189 2.5332 2.6329 2.7275 3.1289 3.8084 7.5865 10.355 11.0336
Pnκ expanded to 5s 2.52667 2.5888 2.7029 2.8025 2.8969 3.2976 3.9759 7.7474 10.511 11.1885
Pnκ expanded to 5 f 2.57725 2.6394 2.7534 2.8529 2.9473 3.3478 4.0257 7.7953 10.5575 11.2346
Pnκ expanded to 6s 2.57742 2.6395 2.7536 2.8531 2.9475 3.3479 4.0259 7.7954 10.5576 11.2347
Pnκ expanded to 6g 2.59898 2.6611 2.7751 2.8746 2.9689 3.3693 4.0471 7.8158 10.5774 11.2543
Total Pnκ at 6g 2.59898 2.6611 5.64964 2.9689 7.4164 18.3932 11.2543

been developing the determination of eigenvalues for diagram
and satellite structure to this current work. Experimental fits
of older spectral components and older experimental data are
at least affected by (theoretical) spectral limitations in deter-
mination or convergence or the number of CSFs used or the
expansion level, so they are generally less reliable.

All past theoretical predictions reported total shake proba-
bilities as given in this table, whereas the experimental data
will be dominated by individual satellite components, i.e.,
single shakeoff or double shakeoff probabilities. Results pre-
sented in this study are in relatively good agreement with
the relativistic multiconfiguration work of Pham et al. [9].
A limitation of that work, however, is that all of the mixing
coefficients were not utilized, nor were they properly normal-
ized, which explains some significant differences in the results
[9]. Table X demonstrates the importance of utilizing all the
mixing coefficients and configurations. By not including all
available terms, results can vary significantly. In the case
of Pham et al., the set of terms used for calculating shake
probabilities was incomplete, and the terms were selected so
that only the configurations with the largest contribution to
the wave function were used. This inflated the probabilities
and mismatched particular terms and their configurations, thus

it misinterpreted and incorrectly applied Eq. (20). The other
more complete set of results are those of Mukoyama and
Taniguchi [29]. Their 4s result of 9.7% appears to be relatively
close to our result of 11.25%. However, their work utilized
a nonrelativistic single configuration method using Hartree-
Fock-Slater wave functions, and interestingly it is quite close
to our single-configuration result of 8.8% (at the 4s level). Dis-
crepancies at the single configuration level, however, should
be discounted as discussed.

VIII. SEPARATION OF SINGLE AND DOUBLE
SHAKE ESTIMATES

Pnκ gives us the probability of one or more electrons being
removed from the nκ subshell. We need to separate (isolate)
single shake and double shake probabilities, especially since
these correspond to markedly different satellite spectra. Dou-
ble shake refers to when two electrons are ejected from the
atom as a result of the change in the Hamiltonian when the
initial 1s vacancy is created. The two electrons can either be
removed from the same nκ subshell, or from two different
subshells. Calculating the probability of double shake from

TABLE IX. Theoretical and experimental shake probabilities for various satellite intensities in the literature. Experimental values have
difficulty separating the components and are often empirical. Theoretical values to date have been total shake probabilities. †From Fig. 2 of
[45]. ‡Normalised.

Claimed Shake(off) Probabilities (%).

Theory 1s 2s 2p 3s 3p 3d 4s

Mukoyama, Taniguchi (1987) [29] 0.003 0.097 0.456 0.34 2.5 9.7 9.7
Kochur et al. (2002) [45] 2.6 14.5 9.2†
Lowe et al. (2011) [16] 14.7
Pham et al. (2016) [9] 0.32∓0.02 7.74∓0.10 19.94∓0.14 12.43∓0.15
This work (Total Shake to 6g) 2.60 2.66 5.65 2.97 7.42 18.39 11.25

Experiment [extracting only P(3d shake)]

Sauder et al. (1977) [14] 26.5±2‡
Deutsch et al. (1995) [10] 26–30.0
Hölzer et al. (1997) [36] 18.5
Diamant et al. (2006) [32] 25±2
Galambosi et al. (2003) [46] 25±2
Enkisch et al. (2004) [47] 29.0
Ito et al. (2006) [48] 23.1
Chantler et al. (2009) [15] 29±2.5
Chantler et al. (2010) [8] 26±1
Chantler et al. (2012) [49] 15-30-39
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TABLE X. Total shake probabilities for subshells 3s, 3p, 3d , and
4s based on the number of configurations. If only a finite number of
configurations and mixing coefficients are used instead of utilizing
all the mixing coefficients and configurations (as in Table VIII), then
the terms must be ordered in terms of the dominant contribution
to see the convergence. Convergence is specific to the level of ex-
pansion. The number of CSFs involved increases dramatically with
expansion level so, e.g., 267 CSFs are required to 4f; 311 to 5s; 1530
to 5f.

