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Nonretarded limit of the Lifshitz theory for a wedge
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We develop the nonretarded limit of the Lifshitz theory of van der Waals forces in a wedge of a dielectric
material. The nonplanar geometry of the problem requires determining the pointwise distribution of stresses.
The findings are relevant to a wide range of phenomena from crack propagation to contact-line motion. First, the
stresses prove to be anisotropic as opposed to the classical fluid-mechanics treatment of the contact-line problem.
Second, the wedge configuration is always unstable, with its angle tending either to collapse or to unfold. The
presented theory unequivocally demonstrates the quantum nature of the forces dictating the wedge behavior,
which cannot be accounted for with classical methods.
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I. INTRODUCTION

Pressure in microscopically thin films is generally dif-
ferent from that in the macroscopic bulk due to the action
of van der Waals forces [1,2] leading to disjoining pressure
�D. Originally, it was calculated for pure substances [3],
under the assumption of additivity, via pairwise summation of
the attractive nonretarded part of the intermolecular potential
ϕvdW ∼ r−6:

�D(�) = −AH/6π�3, (1.1)

where � the film thickness and AH the Hamaker constant [4]
specific to a given combination of substances in contact. Moti-
vated by the discrepancy [5] between experiments [6] and the
“additive” calculations, Lifshitz [7] rigorously derived �D for
dispersion forces [8] with quantum field theory methods, thus
recognizing their genuine quantum nature and nonadditivity
[9,10], and naturally expressed AH in terms of imaginary parts
of the substances dielectric constants, in accordance with the
fluctuation-dissipation theorem [11,12]. This dispersive part
of van der Waals forces is always present as a consequence
of quantum fluctuations in the dielectric molecules’ polariz-
ability and plays a key role in a host of everyday phenomena
such as adhesion, surface tension, adsorption, wetting, and
crack propagation in solids, to name a few [13]. Since �D is
generally prevalent at � � 1 μm, it controls the stability and
wettability of liquid films. Because of the constant value of
this stress �D(�) ≡ −σzz across the film, it simply provides
a jump in the total hydrodynamic pressure [see Fig. 1(a)].
However, per (1.1) �D formally diverges as � → 0 and hence
appears to be invalid in modeling liquid films terminating
at the substrate, which, in repetition of the history behind
(1.1), has led to a number of attempts [14] along the lines
of the “additive” macroscopic theory [3] to generalize and
regularize �D(�) for the wedge configuration [see Fig. 1(b)].
They not only ignored the nonadditive nature of dispersion
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forces, which becomes especially important in view of the
nonplanar geometry of the problem thus affecting the stress
distribution, but also relied upon the unjustified assumption of
an isotropic pressure across the wedge, in which anisotropy
in the stress tensor near the interface is expected [15,16].
Moreover, a priori it is clear that the formal singularity when
� → 0 cannot be resolved in the framework of van der Waals
force calculations without proper analysis of UV divergences.
It is natural to expect, nevertheless, that the characteristic UV
cutoff should be on the order of intermolecular separation a0,
at which long-range attraction forces are counterbalanced by
the short-range repulsive ones. Therefore, to properly account
for van der Waals stresses in a wedge, one must generalize the
Lifshitz planar film theory in order to determine local behavior
of the stresses and, in particular, to understand the stability of
the wedge configuration considered here in thermal equilib-
rium.

Previously, using Schwinger’s source theory [17], a rigor-
ous calculation of stresses in the Casimir (retarded) limit was
performed in the vacuum wedge region bounded by perfectly
conducting walls [18,19]; the dispersion forces in this case are
due to retarded potentials ϕvdW ∼ r−7 only. The same problem
was generalized to the case when the wedge is filled with
an isotropic and nondispersive medium [20] and with two
dielectric media separated by an arc of a perfectly conducting
cylindrical shell [21,22]. Here, however, we are interested
in dispersion forces in dielectrics and on shorter distances �

where retarded effects are no longer important, i.e., distances
smaller than the wavelength λa of the electromagnetic (EM)
absorption peak but larger than a0. At these scales the leading
contribution to the stresses comes only from fluctuations of
the electric field, which in the Coulomb gauge is given by a
gradient of the time-dependent potential A0. The fluctuating
spatial components of the vector potential Ai are responsible
for retardation effects. They are important for the computation
of the Casimir effect at scales larger than λa, e.g., for water
λa = O(103) nm, but are negligible compared to the nonre-
tarded contributions at smaller scales.
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FIG. 1. Two basic configurations: (a) slit and (b) wedge.

