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Multiconfiguration Dirac-Hartree-Fock calculations for Hg and Cd with estimates
for unknown clock-transition frequencies
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By use of the GRASP2018 package we perform multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations
with configuration interaction (CI) for the 1S0 and 3Po

0,1 levels in neutral cadmium and mercury. By supplying
the resultant atomic state functions to the RIS4 program, we evaluate the mass- and field-shift parameters
for the 1S0 − 3Po

0 (clock) and 1S0 − 3Po
1 (intercombination) lines. We make revised estimates of the nuclear

charge parameters λA,A′
and differences in mean-square charge radii δ〈r2〉A,A′

for both elements and point
out a discrepancy with tabulated data for Cd. In constructing a King plot with the Hg lines we examine the
second-order hyperfine interaction for the 3Po

0,1 levels. Isotope shifts for the clock transition have been estimated,
from which we predict the unknown clock line frequencies in the bosonic Hg isotopes and all the naturally
occurring isotopes of Cd.
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I. INTRODUCTION

Optical lattice clocks have demonstrated extraordinary
levels of frequency resolution and accuracy [1–4], as have
ion-based clocks [5,6]. Such devices lend themselves well to
probing fundamental aspects of physics [7–9]. Measurements
undertaken with either ion clocks or lattice clocks can be used
to construct King plots, where one can explore deviations
from linearity [10–12]. The explanation of the nonlinearity
is a growing topic of interest, as it may yield information
about phenomena lying beyond the standard model of par-
ticle physics [13,14]. Related studies have been carried out
with ionic ytterbium [11], neutral ytterbium [15], and calcium
ions [12,16], but there is the potential to extend these King
plot investigations to other atomic species. Where optical
lattice clocks can be employed, this includes neutral mer-
cury [17–19] and cadmium [20], which are the two atoms
of interest in the work presented here. A key motivator is to
compute the approximate optical frequencies of the 1S0 − 3Po

0
(clock) transition in all the naturally occurring isotopes of
Hg and Cd. This will aid those searching for the highly
forbidden transitions (e.g., in the pursuit of a King plot anal-
ysis). In the case of Cd where there are, as yet, no published
values for the clock-transition frequencies of any of the iso-
topes, the best way to make these predictions is via atomic
structure computations. Our approach is as follows: (1) Com-
pute the atomic wave functions for the lower and upper
states of the clock and 1S0 − 3Po

1 (intercombination) transi-
tions using multiconfiguration Dirac-Hartree-Fock (MCDHF)
methods with configuration interaction (CI). (2) Use the
resultant atomic wave functions to find hyperfine-structure
constants and to determine the mass- and field-shift pa-
rameters affecting isotope shifts of both the clock and the
intercombination transitions. (3) Compute the King plot slope
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and intercept from the mass- and field-shift parameters. (4)
Evaluate the isotopes shifts and absolute frequencies for the
clock transition. In the case of Hg we carry out the same
procedure, but there is the added benefit of making compar-
isons with published values for clock-transition frequencies in
199Hg and 201Hg. Moreover, by inference from (early) experi-
mental measurements we have a frequency value for the clock
transition in 198Hg [21] which allows us to create a King plot
between 1S0 − 3Po

1 and 1S0 − 3Po
0 lines in Hg, thereby yielding

improved accuracy for all the clock line isotope shifts.
The structure of this paper runs parallel with the procedure

just summarized. We begin with some details about the com-
putational method, along with a summary of relevant atomic
transition data. Section III presents and discusses the outputs
of the ab initio atomic structure computations, which are
essential for all the calculations that follow. Section IV details
the calculations associated with the second-order hyperfine
(HF) interaction, which leads to a correction associated with
the center of gravity of the hyperfine manifold. In Sec. VI
we construct a King plot between 1S0 − 3Po

0 and 1S0 − 3Po
1

transitions in Hg, where the second-order HF shift has been
taken into account. Isotope-shift parameters are computed and
presented in Sec. VII, which then allow us to compute nu-
clear charge parameters, including differences in mean-square
nuclear charge radii in Sec. VIII. The final Sec. IX, presents
computed isotope shifts and optical frequency predictions for
the optical clock transition in all the naturally occurring iso-
topes.

Within each section we discuss Hg before Cd. This is
because there is more experimental data for Hg than Cd, and it
therefore aids the discussion to consider Hg first. In most cases
when we refer to “literature values” these are experimentally
determined values.

II. COMPUTATIONAL METHOD

The multiconfiguration Dirac-Hartree-Fock (MCDHF)
method with configuration interaction (CI) is used to find
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FIG. 1. Low-lying energy-level structure in divalent atoms with
LS coupling notation. ICL, intercombination line.

the atomic wave functions for the 1S0 and 3Po
0,1 levels in

Hg and Cd. From these wave functions we determine the
diagonal and off-diagonal hyperfine interaction constants, and
mass- and field-shift parameters related to isotope shifts. The
GRASP2018 (General Relativistic Atomic Structure Package
2018) package [22] is used to perform MCDHF-CI compu-
tations for atomic state functions, and the RIS4 (Relativistic
Isotope Shifts 4) program [23] is used to calculate the isotope-
shift parameters from them. The theoretical background for
the methods is detailed in Refs. [24,25]. The computations
were performed using 34 cores on one node of Kaya, a small
supercomputer administered by the UWA High Performance
Computing team.

Calculated results are compared with experimental values
where possible to gauge their error. In addition, we quantify
computational errors by examining how mass- and field-shift
parameters converge as correlation layers are added to the ac-
tive space and as core-correlation deepens. This is described in
some detail in Appendix C. The centroid (or center of gravity)
of the hyperfine manifold is used for fermionic isotopes to
make a comparison with bosonic isotopes. Additionally, the
off-diagonal terms in the hyperfine interaction lead to shifts
to the F = I levels for the 3Po

0,1 states; these shifts affect the
centroids and so experimental measurements have been offset
to account for them. The comparisons between computed iso-
tope shifts and experimentally determined isotope shifts take
into account the second-order hyperfine perturbation.

Mercury and cadmium are group-IIb atoms and like all
divalent atoms have a low-lying energy-level structure sim-
ilar to that in Fig. 1, where the clock and intercombination
lines are denoted. The ground-state principal quantum number
n = 5 (6) for Cd (Hg). Mercury (Z = 80) has seven stable
isotopes, including five bosonic isotopes. Some properties
for the isotopes (in the nuclear ground state) are presented
in Table XXIII of Appendix A. The two fermionic isotopes
are 199Hg and 201Hg with nuclear spin I = 1/2 and 3/2, re-
spectively. The ground-state electron configuration for Hg is
[Xe]4 f 145d106s2. A number of absolute transition frequency
values exist in the literature for the clock line and intercombi-
nation lines (ICLs) in Hg isotopes. These values are presented
in Table I. They are used as a point of comparison for the ab
initio calculations and in the calculation of the frequencies for
the unexplored clock transitions. We do not list ICL centroid
frequency values for 199Hg and 201Hg, because Ref. [26] only
gives the frequency for one hyperfine transition (1S0 − 3Po

1 ,

TABLE I. Literature values for the absolute transition frequen-
cies of the 1S0 − 3Po

0 clock and 1S0 − 3Po
1 intercombination lines in

isotopes of Hg I.

A Transition ν (GHz) Ref.

198 Clock 1128575.955(11) [21]
199 Clock 1128575.29080815462(41) [27]
201 Clock 1128569.5611396(53) [28]
198 ICL 1181555.77854(27) [26]
200 ICL 1181550.97226(20) [26]
202 ICL 1181545.67685(11) [26]
204 ICL 1181540.46653(14) [26]

F = 1/2) in 199Hg and no measurements for 201Hg. But there
are hyperfine-level separations available, which are listed and
used later in Sec. V.

