
PHYSICAL REVIEW A 105, 022804 (2022)

Calculations of Delbrück scattering to all orders in αZ
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We present a theoretical method to calculate Delbrück scattering amplitudes. Our formalism is based on
the exact analytical Dirac-Coulomb Green’s function and therefore accounts for the interaction of the virtual
electron-positron pair with the nucleus to all orders, including the Coulomb corrections. The numerical con-
vergence of our calculations is accelerated by solving the radial integrals that are involved analytically in the
asymptotic region. Numerical results for the collision of photons with energies 102.2 and 255.5 keV with bare
neon and lead nuclei are compared with the predictions of the lowest-order Born approximation. We find that
our method can produce accurate results within a reasonable computation time and that the Coulomb corrections
enhance the absolute value of the Delbrück amplitude by a few percent for the studied photon energies.
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I. INTRODUCTION

Delbrück scattering is the process in which a photon is elas-
tically scattered by the Coulomb field of an atomic nucleus via
the formation of virtual electron-positron pairs [1]. It is one
of the few nonlinear quantum electrodynamical processes that
is observed experimentally [2–4]. Moreover, precise knowl-
edge of Delbrück amplitudes is needed in order to extract
relevant information from nuclear Compton scattering exper-
iments [5,6]. Hence this process has attracted considerable
attention, both from the experimental and theoretical side
in the past. However, despite the strong motivation for the
theoretical analysis of Delbrück scattering, most studies have
been limited to approximations of the coupling between the
virtual electron-positron pair and the nucleus. For example,
many studies have been conducted using the lowest-order
Born approximation, which neglects terms of the order (αZ )4

and higher in the amplitude [7–11]. Depending on the en-
ergy, this approximation may break down for higher nuclear
charges which are of particular experimental interest. There
have also been some efforts to calculate high energy, large-
and small-angle approximations [12–15], and, more recently,
the Coulomb corrections in the low-energy limit have been
calculated by Kirilin and Terekhov [16]. To the best of our
knowledge, exact calculations (in αZ) of Delbrück scattering
have only been attempted once almost three decades ago by
Scherdin and co-workers [17,18]. Due to computational limi-
tations, these calculations had limited numerical accuracy and
applicability.

In this work we present a method to calculate Delbrück
scattering amplitudes that are exact in αZ . We employ rela-
tivistic quantum electrodynamics, whose basic equations are
recalled in Sec. II. In Sec. III we discuss how we evaluate
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the multidimensional integrals that are involved in the calcu-
lation. In particular, in Sec. III A we explain how to obtain
a finite amplitude by subtracting the free-loop contribution.
Moreover, in Sec. III B we discuss the analytical structure of
the integrand and the rotation of the integration contour. In
Sec. III C we show how to accelerate the radial integration
by solving the integral analytically in the asymptotic case.
In Sec. III D we discuss the implementation of our method
and the magnitude of all possible numerical errors. Numerical
results for the collision of photons with energies 102.2 and
255.5 keV with bare neon and lead nuclei are compared with
the predictions of the lowest-order Born approximation in
Sec. IV. Finally, in Sec. V we summarize our work and give an
outlook to possible applications of our method in the future.
Relativistic units h̄ = me = c = 1 are used throughout this
paper, if not stated otherwise.

II. QED DESCRIPTION OF DELBRÜCK SCATTERING

A. General formalism

In the framework of quantum electrodynamics, Delbrück
scattering can be described by the Feynman diagram in Fig. 1.
As usual, the wavy lines represent the incoming and outgoing
photons with wave vectors k1 and k2 as well as polarization
vectors ε1 and ε2, respectively. Moreover, the double lines
describe the virtual electron-positron pair in the Coulomb field
of a nucleus. By making use of the well-known Feynman
correspondence rules, we can write the amplitude for this
diagram as

M = iα

2π

∫ ∞

−∞
dz

∫ ∞

−∞
dz′

∫
d3r1

∫
d3r2

× Tr[R̂(r1, k1, ε1)G(r1, r2, z)R̂†(r2, k2, ε2)

× G(r2, r1, z′)]δ(ω + z − z′), (1)
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FIG. 1. Leading-order Feynman diagram for Delbrück scattering.

where z and z′ are the energy arguments of the electron prop-
agators, r1 and r2 are three-dimensional coordinate vectors,
and ω is the energy of the incoming/outgoing photon, see [5].
Moreover, in Eq. (1) R̂(r, k, ε) is the photon-lepton interac-
tion operator, and G(r2, r1, z′) is the Dirac-Coulomb Green’s
function. Both R̂(r, k, ε) and G(r2, r1, z′) have to be specified
to evaluate the Delbrück amplitude (1) further.

B. Photon-lepton interaction operator

The operators R̂(r1, k1, ε1) and R̂†(r2, k2, ε2) describe the
absorption and emission of photons with wave vectors k1, k2

and polarization vectors ε1, ε2. As usual in atomic structure
calculations, it is convenient to expand these operators in
their multipole components, which have well-defined parity
and symmetry properties. By choosing the Coulomb gauge

for the lepton-matter coupling and by describing the photon
polarization in the helicity basis ε = ελ = ex + iλey, λ = ±1,
this expansion can be written in the form

R̂(r, k, ε) = α · ελeik·r =
√

2π
∑
PLM

iL
√

2L + 1

× (iλ)PDL
Mλ(k̂)α · a(P)

LM . (2)

Here the magnetic (P = 0) and electric (P = 1) multipole
fields read as

a(0)
LM = jL(ωr) T LLM, (3a)

a(1)
LM =

√
L + 1

2L + 1
jL−1(ωr) T L,L−1,M

−
√

L

2L + 1
jL+1(ωr) T L,L+1,M , (3b)

where jL is the spherical Bessel function, and the vector spher-
ical harmonics TJLM are constructed as irreducible tensors of
rank J as

T JLM =
1∑

μ=−1

〈L (M − μ) 1 μ|J M〉YL,M−μξμ. (4)

Further details about the multipole representation of the
photon-lepton interaction operator can be found in Ref. [19].

C. Green’s function

Besides the photon-lepton interaction operator, we also have to find a suitable representation of the Green’s function
G(r2, r1, z). Within the well-established spectral representation, this function can be written in terms of the eigensolutions of
the Dirac equation:

G(r2, r1, z) =
∑
nκμ

φμ
nκ (r2)φμ†

nκ (r1)

Enκ − z
. (5)

Here, φμ
nκ are the well-known Dirac-Coulomb wave functions, which are conveniently written in the bispinor form,

φμ
nκ (r) =

(
gnκ (r)χμ

κ (r̂)
i fnκ (r)χμ

−κ (r̂)

)
, (6)

with κ being the Dirac angular-momentum quantum number, μ is the projection of the total angular momentum j = |κ| − 1
2 , and

n is the principal quantum number. Furthermore, gnκ (r) and fnκ (r) are the large and small radial components and χμ
κ are the spin-

angular wave functions [20]. By inserting Eq. (6) into the spectral representation (5), we obtain the Green’s function in the form

G(r2, r1, z) =
∑
nκμ

1

Enκ − z

(
gnκ (r2)χμ

κ (r̂2)gnκ (r1)χμ†
κ (r̂1) −ignκ (r2)χμ

κ (r̂2) fnκ (r1)χμ†
−κ (r̂1)

i fnκ (r2)χμ
−κ (r̂2)gnκ (r1)χμ†

κ (r̂1) fnκ (r2)χμ
−κ (r̂2) fnκ (r1)χμ†

−κ (r̂1)

)
. (7)

As usual, the sum over n is understood here as a summation over the bound discrete states and an integration over the positive
and negative continua.