II. NONRETARDED GREEN’S FUNCTION

In the equilibrium case, when there are no fluxes, the EM
stress-energy tensor T μν = Fμα Dν

α − 1
4 gμν Fαβ Dαβ [23],

where Fμν and Dμν are the Maxwell field and displacement
tensors, respectively, and gμν is the Minkowski metric with
the signature (− + ++), takes the form T μν = diag(�,−σ i j );
here i, j = (x, y, z), μ, ν = (t, x, y, z), � = T 00 the EM en-
ergy density, and σ i j the EM stress tensor with the standard
convention on its signs [24]. In what follows, we will adopt
Planck units, in which h̄ = c = kB ≡ 1, and restore SI units
whenever computations are performed. Since we are inter-
ested in the nonretarded limit, it proves to be convenient to
use the Coulomb gauge ∇iAi = 0, which in this limit allows
the components of the vector potential to reduce to A0 = −φ

and Ai = 0. Then, the Maxwell equations simplify to a single
equation for A0(t, r):

∇i(ε(r) ∇i ) A0(t, r) = − j0(t, r), (2.1)

where j0 is the fluctuating charge density. It is important to
bear in mind that even though only spatial derivatives enter
the operator in this equation, the electric potential is time
dependent, and its dynamics is governed by the fluctuating
dipole moments of the dielectric medium. Also note that
quantum fluctuations of dipoles involve all frequencies. Then,
the Feynman propagator GF (t, r; t ′, r′) ≡ GF

00(t, r; t ′, r′) is
the vacuum expectation value (ground states correspond-
ing to zero temperature) of the product of field operators
i〈TA0(t, r)A0(t ′, r′)〉; here A0 stands for operators, the brack-
ets 〈· · · 〉 denote averaging with respect to the ground state of
the system, and the symbol T is the chronological product,
i.e., the operators following it should be arranged from right
to left in order of increasing time. GF (t, r; t ′, r′) obeys

∇i(ε(r) ∇i ) GF (t, r; t ′, r′) = δ(t, t ′)δ(r, r′); (2.2)

here δ(r, r′) = δ(r − r′)/
√−g, and

√−g = r in the cylindri-
cal system of coordinates r = (y, r, θ ) [see Fig. 1(b)].

When fluctuations are predominantly quantum [25] at the
absorption frequency ωa, e.g., for water T � ωa = O(103) K,

the Green’s function of a macroscopic system (like ours)
at nonzero temperatures differs from that at zero tempera-
ture only in that the averaging with respect to the ground
state of a closed system is replaced by averaging over the
Gibbs distribution, namely ensemble averages with thermal
states at temperature T ≡ β−1. The thermal Green’s function
Gβ (t, r; t ′, r′) can be obtained from the Feynman one using
the Wick rotation: substitution of t = −itE in the Lorentzian
Green’s function to produce Euclidean one Gβ (tE , r, r′) =
i GF (itE , r, r′), which is periodic in Euclidean time tE with
period β; we also took into account the homogeneity of
the Green’s function in time and inhomogeneity in space in
view of the presence of boundaries. Due to periodicity in
Euclidean time, one can decompose Gβ (tE , r, r′) and other
related Green’s functions in the Fourier time series:

Gβ (tE , r, r′) = 1

β

∞∑
n=−∞

Ĝβ (ζn; r, r′) eiζntE ; (2.3)

here ζn = 2πn/β are the Matsubara frequencies, and
Ĝβ (ζn; r, r′) the solution of the Fourier transformed
equation (2.2), which in cylindrical coordinates reads

∇i(ε(ζn)∇i )Ĝβ (ζn; r, r′) = δ(r − r′)δ(θ − θ ′)δ(y − y′)
r

.

(2.4)
At the interface � between media a and b with the correspond-
ing dielectric constants εa and εb one has to satisfy the usual
boundary conditions for the electric field [26],

Ĝβ
a

∣∣
r∈�

= Ĝβ

b

∣∣
r∈�

, (2.5a)

εani∇i Ĝβ
a

∣∣
r∈�

= εbni∇i Ĝβ

b

∣∣
r∈�

, (2.5b)

where ni is the normal vector to �. The constructed Green’s
function Ĝβ (ζn; r, r′) also must be periodic in θ with period
2π as per the problem statement [see Fig. 1(b)].