Total Shake Probabilities Pnκ (%)

Number of configurations used 3s 3p 3d 4s

100 2.68 6.68 17.86 10.99
200 2.80 7.08 18.10 11.11
300 2.82 7.12 18.14 11.13
All (3543 at 6g) 2.97 7.42 18.39 11.25

the same subshell is analogous to probability without replace-
ment. Assuming that each of the Mnκ electrons in a subshell
is equally likely to be ejected as a result of the change in
Hamiltonian, we can use binomial probability to calculate the
probability of single and double shake. Pnκ is the probability
of at least one electron being removed from the nκ subshell;
in previous work, this has been incorrectly interpreted as the
probability of a single electron being removed from the nκ

subshell and the other Mnκ − 1 remaining [9]. The importance
of this was raised by Sachenko and Demekhin [27], though it
was not clarified. If the probability of a success is given by p,
then the probability of k successes out of n trials is

P(X = k) =
(

n

k

)
pk (1 − p)n−k . (26)

The probability of at least one success is the complement:

P(X � 1) = 1 − P(X = 0) = 1 − (1 − p)n, (27)

p = 1 − (1 − P(X � 1))1/n. (28)

Substituting this into Eq. (26) and noting P(X � 1) = Pshakeoff
nκ

gives the probability of removing any k electrons out of a total
of Mnκ present in the subshell,

P(X = k) =
(

Mnκ

k

)(
1 − (

1 − Pshakeoff
nκ

) 1
Mnκ

)k

× (
1 − Pshakeoff

nκ

) Mnκ −k
Mnκ . (29)

The single and double shakeoff probabilities using Eq. (29)
are shown in Table XI. The 3d4s shake probability is obtained
by multiplying the probability of 3d and 4s, giving 1.99%. For
total double shake calculations, a cross-term was included to
account for the possibility of electrons coming from subshells
with the same n but different κ , e.g., one electron from 3p1/2

and one from 3p3/2, instead of both electrons coming from the
same nκ subshell.

The probability of two outer shell electrons being removed
from the system during the initial 1s bombardment has been
shown to be significant [9,25,45]. For copper, the 3d2 double
shake structure has been calculated and applied when mod-
eling the spectra in empirical fits [9,10]. Our calculated 3d2

double shake, 1.473%, is smaller than 1.79% ∓ 0.04 reported
by Pham et al. [9]. Although Pham et al. was fully relativistic,
high-accuracy, and multiconfigurational, only a partial set of
these high-accuracy results was used to estimate the shake
probabilities. The authors selected only about 300 mixing
coefficients and configurations with the largest contribution
to the overall wave functions when applying the shake calcu-
lations. This slightly inflates the shake probabilities because
the smaller contributions cancel out some dominant config-
urations. As the double shake calculation follows from the
single shake calculations, the results from double shake were
also slightly inflated. Herein we include all configurations,
including the smaller ones.

The probability of a double shake due to a 4s and 3d elec-
tron (3d4s) is 1.99%. The 3d4s satellite spectral amplitude
has not yet been extracted from experiment. Kochur et al. [45]
provides an ab initio probability for the 3d4s double hole state
in Cu to be 1.3%. There is significant overlap between the
3d4s structure and the diagram lines, making it hard to extract
experimentally.

Equation (21) made several approximations. Probabilities
using Eq. (21) can be compared with the Taylor series expan-
sion Eq. (14):

Pshake
nκ = 1 −

∣∣∣∣∣∑
j

c jd j (1 − εnκ )Mnκ

∣∣∣∣∣
2

≈ 1 −
∣∣∣∣∣∑

j

c jd j (1 − Mnκεnκ )

∣∣∣∣∣
2

. (30)

TABLE XI. Single and double shake probabilities calculated using Eq. (29) from the Pnκ expanded to 6g. The double shake nl probabilities
include a (dominant) cross-term to include the probability of one electron from each 3d subshell being removed. This corrects the single shake
probabilities and also yields, e.g., 3d2 double shake probability of 1.473%, in good agreement with the earlier Ansätzes [9] but usually a little
smaller.