In Hg, the ground-state valence electrons fill the 6s orbital.
The starting point single-reference configuration for 1S0 is
{6s2} and for 3Po

0,1 it is {6s6p}. The core orbitals made avail-
able for substitution, to account for core-valence correlation,
are {5d, 5p, 5s, 4 f }. Correlation layers are added to extend the
active space to 12s, 12p, 12d, 12 f (abbreviated as 12spdf ).
For Cd, with the ground-state valence electrons filling the 5s
orbital, an additional correlation layer is required to extend the
active space to 12spdf . The computational outputs produced
by starting from a single-reference (SR) configuration for the
zeroth-order wave function are found to be in better agreement
with experimental values than results from a multireference
(MR) set, as was used in Ref. [29] for Yb. For example, the
absolute transition frequencies have an order of magnitude
smaller percentage error for Hg for the SR set than the MR set.
In Cd the improvement is by a factor of 2. Also, the isotope
shifts agree better for the SR set than MR set for Cd. The
reason for the difference compared with Yb could be due to
the presence of a closed d shell just under the valence shell
in Cd and Hg that is absent in Yb—a hypothesis that could
be tested by performing computations using both SR and MR
set approaches for nobelium and copernicium (but beyond the
scope of the present work).

A minor issue arises when estimating the f orbitals for
the correlation layers in Hg using the Thomas-Fermi poten-
tial. This issue is overcome by using screened hydrogenic
estimates where necessary. A further issue arises with the
convergence of the 5 f± orbitals in the first correlation layer
for 1S0. A solution was found that allowed the 5 f± orbitals
to converge according to the convergence criteria for the self-
consistent field procedure (rather than by hitting the iteration
limit). The 5 f± orbitals were computed on their own with a re-
duced rate of change to the configuration state function (CSF)
expansion coefficients per iteration. This was followed by the
remainder of the orbitals for the first correlation layer being
computed without the 5 f± orbitals and with standard rate of
change to the CSF expansion coefficients. All of the orbitals
for the correlation layer were then computed together with a
reduced rate of change to the CSF expansion coefficients.

Cadmium (Z = 48) has eight stable isotopes, including six
bosonic isotopes. Some properties for the (nuclear ground
state) isotopes are presented in Table XXIV of Appendix A.
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TABLE II. Ab initio calculations for the energy-level difference
between 3Po

0 and 1S0 and the associated isotope shifts in isotopes of
Hg I.

A �E for 1S0 − 3Po
0 (GHz) δνA,198

clock (GHz)

196 1128734.558 4.370
198 1128730.188 0
199 1128729.585 –0.603
200 1128725.166 –5.022
201 1128723.499 –6.689
202 1128719.682 −10.506
204 1128714.245 –15.943

Both of the fermionic isotopes, 111Cd and 113Cd, have nuclear
spin I = 1/2 and are good candidates for optical lattice clocks
[20]. Cd is the analog element to Hg with one fewer layer of
each of the orbitals. The ground-state electron configuration
for Cd is [Kr]4d105s2. The SR for 1S0 is {5s2} and for 3Po

0,1
it is {5s5p}. The expansion of the active core to core-valence
correlation is discussed in Sec. III and Appendix C.

Absolute frequency measurements for the 1S0 − 3Po
1 tran-

sition in 114Cd are available in Ref. [30] (Burns and Adams);
however, direct measurements for the clock transition in Cd
are not (yet) found in the literature. Instead, the difference
between 3Po

0 − 3S1 and 3Po
1 − 3S1 transitions in Ref. [30]

can be used to infer the frequency of the clock transition.
The frequencies for the clock and intercombination lines in
114Cd are found to be νclock (114Cd) = 902 794.62(6) GHz and
νICL(114Cd) = 919 046.19(6) GHz, respectively. These can be
compared with the ab initio calculations and used later to cal-
culate absolute frequencies of the unexplored clock-transition
frequencies in Cd (Sec. IX).

III. AB INITIO TRANSITION FREQUENCIES
AND ISOTOPE SHIFTS

The atomic structure software package GRASP2018 out-
puts energy levels of the atomic state functions for each
atomic state separately (in Hartree energy units Eh). The
transition frequencies are calculated from the differences be-
tween the energies of the states involved in the transitions
and are converted into SI units using the factor 2cR∞ =
6.579 683 920 502(13) × 1015 Eh

−1 Hz [31]. These ab initio
transition frequencies are calculated for each isotope along
with isotope shifts relative to 198Hg for the 1S0 − 3Po

0 clock
transition (Table II) and for the 1S0 − 3Po

1 intercombination
line (ICL) (Table III).

For the clock transition, the absolute transition frequen-
cies presented in Table II are at 0.02% difference with the
values in Table I. Thus there is excellent agreement with the
experimental values, and they are closer than values computed
previously [32–35]. This is also more than an order of magni-
tude more accurate than the results for Yb [29]. The isotope
shifts δν199,198

clock and δν201,198
clock are at errors of about −9% and

5%, respectively, in comparison to the second-order corrected
experimental values (in Table X).

For the ICL transition, the absolute transition frequencies
presented in Table III are at −0.2% difference with the values

TABLE III. Ab initio calculations for the energy-level difference
between 3Po

1 and 1S0, and the associated isotope shifts in isotopes of
Hg I.

A �E for 1S0 − 3Po
1 (GHz) δνA,198

ICL (GHz)

196 1179728.244 4.406
198 1179723.838 0
199 1179723.228 –0.610
200 1179718.784 –5.054
201 1179717.102 –6.736
202 1179713.259 –10.579
204 1179707.778 –16.060

in Table I. This represents good agreement with experiment
and an improvement on the calculated values in Refs. [32,34–
38], but less accurate than values in Ref. [33]. While the
accuracy is an order of magnitude poorer than for the clock
transition, this is approximately a factor of 4 more accurate
than the equivalent results for Yb [29]. The isotope shifts
are at errors of about 5% in comparison to the experimental
values in Refs. [26,39]. This discrepancy could be due to an
imperfect electron correlation model or due to the impact of
nuclear deformation that is ignored in these computations.

For cadmium, the ab initio transition frequencies are cal-
culated for each isotope, and the isotope shifts are evaluated
relative to 114Cd for the 1S0 − 3Po

0 clock transition (Table IV)
and for the 1S0 − 3Po

1 ICL (Table V). For the clock transi-
tion, the absolute transition frequency for 114Cd presented in
Table IV has a −0.8% difference from the Burns and Adams
value stated above. We are not aware of any other calculated
values for the clock-transition frequency. Although the er-
ror is more than an order of magnitude larger than for Hg,
the small difference indicates that the atomic wave functions
are sufficiently accurate to derive further atomic and nuclear
parameters. No comparison can be made with experimental
values for the isotope shifts to gauge their error; however,
the error is expected to be similar to that found for the ICL
transition.

For the ICL transition, the absolute transition frequency for
114Cd presented in Table V has a −0.9% difference from the
Burns and Adams value. This is a fair agreement with experi-
ment and improves on estimates computed in Refs. [36,38,40]
but is slightly less accurate than that of Ref. [41]. The isotope

TABLE IV. Ab initio calculations for the energy-level difference
between 3Po

0 and 1S0, and the associated isotope shifts in isotopes of
Cd I.

A �E for 1S0 − 3Po
0 (GHz) δνA,114

clock (MHz)

106 895992.29560 1542.80
108 895991.86167 1108.87
110 895991.43162 678.82
111 895991.26930 516.50
112 895991.02632 273.52
113 895990.90407 151.27
114 895990.75280 0
116 895990.57475 –178.05

022805-3



JESSE S. SCHELFHOUT AND JOHN J. MCFERRAN PHYSICAL REVIEW A 105, 022805 (2022)

TABLE V. Ab initio calculations for the energy-level difference
between 3Po

1 and 1S0, and the associated isotope shifts in isotopes of
Cd I.