Applying the Fourier transform in the y direction and,
since EM surface waves decay exponentially away from the
interface [7], the Kontorovich-Lebedev transform [22,27,28]
in the radial r direction to a function f (r, y) furnishes

f̃ (ν, k) =
∫ ∞

−∞
e−iky dk

∫ ∞

0
dr f (r, y) Kiν (kr) r−1, (2.6)

where k is the momentum conjugate to the coordinate y along
the edge, ν has the meaning of a momentum conjugate to the
radial coordinate r, and Kiν (kr) are the modified Bessel func-
tions of the second kind. After rescaling the Green’s function,
transformed according to (2.6), G̃β → �νe−iky′

Kiν (kr′), we
arrive at the boundary-value problem for the angular function
�ν (θ, θ ′):

(
∂2

∂θ2
− ν2

)
�ν (θ, θ ′) = 1

ε
δ(θ − θ ′),

�ν |θ=θ0+0 = �ν |θ=θ0−0, ε2∂θ�ν |θ=θ0+0 = ε3∂θ�ν |θ=θ0−0,

�ν |θ=π+0 = �ν |θ=π−0, ε1∂θ�ν |θ=π+0 = ε2∂θ�ν |θ=π−0,

�ν |θ=+0 = �ν |θ=2π−0, ε3∂θ�ν |θ=+0 = ε1∂θ�ν |θ=2π−0. (2.7)
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For 0 � θ ′ � θ0, the solution takes the form

�ν (θ, θ ′) =
⎧⎨
⎩

ve−νθ + de−2πνeνθ , π < θ < 2π,

ae−νθ + ueνθ , θ0 < θ < π,

beνθ + ce−νθ − 1
2νε3

e−ν|θ−θ ′ |, 0 < θ < θ0,

where the unknown constants are determined by the boundary
conditions in (2.7). The inverse transform corresponding to
(2.6) is given by

Ĝβ (ζn; r, r′) = 1

π3

∫ ∞

−∞
eik(y−y′ ) dk

∫ ∞

0
ν sinh (πν) dν

× �ν (θ, θ ′) Kiν (kr) Kiν (kr′). (2.8)

In the homogeneous case, when the entire space has the
dielectric permittivity equal to that in the wedge ε1 = ε2 ≡ ε3,
solving (2.7) leads to

�0
ν (θ, θ ′) = − 1

2ν

[
e−ν|θ−θ ′ | + 2 cosh[ν(θ − θ ′)]

e2πν − 1

]
. (2.9)

For calculations of the renormalized stress tensor at θ = θ ′ we
need to know only the renormalized function

��ν (θ, θ ′) = �ν (θ, θ ′) − �0
ν (θ, θ ′). (2.10)

For 0 < θ, θ ′ < θ0,

��ν (θ, θ ′) = − 1

2ν

[
Z

W
− 2 cosh[ν(θ − θ ′)]

e2πν − 1

]
, (2.11)

where

W = λ+++ cosh 2πν − λ+−− cosh 2ν(π − θ0)

+ λ−+− cosh 2νθ0 − (λ−−+ + λ0), (2.12a)

Z = λ−−− sinh ν[θ + θ ′ − 2θ0] + λ+−+ sinh ν[θ + θ ′ − 2π ]

− λ−++ sinh ν[θ + θ ′] − λ++− sinh ν[θ + θ ′ + 2(π − θ0)]

+ [λ+−−eν(2π−θ0 ) − λ−+−e−2νθ0 + (λ−−+ + λ0)

− λ+++e−2πν] cosh ν[θ − θ ′]; (2.12b)

above we introduced the notations λ0 = 8 ε1ε2ε3 and λ±±± =
(ε1 ± ε2)(ε1 ± ε3)(ε2 ± ε3). Note that the solution for θ ∈
(θ0, π ) can be found from (2.11) with the substitution ε1 →
ε1, ε2 → ε3, ε3 → ε2, θ0 → π − θ0, θ → π − θ , and the en-
suing replacements in λ’s.

