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Ab initio determination of the polarizability of neon
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The static electric-dipole polarizability α of the neon atom was determined with a relative uncertainty
of only about 0.003% using state-of-the-art ab initio approaches. The new value, α = 2.661 067(77) a.u., is
almost five times more accurate than the previous ab initio estimate, α = 2.660 80(36) a.u., by Lesiuk et al.
[Phys. Rev. A 102, 052816 (2020)]. Similar to their work, we calculated α using ab initio methods up to
full configuration interaction and added corrections for finite nuclear mass and size, relativistic, and quantum
electrodynamics (QED) effects. The uncertainty reduction of this work was achieved in particular by employing
extremely large basis sets, including newly developed ones of 11Z, 12Z, and 13Z quality. Moreover, the finite
nuclear mass effects and most of the relativistic contributions were calculated at much higher levels of theory
than in the work of Lesiuk et al. However, we adopted their values for the orbit-orbit part of the relativistic
correction and for the Bethe logarithm needed to compute the QED correction. The uncertainty of our final
value is still an order of magnitude larger than that of the experimental value recently measured by Gaiser
and Fellmuth [Phys. Rev. Lett. 120, 123203 (2018)] with an uncertainty of only a few parts per million using
dielectric-constant gas thermometry. Yet, our ab initio value agrees with their value, αexp = 2.661 057(7) a.u.,
almost within the experimental uncertainty. This could indicate that the higher-order relativistic corrections and
QED contributions, which dominate our uncertainty budget, are more accurate than expected considering the
uncontrolled approximations involved in their calculation.
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I. INTRODUCTION

The static electric-dipole polarizability α is one of the most
important properties of an atom or a molecule that governs
its interaction with an external electric field. For noble gases,
such as neon, α is a scalar quantity, which can be defined by

α = lim
E →0

(μind

E

)
, (1)

where μind is the strength of the atomic dipole moment in-
duced by a static, homogeneous external electric field of
strength E . The polarizability of a noble gas is directly related
to its relative permittivity εr in the dilute gas limit through the
well-known Clausius-Mossotti relation, which in SI units is
given as

εr − 1

εr + 2
= Nα

3ε0
, (2)

where N is the number density of the gas and ε0 is the vacuum
permittivity. If N is expressed through the ideal gas law, one
obtains a relation between the relative permittivity εr, the
thermodynamic temperature T , and the pressure p. Provided
that α is accurately known, the thermodynamic temperature
of the gas can be determined by measuring εr (through the
capacitance of a capacitor filled with the gas) as a function of
p along an isotherm, followed by extrapolation to zero pres-
sure. Measuring thermodynamic temperature in this manner
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is referred to as dielectric-constant gas thermometry (DCGT)
[1]. Similarly, if εr and T are measured and α is known, p
can be determined [2], or if εr, T , and p are measured, α can
be determined [3,4]. The DCGT method is closely related to
refractive-index gas thermometry [5,6], in which the refractive
index instead of the relative permittivity is measured. The
refractive index in the dilute gas limit is a function of the static
electric-dipole polarizability, the magnetic susceptibility, and
in some cases (depending on the wavelength at which the
measurements are performed) the frequency dependence of
the electric-dipole polarizability.

Recently, Gaiser and Fellmuth [4] used DCGT to measure
the static electric-dipole polarizabilities of helium, neon, and
argon with unprecedented low standard uncertainties of only
about 2 ppm. Helium has been the noble gas of choice so
far in DCGT because its polarizability is known extremely
accurately from theory [7–9], and the value obtained from the
new measurements, while not as accurate as the theoretical
one [9], is fully consistent with it. The primary motivation of
Gaiser and Fellmuth [4] for including also neon and argon was
to enable these two gases to be used as alternatives to helium
in standard DCGT applications. The use of helium has the
disadvantage that its polarizability is extremely small, which
leads to a strong sensitivity to impurities. This sensitivity can
be reduced by using neon, which has approximately twice
the polarizability of helium, or argon, which is about eight
times more polarizable than helium. A further motivation for
the work of Gaiser and Fellmuth [4] was to give theoreticians
accurate reference polarizabilities to allow them to stringently
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test their ab initio methodologies (and if necessary improve
them) for neon and argon. Existing theoretical polarizability
values for these two gases were multiple orders of magnitude
less accurate than the new measured values.

Shortly after the work of Gaiser and Fellmuth was
published, Lesiuk et al. [10] presented a new ab initio polariz-
ability value for neon, which is much more accurate than any
previous theoretical value because for the first time all relevant
physical effects were systematically considered. Their starting
point was a nonrelativistic calculation of the polarizability
using the orbital-unrelaxed linear-response CC3 method [11],
which is a variant of coupled-cluster (CC) theory. The calcu-
lations were performed with purpose-built Slater-type orbital
basis sets up to 7Z quality, and the results were extrapolated
to the complete basis set (CBS) limit. They then calculated
corrections for higher coupled-cluster levels up to the full
configuration interaction (FCI) limit with smaller Gaussian-
type orbital basis sets. Moreover, they added corrections for
finite nuclear mass and size effects as well as the relativistic
contributions of order 1/c2 (where c = 137.036 is the speed
of light in atomic units) and quantum electrodynamics (QED)
corrections of order 1/c3 and 1/c4. However, their uncertainty
estimate for the final polarizability value is still more than
50 times larger than that given by Gaiser and Fellmuth [4]
for their experimental value, but the agreement between the
two polarizability values is within the uncertainty estimated
by Lesiuk et al. [10].

In this work, we present a new ab initio value for the
polarizability of neon with significantly reduced uncertainty
compared with the result of Lesiuk et al. [10]. For the cal-
culations, we employed standard quantum chemistry codes,
although for a few polarizability contributions we had to adopt
results calculated by Lesiuk et al. [10] using specialized in-
house codes, namely, for the orbit-orbit term in the relativistic
contribution of order 1/c2 and for the Bethe logarithm needed
to compute the QED correction of order 1/c3.

The aimed uncertainty reduction required the use of ex-
tremely large basis sets. For neon, Gaussian-type orbital basis
sets up to 10Z quality are available in the literature, but
we developed even larger ones up to 13Z quality and mod-
ified and/or reoptimized some of the existing basis sets. In
Sec. II, we therefore first discuss the basis sets used in this
work before presenting the actual polarizability calculations
in Sec. III. In Sec. IV, we discuss the results in comparison
with those of Lesiuk et al. [10] and of Gaiser and Fellmuth [4]
and draw conclusions.

Note that we use atomic units (a.u.) throughout the remain-
der of this paper.

II. BASIS SETS

We used two different families of Gaussian basis sets
for the calculations reported in this work. For contributions
for which only relatively small basis sets were affordable,
we employed the standard correlation consistent basis sets
cc-pVnZ with 2 � n � 6 supplemented by either one layer
of diffuse functions (aug-cc-pVnZ), two layers of diffuse
functions (d-aug-cc-pVnZ), or three layers of diffuse func-
tions (t-aug-cc-pVnZ) [12–15]. For calculations in which all
electrons were correlated, the (d-, t-)aug-cc-pCVnZ basis sets

[16,17], which contain additional tight basis functions, were
used in uncontracted form and without the additional tight
s and p primitive functions to avoid near-linear-dependency
issues (the uncontraction of the basis sets yields already plenty
of tight primitive s and p functions). These basis sets are
denoted as (d-, t-)aug-u-cc-pCVnZ.