A �E for 1S0 − 3Po
1 (GHz) δνA,114

ICL (MHz)

106 910815.77401 1566.36
108 910815.33356 1125.91
110 910814.89752 689.87
111 910814.73218 524.53
112 910814.48616 278.51
113 910814.36108 153.43
114 910814.20765 0
116 910814.02427 –183.38

shifts are at errors of about −20% to −30% in comparison to
the values in Ref. [42], except for δν113,114

ICL , which is at more
than −50% error. These ab initio isotope shifts for Cd are less
accurate than those for Hg. With an additional core orbital
(4d4p4s3d) opened to core-valence correlation, the difference
for δν113,114

ICL reduced to 45% but that for δν116,114
ICL increased to

85%, and so the deeper core computations were not pursued.
(The field-shift parameter F , discussed below, also became
more disparate with previous estimates as the core-valence
correlation deepened.)

The weaker agreement with experimental values for the
ab initio isotope shifts of Cd in comparison to Yb and Hg
could be an indicator of the suitability of this computational
method for heavier atoms compared to lighter atoms. Rel-
ativistic effects become more important with increasing Z .
A more suitable approach may be to use a nonrelativistic
multiconfiguration Hartree-Fock (MCHF) computation with
relativistic effects accounted for through the Breit-Pauli cor-
rections (better suited for light and near-neutral systems with
smaller relativistic effects [22,24]).

IV. DIAGONAL AND OFF-DIAGONAL
HYPERFINE CONSTANTS

The fermionic isotopes of Cd and Hg experience the hyper-
fine interaction. To second order, the off-diagonal hyperfine
interaction causes a shift to the F = I levels in the hyperfine
manifolds, which Kischkel et al. [43] denote as �E (2)

F . Here
we will refer to it as �ν

(2)
F , in line with our use of hertz

for units. The second-order HF perturbation is also described
(or summarized) in Refs. [44–46]. These shifts are depen-
dent upon the hyperfine interaction constants, which we have
calculated from the atomic state functions using the RHFS

program [22,45]. Our computed hyperfine constants appear in
Table VI. The uncertainties have been estimated by comparing
the calculated values with the experimental values from [47].
The errors in the diagonal magnetic dipole constants A(3Po

1 )

TABLE VI. Calculated hyperfine interaction constants for Hg in
units of GHz.

A A(3Po
1 ) A(3Po

0 , 3Po
1 ) B(3Po

1 )

199 15.59(94) 14.42(87)
201 –5.75(35) –5.32(32) –0.2812(12)

TABLE VII. Corrections �ν
(2)
F (3Po

0 , 3Po
1 ) to the F = I hyperfine

levels in Hg due to second-order off-diagonal hyperfine interaction.
The literature value is calculated using experimental results from
Refs. [47,49] as described in the text.

�ν
(2)
F (3Po

0 , 3Po
1 ) (MHz)

A This work Literature

199 2.94(36) 2.65(8)
201 2.00(25)

are 6%, and this uncertainty is extended to the off-diagonal
magnetic dipole constants A(3Po

0 , 3Po
1 ), while the error in the

electric quadrupole constant, B(3Po
1 ), for 201Hg is 0.4%.

Calculation of the shifts to the F = I levels requires the
fine-structure interval, for which the difference between the
ICL and clock-transition frequencies of 198Hg in Table I
has been used [giving a value of 52 979.823(11) GHz]. The
calculation is as in Ref. [29] for Yb [48], and the values are
presented in Table VII. The notation �ν

(2)
F (3Po

0 , 3Po
1 ) implies

that the magnitude of the shift is the same for both the 3Po
0

and 3Po
1 levels. The shift is negative (positive) for 3Po

0 (3Po
1 ).

The uncertainties are propagated from those in Table VI. For
comparison, a value for the �ν

(2)
F shift in 199Hg (I = 1/2) is

determined using the experimental hyperfine-structure split-
ting �νhfs presented in Ref. [49] (that leads to an effective
HF structure constant, following [44]) and the diagonal HF
interaction constant A that includes second-order corrections
[47], according to the formula

�ν
(2)
F = 3

2 A − �νhfs. (1)

A discussion of Eq. (1) appears in Appendix B. Our value
for 199Hg is consistent with that calculated using literature
values within the uncertainties (see Table VII). Given that
the literature value accounts for shifts due to other levels,
this consistency suggests the influence of levels other than
3Po

0 on 3Po
1 is less significant. We could not find published

data to make a similar comparison for 201Hg. While these
second-order shifts are small compared to the uncertainties for
the isotope shifts evaluated below, in time, when the isotope
shifts are measured carefully, this higher-order shift needs to
be taken into account.

For Cd, our calculated hyperfine interaction constants are
presented in Table VIII. The uncertainties have been estimated
by comparing the calculated values with experimental values
derived from the literature according to

A
(

3P1
) = 1

4

(
2c2

2 − c2
1

)
as + 5

4
c2

1a3/2

+ 1

2
c2

2a1/2 − 5
√

2

16
c1c2ξa3/2, (2)

TABLE VIII. Calculated hyperfine interaction constants for Cd.

A A(3Po
1 ) (GHz) A(3Po

0 , 3Po
1 ) (GHz)

111 −4.1256(17) −4.4807(18)
113 −4.3156(18) −4.6869(19)
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TABLE IX. Corrections �ν
(2)
F (3Po

0 , 3Po
1 ) to the F = I hyperfine

levels in Cd due to second-order off-diagonal hyperfine interaction.

A �ν
(2)
F (3Po

0 , 3Po
1 ) (kHz)

111 926.53(75)
113 1013.76(82)

as described in Refs. [50,51]. The c coefficients relate j j-
coupled states to intermediate coupled states and depend on
mixing coefficients, α, β, where |3P1〉 = α|3P1〉LS + β|1P1〉LS.
The a coefficients are hyperfine coefficients in the | j1 j2JmJ〉
basis. The values for the terms on the right-hand side of
(2) are taken from [52] except for ξ , which is from [50].
These give values of A(3Po

1 ) = −4.124(32) GHz for 111Cd
and A(3Po

1 ) = −4.314(34) GHz for 113Cd. The difference be-
tween these values and our computed values is 0.04% for both
isotopes. We therefore assign errors in our A(3Po

1 ) constants
to be 0.04%, and this is extended to the off-diagonal magnetic
dipole constants A(3Po

0 , 3Po
1 ).

Calculation of the shifts to the F = I levels follows the
same procedure as for Hg, except no literature values exist
or were able to be calculated from published data for compar-
ison. The values are presented in Table IX, and uncertainties
are propagated from those in Table VIII.

V. CENTROID FREQUENCIES

The second-order off-diagonal shifts to the F = I levels for
the fermionic isotopes (calculated in Sec. IV) lead to shifts
to the centroids of the hyperfine manifolds. For the mutual
influence of the 3Po

0,1 states, the observed F = I levels (which

includes the O(2) shifts) are at higher energy for 3Po
1 by �ν

(2)
F

and at lower energy for 3Po
0 by the same amount. These shifts

are considered relative to a theoretical atomic system, which
does not experience an off-diagonal hyperfine interaction in
the basis of fine-structure eigenstates (but does experience a
diagonal interaction). The centers of gravity for the fermionic
isotopes are used in comparison with the bosonic isotopes,
and these higher-order shifts need to be accounted for. The
experimental isotope shifts (δνA,198) involving the fermionic
isotopes have been adjusted to remove the influence of the
off-diagonal hyperfine interaction. These values for Hg are
presented in Table X together with experimental isotope shifts
involving only the bosonic isotopes. For the purposes of this
paper we “adjust” or “correct” the experimental values for the
second-order hyperfine interaction because we wish to use
the linearity of a King plot to make predictions. However,
we understand that from an experimenter’s point of view it
should be the computational results that are corrected and not
the reverse.

The uncertainties for δνA,198 for the fermionic isotopes are
currently limited by the precision of the isotope shifts rather
than the uncertainties associated with the correction. This is
in contrast to the situation for corrections to δν199,201

clock , which
is not used here.