Shakeoff probabilities (%) using Eq. (29)

n, κ 1, −1 2, −1 2,1 2, −2 3, −1 3,1 3, −2 3,2 3,−3 4, −1

j j-coupling terms 1s1/2 2s1/2 2p1/2 2p3/2 3s1/2 3p1/2 3p3/2 3d3/2 3d5/2 4s1/2

n, κ single shake 2.599 2.643 2.756 2.843 2.947 3.340 3.985 7.579 10.091 11.254
Total nl single shake 2.599 2.643 5.599 2.947 7.325 17.670 11.254

3d4s 1.99
n, κ double shake 0 0.018 0.020 0.031 0.022 0.029 0.062 0.234 0.474 0
Total nl double shake 0 0.018 0.129 0.022 0.224 1.473 0
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TABLE XII. Comparison of the nl double shake probabilities using Eq. (29) with multiconfiguration expansion up to 6g with the method
of Kochur et al. [45] [Eqs. (35) and (34)].

Double Shake %

1s 2s 2p 3s 3p 3d 4s 3d4s

Our method 0 0.018 0.129 0.022 0.224 1.473 0 1.99
Method of Kochur et al. [45] 0 0.030 0.240 0.040 0.360 1.840 0 2.46

This is then relatively similar to the nonrelativistic analog

Pshake
nl ≈ 1 − |(1 − Mnlεnl )|2

= 1 − |[1 − Mnl (1 − 〈φBknl |φA jnl〉)]|2 (31)

and

pnl ≈ 1

Mnl
(1 − |(1 − Mnlεnl )|2)

� (1 − 〈φBknl |φA jnl〉2), Pshake
nl ≈ Mnl pnl , (32)

which for a single CSF can be related to the probability of
no-shake and given a relative probability for total shakeup and
shakeoff from the nl subshell (with respect to the probability
of initial single ionization) of

Pshake
nl

Pno-shake
nl

≈ 1 −
[

1 −
(

1 − 〈φBknl |φA jnl〉2

〈φBknl |φA jnl〉2

)]Mnl

� Mnl

(
1 − 〈φBknl |φA jnl〉2

〈φBknl |φA jnl〉2

)

= Mnl

(
1

〈φBknl |φA jnl〉2 − 1

)
(33)

as suggested by Kochur et al. [45]. Equations (31), (32), and
(33) are single-CSF, nonrelativistic, Taylor series first-order
approximations to Eq. (30), which in turn is a Taylor series
approximation to Eq. (21). This does not make a good approx-
imation in the real situation of multiconfigurational CSFs, so
we should instead use Eq. (21).

Most authors use similar logic to estimate the shake prob-
ability as the probability of finding the wave function not in
the 1s hole state. The critical issue is how 〈�B(N )|�̃A(N )〉 is
calculated and separated into subshells.

For double shake estimates, Kochur et al. [45] expand
upon their single-electron relative shake probability with their
Eqs. (3) and (4):

P(1e from nl, 1e from n′l ′)

≡ Pnl,n′l ′ = MnlMn′l ′ pnl pn′l ′ = Pnl Pn′l ′ , (34)

P(2e from nl ) ≡ Pnl,nl = 1
2 Mnl (Mnl − 1)p2

nl , (35)

which can be recast relativistically as approximations:

P(1e from nκ, 1e from n′κ ′)

≡ Pnκ,n′κ ′ = MnκMn′κ ′ pnκ pn′κ ′ = PnκPn′κ ′ , (36)

P(2e from nκ ) ≡ Pnκ,nκ = 1
2 Mnκ (Mnκ − 1)p2

nκ . (37)

That is, when considering double shake from two different
subshells, nκ and n′κ ′, the probabilities are simply multiplied
together. A limitation of Kochur et al. [45] is that they use
the probability of at least one shake as if it were the single
shake probability of a particular electron. Furthermore, al-
though they cite Sachenko and Demekhin [27], who use the
full binomial equation, Kochur et al. [45] omit the (1 − p)N−2

factor. Because the Kochur et al. method misinterprets (or
perhaps approximates) Pnl as the single shake probability,
applying their method to our values for Pnκ gives single and
double shake probabilities that are always slightly larger than
our predictions (Table XII).