For calculations for which it was possible to employ larger
basis sets, we initially considered using again the cc-pVnZ
basis sets, which are available for neon up to n = 10 [18–20].
However, there are apparent irregularities in the series for high
n values. As an example, the largest primitive s exponent,
which should increase in a smooth fashion with increasing n,
has values of 7.149 for cc-pV6Z [14], 10.8323 for cc-pV7Z
[18], and 17.0553 for cc-pV8Z [19], but it then remains al-
most at the same value, 17.1191, for cc-pV9Z [20]. A similar
behavior can be observed for the p exponents. The reason for
these irregularities is that the cc-pVnZ basis sets generate the s
and p primitives by splitting off functions from the contracted
s and p sets optimized at the Hartree-Fock self-consistent-
field (SCF) level of theory, but for cc-pV9Z the exponents
of the primitives in the contracted sets are not properly op-
timized. When we performed initial test calculations of the
polarizability of neon at a correlated level of theory with these
basis sets (supplemented by suitable diffuse functions), we
observed that the resulting polarizability values also behaved
in a somewhat irregular manner when going from the 8Z to the
9Z basis set level. Thus, with these basis sets, it is not possible
to extrapolate properly to the CBS limit, which is necessary
for several polarizability contributions. Therefore, we did not
further consider the cc-pVnZ basis sets for n > 6.

A more recently developed alternative to the cc-pVnZ
basis sets is the nZaP family of basis sets [21–23], which
is available for neon also up to n = 10 [21]. The major
distinction between the two families is that the nZaP basis
sets have, in addition to the contracted SCF-optimized s and
p basis functions, separate even-tempered sets of s and p
primitives optimized by minimizing the total energy obtained
using second-order Møller-Plesset perturbation theory (MP2)
in the frozen-core (FC) approximation. The higher angular-
momentum functions also form even-tempered sets optimized
at the FC-MP2 level of theory, whereas the cc-pVnZ ba-
sis sets use even-tempered higher angular-momentum sets
optimized at the FC configuration interaction with single
and double excitations level of theory. The nZaP basis sets
have one diffuse primitive s function and one set of diffuse
primitive p functions (the “a” in nZaP), generated for neon
from the lowest two exponents in each of the contracted s
and p basis functions in an even-tempered manner. The re-
spective basis sets that also have diffuse functions of higher
angular momentum l are called nZaPa [23], where the addi-
tional exponents up to the second-highest angular momentum
l = n − 1 were generated from the existing two smallest
exponents of each angular momentum again in an even-
tempered manner, while no diffuse functions were added for
l = n [23].

In the present work, we made some modifications to the
existing nZaP and nZaPa basis sets for neon. First, because
we noticed small but not insignificant irregularities in the
exponents also for this family of basis sets, we tried to further
optimize the exponents of the primitive functions (while still
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FIG. 1. Highest s, p, d , and f exponents of the primitive basis
functions in the original nZaP basis sets [21] for 5 � n � 10 and in
the reoptimized (5 � n � 10) and new (11 � n � 13) basis sets of
this work, nZaP′. The connecting lines are shown for clarity.

keeping them even tempered) for the 5ZaP to 10ZaP basis sets.
The 9ZaP basis set [21] was published with a wrong exponent
for the single diffuse s function (it had the same exponent as in
the 8ZaP basis set), which we corrected before reoptimizing
the basis set. For 5ZaP, the achieved FC-MP2 energy lowering
is only about 1.5 × 10−7 Eh, but for the higher basis sets it
is more significant. The largest lowering of approximately
2.0 × 10−5 Eh was achieved for 10ZaP, for which the most
drastic change in any of the individual exponents was found
for the higher of the two m function exponents, decreasing
from 11.9658 to 8.7947. The reoptimized basis sets, which we
believe to be optimized to within 1 × 10−9 Eh, are denoted as
nZaP′. In Fig. 1, the changes in the exponents are exemplarily
shown for the highest exponents of the primitive functions
of s, p, d , and f symmetry. The figure demonstrates that the
n dependence is distinctly smoother after the reoptimization.
In the next step, we removed the diffuse s and p functions
from the basis sets and added new diffuse functions, which
we generated by multiplying the smallest exponent for each
angular momentum (including the highest) by a factor of 0.5.
The resulting basis sets are denoted as aug-nZP′ (without
diffuse functions, they are denoted simply as nZP′). Doubly
augmented versions of these basis sets, d-aug-nZP′, were gen-
erated from the augmented ones in the same manner, and we
continued this procedure until reaching quadruply augmented
basis sets, q-aug-nZP′.

In addition to modifying already existing basis sets, we also
developed nZP′ basis sets for n = 11 to n = 13. In the first
step, the exponents of the primitive sets (27s20p), (29s22p),
and (31s24p), intended for n = 11, 12, and 13, respectively,
were fully optimized by minimizing the SCF energy and
then contracted to [2s1p]. The size of each set of primitives

FIG. 2. Exponent of the set of functions with the highest angular
momentum l = n in the original nZaP basis sets [21] for 5 � n � 10
(e.g., for n = 5 the exponent of the single set of h functions) and in
the reoptimized (5 � n � 10) and new (11 � n � 13) basis sets of
this work, nZaP′. The connecting lines and the dotted line are shown
for clarity.

was chosen such that the increment pattern established by
the existing 9ZaP and 10ZaP basis sets is continued. The
smallest s and p exponents in each of the new sets were then
used for generating a single diffuse s function and a single
set of diffuse p functions to adhere to the scheme used for
constructing the original nZaP basis sets [21]. Following again
the original scheme [21], the required even-tempered sets of
primitive functions for all angular momenta were added and
optimized by minimizing the FC-MP2 energy, resulting in
11ZaP′, 12ZaP′, and 13ZaP′ basis sets. The highest exponents
of the primitive functions of s, p, d , and f symmetry for the
three basis sets are included in Fig. 1 to illustrate the smooth
behavior of these exponents for the full range of n values
up to n = 13. In the final step, the diffuse s and p functions
were removed again and replaced by new diffuse functions
generated as described above. Already the 13ZP′ basis set,
which has no dedicated diffuse functions, is certainly one of
the largest Gaussian basis sets developed so far. In addition to
the [2s1p] set, it has 12 s, 12 p, 12 d , 11 f , 10 g, 9 h, 8 i, 7
k, 6 l , 5 m, 4 n, 3 o, 2 q, and 1 r set of primitive functions. In
the case of the q-aug-13ZP′ basis set, each of these numbers
of primitive sets is increased by 4.

In Fig. 2, we show an interesting pattern in the values for
the exponent of the set of functions with the highest angular
momentum in the nZaP′ basis sets, where the values for even n
are always above and for odd n always below a straight trend
line. This results, for example, in the exponent of the single
set of r functions in 13ZaP′ being actually smaller than the
exponent of the single set of q functions in 12ZaP′, despite the
trend line rising. This behavior is not apparent for the original
nZaP basis sets.

For calculations with all electrons correlated, we removed
the even-tempered s and p primitives from the nZP′ basis sets
and uncontracted the basis sets. For each angular momentum
l from l = 2 (i.e., d symmetry) up to the third-highest angu-
lar momentum l = n − 2, two tight functions were generated
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by multiplying the highest exponent of the existing even-
tempered sets by factors of 2 and 6. For the second-highest
angular momentum l = n − 1, a single set of tight functions
was generated by multiplying the higher exponent of the two
existing sets of functions of this angular momentum by a
factor of 3. For the highest angular momentum l = n, no
tight functions were added. The first layer of diffuse functions
was generated as described above by multiplying the smallest
exponent for each angular momentum (including l = 0 and
l = 1) by a factor of 0.5. Doubly and triply augmented sets
were generated by repeating this procedure two times. The
resulting basis sets are denoted as (d-, t-)aug-CnZP′.

The SCF and MP2 calculations needed to reoptimize the
existing basis sets and to develop the new ones were carried
out with the PSI3 code [24]. Some of the correlation consistent
basis sets for neon used in this work were obtained from the
Basis Set Exchange [25–27]. The nZaP basis sets up to n = 10
were taken from the supplement of the original publication
[21]. The nZP′ basis sets for n = 5 to n = 13 developed in
this work are provided in the Supplemental Material [28].