Following Kischkel et al. [43], a consistency check of the
second-order HF corrections can be made when there are at
least two odd isotopes. Two odd isotopes (labeled f and f ′)

TABLE X. Literature isotope shifts for the 1S0 − 3Po
0 clock and

1S0 − 3Po
1 intercombination lines in Hg I. δνA,198 = νA − ν198. The

centroids for the hyperfine manifolds in fermionic isotopes have been
corrected as outlined in the text.

A Transition δνA,198 (GHz) Refs.

199 Clock –0.662(11) [21,27]
201 Clock –6.392(11) [21,28]
196 ICL 4.199(4) [39]
199 ICL –0.6524(63) [39]
200 ICL –4.80628(33) [26]
201 ICL –6.4101(57) [39]
202 ICL –10.10174(28) [26]
204 ICL –15.31202(30) [26]

have different isotope shifts with respect to a bosonic isotope
(labeled b), which following from our adopted notation could
be written as δν f ,b and δν f ′,b. Each experiences a second-
order HF correction affecting the center of gravity, which we
denote as �ν

(2)
f ,b, in the case of isotope f . The ratio of these

second-order HF corrections can be expressed as

�ν
(2)
f ,b

�ν
(2)
f ′,b

= (−1)2I f +1μ2
f (I f + 1)I f ′

(−1)2I f ′+1μ2
f ′ (I f ′ + 1)I f

, (3)

where I is the nuclear spin and μ is the nuclear magnetic
moment. For Hg, the right-hand side of (3) evaluates to
1.467 75(1) (with 199Hg in the numerator) using values from
Table XXIII. For the 3Po

0 state, the adjustments to the isotope
shifts are as in Table VII and the left-hand side of (3) evaluates
to 1.47(26), showing good agreement. For the 3Po

1 state the
adjusted centroids are calculated directly from shifts to the
hyperfine-structure levels of [49] and so (3) is not evaluated.
The consistency between the ratios for the clock excited state
supports the accuracy of the calculated shifts.

In the case of Cd there are no experimental isotope shifts
of the clock transition to adjust, and the corrections for the
ICL transition are equal to one-third of the shifts presented in
Table IX (see Appendix B) and thus fall below the level pre-
scribed by experimental uncertainty of the isotope shifts from
[42]. These experimental isotope shifts for the ICL transition
are presented in Table XI.

TABLE XI. Literature isotope shifts for the 1S0 − 3Po
1 intercom-

bination line in Cd I from [42]. δνA,114 = νA − ν114. The adjustments
to the centroids for the hyperfine manifolds of fermionic isotopes are
below the level of experimental uncertainty.

A δνA,114
ICL (MHz)

106 1943(32)
108 1385(42)
110 893(19)
111 839(49)
112 405(12)
113 333(41)a

116 –279(12)

aConsistent with the original reference of [53].
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For Cd, the two fermionic isotopes have the same 1/2
nuclear spin and hence the quotient of Eq. (3) becomes the
ratio of squared nuclear magnetic moments. With 111Cd in the
numerator, this evaluates to 0.913 833(4) using the values in
Table XXIV. For the 3Po

0 state, the second-order corrections
to the isotope shifts are as in Table IX and the ratio of the
centroid corrections [left-hand side of Eq. (3)] evaluates to
0.9140(11), consistent with the right-hand side of Eq. (3). This
will also equal the ratio for the 3Po

1 state, since the adjustment
to the center of gravity is equal to one-third of the shift to
the F = I level for I = 1/2 and both fermionic isotopes have
I = 1/2.

VI. KING PLOT

For an electronic transition, labeled by a, the isotope shift
between isotopes A and A′ is split into a mass shift, due to
the difference in nuclear recoil, and a field shift, due to the
difference in the nuclear electrostatic potential, and is given
by

δνA,A′
a = νA

a − νA′
a = μA,A′

Ka + λA,A′
Fa, (4)

where μA,A′ = m−1
A − m−1

A′ is the nuclear mass-shift term, Ka

is the electronic mass-shift term, Fa is the electronic field-shift
term [54], and

λA,A′ = δ〈r2〉A,A′
(

1 +
∞∑

n=1

Cn
δ〈r2n+2〉A,A′

δ〈r2〉A,A′

)
(5)

is the nuclear charge parameter. The mA values are computed
from atomic masses, as described in Appendix A. The Cn

terms in Eq. (5) are Seltzer’s coefficients [55], and δ〈r2〉A,A′
is

the difference in mean-square charge radii between the nuclei
of isotopes A and A′. Accordingly, isotope shifts are sensitive
to the size and shape of the atomic nucleus, and optical isotope
shifts are used to determine differences in mean-square nu-
clear charge radii [56]. Equation (4) is a good approximation
but neglects higher-order contributions due to differences in
nuclear shape, such as the quadratic field shift and differ-
ential nuclear deformation [57]. Following King [58], the
isotope shift in Eq. (4) can be mass scaled to define ξA,A′

a =
δνA,A′

a /μA,A′
, from which one can deduce a straightforward

relationship between isotope shifts of different transitions,
namely,

ξA,A′
b = Fb

Fa
ξA,A′

a + Kb − Fb

Fa
Ka, (6)

where b represents a second transition (in the same atom). One
therefore expects a linear relationship between the isotope
shifts of one transition against those of another in the form
of a King plot. In the case of mercury, the isotope shifts
between isotopes 198, 199, and 201 (from Table X) are used
to construct a King plot with two data points. The isotope
shifts are mass scaled as in Table XII before creating the King
plot between the clock and intercombination lines as seen in
Fig. 2.

A linear fit to the King plot is calculated using an orthog-
onal distance regression [59] to account for errors in both
ordinate and abscissa values. The gradient of the fit is found
to be 1.0103(87) and the intercept to be −0.64(70) THz u,

TABLE XII. Mass-scaled isotope shifts for the 1S0 − 3Po
0 clock

and 1S0 − 3Po
1 intercombination lines in Hg I. ξA,198 = δνA,198/μA,198.

A Transition ξA,198 (THz u)

199 Clock 26.02(41)
201 Clock 84.64(14)
196 ICL 81.375(78)
199 ICL 25.65(25)
200 ICL 95.0173(66)
201 ICL 84.872(75)
202 ICL 100.8337(28)
204 ICL 102.8895(21)

where the uncertainties are taken to be the square roots of the
diagonal entries in the covariance matrix of fit parameters,

	fit =
(

7.411 60 × 10−5 −5.851 75 GHz u

−5.851 75 GHz u 0.484 327 THz2u2

)
. (7)

The unknown mass-scaled isotope shifts for the clock tran-
sition are interpolated from Fig. 2 based on the gradient and
intercept values and appear in Table XIII. These are used in
Sec. IX to predict the unexplored clock-transition frequen-
cies. In estimating the uncertainties, the negative covariance
between the gradient and the intercept of the linear fit is
accounted for.

In the case of Cd there is insufficient data in the literature
to produce an equivalent King plot for the clock and inter-
combination lines. However, we can compute the slope and
intercept values from our atomic structure calculations (see
the following section).

FIG. 2. King plot for clock and intercombination lines of mer-
cury. Blue circles represent isotope pairs with available data for
the clock-transition frequency. Dashed lines represent isotope pairs
without clock-transition measurements (only ICL data). The solid
orange line is the King linearity relationship. Pairs of integers in
parentheses indicate isotope pairs. Error bars are not visible at the
scale of this plot.
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TABLE XIII. Interpolated mass-scaled isotope shifts for the
1S0 − 3Po

0 clock line in Hg I assuming linearity in the King plot of
Fig. 2.

A ξA,198
clock (THz u)

196 81.18(17)
200 94.68(20)
202 100.44(24)
204 102.47(25)

VII. ISOTOPE-SHIFT PARAMETERS

Following the MCDHF-CI computation of the atomic state
functions, the electronic mass-shift and field-shift parameters
for the isotope shifts are calculated using RIS4 [23]. This is
done for each stable isotope for both Hg and Cd. A slight
isotope dependence is observed for both elements. These val-
ues for Hg are presented in Table XIV along with literature
values for comparison. Our uncertainties for each isotope are
prescribed using the method outlined in Appendix C. The
uncertainties for the mean F and F values are calculated
by adding the uncertainty for an individual isotope and the
standard deviation of the set of isotopic values in quadrature.