In Eq. (7) the summation (integration) over n runs over the complete Dirac spectrum. This summation is a rather complicated
task which needs to be discussed in detail. To start with this discussion, we introduce the radial Green’s function:

Gκ (r2, r1, z) =
(∑

n
gnκ (r2 )gnκ (r1 )

Enκ−z

∑
n

gnκ (r2 ) fnκ (r1 )
Enκ−z∑

n
fnκ (r2 )gnκ (r1 )

Enκ−z

∑
n

fnκ (r2 ) fnκ (r1 )
Enκ−z

)
. (8)

To find the components of this function, we can use the fact that Gκ (r2, r1, z) is the solution of the inhomogeneous equation(
1 + V (r2) − z − 1

r2

d
dr2

r2 + κ
r2

1
r2

d
dr2

r2 + κ
r2

−1 + V (r2) − z

)
Gκ (r2, r1, z) =

(
1 0
0 1

)
δ(r2 − r1)

r2r1
, (9)

where in the second line δ(x) is the Dirac δ function [21,22]. We can find the solutions of this equation as

Gκ (r2, r1, z) = 1

wκ (z)

[

(r2 − r1)

(
F 1

κ,∞(r2, z)
F 2

κ,∞(r2, z)

)(
F 1

κ,0(r1, z)
F 2

κ,0(r1, z)

)T

+ 
(r1 − r2)

(
F 1

κ,0(r2, z)
F 2

κ,0(r2, z)

)(
F 1

κ,∞(r1, z)
F 2

κ,∞(r1, z)

)T
]
, (10)
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where the index T indicates the transpose, and the Wronskian,

wκ (z) = r2
[
F 2

κ,0(r, z)F 1
κ,∞(r, z) − F 1

κ,0(r, z)F 2
κ,∞(r, z)

]
, (11)

is known to be independent of r. Moreover, the functions F 1,2
κ,0 (r) and F 1,2

κ,∞(r) are the solutions of the homogeneous equation,(
1 + V (r) − z − 1

r
d
dr r + κ

r
1
r

d
dr r + κ

r −1 + V (r) − z

)(
F 1

κ (r, z)
F 2

κ (r, z)

)
= 0, (12)

which are regular at the origin and at infinity; see Refs. [21,22] for further details. In order to find the explicit form of these
functions, we have to specify the interaction potential between the leptons and the nucleus. By assuming Delbrück scattering on
a bare pointlike nucleus, the functions F 1,2

κ,0 (r) and F 1,2
κ,∞(r) are given by[

F 1
κ,0(x, z)

F 2
κ,0(x, z)

]
=

[√
1+z

2cx3/2

[
(λ − ν)Mν−1/2,λ(2cx) − (

κ − γ

c

)
Mν+1/2,λ(2cx)

]
√

1−z
2cx3/2

[
(λ − ν)Mν−1/2,λ(2cx) + (

κ − γ

c

)
Mν+1/2,λ(2cx)

]],

[
F 1

κ,∞(x, z)
F 2

κ,∞(x, z)

]
= (λ − ν)

(1 + 2λ)

[√
1+z

2cx3/2

[(
κ + γ

c

)
Wν−1/2,λ(2cx) + Wν+1/2,λ(2cx)

]
√

1−z
2cx3/2

[(
κ + γ

c

)
Wν−1/2,λ(2cx) − Wν+1/2,λ(2cx)

]], (13)

where Mκ,μ and Wκ,μ are the Whittaker functions, and c = √
1 − z2, γ = αZ , ν = γ z/c, and λ =

√
κ2 − γ 2 [22]. Here the

branch of the square root is taken so that Re(c) � 0 and, moreover, the Wronskian (11) is just unity, wκ (z) = 1.
Having derived the components of the radial Green’s function, we can obtain the full function (7), which enters the Delbrück

scattering matrix element, as

G(r2, r1, z) =
∑
κμ

1

wκ (z)

[

(r2 − r1)

(
F 1

κ,∞(r2, z)χμ
κ (r̂2)

iF 2
κ,∞(r2, z)χμ

−κ (r̂2)

)(
F 1

κ,0(r1, z)χμ†
κ (r̂1) −iF 2

κ,0(r1, z)χμ†
−κ (r̂1)

)
+ 
(r1 − r2)

(
F 1

κ,0(r2, z)χμ
κ (r̂2)

iF 2
κ,0(r2, z)χμ

−κ (r̂2)

)(
F 1

κ,∞(r1, z)χμ†
κ (r̂1) −iF 2

κ,∞(r1, z)χμ†
−κ (r̂1)

)]

≡
∑
κμ

1

wκ (z)
[
(r2 − r1)Fμ

κ,∞(r2, z)F̃μ
κ,0(r1, z) + 
(r1 − r2)Fμ

κ,0(r2, z)F̃μ
κ,∞(r1, z)]. (14)

In the last line of this expression, we introduced the short-hand notation Fμ
κ,∞, F̃μ

κ,0, Fμ
κ,0, and F̃μ

κ,∞ to represent the row and
column spinors from which the Green’s function is constructed.

D. Evaluation of the matrix element

In the previous two sections we obtained the radial-angular decomposition of the photon-lepton interaction operator (2) and
the Green’s function (14). By inserting these expansions into Eq. (1), we can write the Delbrück scattering amplitude as

Mλ1,λ2 = iα
∑
κμ

∑
κ ′μ′

∑
P1L1M1

∑
P2L2M2

iL1+P1−L2−P2λ
P1
1 λ

P2
2

√
(2L1 + 1)(2L2 + 1)DL1

M1λ1
(φ1, θ1, 0)

× DL2∗
M2λ2

(φ2, θ2, 0)[I1(κ ′μ′, ω, P1L1M1, P2L2M2, κμ) + I2(κ ′μ′, ω, P1L1M1, P2L2M2, κμ)], (15)

where we now explicitly show the dependence on the helicity of the incoming and outgoing photon λ1 and λ2. The nontrivial
part of the calculations is contained within the multidimensional integrals,

I1(κ ′μ′, ω, P1L1M1, P2L2M2, κμ) =
∫ ∞

−∞
dz′

∫ ∞

−∞
dz

δ(ω + z − z′)
wκ (z)wκ ′ (z′)

∫
d3r1 F̃μ′

κ ′,∞(r1, z′)α · a(P1 )
L1M1

(r1)Fμ
κ,∞(r1, z)

×
[∫

r2�r1

d3r2 Fμ′
κ ′,0(r2, z′)†α · a(P2 )

L2M2
(r2)F̃μ

κ,0(r2, z)†

]∗
(16)

and

I2(κ ′μ′, ω, P1L1M1, P2L2M2, κμ) =
∫ ∞

−∞
dz′

∫ ∞

−∞
dz

δ(ω + z − z′)
wκ (z)wκ ′ (z′)

[∫
d3r2 Fμ′

κ ′,∞(r2, z′)†α · a(P2 )
L2M2

(r2)F̃μ
κ,∞(r2, z)†

]∗

×
∫

r1�r2

d3r1 F̃μ′
κ ′,0(r1, z′)α · a(P1 )

L1M1
(r1)Fμ

κ,0(r1, z). (17)

These functions can be represented as the product of radial and angular integrals, see Appendix A. While the angular integrals
can be easily calculated using Racah algebra [23,24], the radial counterparts require more attention.
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FIG. 2. Subtraction of the divergent free-loop contribution from
the full Delbrück scattering Feynman diagram.