IX. ISOLATING SINGLE SHAKEOFF AND DOUBLE
SHAKEOFF PROCESSES

Equation (29) only gives information about the particular
nκ subshell involved, e.g., the probability of removing a single
electron from the 4s shell is calculated as 11.254%. However,
this says nothing about what has happened in the other nκ

subshells. It does not distinguish between one electron being
removed from the 4s shell and all other subshells remaining
as they are and one electron being removed from the 4s shell
and a second electron being removed from a separate nκ sub-
shell. Table XI gives the probability of single or double shake
occurring in each of the nκ shells, yet these values include the
probabilities of additional shakes occurring in other shells. We
need the probability of a single shake from nκ while all other
subshells remain unchanged to use these ab initio probabilities
to fit satellite spectra to experimental data. This can be ob-
tained by multiplying the probability of shake occurring in the
nκ by shake not occurring in each of the nine other subshells.
This changes predictions quite significantly when compared

TABLE XIII. The probabilities of a single electron being removed from a subshell and all other electrons, both within the subshell and in
all other subshells, remaining as is.

Isolated single shakeoff probability (%) at 6g expansion

n, κ 1,−1 2,−1 2,1 2,−2 3,−1 3,1 3,−2 3, 2 3,−3 4,−1

Shake probability at 6g 1.57 1.60 1.67 1.72 1.79 2.04 2.45 4.84 6.65 7.47
nl 1s 2s 2p 3s 3p 3d 4s
Shake probability at 6g 1.57 1.60 3.39 1.79 4.49 11.49 7.47
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TABLE XIV. The probabilities (%) of two electrons being removed from two specific subshells and all other electrons, both within the
subshells and in all other subshells, remaining as is. The data are from the 6g level of multiconfiguration expansion. The bottom row and the
last column give total double shake from the specified nκ subshell. Entries highlighted on the diagonal are double shakes from the same nκ

subshell, while other subshells remain as is. Entries that are off-diagonal are double-shake probabilities from two different nκ subshells, while
other subshells remain as is.

n, κ 1, −1 2,−1 2,1 2, −2 3, −1 3,1 3, −2 3, 2 3, −3 4, −1 total

1, −1 0.0000 0.0427 0.0446 0.0460 0.0477 0.0544 0.0653 0.1293 0.1774 0.1994 0.807
2, −1 0.0427 0.0109 0.0453 0.0468 0.0486 0.0553 0.0664 0.1315 0.1806 0.2029 0.831
2,1 0.0446 0.0453 0.0118 0.0489 0.0507 0.0577 0.0694 0.1373 0.1885 0.2118 0.866
2, −2 0.0460 0.0468 0.0489 0.0189 0.0524 0.0596 0.0716 0.1418 0.1946 0.2187 0.900
3, −1 0.0477 0.0486 0.0507 0.0524 0.0136 0.0619 0.0743 0.1471 0.2019 0.2269 0.925
3,1 0.0544 0.0553 0.0577 0.0596 0.0619 0.0176 0.0846 0.1675 0.2299 0.2583 1.047
3, −2 0.0653 0.0664 0.0694 0.0716 0.0743 0.0846 0.0381 0.2012 0.2761 0.3103 1.257
3,2 0.1293 0.1315 0.1373 0.1418 0.1471 0.1675 0.2012 0.1494 0.5467 0.6144 2.366
3, −3 0.1774 0.1806 0.1885 0.1946 0.2019 0.2299 0.2761 0.5467 0.3126 0.8432 3.152
4, −1 0.1994 0.2029 0.2118 0.2187 0.2269 0.2583 0.3103 0.6144 0.8432 0.0000 3.086
Total 0.807 0.831 0.866 0.900 0.925 1.047 1.257 2.366 3.152 3.086

with the single shake probabilities using Eq. (29) in Table XI
(Table XIII). The same can be done for the double shake prob-
abilities. Table XIV gives the probability of any two electrons
being removed and all others remaining as is. The results are
from the 6g multiconfiguration expansion. The numbers high-
lighted in the diagonal are double shakes from the same n, κ