The uncertainty for an individual isotope results from the
remaining variations in the parameter as (i) the available core
is expanded and (ii) correlation layers are added (as seen in
Appendix C). Our value of FICL is the largest in magnitude
of the reported values in the table; however, it is consistent
with all of the values with published uncertainties to within
1 σ . All the literature values of KICL have no contribution
from the specific mass shift, whereas our value includes con-
tributions from both the one-body (normal) and two-body
(specific) mass-shift terms. Reference [61] finds the specific

TABLE XIV. Isotope-shift parameters for the 1S0 − 3Po
0 clock

and 1S0 − 3Po
1 intercombination lines in Hg I. Repeated values among

the isotopes are indicated by the ditto symbol (′′).

Fclock FICL Kclock KICL

A (GHz fm−2) (GHz fm−2) (THz u) (THz u)

196 –57.78(98) –58.14(99) –1.19(18) –1.15(17)
198 –57.75(98) –58.10(99) ′′ ′′

199 –57.74(98) –58.10(99) ′′ ′′

200 –57.71(98) –58.07(99) ′′ ′′

201 –57.70(98) –58.05(99) ′′ ′′

202 –57.67(98) –58.02(99) ′′ ′′

204 –57.62(98) –57.98(99) ′′ ′′

Mean –57.71(99) –58.07(1.00) –1.19(18) –1.15(17)
Ref. [39] –53.0 0.575a

Ref. [56] –55.36b –0.65(33)c

Ref. [60] –55.1(3.1)d

Ref. [61] –57.4(2.9)

aNormal mass-shift factor only.
bComputed in Ref. [62].
cNormal mass-shift factor with specific mass shift of 0 ± 0.5. NMS
is negative by the sign convention adopted here.
dThe notation for the uncertainty implies a value of −55.1 ± 3.1,
while −0.65(33) implies the value −0.65 ± 0.33.

TABLE XV. Isotope-shift parameters for the 1S0 − 3Po
0 clock and

1S0 − 3Po
1 intercombination lines in Cd I.

Fclock FICL Kclock KICL

A (GHz fm−2) (GHz fm−2) (THz u) (THz u)

106 –4.67(16) –4.68(16) –1.629(19) –1.616(17)

108 ′′ ′′ ′′ ′′

110 –4.66(16) ′′ ′′ ′′

111 ′′ ′′ ′′ ′′

112 ′′ ′′ ′′ ′′

113 ′′ –4.67(16) ′′ ′′

114 ′′ ′′ ′′ ′′

116 ′′ ′′ ′′ ′′

Mean –4.66(16) –4.68(16) –1.629(19) –1.616(17)
Ref. [42] –4.42(34) –1.72(33)
Ref. [63] –3.91(46)a –0.31(41)a

Ref. [56] –0.88(23)a

Ref. [62] –4.162
Ref. [64] –4.37(18) –1.72(18)b

aThe value is positive in the reference but becomes negative accord-
ing to the isotope-shift and mass-shift conventions adopted here.
bThe value is presented as a ratio of specific mass shift to normal
mass shift, and hence leads to a negative total mass shift according
to the convention adopted here.

mass shift determined from a King plot to be 14 times larger
than the normal mass shift and with an error of about 70 %,
corresponding to a large KICL value with large uncertainty, and
so this value has not been listed.

The gradient of the King plot in Fig. 2 is given by
FICL/Fclock and the intercept by KICL − KclockFICL/Fclock. The
calculated values in Table XIV thus give a gradient of
1.006(25) and an intercept of 0.04(26) THz u. These values
are consistent with the fit parameters extracted from the King
plot in Sec. VI at the level of uncertainty.

The isotope-shift parameters and their uncertainties are
calculated for Cd by a similar means as for Hg. These values
and their averages are presented in Table XV along with
previously computed values for comparison. Field-shift values
calculated using a MR set for the zeroth-order wave function
were found to be inconsistent with the values from the SR
approach and from literature values.

Comparing Cd to Hg, the percentage error is 3.4% (1.1%)
for the F (K) values in Cd and 1.7% (15%) in Hg. The
percentage uncertainty in K for Hg is notably higher. It is
difficult to give reason for this other than to say the Hg K
values experience more variation as the core-valence correla-
tion is extended deeper into the core (see Appendix C). Our
value of FICL for Cd is again the largest (in magnitude) in
comparison to previously estimated values but is within two
standard deviations of all other values where uncertainties are
presented. The literature values of KICL display a dichotomy
between being consistent with our value (Refs. [42,64]) and
inconsistent with our value (Refs. [56,63]).

In the case of Hg (and Yb [29]), we have demonstrated that
experimental data and atomic structure computations yield
consistent values for the gradient and intercept in a King
plot. Therefore, despite the inability to construct a King plot
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TABLE XVI. Nuclear charge parameters λA,198 for Hg I.

λA,198 (10−3 fm2)

A This work Ref. [60] Ref. [39] Ref. [47]

196 –73.3(1.3) –92(62)
198 0 0 0 0
199 11.72(24) 27(12) 15(54)
200 83.8(1.5) 103(26) 91.8(4.0) 108(47)
201 111.9(2.0) 116(17) 144(44)
202 175.9(3.1) 199(25) 195.3(5.7) 226(41)
204 266.6(4.7) 298(28) 292.7(7.0) 343(38)

between the clock and ICL transitions of Cd using experimen-
tal values, we can still infer the gradient and intercept values
from our computed K and F values. The calculated values
in Table XV give a gradient of 1.004(49) and an intercept of
0.02(9) THz u for ξA,A′

ICL along the vertical axis. These are used
later to predict clock line frequencies in Cd.

VIII. NUCLEAR CHARGE PARAMETERS

The isotope-shift equation (4) can be used to determine
values for λA,A′

from measured ICL isotope shifts (Table X),
atomic masses (Table XXIII), and calculated mass-shift and
field-shift parameters (Table XIV), where the tables here are
specific to Hg. The resulting λA,A′

values for Hg are listed in
Table XVI together with literature values for comparison. The
uncertainties are calculated using propagation-of-errors under
the assumption that the uncertainties in FICL, KICL, δνA,A′

ICL ,
and μA,A′

are independent, which is likely an approximation
since FICL and KICL are calculated from the same atomic state
functions. Our values have the highest precision but are mostly
smaller (in magnitude) than the literature values due to our
larger mass-shift factor that includes the specific mass shift.
Our uncertainties are dominated by the uncertainty in FICL.

Values for the nuclear charge parameter λA,A′
can be con-

verted into differences in mean-square nuclear charge radii
δ〈r2〉A,A′

through the use of a scaling factor to account for
the higher-order terms [29,39]. For Hg this relationship is
taken to be δ〈r2〉A,A′ = λA,A′

/0.927 [39] by evaluating the
higher-order nuclear moments from electron-scattering data
and quantifying their contribution with Seltzer’s coefficients.
The calculated differences in mean-square nuclear charge
radii are presented in Table XVII along with literature val-
ues and are plotted in Fig. 3 for a visual comparison. Our
values lie between other values from the literature and are
consistent with the experimental values of Rayman et al.
[65] within uncertainties. The dominant sources of uncer-
tainty for δ〈r2〉A,A′

estimates are associated with the mass-
and field-shift parameters, which appear to be neglected in the
values from Refs. [56,66]. Precise values for the differences in
mean-square nuclear charge radii are important in constrain-
ing models used in nuclear structure calculations [67–70]. The
consistency of our values with prior values, and our higher
precision (where uncertainties for K and F are included) sug-
gests that our values should be useful for constraining nuclear
models relevant to computations involving the stable isotopes
of mercury.