III. EVALUATION OF THE DELBRÜCK AMPLITUDE

A. Divergence

In the previous section we obtained expressions for the
scattering amplitude represented by the Feynman diagram in
Fig. 1. These expressions cannot be directly used for a numeri-
cal evaluation since the integration over the intermediate-state
energies is divergent in the ultraviolet region. In order to elimi-
nate this divergency, it is convenient to consider the expansion
of the electron propagators in the vacuum-polarization loop
in terms of interactions with the binding nuclear field, i.e.,
in powers of the coupling constant (αZ ). The first term of
the expansion contains only the free electron propagators
and does not contribute to the Delbrück scattering, since it
does not involve the nucleus. This Z-independent term is
conveniently eliminated by subtracting the Z = 0 contribution
before integrations, see Fig. 2. Similar methods have been
used many times in the past for Delbrück scattering [17,18]
and for the nonperturbative—to all orders in αZ—calculation
of the vacuum-polarization diagram, e.g., Refs. [25–29].

The second term of the potential expansion of the vacuum-
polarization loop is linear in Z . This term (as well as all
other odd-Z contributions) vanishes due to Furry’s theorem.
However, such terms are present in the integrand and may
lead to spurious contributions. We eliminate such terms by
expressing the integrand to be symmetrical with respect to
Z → −Z .

The higher-order terms of the potential expansion con-
tain two or more interactions with the nuclear binding field;
they are ultraviolet finite. However, it is known [25,30] that
the vacuum-polarization loop with four vertices might in-
duce spurious gauge-noninvariant contributions. In the present
work we use the demonstration of Refs. [28,31] that for a
finite energy transferred through the loop, the spurious terms
vanish when the partial-wave summation is performed after
all integrations. This prescription corresponds to our scheme
of calculations, so we conclude that no spurious terms arise in
our approach.

B. Energy integration

After extracting the free-loop contribution from the Del-
brück scattering diagram, we have to numerically calculate
the remaining part of the amplitude. As seen from Eq. (15),

Im(z′)

Re(z′)

−1 − ω
2 −1 + ω

2

δ δ

δ
δ

+1 − ω
2 +1 + ω

2

FIG. 3. Schematic depiction of the singularities (black crosses),
branch cuts (black zig zag lines), and infinitesimal shift of the poles
from the real axis δ. The red line shows the closed integral over z′ in
Ki j , which vanishes due to Cauchy’s integral formula.

this requires the evaluation of the functions I1 and I2, which
contain the integration over the energies z and z′. The inte-
gration over z can be performed trivially owing to the Dirac
δ function δ(ω + z − z′) that gives z = z′ − ω. The remain-
ing integration over z′ has to be performed numerically. The
stability of this numerical integration can be improved by sub-
stituting z′ → z′ + ω

2 , thus making the integrand symmetric
with respect to the origin. This symmetry results in the inte-
grand being invariant to charge inversion Z → −Z , meaning
that all contributions proportional to odd powers of Z vanish
before the integration over z′. The odd-Z contributions being
canceled out makes the calculation more stable. The resulting
integrand is analytical in the entire complex plane, except
for the branch cuts starting at z′ = ±1 + ω

2 and z′ = ±1 − ω
2

as well as the poles at z′ = (λ′ + m)/
√

γ 2 + (λ′ + m)2 + ω
2

and z′ = (λ + m)/
√

γ 2 + (λ + m)2 − ω
2 , m = 0, 1, 2, ..., see

Fig. 3. Since these poles are located infinitely close to the real
axis, δ → 0, the energy integration in the interval (−∞,∞)
might be troublesome. To avoid this, let us first assume
that the photon energy is under the pair creation threshold,
ω/2 < 1 − e0, where e0 is the ionization energy of the 1s
Dirac state. In this case the analytical structure of the inte-
grand is shown in Fig. 3, and we can perform the well-known
Wick rotation of the integration contour∫ ∞

−∞
dz′ →

∫ i∞

−i∞
dz′, (18)

in which we turn the integration path to the imaginary axis.
By using Cauchy’s integral formula, it can be shown that
the integral along the rotated contour is equivalent to the
original integral along the real axis. The integration contour
as displayed in Fig. 3 allows us to perform the integral over z′
in a stable and controlled way.
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C. Radial integration

Having discussed the energy integration of the functions
(16) and (17), we are ready now to address the remaining
angular and radial integrals. As mentioned in Sec. II D, the
angular integrals can be easily calculated analytically using
Racah algebra while their radial counterparts are more com-
plicated. In Appendix A, we show that the main building
blocks for the radial part are the integrals,

J (z′, κ ′, ω, L1, L2, κ, p1, p2, p3, p4)

= (λ − ν)(λ′ − ν ′)
(1 + 2λ)(1 + 2λ′)

×
∫ ∞

0

dr1

r1
Wν ′+ p1

2 ,λ′ (2c′r1) jL1 (ωr1)Wν+ p2
2 ,λ(2cr1)

×
∫ r1

0

dr2

r2
Mν ′+ p3

2 ,λ′ (2c′r2) jL2 (ωr2)Mν+ p4
2 ,λ(2cr2), (19)

where L1 and L2 are the multiplicities of the incoming and
outgoing photon, κ ′ and κ are the Dirac quantum numbers
of the electron and positron propagators, and p1, ..., p4 are
parameters that can take the values +1 or −1. The calculation
of these integrals is a computationally demanding task. One
of the main reasons for this is the fact that the integrand
is a strongly oscillating function. Moreover, owing to the
properties of the Whittaker functions, the amplitude of this
oscillation decreases polynomially and not exponentially with
the radial coordinate r1. Hence, to achieve a good convergence
of the results, the numerical calculation has to be performed
with many integration points and within a large interval,
leading to long computation times. In order to overcome
this difficulty, we apply an approach in which the numerical
integration runs from r1 = 0 to some arbitrary parameter a,
while the remaining integration from r1 = a to infinity is done
analytically:

J (z′, κ ′, ω, L1, L2, κ, p1, p2, p3, p4)

= (λ − ν)(λ′ − ν ′)
(1 + 2λ)(1 + 2λ′)

[ ∫ a

0

dr1

r1
Wν ′+ p1

2 ,λ′ (2c′r1) jL1 (ωr1)Wν+ p2
2 ,λ(2cr1)

∫ r1

0

dr2

r2
Mν ′+ p3

2 ,λ′ (2c′r2) jL2 (ωr2)Mν+ p4
2 ,λ(2cr2)︸ ︷︷ ︸

Numerical integration

+
∫ ∞

a

dr1

r1
Wν ′+ p1

2 ,λ′ (2c′r1) jL1 (ωr1)Wν+ p2
2 ,λ(2cr1)︸ ︷︷ ︸

Analytical integration

∫ a′

0

dr2

r2
Mν ′+ p3

2 ,λ′ (2c′r2) jL2 (ωr2)Mν+ p4
2 ,λ(2cr2)︸ ︷︷ ︸

Numerical integration

+
∫ ∞

a

dr1

r1
Wν ′+ p1

2 ,λ′ (2c′r1) jL1 (ωr1)Wν+ p2
2 ,λ(2cr1)

∫ r1

a′

dr2

r2
Mν ′+ p3

2 ,λ′ (2c′r2) jL2 (ωr2)Mν+ p4
2 ,λ(2cr2)︸ ︷︷ ︸

Analytical integration

]
. (20)

Such an approach is possible due to the well-known
asymptotic expansions of the Whittaker functions for large
arguments:

Mα,β (z) ∼ (1 + 2β )


(

1
2 + β − α

)e
1
2 zz−α

∞∑
s=0

uM (s, α, β )z−s

+ (1 + 2β )

( 1
2 + β + α)

e− 1
2 z±

(
1
2 +β−α

)
π izα

×
∞∑

s=0

ũM (s, α, β )(−z)−s, (21a)

Wα,β (z) ∼ e− 1
2 zzα

∞∑
s=0

uW (s, α, β )(−z)−s, (21b)

where

uM (s, α, β ) =
(

1
2 − β + α

)
s

(
1
2 + β + α

)
s

s!
, (22a)

ũM (s, α, β ) =
(

1
2 + β − α

)
s

(
1
2 − β − α

)
s

s!
, (22b)

uW (s, α, β ) =
(

1
2 + β − α

)
s

(
1
2 − β − α

)
s

s!
, (22c)

and (x)n is the Pochhammer symbol. Moreover, we use the
exact expansion of the spherical Bessel function, which reads

jL(x) =
L∑

m=0

(L + m)!

m!(L − m)!
iL+1−m(2x)−m−1

× [(−1)L+1−meix + e−ix], (23)

see Ref. [32]. We choose a and a′ in Eq. (20) large enough
so that the asymptotic expansion of the Whittaker functions
above converges fast. By inserting the expressions (21)–(23)
into the third and fourth line of Eq. (20), we can perform
the analytical integration up to all orders in the asymptotic
expansions, see Appendix B.