III. CALCULATION OF THE POLARIZABILITY

A. General approach

The energy E of a noble gas atom in a static, homogeneous
electric field with strength E can be written as

E (E ) = E0 + 1

2

(
∂2E

∂E 2

)
E =0

E 2 + O(E 4), (3)

where E0 is the energy of the atom in the absence of a field.
With α = −(∂2E/∂E 2)E =0, we obtain

E (E ) = E0 − 1
2αE 2 + O(E 4), (4)

and hence

2[E0 − E (E )]

E 2
= α + O(E 2). (5)

Equation (5) allows the evaluation of α by calculating E0

as well as E for at least two different small field strengths,
followed by extrapolation of 2[E0 − E (E )]/E 2 linearly in E 2

to E = 0. In this work, we applied field strengths of 0.005 and
0.01 a.u.

We note that the quantum-chemical program package
CFOUR [29,30] can evaluate the second derivative α =
−(∂2E/∂E 2)E =0 analytically for several high-level ab initio
methods and thus allows a direct evaluation of α from a
single calculation. Both orbital-relaxed and orbital-unrelaxed
analytical derivative calculations are possible. The numer-
ical second-derivative procedure with finite electric fields
conforms to the orbital-relaxed analytical approach. Because
the computational effort for the analytical implementation is
much higher than for the numerical procedure and because
the public version of CFOUR can only handle basis functions
up to i symmetry, we used this analytical implementation only
for a few test calculations to determine the accuracy of the nu-
merical derivative approach. We found that the polarizabilities
obtained with the two approaches agree to within about six to
seven digits, which is sufficient for our purposes.

The total static electric-dipole polarizability is formulated
as

α = αFCI + �αFNM + �αFNS + �αrel + �αQED, (6)

where αFCI is the nonrelativistic polarizability in the FCI limit
assuming a point nucleus of infinite mass, �αFNM and �αFNS

are the corrections for finite nuclear mass and size effects, and
�αrel and �αQED are the corrections for relativistic and QED
effects. Each of these terms is made up of several individual
contributions, with the starting point being the polarizability
at the SCF level of theory as part of αFCI. Many of these
individual contributions required extrapolation to the CBS
limit. In most cases, we applied the standard two-parameter
CBS extrapolation scheme recommended by Halkier et al.
[31],

�α(n) = �α(CBS) + a

n3
. (7)

As is commonly done with this scheme, we only used the
two highest basis set levels in the extrapolation. For some
contributions, a third fit parameter was introduced,

�α(n) = �α(CBS) + a

n3
+ b

n4
, (8)

and more than the minimally required three basis set levels
were included in the fit with this formula to obtain more stable
results. We tested a few alternative three-parameter schemes,
but none were as simple and stable as the one given by Eq. (8).

In the following subsections, we discuss the calculation of
the terms αFCI, �αFNM, �αFNS, �αrel, and �αQED.

B. Nonrelativistic polarizability in the FCI limit assuming
a point nucleus of infinite mass

The nonrelativistic polarizability in the FCI limit of a neon
atom with a pointlike nucleus of infinite mass, αFCI, is ex-
pressed here as a sum of two main contributions:

αFCI = αCCSD(T) + �αFCI−CCSD(T), (9)

where αCCSD(T) denotes the value for the coupled-cluster
level with single, double, and perturbative triple excitations
[CCSD(T)] [32], and �αFCI−CCSD(T) is the correction for
higher coupled-cluster contributions up to the FCI limit.

The contribution αCCSD(T) was split into five parts:

αCCSD(T) = αSCF + �αFC
OS-MP2 + �αFC

SS-MP2

+ �αFC
CCSD(T)−MP2 + �αAE−FC

CCSD(T), (10)

where αSCF is the polarizability at the SCF level of theory,
�αFC

OS-MP2 and �αFC
SS-MP2 denote the FC-MP2 correlation con-

tributions from the opposite-spin (OS) and same-spin (SS)
electron pairs, �αFC

CCSD(T)−MP2 is the polarizability difference
between the FC-CCSD(T) and FC-MP2 levels of theory, and
�αAE−FC

CCSD(T) denotes the polarizability difference between the
all-electron (AE) CCSD(T) and FC-CCSD(T) levels.

The contributions αSCF, �αFC
OS-MP2, �αFC

SS-MP2, and
�αFC

CCSD(T)−MP2 were obtained for the basis sets aug-nZP′,
d-aug-nZP′, t-aug-nZP′, and q-aug-nZP′ with n = 5 to
n = 12 from FC-CCSD(T) calculations. For n = 13, we only
performed FC-MP2 calculations and, thus, did not obtain
�αFC

CCSD(T)−MP2. The results (in a.u.) are listed in Table I.

022809-4



AB INIT IO DETERMINATION OF THE … PHYSICAL REVIEW A 105, 022809 (2022)

TABLE I. Calculated and extrapolated values for the polarizabil-
ity at the SCF level of theory, αSCF; for the OS and SS parts to
the FC-MP2 correlation polarizability contribution, �αFC

OS-MP2 and
�αFC

SS-MP2; and for the polarizability difference between the FC-
CCSD(T) and FC-MP2 levels of theory, �αFC

CCSD(T)−MP2. In this table
and the following tables, all values are in a.u., and the final values
are given in bold, with the numbers in parentheses indicating the
estimated uncertainties.

n aug-nZP′ d-aug-nZP′ t-aug-nZP′ q-aug-nZP′

αSCF

5 2.262392 2.374824 2.376657 2.376664
6 2.301248 2.376012 2.376729 2.376729
7 2.336013 2.376565 2.376744 2.376743
8 2.352704 2.376693 2.376745 2.376745
9 2.362290 2.376727 2.376744 2.376744
10 2.367146 2.376737 2.376744 2.376744
11 2.370282 2.376741 2.376744 2.376744
12 2.371939 2.376743 2.376744 2.376744
13 2.373176 2.376744 2.376745 2.376745(1)

�αFC
OS-MP2

5 0.179505 0.219402 0.221096 0.221100
6 0.189780 0.218441 0.219204 0.219208
7 0.200338 0.217832 0.218118 0.218122
8 0.205976 0.217310 0.217450 0.217455
9 0.209537 0.216947 0.217025 0.217030
10 0.211461 0.216682 0.216736 0.216741
11 0.212789 0.216505 0.216542 0.216546
12 0.213513 0.216371 0.216400 0.216403
13 0.214084 0.216279 0.216300 0.216302
∞ 0.215897(8)

�αFC
SS-MP2

5 0.081299 0.103285 0.104152 0.104156
6 0.087572 0.103678 0.104061 0.104062
7 0.093918 0.103903 0.104021 0.104021
8 0.097421 0.103960 0.104001 0.104001
9 0.099678 0.103975 0.103990 0.103990
10 0.100936 0.103978 0.103984 0.103985
11 0.101813 0.103979 0.103981 0.103981
12 0.102307 0.103978 0.103979 0.103979
13 0.102695 0.103978 0.103978 0.103978
∞ 0.103976(1)

�αFC
CCSD(T)−MP2

5 −0.024106 −0.031554 −0.031790 −0.031802
6 −0.026847 −0.032419 −0.032560 −0.032566
7 −0.029388 −0.032805 −0.032881 −0.032887
8 −0.030798 −0.032984 −0.033037 −0.033042
9 −0.031684 −0.033080 −0.033120 −0.033123
10 −0.032182 −0.033136 −0.033167 −0.033171
11 −0.032514 −0.033173 −0.033198 −0.033200
12 −0.032708 −0.033197 −0.033218 −0.033218
∞ −0.033265(3)

Our best estimate for αSCF is the value obtained with the
q-aug-13ZP′ basis set,

αSCF = 2.376 745(1),

where the number in parentheses indicates our estimate of
the uncertainty in the last digit. The other three contribu-
tions were extrapolated to the CBS limit. For �αFC

OS-MP2 and

FIG. 3. Deviations of fitted values for the OS-MP2 polarizability
contribution from the respective ab initio calculated values for the
q-aug-nZP basis sets derived from the original nZaP basis sets [21]
and for the q-aug-nZP′ basis sets derived from the reoptimized nZaP
basis sets, nZaP′, as a function of n. The fits were performed with all
n in the range from 5 to 10 using Eq. (8). Note that the final fit of the
OS-MP2 polarizability contribution involves basis sets up to n = 13.