TABLE XVII. Differences in mean-square nuclear charge radii
δ〈r2〉A,198 determined by δ〈r2〉A,A′ = λA,A′

/0.927 for Hg I.

δ〈r2〉A,198 (10−3 fm2)

A This work Ref. [66]a Ref. [56]a Ref. [39] Ref. [65]

196 –79.1(1.4) –80.9(0.3) –82.5(0.1) –87 –75.2(5.4)
198 0 0 0 0 0
199 12.64(26) 11.9(0.2) 13.0(0.1) 11 11.4(8.1)
200 90.4(1.6) 93.5(0.2) 94.2(0.1) 98 86.6(6.1)
201 120.7(2.1) 124.5(0.2) 125.8(0.1) 131 115.6(6.5)
202 189.8(3.3) 197.0(0.2) 198.1(0.1) 207 182.1(9.2)
204 287.6(5.0) 298.8(0.3) 300.1(0.1) 316 276.1(11.4)

aUncertainties represent experimental errors only and neglect the
additional uncertainties from K and F .

Using a similar procedure as for Hg, values for λA,A′

for Cd can be determined using the values from Tables XI,
XXIV, and XV. The resulting nuclear charge parameters are
presented in Table XVIII along with literature values. The

FIG. 3. Differences in mean-square nuclear charge radii
δ〈r2〉A,198 for isotopes in Hg. The references are as follows: (A) Ulm
et al. Ref. [66], (B) Angeli and Marinova [56], (C) Fricke and Heilig
[39], and (D) Rayman et al. [65].
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TABLE XVIII. Nuclear charge parameters λA,114 for Cd I.

λA,114 (fm2)

A This work Ref. [42] Ref. [56]a Ref. [63]b

106 −0.645(23) –0.6712(84) –0.646(86) –0.535(97)
108 –0.465(19) –0.4988(73) –0.464(63) –0.392(71)
110 –0.301(12) –0.3244(60) –0.300(41) –0.256(47)
111 –0.261(14) –0.2807(73) –0.268(37) –0.235(41)
112 –0.1408(55) –0.1549(42) –0.139(20) –0.121(23)
113 –0.0981(94) –0.1102(60) –0.103(17) –0.099(17)
114 0 0 0 0
116 0.1121(47) 0.1294(42) 0.105(16) 0.094(20)

aValues calculated as per data and method in Ref. [56]; uncertainties
from K and F incorporated.
bPresented as δ〈r2〉, but higher-order terms have been ignored in their
determination, so these values are effectively λA,114.

uncertainties are calculated using propagation of errors as-
suming independent errors. Major error contributors include
the uncertainty in FICL (again) and also the uncertainty of the
measured isotopes shifts. The relative strengths of these errors
depends on the isotope. Our values lie between the values of
Refs. [42] (Fricke and Heilig) and [63] (Buchinger et al.), and
are consistent with them to within 2σ and 1σ , respectively
(where 1σ is one standard deviation). The high degree of
consistency between our values and those calculated from
Ref. [56] is to be expected, since the experimental isotope
shifts from [42] are used to calculate λA,A′

in this work and
in Ref. [56].

For Cd, the nuclear charge parameters can be converted
into differences in mean-square nuclear charge radii as
δ〈r2〉A,A′ = λA,A′

/0.973 [42], where again the scaling factor
is found by evaluating the higher-order nuclear moments
from electron-scattering data and quantifying their contribu-
tion with Seltzer’s coefficients. The calculated differences in
mean-square nuclear charge radii, with respect to 114Cd, are
presented in Table XIX along with some literature values and
are plotted in Fig. 4. Columns 3–8 of Table XIX correspond

to reference labels (A)–(F) in Fig. 4. Our values are consistent
with those of Refs. [42,63,64] within uncertainties, except
for δ〈r2〉112,114 from [64]. Despite this minor difference, the
general agreement with Ref. [64] is promising, since their
values arise from nuclear structure calculations. We note the
values of δ〈r2〉111,114 and δ〈r2〉113,114, for example, from the
data tables of Angeli and Marinova [56] lie several standard
deviations away from the other values (seen clearly in Fig. 4).
Column 4 of Table XIX and label (B) in Fig. 4 are values
recomputed based on the experimental isotope shifts and K
and F parameters that the authors (apparently) used for the
preceding column. There is a difference in the method used
to convert λA,A′

into δ〈r2〉A,A′
: Ref. [56] used an iterative pro-

cedure described in Ref. [72], whereas we applied a rescaling
factor as in Ref. [42]. We have propagated the uncertainties in
the mass-shift and field-shift factors to arrive at the uncertain-
ties in these corrected values. These recomputed values are in
good agreement with our values.

The most precise values for δ〈r2〉A,A′
are listed in column

7 from Hammen et al. [71]. These are in close agreement
with Fricke and Heilig [42] (Column 5) but are slightly incon-
sistent with our values and the nuclear structure calculations
of Libert et al. [64]. The Hammen et al. values rely on fre-
quency measurements of the 5s5p 3P2 − 5s6s 3S1 transition
from Ref. [73], and they obtain their own K and F values
through a King plot procedure involving Cd II.

IX. CLOCK-TRANSITION FREQUENCIES

Our previous work on Yb presented clock-transition
isotope shifts determined using three largely independent
methods [29]. The method of scaling the ab initio isotope
shifts (in Table II) to match the experimental isotope shifts
(of Table X) is not performed here, as it is considered the
least reliable method and, unlike for Yb, there does not appear
to be a common factor that appropriately scales the ab initio
isotope shifts to agree with the experimental values. The iso-
tope shifts, δνA,A′

clock, for the clock transition are calculated from
the isotope shifts of the ICL in Table X using the two more

TABLE XIX. Differences in mean-square nuclear charge radii δ〈r2〉A,114 for Cd determined by δ〈r2〉A,A′ = λA,A′
/0.973.

A δ〈r2〉A,114 (fm2)

1 2 3 4 5 6 7 8
This work Ref. [56]a Ref. [56]b Ref. [42] Ref. [63]c Ref. [71] Ref. [64]d

106 –0.662(24) –0.576(8) –0.663(89) –0.696(28) –0.550(100) –0.695(13) –0.644
108 –0.478(19) –0.412(11) –0.477(65) –0.514(23) –0.403(73) –0.510(10) –0.477
110 –0.310(12) –0.252(5) –0.308(42) –0.331(17) –0.263(49) –0.334(7) –0.304
111 –0.269(15) –0.130(13) –0.275(38) –0.285(21) –0.242(43) –0.288(13)
112 –0.1448(56) –0.103(3) –0.143(20) –0.157(10) –0.124(24) –0.159(5) –0.126
113 –0.1008(97) –0.008(4) –0.105(18) –0.111(17) –0.102(18) –0.114(11)
114 0 0 0 0 0 0 0
116 0.1152(48) 0.088(3) 0.108(17) 0.129(10) 0.097(21) 0.134(9) 0.109

aUncertainties represent statistical errors only and neglect the uncertainties for K and F .
bValues recalculated (with higher-order terms as in this work) using experimental isotope shifts and K and F values as in Ref. [56]; uncertainties
from K and F included.
cHigher-order terms have been accounted for as per the method in [42].
dValues arising from nuclear structure calculations.
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FIG. 4. Differences in mean-square nuclear charge radii
δ〈r2〉A,114 for isotopes in Cd from this work and previous sources.
The references are as follows: (A) Angeli and Marinova [56], (B)
Ref. [56] but with recalculated values using the same inputs as
Angeli and Marinova, (C) Fricke and Heilig [42], (D) Buchinger
et al. [63], (E) Hammen et al. [71], and (F) Libert et al. [64].

reliable methods—using the computed values from Table XIV
in Eq. (6) and undoing the mass scaling of the interpolated
values from Fig. 2 in Table XIII. These isotope shifts are
presented in Table XX.