D. Computational details

We have discussed above the method for the calculation
of Delbrück scattering amplitudes. However, the practical im-
plementation of this method still comes with some difficulties
that need to be addressed in order to keep the numerical un-
certainties under control. The main source of numerical error
comes from the summation over the multipole components
κ ′, κ , L1, and L2. It can be easily seen that for fixed κ ′ and κ ,
the sum over the photon multipole components L1 and L2 is
bound by the properties of the angular integrals. In practice,
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it is usually not necessary to carry out the summation over all
nonvanishing multipoles because for most scattering angles, a
satisfactory convergence is reached earlier. In contrast to the
summation over L1 and L2, the sum over κ ′ and κ is infinite
and converges very slowly. In order to accelerate this conver-
gence, we utilize a trick that is based on the fact that the full
Delbrück amplitude vanishes for zero photon energy when all
integrations and summations have been carried out. Therefore,
subtracting the amplitude for ω = 0 does not change the final
result. However, we found that subtracting this amplitude be-
fore carrying out the summation over κ ′ and κ vastly increases
the convergence and we can reduce the number of needed
multipoles significantly by using this trick. The number of
combinations of κ ′ and κ that need to be calculated can be fur-
ther minimized by using an extrapolation technique. The ap-
plication of this technique requires us to first write the sum as∑

κ,κ ′
Xκ,κ ′ =

∑
|κ|,|κ ′|

X|κ|,|κ ′| =
∑
|κ|

Y|κ|, (24)

where we have introduced

X|κ|,|κ ′ | =
∑

sign(κ )

∑
sign(κ ′ )

Xκ,κ ′ (25)

and

Y|κ| =
|κ|∑

|κ ′|=1

(X|κ|,|κ ′| + X|κ ′|,|κ|) − X|κ|,|κ|. (26)

We see from Eq. (24) that the summation over κ ′ and κ has
been written as a sum over a single parameter |κ|. We now
evaluate the sum over Y|κ| up to some maximum value |κ|max

and estimate the tail of the expansion using least-squares
inverse polynomial fitting. Utilizing this method, we achieve a
relative accuracy of less than 1% for scattering angles θ > 30◦
and less than 3% for θ � 30◦ by summing up to |κ|max = 40
for all calculations shown in the next section.

In contrast to the multipole expansions discussed above,
the other parts of the calculations do not introduce such large
uncertainties into the results. However, to keep the respective
errors small, some further numerical tricks are required. For
example, both the evaluation of the complex Whittaker func-
tions in Eq. (19) and the analytical solution of the asymptotic
integrals in Eq. (20) suffer from severe numerical cancela-
tions as well as over- and underflow problems. Furthermore,
the subtraction of the free-loop contribution in Fig. 2 can
also cancel up to nine digits of accuracy. Hence performing
calculations with double-precision arithmetics could lead to
the loss of all significant digits. To solve the numerical is-
sues described above, we use arbitrary precision ball-point
arithmetics, as implemented by Johansson [33], in our entire
integration routine to get a high precision and rigorous error
bounds for the integrals. The working precision is chosen
large enough so that rounding errors are negligible for our
calculations.

In addition to the cancelation problems, another source of
numerical uncertainty originates from the integration over r1,
r2, and z′ in Eqs. (16) and (17). This uncertainty is mainly
caused by the numerical integration itself, which we perform
using Gauss-Legendre quadrature [34], and the summation
over the asymptotic expansion of the Whittaker functions
(21), which has to be terminated at some summation index s.

In all calculations shown in this work, we choose the number
of integration points and the number of terms in the summa-
tion over s large enough so that the relative numerical error
in the final amplitude is smaller than 10−6 and, therefore, also
negligible. In order to avoid the introduction of any additional
error by truncating the integral over z′, which goes up to
infinity, see Sec. III B, we split the integral in each half of
the complex plane into two parts. First we integrate from
zero to some arbitrary parameter A, and then we integrate the
remaining part up to infinity by mapping it to the interval [0,1]
through the change of variable z′ = A/t .

To be able to run our calculations in a reasonable time
frame, the evaluation of the radial integrals for different
z′ is done in parallel on the PTB high-performance clus-
ter. A typical calculation runs on 72 threads simultaneously,
which vastly increases the performance and reduces the to-
tal computing time to a approximately two days for a full
set of amplitudes, including all scattering angles and photon
polarizations.

IV. NUMERICAL RESULTS

In the previous sections we have established the theoretical
framework to calculate amplitudes for Delbrück scattering.
Moreover, we have discussed an efficient method to evalu-
ate the multidimensional integrals that are involved in this
calculation. In what follows we show the viability of our
method by presenting numerical results. In Fig. 4 we display
the Delbrück scattering amplitude (15) for the collision of
photons with energies E = 0.2 mec2 (102.2 keV) and E =
0.5 mec2 (255.5 keV) with bare neon and lead nuclei. For
each scenario we investigate the scattering in which the pho-
ton helicity is either flipped, λ1 �= λ2, or unchanged, λ1 = λ2.
The corresponding amplitudes are conveniently referred to as
nonhelicity flip and helicity flip amplitudes and are denoted
as M++ = M−− and M+− = M−+. The fact that out of four
amplitudes only two are independent is well known and can
be explained by symmetry reasons [5]. We compare our nu-
merical results with the lowest-order Born approximation as
given by Refs. [7,10]. Following the convention of Falkenberg
and co-workers [10], we present our results in units (αZ )2r0,
where r0 = 2.818 fm is the classical electron radius.

We compare our results with the predictions of the lowest-
order Born approximation for a neon target. The Born
approximation can be obtained from an αZ expansion of
the Feynman diagram in Fig. 1 and neglecting all terms of
higher order than (αZ )2. As seen from the left column of
the figure, the Born and our rigorous results agree very well,
as can be expected for the low-Z regime. Moreover, as seen
from the right column, the normalized amplitudes are almost
unchanged for the high-Z regime, and the higher-order cor-
rections mainly lead to a slight enhancement of the absolute
value of the scattering amplitude in the order of a few percent.
By comparing the upper and lower panels of the figure, we can
observe, moreover, the well-known ω2 low-energy scaling of
the Delbrück amplitude [7].