�αFC
CCSD(T)−MP2, the extrapolation was performed by fitting

Eq. (8) to the values for the q-aug-7ZP′ to q-aug-13ZP′ and
q-aug-8ZP′ to q-aug-12ZP′ basis sets, respectively. The con-
tribution �αFC

SS-MP2 converges very quickly to the CBS limit,
since in this case the error is not approximately proportional to
n−3 but to n−5. The extrapolation was performed using Eq. (7),
but, consequently, with the exponent of n in the denominator
changed from 3 to 5. Only the �αFC

SS-MP2 values for n = 12 and
n = 13 were used for this extrapolation. The resulting CBS
estimates for the three contributions are

�αFC
OS-MP2 = 0.215 897(8),

�αFC
SS-MP2 = 0.103 976(1),

�αFC
CCSD(T)−MP2 = −0.033 265(3),

where the given uncertainties were estimated from the sta-
bility of the extrapolated values upon varying the ranges
of n values included in the extrapolation. Particularly for
�αFC

OS-MP2, it was crucial to use for up to n = 10 the reop-
timized basis sets of this work in order to obtain a stable
estimate for the CBS limit. Figure 3 illustrates how well
Eq. (8) can fit the q-aug-nZP′ results for n = 5 to n = 10 in
contrast to the respective q-aug-nZP results. The Supplemen-
tal Material [28] provides further details on the procedure to
obtain the CBS estimate for �αFC

OS-MP2 and its uncertainty.
The last term in Eq. (10), �αAE−FC

CCSD(T), was computed using
the aug-CnZP′, d-aug-CnZP′, and t-aug-CnZP′ basis sets with
n ranging from 5 to 11 for the singly and doubly augmented
basis sets and from 5 to 10 for the triply augmented ones. The
resulting values are given in Table II. The extrapolation to the
CBS limit was performed using Eq. (8) with the results for the
basis sets d-aug-C7ZP′ to d-aug-C11ZP′, yielding

�αAE−FC
CCSD(T) = −0.006 976(3),
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TABLE II. Calculated values for the polarizability difference
between the AE-CCSD(T) and FC-CCSD(T) levels of theory,
�αAE−FC

CCSD(T), and the final extrapolated value.

n aug-CnZP′ d-aug-CnZP′ t-aug-CnZP′

5 −0.006172 −0.006784 −0.006810
6 −0.006467 −0.006884 −0.006896
7 −0.006674 −0.006928 −0.006932
8 −0.006788 −0.006948 −0.006950
9 −0.006853 −0.006959 −0.006959
10 −0.006890 −0.006965 −0.006965
11 −0.006914 −0.006968
∞ −0.006976(3)

where, again, the uncertainty was estimated from the stability
of the extrapolated value upon varying the range of values
included in the fit of Eq. (8).

Adding the different contributions to αCCSD(T) and adding
their uncertainties in quadrature, we obtain

αCCSD(T) = 2.656 376(9).

All contributions to αCCSD(T) were calculated using PSI3 [24].
Next, we discuss the correction for higher coupled-cluster

levels up to FCI, �αFCI−CCSD(T), which was split into a total
of nine contributions,

�αFCI−CCSD(T) = �αFC
T−(T) + �αFC

(Q)−T + �αFC
Q−(Q) + �αFC

P−Q

+ �αFC
H−P + �αFC

FCI−H + �αAE−FC
(Q)−(T)

+ �αAE−FC
Q−(Q) + �αAE−FC

P−Q . (11)

The terms �αFC
T−(T), �αFC

(Q)−T, �αFC
Q−(Q), �αFC

P−Q, �αFC
H−P,

and �αFC
FCI−H denote the polarizability differences within the

FC approximation between the CCSDT [33] and CCSD(T),
CCSDT(Q) [34,35] and CCSDT, CCSDTQ [35–37] and
CCSDT(Q), CCSDTQP [38] and CCSDTQ, CCSDTQPH and
CCSDTQP, and FCI and CCSDTQPH levels of theory, respec-
tively. The contribution �αAE−FC

(Q)−(T) corrects the terms �αFC
T−(T)

and �αFC
(Q)−T for the inclusion of the 1s electrons in the

correlation treatment and was calculated by subtracting the
polarizability difference between the FC-CCSDT(Q) and FC-
CCSD(T) levels from the polarizability difference between the
AE-CCSDT(Q) and AE-CCSD(T) levels. Similarly, �αAE−FC

Q−(Q)

and �αAE−FC
P−Q are the AE corrections for �αFC

Q−(Q) and �αFC
P−Q.

For �αFC
H−P and �αFC

FCI−H, the AE corrections could not be
calculated with reasonably sized basis sets due to the extreme
computational costs and, therefore, had to be neglected.

The contribution �αFC
T−(T) was calculated using the aug-

nZP′ and d-aug-nZP′ basis sets up to n = 9 and the t-aug-nZP′

basis sets up to n = 8 (see Table III for the results). The
general coupled-cluster code MRCC [39,40] was used for the
calculations. The extrapolation to the CBS limit was per-
formed using Eq. (7) with the d-aug-nZP′ basis sets using,
as for all final extrapolations with this equation, the results for
the two highest n values, which yields

�αFC
T−(T) = −0.001 039(2).

TABLE III. Calculated values for the polarizability difference
between the FC-CCSDT and FC-CCSD(T) levels of theory, �αFC

T−(T),
and the final extrapolated value.

n aug-nZP′ d-aug-nZP′ t-aug-nZP′

5 −0.000543 −0.000733 −0.000735
6 −0.000750 −0.000853 −0.000856
7 −0.000880 −0.000919 −0.000924
8 −0.000948 −0.000958 −0.000962
9 −0.000985 −0.000982
∞ −0.001039(2)

When the results for the second and third highest n values
are used in the extrapolation, the resulting value for the CBS
limit differs only by 1.3 × 10−6, which justifies the given
uncertainty estimate.

For the calculation of the term �αFC
(Q)−T, we used CFOUR

[29]. Since the public version of CFOUR can only handle basis
functions up to i symmetry, the (d-,t-)aug-nZP′ basis sets can
only be used for n � 6. To obtain larger basis sets that do not
contain functions of k and higher symmetry, we removed the
basis functions with the three highest angular momenta from
the (d-,t-)aug-nZP′ basis sets up to n = 9. These basis sets
are denoted as (d-,t-)aug-n−3ZP′. Table IV lists the resulting
values for �αFC

(Q)−T. The final extrapolated value,

�αFC
(Q)−T = 0.001 162(5),

was obtained using the results for t-aug-8−3ZP′

and t-aug-9−3ZP′ with Eq. (7), in which n was replaced
by n − 3 to account for the fact that this extrapolation
scheme, on theoretical grounds, is not actually tied to the
value of n but to the value of the highest angular momentum
present in the basis set, lmax, which is normally identical to
n. If the extrapolation is performed using the results for the
basis sets t-aug-7−3ZP′ and t-aug-8−3ZP′, the resulting CBS
estimate is 0.001 157, and the difference between the two
CBS values is taken as the final value’s uncertainty estimate.