The uncertainties in the isotope shifts are calculated by
propagation of uncertainties, where the covariance matrix (7)
is used for the third column. The large negative covariance
between the gradient and intercept of the fit lead to the un-
certainties from the King plot interpolation being an order
of magnitude smaller than for the method involving atomic
structure calculations (for which covariance is ignored). An

TABLE XX. Isotope shifts δνA,198
clock for the 1S0 − 3Po

0 clock line
in Hg I. Column 2 lists values calculated using the isotope-shift
parameters (K and F ) in Table XIV; column 3 list values calculated
using the interpolations from the King plot in Table XIII. The known
values for 199,201Hg are also recalculated for consistency.

δνA,198
clock (GHz)

A Atomic structure calculations King plot linearity

196 4.17(11) 4.1888(87)
198 0 0
199 –0.646(19) –0.662(14)
200 –4.77(12) –4.789(11)
201 –6.37(16) –6.392(14)
202 –10.03(25) –10.062(24)
204 –15.21(38) –15.250(38)

inverse-variance weighted average of the values in Table XX
is summed with the 198Hg absolute frequency from Table I
to arrive at the clock-transition frequencies for all the iso-
topes. These predicted values are presented along with the
literature values in the lower half of Table XXI. The much
more accurately measured value for 199Hg may seem a more
suitable choice to sum the isotope shifts to, but this contains
the second-order hyperfine shift. The uncertainties have con-
tributions from both the clock line frequency of 198Hg and
the isotope shifts, though in the case of 196Hg and 200Hg it is
dominated by the former.

With regard to Cd, in the absence of sufficient experimental
data to construct a King plot, the most reliable method con-
sidered for calculating isotope shifts for the clock transition
is the computational method detailed in Ref. [29]. The K and
F values from Table XV are used in Eq. (6) together with
the ICL isotope shifts from Table XI, and the mass scaling is
undone to arrive at the clock-line isotope shifts presented in
Table XXII.

TABLE XXI. Predictions (and known values) for the absolute
transition frequencies of the 1S0 − 3Po

0 clock line in isotopes of Cd I

and Hg I.

Isotope νclock (GHz) Reference

106Cd 902796.54(17)
108Cd 902795.99(13)
110Cd 902795.503(93)
111Cd 902795.450(98)
112Cd 902795.019(69)
113Cd 902794.949(76)
114Cd 902794.618(60) [30]
116Cd 902794.343(67)
196Hg 1128580.144(14)
198Hg 1128575.955(11) [21]
199Hg 1128575.29080815462(41) [27]
200Hg 1128571.167(16)
201Hg 1128569.5611396(53) [28]
202Hg 1128565.894(27)
204Hg 1128560.706(40)
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TABLE XXII. Isotope shifts for the 1S0 − 3Po
0 clock line in Cd I.

A δνA,114
clock (GHz)

106 1.92(15)
108 1.37(12)
110 0.884(71)
111 0.832(77)
112 0.401(34)
113 0.331(47)
114 0
116 –0.275(29)

These isotope shifts are used to find the absolute clock-
transition frequencies given the clock-transition frequency of
114Cd (from Sec. II). The predicted frequencies are listed with
those of Hg in Table XXI. We note that the predictions for
112Cd, 113Cd, and 116Cd are limited by the uncertainty from
114Cd in Ref. [30] (and not the uncertainties on the K and F
parameters computed here).

In addition to the bosonic isotopes, we note that the
fermionic isotopes also lack published experimental values for
the clock-transition frequency. However, we have confirmed
sub-1σ agreement with experimental values that are accurate
to at least parts in 1010 for 111Cd and 113Cd through pri-
vate communication with H. Katori and A. Yamaguchi from
RIKEN, Tokyo.

X. CONCLUSIONS

Multiconfiguration Dirac-Hartree-Fock calculations with
configuration interaction have been carried out for Hg I and
Cd I with the GRASP2018 package. The resultant atomic
wave functions have been used to determine the diagonal and
off-diagonal hyperfine coupling constants in the fermionic
isotopes with the RHFS program under GRASP2018. For Hg
and Cd, the diagonal hyperfine coupling constants A(3Po

1 ) are
within 6% and 0.04% of values extracted from experimental
data, respectively. We note, though, that the experimental
values for Cd had 0.8% uncertainty. For Hg, the ab initio
clock-transition frequencies are at an error of only 0.02%
with experimental values, which appears to set a precedent
for atomic structure calculations in Hg. In the case of 114Cd
there is a 0.8% difference, which still represents a high level
of agreement (the measured value was inferred from the dif-
ference between 1S0 − 3Po

1 and 3Po
0 − 3Po

1 frequencies).
The resultant wave functions from GRASP2018 are also

used in the RIS4 routine to find the mass (K) and field (F ) shift
parameters associated with isotope shifts. We have evaluated
the K and F values for both the clock and intercombination
lines in the respective elements, and by isotope. We report
Kclock and Fclock for both Hg and Cd. Our value for FICL

for Hg is larger in magnitude than previous reports but is
consistent to within 1-σ and has a reduced uncertainty. Our Hg
value for KICL includes contributions from normal and specific
mass shifts and is approximately a factor of 2 greater than
previously reported values, which only appear to include the
normal mass shift. For Cd, we find FICL to be slightly larger
in magnitude than previous reports but agreeing to within

uncertainties. Our KICL value agrees with some prior values
but disagrees with others.

Calculated differences in mean-square nuclear charge radii
are found to be consistent with previous values to within un-
certainties for Hg. A King plot is constructed using available
clock and intercombination transition data, and interpolating
this yields isotope shifts for the clock transitions. These iso-
tope shifts are consistent with values deduced from mass- and
field-shift parameters that are found via our atomic structure
calculations. The latter are less accurate, but the comparison
gives confidence in the calculations.

For Cd, the ab initio clock-transition frequencies are be-
lieved to be the only available calculations of this quantity.
Calculated differences in mean-square nuclear charge radii
are found to be mostly consistent with previously reported
values. There may be a case for the revision of the tabulated
δ〈r2〉A,A′

values for Cd in Ref. [56]. Notably, our values are, in
the majority, consistent with nuclear structure calculations of
Libert et al. [64]. Predictions for the absolute clock-transition
frequencies for the fermionic isotopes of Cd are found to be
consistent to below the 1-σ range, with experimental values
communicated to us after these calculations were performed
[74].

ACKNOWLEDGMENTS

We are indebted to Christopher Bording and Hayden
Walker from the UWA High Performance Computing Team.
J.S. acknowledges support from the John and Patricia Farrant
Scholarship. This research was undertaken with the assistance
of resources from the University of Western Australia High
Performance Computing Hub. We thank A. Yamaguchi and
H. Katori for sharing with us preliminary measurements of
the clock-transition frequencies in 111Cd and 113Cd. Thank
you to Daniel Jones for the careful proofreading of this
manuscript.

APPENDIX A: NUCLEAR PROPERTIES

Data relevant to our calculations are listed in Tables XXIII
and XXIV for Hg and Cd, respectively. To compute μA,A′

we used the nuclear masses (mA) output by RNUCLEUS in the
GRASP2018 package, which converts atomic masses MA into

TABLE XXIII. Properties of Hg isotopes. A, mass number; I ,
nuclear spin; μ, nuclear magnetic moment; R, rms nuclear charge
radius; MA, neutral atomic mass. μ values are from [76], R val-
ues are from Ref. [56], and MA values are from Ref. [75]. The
only nonzero nuclear quadrupole moment occurs for 201Hg, where
QI (b) = 0.387(6) [77]. For the abundances see Ref. [78].

A I μ (μN ) R (fm) MA (u)

196 0 0 5.4385(31) 195.965833(3)
198 0 0 5.4463(31) 197.9667692(5)
199 1/2 0.5058855(9) 5.4474(31) 198.9682810(6)
200 0 0 5.4551(31) 199.9683269(6)
201 3/2 –0.5602257(14) 5.4581(32) 200.9703031(8)
202 0 0 5.4648(33) 201.9706436(8)
204 0 0 5.4744(36) 203.9734940(5)
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TABLE XXIV. Properties of Cd isotopes. Nomenclature and ref-
erences are the same as in Table XXIII.