To get more insight into the higher-order (beyond (αZ )2)
corrections to the Delbrück amplitude, we display in Fig. 5
the difference between the rigorous and Born amplitude,
�Mλ1,λ2 = Mλ1,λ2 − MBorn,λ1,λ2 , again for the collision of
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FIG. 4. Amplitudes for Delbrück scattering (15) in collisions of photons with energies E = 0.2 mec2 (102.2 keV) (upper panels) and
E = 0.5 mec2 (255.5 keV) (lower panels) with bare neon (left panels) and lead (right panels) nuclei in units (αZ )2r0, where r0 = 2.818 fm is
the classical electron radius. Calculations have been performed for the nonhelicity flip amplitude M++ = M−− (black solid line) as well as the
helicity flip amplitude M+− = M−+ (red dashed line). Moreover, we show the lowest-order Born approximation (crosses) as given by Ref. [7]
(upper panel) and [10] (lower panel).
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FIG. 5. Coulomb corrections �Mλ1,λ2 = Mλ1,λ2 − MBorn,λ1,λ2

to the Delbrück amplitude (15) in collisions of photons
with energies E = 0.2 mec2 (102.2 keV) (upper panel) and
E = 0.5 mec2 (255.5 keV) (lower panel) with bare lead nuclei in
units (αZ )2r0, where r0 = 2.818 fm is the classical electron radius.
Calculations have been performed for the nonhelicity flip amplitude
�M++ = �M−− (black solid line) as well as the helicity flip
amplitude �M+− = �M−+ (red dashed line).

photons with energies E = 0.2 mec2 (102.2 keV) and E =
0.5 mec2 (255.5 keV) with bare lead nuclei. As seen from the
figure, this difference, which can be attributed to the Coulomb
corrections, shows a similar behavior as the full amplitude
where the nonhelicity flip contribution has its maximum in
the forward direction and monotonously decreases to zero for
backward scattering, while for the helicity flip part it is the
other way around.

V. SUMMARY AND OUTLOOK

In conclusion, we presented a theoretical method to cal-
culate amplitudes for Delbrück scattering which accounts for
the interaction of the virtual electron-positron pairs with the
nucleus up to all orders. A special emphasis was put on the
practical evaluation of the multidimensional integrals that are
involved in this calculation. In particular, we found an ana-
lytical solution of the radial integrals up to all orders in the
asymptotic expansions of the involved special functions. By
using a combination of numerical and analytical integration
methods, we were able to improve the numerical stability of
our calculations significantly and compute Delbrück ampli-
tudes in a well-controlled way. In order to illustrate the use
of our proposed method, we have performed calculations of
relatively low-energy photons colliding with bare neon and
lead ions. As expected, the results of these calculations have
been found to be in very good agreement with the lowest-order
Born approximation. Our results suggest that the Coulomb
corrections lead to an enhancement of the absolute value of the
scattering amplitude of about a few percent for all scattering
angles and relatively low energies.
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While higher-order corrections are relatively small for the
parameter regime studied in this work, it is well known, both
from theoretical analysis [35] and experiments [36], that these
effects are much larger above the pair production threshold.
The method developed in this work can be applied to these
energies with a few modifications to the integration path and
some more optimizations to decrease the computation time. A
study of Delbrück scattering above the pair production thresh-
old is currently under development and will be published in a
future work.
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APPENDIX A: EVALUATION OF THE FUNCTIONS I1 AND I2

In this section we want to express the integrals in Eqs. (16) and (17) in terms of their radial and angular parts. We start by
rewriting the functions I1 and I2 as

I1(κ ′μ′, ω, P1L1M1, P2L2M2, κμ) =
∫ ∞

−∞
dz′

∫ ∞

−∞
dz

δ(ω + z − z′)
wκ (z)wκ ′ (z′)

∫
d3r1 F̃μ′

κ ′,∞(r1, z′)α · a(P1 )
L1M1

(r1)Fμ
κ,∞(r1, z)

×
[∫

r2�r1

d3r2 Fμ′
κ ′,0(r2, z′)†α · a(P2 )

L2M2
(r2)F̃μ

κ,0(r2, z)†

]∗

≡
∫ ∞

−∞
dz′

∫ ∞

−∞
dz

δ(ω + z − z′)
wκ (z)wκ ′ (z′)

∫
d3r1 F̃μ′

κ ′,∞(r1, z′)α · a(P1 )
L1M1

(r1)Fμ
κ,∞(r1, z)

× J∗
1 (ω, z′κ ′μ′, P2L2M2, zκμ, r1), (A1)

and

I2(κ ′μ′, ω, P1L1M1, P2L2M2, κμ) =
∫ ∞

−∞
dz′

∫ ∞

−∞
dz

δ(ω + z − z′)
wκ (z)wκ ′ (z′)

[∫
d3r2 Fμ′

κ ′,∞(r2, z′)†α · a(P2 )
L2M2

(r2)F̃μ
κ,∞(r2, z)†

]∗

×
∫

r1�r2

d3r1 F̃μ′
κ ′,0(r1, z′)α · a(P1 )

L1M1
(r1)Fμ

κ,0(r1, z)

≡
∫ ∞

−∞
dz′

∫ ∞

−∞
dz

δ(ω + z − z′)
wκ (z)wκ ′ (z′)

[∫
d3r2 Fμ′

κ ′,∞(r2, z′)†α · a(P2 )
L2M2

(r2)F̃μ
κ,∞(r2, z)†

]∗

× J2(ω, z′κ ′μ′, P1L1M1, zκμ, r2). (A2)

To compute the involved integrals efficiently, we have to evaluate these expressions further. Let us start by writing J1 as

J1(z′κ ′μ′, ω, P2L2M2, zκμ, r1) = i
∫

r2�r1

d3r2
[
F 1

κ ′,0(r2, z′)∗(χμ′
κ ′ )†(r̂2)σ · a(P2 )

L2M2
(r2)F 2

κ,0(r2, z)∗χμ
−κ (r̂2)

− F 2
κ ′,0(r2, z′)∗(χμ′

−κ ′ )†(r̂2)σ · a(P2 )
L2M2

(r2)F 1
κ,0(r2, z)∗χμ

κ (r̂2)
]
. (A3)

Using the definition of the multipole fields (3) and the fact that

σ · T JLM =
∑

μ

〈L (M − μ) 1 μ|J M〉YL,M−μ(σ · ξμ) = [Y L ⊗ σ]JM (A4)

(see [37]), we can further evaluate J1 and obtain for the magnetic (P = 0) transition

J1(z′κ ′μ′, ω, P2 = 0, L2M2, zκμ, r1) = i(K1(z′, κ ′, ω, L2, z, κ, r1)∗〈κ ′μ′|[Y L2 ⊗ σ]L2M2 | − κμ〉
− K2(z′, κ ′, ω, L2, z, κ, r1)∗〈−κ ′μ′|[Y L2 ⊗ σ]L2M2 |κμ〉), (A5)

and for the electric (P = 1) transition

J1(z′κ ′μ′, ω, P2 = 1, L2M2, zκμ, r1) = i

√
L2 + 1

2L2 + 1
(K1(z′, κ ′, ω, L2 − 1, z, κ, r1)∗〈κ ′μ′|[Y L2−1 ⊗ σ]L2M2 | − κμ〉

− K2(z′, κ ′, ω, L2 − 1, z, κ, r1)∗〈−κ ′μ′|[Y L2−1 ⊗ σ]L2M2 |κμ〉)

− i

√
L2

2L2 + 1
(K1(z′, κ ′, ω, L2 + 1, z, κ, r1)∗〈κ ′μ′|[Y L2+1 ⊗ σ]L2M2 | − κμ〉

− K2(z′, κ ′, ω, L2 + 1, z, κ, r1)∗〈−κ ′μ′|[Y L2+1 ⊗ σ]L2M2 |κμ〉). (A6)
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Here we have introduced the radial integrals

K1(z′, κ ′, ω, L, z, κ, r2) =
∫ r2

0
dr r2F 1

κ ′,0(r, z′) jL(ωr)F 2
κ,0(r, z),

K2(z′, κ ′, ω, L, z, κ, r2) =
∫ r2

0
dr r2F 2

κ ′,0(r, z′) jL(ωr)F 1
κ,0(r, z).