subshell. The last row and column give the total double shake
from the specified subshell. For example, 3.086% is the total
probability of a double shake involving the 4s electron, all else
being equal. Notice that these reduced probabilities effectively
also separate shakeup processes. For example, the probability
of 3d4s double shake is 1.99% (see Table XII), however the
probability of this occurring while all other subshells remain
unchanged, 3d4s only is 1.4576% (0.6144 + 0.8432). The
value 0.6144 is the probability of a double shake from the
n, κ = 3, 2 (3d3/2) and n, κ = 4,−1 (4s1/2) subshells, while
all other subshells remain unchanged. Similarly, the value
0.8432 is the probability of a double shake occurring from
the n, κ = 3,−3 (3d5/2) and n, κ = 4,−1 (4s1/2) subshells,
while other subshells remain the same. This implies that the
difference in the probabilities from the two tables accounts
for changes in electronic configurations at other subshells due
to the shakeoff process. Similarly, the probability of 3d2 only
double shake (see Table XV) is 0.9087% compared with the
probability of at least 3d2 double shake, which is 1.473%. All
other individual shake processes are less than 1%, e.g., 3p4s
is only 0.5686%. The trend and relative magnitude of the
probabilities in Table XIV are consistent with earlier tables
given the different quantities presented.

The full spectral eigenvalues of diagram lines and of
all satellite spectra are expanded as indicated and included

in text form in the Supplemental Material [33] as, e.g.,
Kaicu3d9-5s.fcu3d9-5s.ct and similarly. These data can be
used independently to predict and represent theoretical pro-
files of the full experimental spectra under appropriate impact
conditions.

X. CONCLUSION

The theoretical results reported here represent the most
extensive and complete treatment of copper Kα and Kβ

diagrams and satellite spectra. Using a highly advanced rela-
tivistic framework, we have calculated diagram and satellite
spectra to an extremely high level of accuracy, often to
∼0.03 eV and some 10 times more accurate than earlier
work. Diagram spectra are expanded to 5s with simulta-
neous convergence of 28 000 configuration state functions
(CSFs) (Kα) and to 6g with simultaneous convergence of
91 000 CSFs (Kβ). The challenges of theoretical resources are
demonstrated. Some challenges are explained by the need to
invoke biorthogonalization, developments of the active space
approach, analysis of markers for theoretical convergence of
eigenvalues, and the question of self-consistency for both
Kα and Kβ spectra. We detail gauge, eigenvalue, and A-
coefficient convergence.

Complete single and double shake probabilities were cal-
culated based on the multiconfiguration framework where all
the configuration state functions were utilised, which includes
the correct interpretation of the role of the mixing coefficients.
This is evident by the convergence of the probabilities as
higher-order expansions were included, as well as results that
are within appropriate ranges within the literature. In doing

TABLE XV. The probabilities of a double electron being removed from two subshells and all other electrons, both within the subshell and
in all other subshells, remaining as is.

Dominant isolated double shakeoff probability (%) at the 6g expansion

nl 3d4s 3d2 3p3d 3p4s 3s3d 3s4s 3p2 3s3p 2p3d 2p4s

Shake probability at 6g 1.458 0.9087 0.8747 0.5686 0.3490 0.2269 0.1403 0.1362 0.6622 0.4305
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so, we have also provided our interpretation of shake proba-
bilities in the sudden approximation model. The Cu Kα 3d8

double-shake satellite spectrum alone contains 1506 unique
eigenvalues (transitions) and required simultaneous conver-
gence of 593 000 CSFs. This not only led to the calculation of
total shake probabilities for all the subshells of copper ranging
from 1s to 4s, but it also resulted in the separation of single
and double shake processes, which correspond to distinct
eigenvalue spectra and asymmetries. We present computations
for isolated shake events. Portable spectral representations are
provided in the Supplemental Material [33] and discussed in

the text. The processes computed herein pertain directly to the
plasma evolution of XFEL spectra [50,51]. Note that the rapid
ionization events leading to hollow atoms, etc., are defined by
sequential and collective ionization and cascade probabilities.
Results herein should prove essential for future theoretical
work and comparison with experimental results.
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