A I μ (μN ) R (fm) MA (u)

106 0 0 4.5383(36) 105.9064598(12)
108 0 0 4.5577(31) 107.9041836(12)
110 0 0 4.5765(26) 109.9030075(4)
111 1/2 –0.5948861(8) 4.5845(28) 110.9041838(4)
112 0 0 4.5944(24) 111.90276390(27)
113 1/2 –0.6223009(9) 4.6012(28) 112.90440811(26)
114 0 0 4.6087(23) 113.90336500(30)
116 0 0 4.6203(59) 115.90476323(17)

nuclear masses. The mass values entered into RNUCLEUS are
those listed here from Wang et al. [75].

APPENDIX B: CENTROID CORRECTIONS

For an isotope with nuclear spin I = 1/2, the J = 1 hyper-
fine manifold consists of only two levels: F = 1/2 or 3/2. To
first order, the shifts of these hyperfine levels are given by

δνF = A

2
[F (F + 1) − I (I + 1) − J (J + 1)]

= A

8
[4F (F + 1) − 11],

where A is the (diagonal) hyperfine interaction constant (there
is no electric quadrupole term in this instance). For F = 1/2
we have δν = −A and for F = 3/2, δν = A/2. These shifts
are relative to the center of gravity of the hyperfine manifold,
and so the line frequencies are

ν3/2 = νc.o.g. + A

2

ν1/2 = νc.o.g. − A,

and the separation between hyperfine levels is �νhfs = ν3/2 −
ν1/2. Rearranging the pair of equations gives

νc.o.g. = 1
3 (ν1/2 + 2ν3/2)

A = 2
3 (ν3/2 − ν1/2).

For J = 1, the shift of the level F = 1/2 due to the off-
diagonal hyperfine interaction with the J = 0 level is positive,
i.e., the measured frequency is higher than in the absence
of the second-order hyperfine interaction. Adjusting for this
perturbation is done by subtracting the second-order shift
�ν

(2)
F . This leads to the shifted value ν ′

1/2 = ν1/2 − �ν
(2)
1/2 and

a shifted center of gravity:

ν ′
c.o.g. = 1

3 (ν ′
1/2 + 2ν3/2)

= 1
3

(
ν1/2 − �ν

(2)
1/2 + 2ν3/2

)
= νc.o.g. − 1

3�ν
(2)
1/2.

And so the shift of the center of gravity �ν (2)
c.o.g. = νc.o.g. −

ν ′
c.o.g. is equal to one-third of the �ν

(2)
F shift of the F = 1/2

FIG. 5. Energy-level structure of hyperfine manifold for I =
1/2, J = 1 including adjustments made to F = 1/2 level due to
the off-diagonal hyperfine interaction with the J = 0 level. The
F = 3/2 level remains unperturbed. Solid lines represent measured
values (and are therefore uncorrected for a centroid comparison with
bosonic isotope shifts). Positive energy to the right corresponds to
positive A, as in the case of 199Hg. c.o.g = center of gravity.

level. This result is used in Sec. V. The energy levels are
illustrated in Fig. 5.

The measured hyperfine-structure interval leads to an ef-
fective hyperfine interaction constant Aeff under the first-order
theory. The diagonal hyperfine interaction constant, A, is
recovered by accounting for the off-diagonal hyperfine inter-
action,

A = 2
3 (ν3/2 − ν ′

1/2)

= 2
3

(
ν3/2 − ν1/2 + �ν

(2)
1/2

)
= 2

3�νhfs + 2
3�ν

(2)
1/2

= Aeff + 2
3�ν

(2)
1/2, (B1)

and so the second-order correction to the F = I level can
be recovered from A and Aeff (the experimentally determined
value), as is done in Sec. IV. Equation (1) is the equality from
(B1) rearranged.

APPENDIX C: UNCERTAINTY EVALUATIONS

The mass-shift and field-shift parameters are not observ-
able quantities, so a direct comparison cannot be made be-
tween computational and experimental values. Accordingly,
an alternative method is used to determine the uncertainties
of our calculated parameters, namely, that of monitoring the
parameters as the computations are expanded in a systematic
way [24]. To this end, a representative isotope for each ele-
ment is chosen, and the isotope-shift parameters are calculated
a number of times as the active space is extended. For Hg the
representative isotope is 198Hg and for Cd it is 114Cd. We con-
sider adding correlation layers separately from increasing the
size of the available core and add the uncertainties estimated
from these approaches in quadrature (i.e., assuming they are
independent standard deviations).

For the monitoring of convergence as correlation layers are
added, the relativistic configuration-interaction (RCI) routine
is run after each layer is built with MCDHF calculations. This
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FIG. 6. Sequences of mass-shift and field-shift parameters as the active space is expanded by adding correlation layers (denoted L).
Uncertainty estimates (dotted lines) are presented around the final value. The left panel is for 198Hg and the right panel is for 114Cd. From
top to bottom the plots show Fclock, FICL, Kclock, and KICL.

is in contrast to our usual approach where RCI is only run after
adding the final (partial) layer. This way, the values seen in
Fig. 6 are consistent with K and F values presented earlier.
The sequences of the mass-shift and field-shift parameters for
Hg and Cd are presented in Fig. 6. The evaluated uncertainties
are represented by the dotted lines and are also listed in
Table XXV. The uncertainty is estimated to be the absolute
difference between values obtained from the two largest cor-
relation layers that are complete layers. This corresponds to
labels L5 and L6 for Hg, and L6 and L7 for Cd in Fig. 6,
since the final two correlation layers are incomplete layers
(the last full correlation layer is 12sp11d10 f ). This means of
estimating the uncertainty may be conservative given that in
many cases the last three K and F values in the sequence have
a standard deviation (from their mean) less than this. However,
the 13s and 13p orbitals are missing from the final layers,
which are expected to have some influence. (The 13s wave

TABLE XXV. Estimates for uncertainties in mass- and field-shift
parameters for Hg and Cd due to convergence of values when adding
correlation layers.

�Fclock �FICL �Kclock �KICL

Isotope (GHz fm−2) (GHz fm−2) (THz u) (THz u)

198Hg 0.48 0.49 0.034 0.036
114Cd 0.027 0.027 0.014 0.014

function was unable to be estimated using the Thomas-Fermi
method in GRASP2018.)

For the monitoring of convergence as the active core is
expanded, the method used to compute the main MCDHF-CI
results is repeated several times with the input files to RCSF-
GENERATE altered depending on the set of active core orbitals
in consideration (RCSFGENERATE generates the configuration
state functions). The sequence is taken to one core orbital
deeper than is used for the majority of calculations conducted
in this paper. The uncertainty is taken to be twice the abso-
lute difference between the values for the two deepest core
extensions. The sequences of the mass-shift and field-shift
parameters for Hg and Cd as substitutions to the core deepen
are presented in Fig. 7. Again, the 1-σ uncertainty bounds are
shown as dotted lines, but this time centered on the penulti-
mate value. The estimated uncertainties are also reported in
Table XXVI.

TABLE XXVI. Estimates for uncertainties in mass- and field-
shift parameters for Hg and Cd due to convergence of values when
expanding the available core.

�Fclock �FICL �Kclock �KICL

Isotope (GHz fm−2) (GHz fm−2) (THz u) (THz u)

198Hg 0.86 0.87 0.17 0.16
114Cd 0.16 0.16 0.013 0.010
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FIG. 7. Sequences of mass-shift and field-shift parameters as the active space is expanded by extending the available core. Uncertainty
estimates (dotted lines) are presented around the penultimate value. The left panel is for 198Hg, and the right panel is for 114Cd. From top to
bottom the plots show Fclock, FICL, Kclock, and KICL.
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