(A7)

Now we can insert J1 back into Eq. (16) and by again using Eqs. (3) and (A4), we finally obtain

I1(κ ′μ′, ω, P1 = 0, L1M1, P2 = 0, L2M2, κμ) = ζ (ω, L1L1M1, L2L2M2, κμ, κ ′μ′),

I1(κ ′μ′, ω, P1 = 1, L1M1, P2 = 0, L2M2, κμ) =
√

L1 + 1

2L1 + 1
ζ (ω, L1, L1 − 1, M1, L2L2M2, κμ, κ ′μ′)

−
√

L1

2L1 + 1
ζ (ω, L1, L1 + 1, M1, L2L2M2, κμ, κ ′μ′),

I1(κ ′μ′, ω, P1 = 0, L1M1, P2 = 1, L2M2, κμ) =
√

L2 + 1

2L2 + 1
ζ (ω, L1L1M1, L2, L2 − 1, M2, κμ, κ ′μ′)

−
√

L2

2L2 + 1
ζ (ω, L1L1, M1, L2, L2 + 1, M2, κμ, κ ′μ′),

I1(κ ′μ′, ω, P1 = 1, L1M1, P2 = 1, L2M2, κμ) =
√

L1 + 1

2L1 + 1

√
L2 + 1

2L2 + 1
ζ (ω, L1, L1 − 1, M1, L2, L2 − 1, M2, κμ, κ ′μ′)

−
√

L1

2L1 + 1

√
L2 + 1

2L2 + 1
ζ (ω, L1L1 + 1, M1, L2, L2 − 1, M2, κμ, κ ′μ′)

−
√

L1 + 1

2L1 + 1

√
L2

2L2 + 1
ζ (ω, L1L1 − 1, M1, L2, L2 + 1, M2, κμ, κ ′μ′)

+
√

L1

2L1 + 1

√
L2

2L2 + 1
ζ (ω, L1L1 + 1, M1, L2, L2 + 1, M2, κμ, κ ′μ′),

(A8)

where we have introduced the function

ζ (κ ′μ′, ω, J1L1M1, J2L2M2, κμ) = K11(κ ′, ω, L1, L2, κ )〈κ ′μ′|[Y L1 ⊗ σ]J1M1 | − κμ〉〈κ ′μ′|[Y L2 ⊗ σ]J2M2 | − κμ〉∗

− K21(κ ′, ω, L1, L2, κ )〈−κ ′μ′|[Y L1 ⊗ σ]J1M1 |κμ〉〈κ ′μ′|[Y L2 ⊗ σ]J2M2 | − κμ〉∗

− [K12(κ ′, ω, L1, L2, κ )〈κ ′μ′|[Y L1 ⊗ σ]J1M1 | − κμ〉〈−κ ′μ′|[Y L2 ⊗ σ]J2M2 |κμ〉∗

− K22(κ ′, ω, L1, L2, κ )〈−κ ′μ′|[Y L1 ⊗ σ]J1M1 |κμ〉〈−κ ′μ′|[Y L2 ⊗ σ]J2M2 |κμ〉∗], (A9)

as well as the radial integrals

K1i(κ
′, ω, L1, L2, κ ) =

∫ ∞

−∞
dz′

∫ ∞

−∞
dz

δ(ω + z − z′)
wκ (z)wκ ′ (z′)

∫ ∞

0
dr1 r2

1F 1
κ ′,∞(r1, z′) jL1 (ωr1)F 2

κ,∞(r1, z)

× Ki(z
′, κ ′, ω, L2, z, κ, r1),

K2i(κ
′, ω, L1, L2, κ ) =

∫ ∞

−∞
dz′

∫ ∞

−∞
dz

δ(ω + z − z′)
wκ (z)wκ ′ (z′)

∫ ∞

0
dr1 r2

1F 2
κ ′,∞(r1, z′) jL1 (ωr1)F 1

κ,∞(r1, z)

× Ki(z
′, κ ′, ω, L2, z, κ, r1).

(A10)
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For I2, the derivation is very similar and we must simply replace the function ζ by

ζ̃ (κ ′μ′, ω, J1L1M1, J2L2M2, κμ) = K11(κ ′, ω, L2, L1, κ )〈κ ′μ′|[Y L1 ⊗ σ]J1M1 | − κμ〉〈κ ′μ′|[Y L2 ⊗ σ]J2M2 | − κμ〉∗

− K12(κ ′, ω, L2, L1, κ )〈−κ ′μ′|[Y L1 ⊗ σ]J1M1 |κμ〉〈κ ′μ′|[Y L2 ⊗ σ]J2M2 | − κμ〉∗

− [K21(κ ′, ω, L2, L1, κ )〈κ ′μ′|[Y L1 ⊗ σ]J1M1 | − κμ〉〈−κ ′μ′|[Y L2 ⊗ σ]J2M2 |κμ〉∗

− K22(κ ′, ω, L2, L1, κ )〈−κ ′μ′|[Y L1 ⊗ σ]J1M1 |κμ〉〈−κ ′μ′|[Y L2 ⊗ σ]J2M2 |κμ〉∗] (A11)

in Eq. (A8) to obtain the analogous expression for I2. Therefore we have reduced the problem to the calculation of the angular
integrals 〈κ ′μ′|[Y L1 ⊗ σ]J1M1 |κμ〉, which are well known and can be easily calculated analytically [23,24], and the calculation
of the radial integrals Ki j , which are much more complicated.

To further evaluate Eq. (A10), we have to insert the explicit form of the radial Green’s function (13). Then we expand the four
factors of the integrand, which each contain the sum of two Whittaker functions, to obtain 16 terms consisting of the product of
four Whittaker functions each. For example, for K11 we obtain

K11(κ ′, ω, L1, L2, κ ) =
∫ +i∞

−i∞
dz′

√
1 + (

z′ + ω
2

)√
1 − (

z′ − ω
2

)√
1 + (

z′ + ω
2

)√
1 − (

z′ − ω
2

)
16c2c′2

× [I (z′, κ ′, ω, L1, L2, κ,−1,−1,−1,−1) − I (z′, κ ′, ω, L1, L2, κ,−1,−1,+1,−1)

+ I (z′, κ ′, ω, L1, L2, κ,−1,−1,−1,+1) − I (z′, κ ′, ω, L1, L2, κ,−1,−1,+1,+1)

+ I (z′, κ ′, ω, L1, L2, κ,+1,−1,−1,−1) − I (z′, κ ′, ω, L1, L2, κ,+1,−1,+1,−1)

+ I (z′, κ ′, ω, L1, L2, κ,+1,−1,−1,+1) − I (z′, κ ′, ω, L1, L2, κ,+1,−1,+1,+1)

− (I (z′, κ ′, ω, L1, L2, κ,−1,+1,−1,−1) − I (z′, κ ′, ω, L1, L2, κ,−1,+1,+1,−1)

+ I (z′, κ ′, ω, L1, L2, κ,−1,+1,−1,+1) − I (z′, κ ′, ω, L1, L2, κ,−1,+1,+1,+1))

− (I (z′, κ ′, ω, L1, L2, κ,+1,+1,−1,−1) − I (z′, κ ′, ω, L1, L2, κ,+1,+1,+1,−1)

+ I (z′, κ ′, ω, L1, L2, κ,+1,+1,−1,+1) − I (z′, κ ′, ω, L1, L2, κ,+1,+1,+1,+1))], (A12)

where

I (z′, κ ′, ω, L1, L2, κ, p1, p2, p3, p4) = Cp1C
′
p2

C̃p3C̃
′
p4
J (z′, κ ′, ω, L1, L2, κ, p1, p2, p3, p4) (A13)

and

C−1 = κ + γ

c
, C+1 = 1, C′

−1 = κ ′ + γ

c′ , C′
+1 = 1,

C̃−1 = λ − ν, C+1 = κ − γ

c
, C̃′

−1 = λ′ − ν ′, C′
+1 = κ ′ − γ

c′ ,
(A14)

as well as

J (z′, κ ′, ω, L1, L2, κ, p1, p2, p3, p4) = (λ − ν)(λ′ − ν ′)
(1 + 2λ)(1 + 2λ′)

∫ ∞

0

dr1

r1
Wν ′+ p1

2 ,λ′ (2c′r1) jL1 (ωr1)Wν+ p2
2 ,λ(2cr1)

×
∫ r1

0

dr2

r2
Mν ′+ p3

2 ,λ′ (2c′r1) jL2 (ωr1)Mν+ p4
2 ,λ(2cr1).