The contributions �αFC
Q−(Q), �αFC

P−Q, �αFC
H−P, and �αFC

FCI−H
were calculated using (d-, t-)aug-cc-pVnZ basis sets, with the
size of the largest basis set that could be handled with the
available computational equipment steadily decreasing from
�αFC

Q−(Q) to �αFC
FCI−H (see Table V). The CCSDT(Q) and

TABLE IV. Calculated values for the polarizability difference be-
tween the FC-CCSDT(Q) and FC-CCSDT levels of theory, �αFC

(Q)−T,
and the final extrapolated value. The employed (d-,t-)aug-n−3ZP′

basis sets are identical to the (d-,t-)aug-nZP′ basis sets, except that
the functions with the highest three angular momenta have been
removed.

n aug-n−3ZP′ d-aug-n−3ZP′ t-aug-n−3ZP′

5 0.000558 0.000736 0.000746
6 0.000854 0.001032 0.001038
7 0.000992 0.001108 0.001110
8 0.001053 0.001132 0.001133
9 0.001091 0.001145 0.001145
∞ 0.001162(5)

022809-6



AB INIT IO DETERMINATION OF THE … PHYSICAL REVIEW A 105, 022809 (2022)

TABLE V. Calculated and final extrapolated values for the polar-
izability differences between the FC-CCSDTQ and FC-CCSDT(Q)
levels of theory, �αFC

Q−(Q); between the FC-CCSDTQP and FC-
CCSDTQ levels of theory, �αFC

P−Q; between the FC-CCSDTQPH and
FC-CCSDTQP levels of theory, �αFC

H−P; and between the FC-FCI and
FC-CCSDTQPH levels of theory, �αFC

FCI−H. Note the additional digit
given for �αFC

FCI−H because of its very small magnitude.

n aug-cc-pVnZ d-aug-cc-pVnZ t-aug-cc-pVnZ

�αFC
Q−(Q)

2 −0.000132 −0.000345 −0.000383
3 −0.000207 −0.000438 −0.000456
4 −0.000208 −0.000355 −0.000357
5 −0.000256 −0.000330 −0.000331
6 −0.000274 −0.000316
∞ −0.000297(7)

�αFC
P−Q

2 −0.000051 −0.000309 −0.000323
3 −0.000271 −0.000498 −0.000501
4 −0.000382 −0.000476
∞ −0.000460(16)

�αFC
H−P

2 −0.000010 −0.000034 −0.000035
3 −0.000021 −0.000039
∞ −0.000042(2)

�αFC
FCI−H

2 −0.0000003 −0.0000013 −0.0000013(7)
3 −0.0000006

CCSDTQ calculations were performed with CFOUR, while
all post-CCSDTQ calculations, including the FCI calcula-
tions, were carried out with MRCC. For �αFC

Q−(Q), �αFC
P−Q,

and �αFC
H−P, the final extrapolated values were obtained using

Eq. (7) with the results for the d-aug-cc-pVnZ basis sets,

�αFC
Q−(Q) = −0.000 297(7),

�αFC
P−Q = −0.000 460(16),

�αFC
H−P = −0.000 042(2),

where the uncertainty for �αFC
Q−(Q) is the difference between

the extrapolated value obtained with n = 5 and n = 6 and that
obtained with n = 4 and n = 5, while for �αFC

P−Q and �αFC
H−P

the uncertainties were estimated as the differences between
the extrapolated values and those obtained with the largest
basis sets. The FCI calculations could only be performed with
the basis sets aug-cc-pVDZ, aug-cc-pVTZ, d-aug-cc-pVDZ,
and t-aug-cc-pVDZ. Because the singly augmented basis sets
are clearly not saturated with diffuse functions, we did not
use them to extrapolate to the CBS limit. Instead, we used the
value for the t-aug-cc-pVDZ basis set as our final result,

�αFC
FCI−H = −1.3(7) × 10−6,

where the uncertainty was estimated as one-half of the abso-
lute value of this correction.

The AE correction terms �αAE−FC
(Q)−(T), �αAE−FC

Q−(Q) , and
�αAE−FC

P−Q were computed using (d-, t-)aug-u-cc-pCVnZ basis
sets (see Table VI). The calculations up to the CCSDTQ

TABLE VI. Calculated and final extrapolated values for the AE
corrections �αAE−FC

(Q)−(T), �αAE−FC
Q−(Q) , and �αAE−FC

P−Q of the contributions
�αFC

(Q)−(T) = �αFC
T−(T) + �αFC

(Q)−T, �αFC
Q−(Q), and �αFC

P−Q, respectively.

n aug-u-cc-pCVnZ d-aug-u-cc-pCVnZ t-aug-u-cc-pCVnZ

�αAE−FC
(Q)−(T)

2 0.000007 0.000021 0.000020
3 −0.000013 −0.000033 −0.000033
4 −0.000012 −0.000027 −0.000027
5 −0.000012 −0.000022 −0.000022
6 −0.000014 −0.000020 −0.000020
∞ −0.000018(3)

�αAE−FC
Q−(Q)

2 −0.000001 −0.000002 −0.000003
3 0.000002 0.000005 0.000005
4 0.000006 0.000008 0.000009
5 0.000008 0.000009
∞ 0.000010(1)

�αAE−FC
P−Q

2 0.000002 0.000005 0.000005
3 0.000008 0.000015
∞ 0.000019(4)

level of theory were carried out with CFOUR, while for the
CCSDTQP calculations the MRCC program was used. The
CBS extrapolations were performed using Eq. (7) with the re-
sults for the triply augmented basis sets with n = 5 and n = 6
for �αAE−FC

(Q)−(T) and with the results for the doubly augmented
sets with n = 4 and n = 5 for �αAE−FC

Q−(Q) and with n = 2 and
n = 3 for �αAE−FC

P−Q , yielding

�αAE−FC
(Q)−(T) = −0.000 018(3),

�αAE−FC
Q−(Q) = 0.000 010(1),

�αAE−FC
P−Q = 0.000 019(4),

where the uncertainty estimates were obtained as the differ-
ences between the extrapolated values and those for the largest
basis sets.

The resulting final value for the FCI correction to αCCSD(T)

is

�αFCI−CCSD(T) = −0.000 667(19),

with which we obtain an FCI estimate of

αFCI = 2.655 710(21).

C. Finite nuclear mass and size corrections

In this work, the correction for finite nuclear mass ef-
fects, �αFNM, is the diagonal Born-Oppenheimer correction
(DBOC) to the polarizability, which accounts for both mass
scaling and mass polarization effects. The DBOC for the total
energy of a neon atom can be written as [41,42]

�EDBOC = − 1

2Mnuc
〈�|∇2

nuc|�〉, (12)
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TABLE VII. Calculated values for the DBOC at the AE-CCSD
level of theory, �αCCSD

DBOC; the DBOC difference between the AE-
CCSDT and AE-CCSD levels, �αT−D

DBOC; and the DBOC difference
between the AE-CCSDTQ and AE-CCSDT levels, �α

Q−T
DBOC. Note

the additional digit given for �α
Q−T
DBOC because of its very small

magnitude.

n aug-u-cc-pCVnZ d-aug-u-cc-pCVnZ t-aug-u-cc-pCVnZ

�αCCSD
DBOC

2 0.000020 0.000087 0.000090
3 0.000048 0.000082 0.000081
4 0.000068 0.000082 0.000082
5 0.000076 0.000082 0.000082
6 0.000078 0.000082 0.000082(1)

�αT−D
DBOC

2 −0.000003 −0.000007 −0.000007
3 −0.000006 −0.000008 −0.000009
4 −0.000007 −0.000008 −0.000008
5 −0.000008 −0.000008(1)

�α
Q−T
DBOC

2 −0.0000004 −0.0000016 −0.0000016
3 −0.0000012 −0.0000022(6)

where Mnuc is the mass of the nucleus, � is the nor-
malized electronic wave function resulting with the Born-
Oppenheimer approximation, and the operator ∇2

nuc acts on
the nuclear coordinates. The DBOC to the polarizability is
obtained as �αDBOC = −(∂2�EDBOC/∂E 2)E =0 by applying,
as before, the numerical differentiation approach described in
Sec. III A.