(A15)

Here in Eq. (A12), we have already performed the integration over z as discussed in Sec. III B. We can write the other integrals
K12, K21, and K22 very similarly, where the Ki j only differ by the signs between the individual terms in Eq. (A12) and the
prefactor. Therefore the problem is finally reduced to the evaluation of the integral J (κ ′, ω, L1, L2, κ, z′, p1, p2, p3, p4) for all
16 possible combinations of p1, p2, p3, p4 = ±1.

APPENDIX B: ANALYTICAL SOLUTION OF THE RADIAL INTEGRALS

In this section we derive the analytical solution of the radial integrals in Eq. (20). We first insert the asymptotic expansion
of the Whittaker functions (21) and of the spherical Bessel function (23) into the third and fourth line of Eq. (20). We omit the
second term in the asymptotic expansion of Ma,b(z) since it is smaller by a factor ez which is around 500 orders of magnitude
for typical values of a and a′ used in our calculation. However, since this term has the same form as the first one, including it is
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completely analogous to the following derivation. We obtain for the integral∫ ∞

a

dr1

r1
Wν ′+ p1

2 ,λ′ (2c′r1) jL1 (ωr1)Wν+ p2
2 ,λ(2cr1)

[
C +

∫ r1

a′

dr2

r2
Mν ′+ p3

2 ,λ′ (2c′r2) jL2 (ωr2)Mν+ p4
2 ,λ(2cr2)

]

→
∞∑

s′
W ,sW =0

uW (s′
W , ν ′ + p1

2
, λ′)uW

(
sW , ν + p2

2
, λ

) ∫ ∞

a

dr1

r1
e−(c+c′ )r1 (2c′r1)ν

′+p1/2 jL1 (ωr1)(2cr1)ν+p2/2

× (−2c′r1)−s′
W (−2cr1)−sW

[
C + (1 + 2λ)(1 + 2λ′)


(

1
2 + λ − ν − p4

2

)


(
1
2 + λ′ − ν ′ − p3

2

) ∞∑
s′

M ,sM=0

uM

(
s′

M, ν ′ + p3

2
, λ′

)

× uM

(
sM, ν + p4

2
, λ

) ∫ r1

a′

dr2

r2
e+(c+c′ )r2 (2c′r2)−ν ′−p3/2 jL2 (ωr2)(2cr2)−ν−p4/2(2c′r2)−s′

M (2cr2)−sM

]

= (2c′)ν
′+p1/2(2c)ν+p2/2

{
I ×

[
C − (1 + 2λ)(1 + 2λ′)(2c′)−ν ′−p3/2(2c)−ν−p4/2


(

1
2 + λ − ν − p4

2

)


(
1
2 + λ′ − ν ′ − p3

2

) × II

]

+ (1 + 2λ)(1 + 2λ′)(2c′)−ν ′−p3/2(2c)−ν−p4/2


(

1
2 + λ − ν − p4

2

)


(
1
2 + λ′ − ν ′ − p3

2

) × III

}
, (B1)

where

I =
∞∑

s′
W ,sW =0

(−2c′)−s′
W uW

(
s′

W , ν ′ + p1

2
, λ′

)
(−2c)−sW uW

(
sW , ν + p2

2
, λ

) ∫ ∞

a
dr1 e−(c+c′ )r1 r−1+ν ′+ν+(p1+p2 )/2−s′

W −sW

1 jL1 (ωr1),

II =
∞∑

s′
M ,sM=0

(2c′)−s′
M uM

(
s′

M, ν ′ + p3

2
, λ′

)
(2c)−sM uM

(
sM, ν + p4

2
, λ

)[∫
dr2 e+(c+c′ )r2 r−1−ν ′−ν−(p3+p4 )/2−s′

M−sM

2 jL2 (ωr2)

]∣∣∣∣∣
r2=a′

,

III =
∞∑

s′
W ,sW ,s′

M ,sM=0

(−2c′)−s′
W uW

(
s′

W , ν ′ + p1

2
, λ′

)
(−2c)−sW uW

(
sW , ν + p2

2
, λ

)
(2c′)−s′

M uM

(
s′

M, ν ′ + p3

2
, λ′

)

× (2c)−sM uM

(
sM, ν + p4

2
, λ

) ∫ ∞

a
dr1 e−(c+c′ )r1 r−1+ν ′+ν+(p1+p2 )/2−s′

W −sW

1 jL1 (ωr1)

×
[∫

dr2 e+(c+c′ )r2 r−1−ν ′−ν−(p3+p4 )/2−s′
M−sM

2 jL2 (ωr2)

]∣∣∣∣∣
r2=r1

,

(B2)

and

C =
∫ a′

0

dr2

r2
Mν ′+ p3

2 ,λ′ (2c′r2) jL2 (ωr2)Mν+ p4
2 ,λ(2cr2). (B3)

Analytical solution for ω �= 0
To evaluate these integrals for ω �= 0, we use the exact expansion of the spherical Bessel function (23) and obtain for the

integral over r2∫
dr2 e+(c+c′ )r2 r−1−ν ′−ν−(p3+p4 )/2−s′

M−sM

2 jL2 (ωr2) =
L2∑

m2=0

(L2 + m2)!

m2!(L2 − m2)!
iL2+1−m2 (2ω)−m2−1[(−1)L2+1−m2 N+ + N−], (B4)

where

N± =
∫

dr2 e+(c+c′±iω)r2 r−2−ν ′−ν−p3/2−p4/2−m2−s′
M−sM

2

= (−c − c′ ∓ iω)2+ν+ν ′+(p3+p4 )/2+m2+s′
M+sM

c + c′ ± iω
(−1 − ν ′ − ν − (p3 + p4)/2 − m2 − s′

M − sM,−(c + c′ ± iω)r2)

→
∞∑

sG=0

(2 + ν ′ + ν + p3/2 + p4/2 + m2 + s′
M + sM )sG

(c + c′ ± iω)sG+1
r−2−ν ′−ν−(p3+p4 )/2−m2−s′

M−sM−sG

2 e(c+c′±iω)r2 . (B5)
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Here, in the last step, we have replaced the incomplete  function by its full asymptotic expansion,

(a, z) = za−1e−z
∞∑

s=0

uG(s, a)

zs
, (B6)

where

uG(s, a) = (−1)s(1 − a)s. (B7)

If we set r2 = a′ in Eq. (B5), we can easily calculate II in Eq. (B2). To evaluate III, we have to set r2 = r1 and integrate over
r1: ∫ ∞

a
dr1 e−(c+c′ )r1 r−1+ν ′+ν+(p1+p2 )/2−s′

W −sW

1 jL1 (ωr1)

[∫
dr2 e+(c+c′ )r2 r−1−ν ′−ν−(p3+p4 )/2−s′

M−sM

2 jL2 (ωr2)

]∣∣∣∣∣
r2=r1

=
L1∑

m1=0

L2∑
m2=0

(L1 + m1)!

m1!(L1 − m1)!