We calculated �αFNM as a sum of three DBOC terms,

�αFNM = �αCCSD
DBOC + �αT−D

DBOC + �α
Q−T
DBOC, (13)

where �αCCSD
DBOC is the DBOC contribution at the AE-CCSD

level of theory, �αT−D
DBOC denotes the DBOC difference be-

tween the AE-CCSDT and AE-CCSD levels, and �α
Q−T
DBOC

is the DBOC difference between the AE-CCSDTQ and AE-
CCSDT levels. The three contributions were calculated using
(d-, t-)aug-u-cc-pCVnZ basis sets. All calculations were per-
formed for the dominant 20Ne isotope, and the results were
corrected by scaling them with the ratio of the mass of 20Ne
to the average atomic mass of natural neon. The scaled results
are given in Table VII. Because the basis set convergence is
somewhat erratic, we did not extrapolate these terms to the
CBS limit. Instead, we used the values for the highest basis
set levels (t-aug-u-cc-pCV6Z for �αCCSD

DBOC, d-aug-u-cc-pCV5Z
for �αT−D

DBOC, and d-aug-u-cc-pCVTZ for �α
Q−T
DBOC), which are

�αCCSD
DBOC = 0.000 082(1),

�αT−D
DBOC = −0.000 008(1),

�α
Q−T
DBOC = −2.2(6) × 10−6,

where the uncertainty of �α
Q−T
DBOC was estimated as the differ-

ence between the values obtained with the d-aug-u-cc-pCVDZ
and d-aug-u-cc-pCVTZ basis sets. From these results, we
obtain

�αFNM = 0.000 072(2).

To verify the correctness of our approach, we applied it also
to helium. The �αFNM value for 4He that we obtained by
calculating the DBOC at the FCI level with a triply augmented
7Z-quality basis set differs from the sum of the respective
mass scaling contribution (which is a simple function of the
ratio of the mass of an electron to that of the nucleus) and the
mass polarization contribution determined by Pachucki and
Sapirstein [7] by only about 0.1%.

While the DBOC calculations at the CCSD level of the-
ory were performed with CFOUR [29,30], the CCSDT and
CCSDTQ levels required the use of the interface between
CFOUR and MRCC [39,40].

The finite nuclear size correction �αFNS is extremely
small. It was determined by Lesiuk et al. [10] to be only
1.4 × 10−6. However, their value has the wrong sign, which
is obvious from the equation they used to determine this
contribution (which is correct). We adopt the corrected value
for the present work,

�αFNS = −1.4(1) × 10−6.

D. Relativistic and QED corrections

All polarizability calculations reported in this paper so far
correspond to the nonrelativistic limit, i.e., an infinite speed
of light c. For a finite speed of light, the polarizability can be
expanded in powers of 1/c, and we can then write it in the
form

α = α(0) + �α
(2)
rel + �α

(3)
QED + �α

(4)
rel+QED + · · · , (14)

where α(0) is the nonrelativistic limit, �α
(2)
rel is the relativistic

correction of order 1/c2, �α
(3)
QED is the QED contribution

of order 1/c3, �α
(4)
rel+QED contains both relativistic and QED

contributions of order 1/c4, and so forth. We calculated the
total relativistic correction �αrel as the sum of the �α

(2)
rel con-

tribution and a correction �α
(4+)
rel for fourth- and higher-order

contributions,

�αrel = �α
(2)
rel + �α

(4+)
rel , (15)

while the QED correction �αQED accounts for contributions
up to order 1/c4,

�αQED = �α
(3)
QED + �α

(4)
QED. (16)

For all relativistic and QED contributions considered in this
work, the nucleus is approximated as a point of infinite mass.
Thus, any finite nuclear mass and size effects are neglected.

The relativistic correction �α
(2)
rel follows from the Breit-

Pauli Hamiltonian and is given for a closed-shell system, such
as the neon atom, as

�α
(2)
rel = �αMV + �αD1 + �αD2 + �αSS + �αOO, (17)

where �αMV is the mass-velocity term, �αD1 and �αD2 are
the one- and two-electron Darwin contributions, �αSS is the
spin-spin term, and �αOO is the orbit-orbit contribution. The
spin-spin term can be eliminated for a closed-shell system
using the relation �αSS = −2�αD2, so that we can write

�α
(2)
rel = �αMV + �αD1 − �αD2 + �αOO. (18)

The four polarizability contributions in Eq. (18) were obtained
by applying again the numerical differentiation approach
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TABLE VIII. Calculated and final extrapolated values for
the sum of the mass-velocity and one-electron Darwin cor-
rections, �α

CCSD(T)
MV + �α

CCSD(T)
D1 , and the two-electron Darwin

correction �α
CCSD(T)
D2 at the AE-CCSD(T) level of theory. The

(d-, t-)aug-Cn−3ZP′ basis sets are formed from the (d-, t-)aug-CnZP′

basis sets by removing the functions with the highest three angular
momenta.

n aug-Cn−3ZP′ d-aug-Cn−3ZP′ t-aug-Cn−3ZP′

�α
CCSD(T)
MV + �α

CCSD(T)
D1

5 0.003952 0.004399 0.004424
6 0.004052 0.004362 0.004373
7 0.004126 0.004320 0.004324
8 0.004178 0.004304 0.004306
9 0.004211 0.004297 0.004298
∞ 0.004287(1)

�α
CCSD(T)
D2

5 −0.000053 −0.000066 −0.000067
6 −0.000048 −0.000055 −0.000056
7 −0.000039 −0.000043 −0.000043
8 −0.000035 −0.000037 −0.000037
9 −0.000032 −0.000033 −0.000033
∞ −0.000013(7)

described in Sec. III A. Explicit expressions for the Hamiltoni-
ans from which �EMV, �ED1, �ED2, and �EOO are obtained
can be found, for example, in Ref. [43].

The terms �αMV, �αD1, and �αD2 were calculated as

�αMV = �α
CCSD(T)
MV + �α

T−(T)
MV + �α

Q−T
MV , (19)

�αD1 = �α
CCSD(T)
D1 + �α

T−(T)
D1 + �α

Q−T
D1 , (20)

�αD2 = �α
CCSD(T)
D2 + �α

T−(T)
D2 + �α

Q−T
D2 , (21)

where �α
CCSD(T)
MV is the mass-velocity contribution at the

AE-CCSD(T) level of theory, �α
T−(T)
MV and �α

Q−T
MV are the cor-

rections for higher coupled-cluster levels up to AE-CCSDT
and AE-CCSDTQ, respectively, and the individual terms for
�αD1 and �αD2 have analogous definitions. All CCSD(T) and
CCSDT calculations were performed using CFOUR [29,30],
while the interface between CFOUR and MRCC was employed
for the CCSDTQ calculations.

For the CCSD(T) calculations, we used
(d-, t-)aug-Cn−3ZP′ basis sets, which were obtained from
the (d-, t-)aug-CnZP′ basis sets by removing the basis
functions with the highest three angular momenta. The
calculations were performed up to n = 9; the results are
shown in Table VIII. Since there is always a large degree
of cancellation between the mass-velocity and one-electron
Darwin terms, it is advantageous to deal only with their sum
and extrapolate this sum to the CBS limit. We performed the
extrapolation using Eq. (7) (with n replaced by n − 3) with
the triply augmented basis sets, yielding

�α
CCSD(T)
MV + �α

CCSD(T)
D1 = 0.004 287(1).