(L2 + m2)!

m2!(L2 − m2)!
iL1+L2+2−m1−m2 (2ω)−m1−m2−2

× [(−1)L1+L2+2−m1−m2 N++ + (−1)L1+1−m1 N+− + (−1)L2+1−m2 N−+ + N−−], (B8)

where

N++ =
∞∑

sG=0

∫ ∞

a
dr1

(2 + ν ′ + ν + (p3 + p4)/2 + m2 + s′
M + sM )sG

(c + c′ + iω)sG+1
e2iωr1 r−4+(p1+p2−p3−p4 )/2−m1−m2−s′

M−sM−s′
W −sW −sG

1

=
∞∑

sG=0

− (2 + ν ′ + ν + (p3 + p4)/2 + m2 + s′
M + sM )sG

2iω(c + c′ + iω)sG+1
(−2iω)4−(p1+p2−p3−p4 )/2+m1+m2+s′

M+sM+s′
W +sW +sG

× (−3 + (p1 + p2 − p3 − p4)/2 − m1 − m2 − s′
M − sM − s′

W − sW − sG,−2iωa),

N−− =
∞∑

sG=0

∫ ∞

a
dr1

(2 + ν ′ + ν + (p3 + p4)/2 + m2 + s′
M + sM )sG

(c + c′ − iω)sG+1
e−2iωr1 r−4+(p1+p2−p3−p4 )/2−m1−m2−s′

M−sM−s′
W −sW −sG

1

=
∞∑

sG=0

+ (2 + ν ′ + ν + (p3 + p4)/2 + m2 + s′
M + sM )sG

2iω(c + c′ − iω)sG+1
(2iω)4−(p1+p2−p3−p4 )/2+m1+m2+s′

M+sM+s′
W +sW +sG

× (−3 + (p1 + p2 − p3 − p4)/2 − m1 − m2 − s′
M − sM − s′

W − sW − sG,+2iωa),

N+− =
∞∑

sG=0

∫ ∞

a
dr1

(2 + ν ′ + ν + (p3 + p4)/2 + m2 + s′
M + sM )sG

(c + c′ − iω)sG+1
r−4+(p1+p2−p3−p4 )/2−m1−m2−s′

M−sM−s′
W −sW −sG

1

=
∞∑

sG=0

(2 + ν ′ + ν + (p3 + p4)/2 + m2 + s′
M + sM )sG a−3+(p1+p2−p3−p4 )/2−m1−m2−s′

M−sM−s′
W −sW −sG

(c + c′ − iω)sG+1(3 − (p1 + p2 − p3 − p4)/2 + m1 + m2 + s′
M + sM + s′

W + sW + sG)
,

N−+ =
∞∑

sG=0

∫ ∞

a
dr1

(2 + ν ′ + ν + (p3 + p4)/2 + m2 + s′
M + sM )sG

(c + c′ + iω)sG+1
r−4+(p1+p2−p3−p4 )/2−m1−m2−s′

M−sM−s′
W −sW −sG

1

=
∞∑

sG=0

(2 + ν ′ + ν + (p3 + p4)/2 + m2 + s′
M + sM )sG a−3+(p1+p2−p3−p4 )/2−m1−m2−s′

M−sM−s′
W −sW −sG

(c + c′ + iω)sG+1(3 − (p1 + p2 − p3 − p4)/2 + m1 + m2 + s′
M + sM + s′

W + sW + sG)
. (B9)

Finally, we obtain for the integral over r2 in I in Eq. (B2):∫ ∞

a
dr1 e−(c+c′ )r1 r−1+ν ′+ν+(p1+p2 )/2−s′

W −sW

1 jL1 (ωr1) =
L1∑

m1=0

(L1 + m1)!

m1!(L1 − m1)!
iL1+1−m1 (2ω)−m1−1[(−1)L1+1−m1 O+ + O−], (B10)

where

O± =
∫ ∞

a
dr1 e−(c+c′∓iω)r1 r−2+ν ′+ν+(p1+p2 )/2−m1−sW −s′

W
1

= (c + c′ ∓ iω)2−ν−ν ′−(p1+p2 )/2+m1+s′
W +sW

c + c′ ∓ iω
(−1 + ν ′ + ν + (p1 + p2)/2 − m1 − s′

W − sW ,+(c + c′ ∓ iω)a)

→
∞∑

sG=0

(−1)sG
(2 − ν ′ − ν − (p1 + p2)/2 + m1 + s′

W + sW )sG

(c + c′ ∓ iω)sG+1
a−2+ν ′+ν+(p1+p2 )/2−m1−s′

W −sW −sG e−(c+c′∓iω)a. (B11)
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It can be easily seen from the equations above that the only term that results in a logarithmically divergent energy integral
is the one for p1, p2 = +1, p3, p4 = −1. Since this term is not dependent on Z , it is trivial to show that the subtraction of the
free-loop diagram cancels the divergence.

Analytical solution for ω = 0
For ω = 0, the spherical Bessel function reduces to jL(0) = δL,0 and, hence, the integration is much easier. We obtain for the

integral over r2, ∫
dr2 e+(c+c′ )r2 r−1−ν ′−ν−(p3+p4 )/2−s′

M−sM

2 jL2 (0)

= δL2,0
(−c − c′)1+ν+ν ′+(p3+p4 )/2+s′

M+sM

c + c′ (−ν ′ − ν − (p3 + p4)/2 − s′
M − sM,−(c + c′)r2)

→ δL2,0

∞∑
sG=0

(1 + ν ′ + ν + p3/2 + p4/2 + s′
M + sM )sG

(c + c′)sG+1
r−1−ν ′−ν−(p3+p4 )/2−s′

M−sM−sG

2 e(c+c′ )r2 .

(B12)

Here, again, in the last step we have replaced the incomplete  function by its full asymptotic expansion. As before, if we set
r2 = a′ in Eq. (B12), we can easily calculate II in Eq. (B2). To evaluate III, we have to set r2 = r1 and integrate over r1:∫ ∞

a
dr1 e−(c+c′ )r1 r−1+ν ′+ν+(p1+p2 )/2−s′

W −sW

1 jL1 (0)

[∫
dr2 e+(c+c′ )r2 r−1−ν ′−ν−(p3+p4 )/2−s′

M−sM

2 jL2 (0)

]∣∣∣∣∣
r2=r1

= δL1,0δL2,0

∞∑
sG=0

(1 + ν ′ + ν + p3/2 + p4/2 + s′
M + sM )sG

(c + c′)sG+1

∫ ∞

a
dr1 r−2+(p1+p2−p3−p4 )/2−s′

W −sW −s′
M−sM−sG

1

= −δL1,0δL2,0

∞∑
sG=0

(1 + ν ′ + ν + p3/2 + p4/2 + s′
M + sM )sG

(c + c′)sG+1

a−1+(p1+p2−p3−p4 )/2−s′
W −sW −s′

M−sM−sG

−1 + (p1 + p2 − p3 − p4)/2 − s′
W − sW − s′

M − sM − sG
.

(B13)

Finally, we obtain for the integral over r1 in I in Eq. (B2):∫ ∞

a
dr1 e−(c+c′ )r1 r−1+ν ′+ν+(p1+p2 )/2−s′

W −sW

1 jL1 (0)

= δL1,0
(c + c′)1−ν−ν ′−(p1+p2 )/2+s′

W +sW

c + c′ (ν ′ + ν + (p1 + p2)/2 − s′
W − sW ,+(c + c′)a)

→ δL1,0

∞∑
sG=0

(−1)sG
(1 − ν ′ − ν − (p1 + p2)/2 + s′

W + sW )sG

(c + c′)sG+1
a−1+ν ′+ν+(p1+p2 )/2−s′

W −sW −sG e−(c+c′ )a. (B14)
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