The extrapolation yields the same value within the given num-
ber of digits even if we use only the results for the basis sets
with n = 7 and n = 8 or n = 6 and n = 7, so that the low

uncertainty estimate is reasonable. For the CBS extrapolation
of the two-electron Darwin term, we have to take into account
that in this case the basis set incompleteness error is approxi-
mately proportional to 1/lmax [44], so that we need to modify
Eq. (7) by not only replacing n by n − 3 but also by changing
the exponent in the denominator from 3 to 1. The extrapolated
value is

�α
CCSD(T)
D2 = −0.000 013(7),

where the large uncertainty estimate (one-half of the absolute
value of this term) was chosen to account for the slow basis set
convergence, although it is reassuring that the extrapolation
with n = 7 and n = 8 yields the same value within the given
number of digits.

The corrections for the higher coupled-cluster levels were
calculated using (d-, t-)aug-u-cc-pCVnZ basis sets. In the
case of the terms �α

T−(T)
MV , �α

T−(T)
D1 , and �α

T−(T)
D2 , the calcula-

tions were performed up to n = 6 for all augmentation levels,
whereas the terms �α

Q−T
MV , �α

Q−T
D1 , and �α

Q−T
D2 could only be

calculated up to n = 4 for the singly and doubly augmented
sets and up to n = 3 for the triply augmented ones. The results
are listed in Table IX. The CBS extrapolations for these terms
were performed in the same way as for the corresponding
terms at the AE-CCSD(T) level of theory (but taking into
account that lmax = n instead of lmax = n − 3), using for the
AE-CCSDT corrections the values for the t-aug-u-cc-pCV5Z
and t-aug-u-cc-pCV6Z basis sets and for the AE-CCSDTQ
corrections the values for the d-aug-u-cc-pCVTZ and d-aug-
u-cc-pCVQZ basis sets. The resulting final values are

�α
T−(T)
MV + �α

T−(T)
D1 = −0.000 015(1),

�α
T−(T)
D2 = 4.0(3) × 10−6,

�α
Q−T
MV + �α

Q−T
D1 = 0.000 012(3),

�α
Q−T
D2 = −2.6(6) × 10−6,

where we obtain the same values for the AE-CCSDT correc-
tions within the given number of digits when we extrapolate
with the t-aug-u-cc-pCVQZ and t-aug-u-cc-pCV5Z basis sets.
For �α

T−(T)
D2 , the given uncertainty is the difference between

the final value and that obtained by using the basis sets t-aug-
u-cc-pCVTZ and t-aug-u-cc-pCVQZ for the extrapolation.
For the AE-CCSDTQ corrections, the uncertainty estimates
were obtained as the differences between the final values
and those resulting from extrapolations with the d-aug-u-cc-
pCVDZ and d-aug-u-cc-pCVTZ basis sets. We did not attempt
to determine corrections for coupled-cluster levels beyond
CCSDTQ because the CCSDTQ calculations were already
extremely costly in terms of computing time.

We are not aware of any widely distributed quantum chem-
istry codes that could be used to compute the full orbit-orbit
contribution �αOO. Lesiuk et al. [10], who refer to this
contribution as the Breit correction, calculated it at the AE-
CCSD(T) level of theory using an in-house code, and we
adopt their value and uncertainty estimate for it,

�αOO = 0.001 279(10).

The resulting total relativistic correction of order 1/c2 is

�α
(2)
rel = 0.005 575(12).
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TABLE IX. Calculated and final extrapolated values for the
difference between the sum of the mass-velocity and one-electron
Darwin contributions obtained at the AE-CCSDT level of theory and
the sum of these contributions obtained at the AE-CCSD(T) level,
�α

T−(T)
MV + �α

T−(T)
D1 , and for the difference between the two-electron

Darwin contributions obtained at the AE-CCSDT and AE-CCSD(T)
levels of theory, �α

T−(T)
D2 . Furthermore, the analogously defined

terms for the differences resulting from calculations at the AE-
CCSDTQ and AE-CCSDT levels of theory, �α

Q−T
MV + �α

Q−T
D1 and

�α
Q−T
D2 , are listed. Note the additional digit given for �α

T−(T)
D2 and

�α
Q−T
D2 because of their very small magnitude.

n aug-u-cc-pCVnZ d-aug-u-cc-pCVnZ t-aug-u-cc-pCVnZ

�α
T−(T)
MV + �α

T−(T)
D1

2 0.000004 0.000003 0.000004
3 −0.000003 −0.000007 −0.000007
4 −0.000009 −0.000012 −0.000012
5 −0.000012 −0.000013 −0.000013
6 −0.000014 −0.000014 −0.000014
∞ −0.000015(1)

�α
T−(T)
D2

2 0.0000004 0.0000008 0.0000008
3 0.0000009 0.0000014 0.0000014
4 0.0000016 0.0000020 0.0000020
5 0.0000022 0.0000024 0.0000024
6 0.0000025 0.0000027 0.0000027
∞ 0.0000040(3)

�α
Q−T
MV + �α

Q−T
D1

2 0.000000 0.000001 0.000001
3 0.000005 0.000007 0.000007
4 0.000009 0.000010
∞ 0.000012(3)

�α
Q−T
D2

2 −0.0000003 −0.0000006 −0.0000006
3 −0.0000007 −0.0000010 −0.0000010
4 −0.0000012 −0.0000014
∞ −0.0000026(6)

The correction for higher-order relativistic effects, �α
(4+)
rel ,

was determined by calculating the polarizability with the
four-component Dirac-Coulomb (4cDC) Hamiltonian and
subtracting the nonrelativistic polarizability and the contribu-
tions of order 1/c2 accounted for by the 4cDC Hamiltonian,
which are �αMV, �αD1, and �αD2. Even though the 4cDC
Hamiltonian accounts for relativistic contributions up to in-
finite order, the fact that it does not even account for all
contributions of order 1/c2 shows that the treatment of higher-
order relativistic corrections with this Hamiltonian is also
inherently incomplete. Nevertheless, the sum of the terms
�αMV, �αD1, and �αD2 accounts for about 76% of the value
of �α

(2)
rel , so that we assume that the majority of higher-order

effects is accounted for by the 4cDC Hamiltonian. We cal-
culated �α

(4+)
rel at the AE-CCSD(T) level of theory with the

(d-, t-)aug-u-cc-pCVnZ basis sets up to n = 6 for all augmen-
tation levels (see Table X for the results). The extrapolation to
the CBS limit was performed using Eq. (7) with the results
for the basis sets t-aug-u-cc-pCV5Z and t-aug-u-cc-pCV6Z,

TABLE X. Calculated values for the higher-order relativistic
correction �α

(4+)
rel at the AE-CCSD(T) level of theory and the final

extrapolated value. The correction was determined for a given basis
set by taking the difference between the polarizability obtained with
the 4cDC Hamiltonian and the sum of the respective nonrelativistic
polarizability and the contributions �αMV, �αD1, and �αD2.

n aug-u-cc-pCVnZ d-aug-u-cc-pCVnZ t-aug-u-cc-pCVnZ

2 0.000031 0.000065 0.000068
3 0.000045 0.000079 0.000079
4 0.000069 0.000082 0.000082
5 0.000074 0.000080 0.000080
6 0.000076 0.000080 0.000079
∞ 0.000078(26)

yielding

�α
(4+)
rel = 0.000 078(26),

where the relatively large uncertainty (one-third of the total
value of �α

(4+)
rel ) was chosen to account for the described

shortcomings of our approach. The 4cDC calculations were
carried out using the DIRAC code [45,46] with explicit cal-
culation of the two-electron (SS|SS) integrals over the small
component.

For the total relativistic correction �αrel, we then obtain

�αrel = 0.005 653(29).

To determine the QED correction of order 1/c3, we used a
simplified expression similar to that applied by Lesiuk et al.
[10], but with an additional contribution from the two-electron
Darwin term (see, e.g., Ref. [9]),

�α
(3)
QED = 8

3πc

(
19

30
+ 2 ln c − ln k0

)
�αD1

− 1

πc

(
164

15
− 14

3
ln c

)
�αD2, (22)

where ln k0 is the Bethe logarithm for the neon atom, for
which we adopted the value of Lesiuk et al. [10], ln k0 =
7.595, which was calculated at the SCF level of theory
and has a stated uncertainty of 1–2%. Compared with the
full expression for �α

(3)
QED given in Ref. [9], Eq. (22) ne-

glects the electric-field dependence of the Bethe logarithm
and the Araki-Sucher contribution. Furthermore, as already
mentioned, we neglect any corrections to the QED contri-
butions for finite nuclear mass effects. However, at least in
the case of helium it is known that none of these three sim-
plifications affect the total QED correction of order 1/c3 by
more than 1% [8,9]. The value for the one-electron Darwin
correction �αD1 in Eq. (22) was obtained in the same way
as the sum �αMV + �αD1 by extrapolating the contribution
at the AE-CCSD(T) level of theory and the AE-CCSDT and
AE-CCSDTQ corrections to the CBS limit. The resulting final
value for �αD1 is −0.017 349(13). For �αD2, the final value
is −0.000 012(7). This yields

�α
(3)
QED = −0.000 310(62),

where the uncertainty estimate of 20% of the total value of
�α

(3)
QED is adopted from Lesiuk et al. [10]. The contribution
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TABLE XI. Summary of the main contributions to the polarizability of neon obtained in this work and by Lesiuk et al. [10] as well as the
respective final values and the experimental value of Gaiser and Fellmuth [4] (for which the given uncertainty is the standard uncertainty).

Contribution This work Lesiuk et al. (Ref. [10]) Gaiser and Fellmuth (Ref. [4])

FCI polarizability αFCI 2.655710(21) 2.65545(35)
Finite nuclear mass correction �αFNM 0.000072(2) 0.00022(1)
Finite nuclear size correction �αFNS −0.0000014(1) 0.0000014(1)
Relativistic correction �αrel 0.005653(29) 0.00550(5)
QED correction �αQED −0.000366(68) −0.00037(7)
Total polarizability α 2.661067(77) 2.66080(36) 2.661057(7)

due to the two-electron Darwin term accounts only for about
0.1% of the value of �α

(3)
QED.

The QED contribution of order 1/c4 is approximated by
the one-loop correction, which is given as [10]

�α
(4)
QED = 2Z

c2

(
427

96
− 2 ln 2

)
�αD1, (23)

where Z = 10 is the nuclear charge of neon. The resulting
value of the correction is

�α
(4)
QED = −0.000 057(28),

where we adopted the uncertainty estimate of Lesiuk et al.
[10] of 50% of the absolute value of �α

(4)
QED, which also

accounts for the neglected higher-order QED contributions.
The resulting total QED correction is

�αQED = −0.000 366(68),

which together with αFCI, �αFNM, �αFNS, and �αrel gives a
final polarizability of

α = 2.661 067(77).

IV. DISCUSSION AND CONCLUSIONS

The main contributions to the static electric-dipole polariz-
ability of this work and the resulting total value are compared
in Table XI with the respective values obtained by Lesiuk
et al. [10] and with the experimental polarizability obtained by
Gaiser and Fellmuth [4]. Further theoretical and experimental
values for neon’s polarizability can be found in the literature
(see, e.g., the review on the polarizabilities of the elements by
Schwerdtfeger and Nagle [47] and Table XI of Lesiuk et al.’s
paper [10]). However, because of the high accuracy of the
theoretical value of Lesiuk et al. [10] and the experimental
value measured by Gaiser and Fellmuth using DCGT, we
compare the present results only with the values from these
two groups.

Our value for the polarizability in the nonrelativistic FCI
limit assuming a point nucleus of infinite mass, αFCI, is con-
sistent with the corresponding value obtained by Lesiuk et al.
[10] within their uncertainty estimate, but the present value is
about an order of magnitude more accurate. This contribution
could be further improved in a straightforward manner by us-
ing even larger basis sets for the calculations, but this appears
to be economically unfeasible at the moment.

In the case of the finite nuclear mass correction �αFNM,
our result is in severe disagreement with that of Lesiuk

et al. [10]. The reason for this disagreement is that Le-
siuk et al. considered only the effect of mass scaling and
neglected mass polarization effects (which are included in
our DBOC treatment of �αFNM). Lesiuk et al. [10] justified
their approach by using helium as an example, for which
Pachucki and Sapirstein [7] showed that mass polarization
accounts for only about 8% of the total finite nuclear mass
effect. However, mass polarization in helium is only a post-
SCF effect, whereas for neon it is already present at the
SCF level due to the occupied p orbitals and is thus much
larger.

As already mentioned, Lesiuk et al. [10] determined the
finite nuclear size effect �αFNS with the wrong sign. However,
due to the very small magnitude of �αFNS, this mistake is of
no consequence.

The values for the relativistic correction of this work and
that of Lesiuk et al. [10] do not agree within mutual uncertain-
ties, but the agreement is still reasonable. The present value is
more accurate because Lesiuk et al. [10] treated all relativistic
effects only at the AE-CCSD(T) level of theory, whereas
we also included corrections for higher coupled-cluster lev-
els up to AE-CCSDTQ for the mass-velocity and one- and
two-electron Darwin contributions. Moreover, our relativistic
correction includes an estimate for contributions of order 1/c4

and higher, which is missing in the work of Lesiuk et al.
[10].

The QED corrections of this work and of Lesiuk et al.
[10] are, within rounding errors, identical. This is due to
the fact that we adopted their value for the Bethe logarithm
and because the values for the only other quantity that sig-
nificantly influences the QED corrections, the one-electron
Darwin term, differ by only about 0.3%.

The total polarizability value of this work agrees with
that of Lesiuk et al. [10] within the latter’s uncertainty, but
the present uncertainty, which is only about 0.003% of the
total value, is almost five times smaller than that of Lesiuk
et al. The comparison of our result with the experimental
value of Gaiser and Fellmuth [4] shows a remarkable level
of agreement; we agree with their value almost within their
standard uncertainty, which is an order of magnitude smaller
than the uncertainty estimate of our value. In contrast, the
value of Lesiuk et al. [10] differs from Gaiser and Fellmuth’s
value by about a factor of 27 more than the present value.
While the very close agreement between our polarizability
and that of Gaiser and Fellmuth [4] is certainly to some
extent due to a fortuitous cancellation of errors, it could also
indicate that our uncertainty estimate might be too conser-
vative. Since our overall uncertainty budget is dominated by
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the uncertainty of the QED corrections, which we adopted
from Lesiuk et al. [10], this could mean that the uncontrolled
approximations that had to be made when calculating the QED
corrections are not severe. Furthermore, the uncertainty of
the higher-order relativistic corrections makes a considerable
contribution to the overall uncertainty budget because our ap-
proximate treatment of these contributions at the 4cDC level
also constitutes an uncontrolled approximation. Ultimately,
the question to which degree the close agreement between
our polarizability value and that of Gaiser and Fellmuth [4]

is fortuitous can only be resolved by a more complete treat-
ment of QED and higher-order relativistic effects, and we
hope that this paper will stimulate further research in this
direction.
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