III. STRESSES IN THE WEDGE

A. General expressions

With the determined Green’s function (2.8), we are in a
position to calculate the stress tensor (see Appendix B):

σi j (tE , r, r′) = −ε
[
AtE ;iAtE ; j − 1

2 gi j AtE ;kAtE ;k
]
, (3.1)

where the components are written in the coordinate basis
and the semicolon implies the covariant derivative; the co-
variant form is chosen for convenience because we work in
the non-Cartesian coordinates. The spatial components gi j of
the metric tensor in cylindrical coordinates are gi j = gi j = 0
for i �= j, gyy = 1, grr = 1, and gθθ = r−2. The Fourier trans-

form σ̂i j′ (ζn; r, r′) of the stress tensor σi j′ (tE , r, r′) is defined
similar to (2.3). The renormalized Fourier components of the
stress tensor �σi j′ (ζn; r, r′) = σ̂i j′ (ζn; r, r′) − σ̂

(div)
i j′ (ζn; r, r′),

which for brevity we denote by σ i j′ (ζn; r, r′), can be written
in terms of the renormalized Fourier components �Ĝβ

;i j′ =
Ĝβ

;i j′ − Ĝβ(div)
;i j′ of the thermal Green’s function

σ i j′ (ζn; r, r′) = −ε3
[
�Ĝβ

;i j′ − 1
2 gi j′ gkk′

�Ĝβ

;kk′
]

(3.2a)

+ 1
2 gi j′ρ

∂ε3
∂ρ

gkk′
�Ĝβ

;kk′ , (3.2b)

so that σ i j = g j
j′σ i j′ , and then one can take the limit of

coincident points σ i j (ζn; r) = σ i j (ζn; r, r′)|r=r′ . Here gi j′ (r, r′)
is the operator of parallel transport, which reduces to the
metric gi j′ (r, r′)|r=r′ = gi j (r). Similar to thin films [29] and
according to the general theory [26], in a wedge the isotropic
elecrostriction part (3.2b) of the stress tensor is absorbed [30],
along with the UV-divergent stress σ

(div)
i j originating from

the divergent Green’s function (2.9), by the bare mechanical
stress σ

(m)
i j to produce the isotropic renormalized mechanical

pressure σ
(ren)
i j = −δi j p(ren) [31]. Therefore, in what follows

we omit the electrostriction term (3.2b) since it does not
contribute to the renormalized force.

Altogether, the Fourier stress-tensor components at ζn are,
after raising indices σ i j = gikgjlσ kl to be consistent with the
dynamic equations [32],

σ θθ = 1

r5

∫ ∞

0
d ν̃

[
2
∂2��ν

∂θ∂θ ′ − (1 + 2ν2)��ν

]
θ=θ ′

, (3.3a)

σ rr = 1

r3

∫ ∞

0
d ν̃

[
1

2
��ν − 2

∂2��ν

∂θ∂θ ′

]
θ=θ ′

, (3.3b)

σ yy = − 1

r3

∫ ∞

0
d ν̃

[
1

2
��ν + 2

∂2��ν

∂θ∂θ ′

]
θ=θ ′

, (3.3c)

σ rθ = σ θr = − 1

r4

∫ ∞

0
d ν̃ 2

[
∂��ν

∂θ

]
θ=θ ′

, (3.3d)

where the measure is d ν̃ = 1
16π

dν ν tanh(πν), while ��ν ,
∂θ��ν , and ∂θ∂θ ′��ν are computed from (2.11). Naturally,
in view of symmetries, σ yθ (ζn; r) = 0 and σ yr (ζn; r) = 0. The
integrals over ν in (3.3) converge since all integrands are
functions of ��ν (2.11), which at every point outside the
interfaces fall off exponentially at large ν. The UV-divergent
vacuum contribution was taken care of using the Lifshitz
procedure �ν (θ, θ ′) → ��ν (θ, θ ′) (2.10), which means sub-
traction of local vacuum contributions to stresses of the media
with the same local ε but without boundaries. The appearance
of off-diagonal stress components σ rθ = σ θr is notable and
due to the influence of interfaces meeting at an angle θ0.

B. Limit to a slit

The limit of a slit [7] [see Fig. 1(a)] can be recovered from
(3.3) as it corresponds to the region away from the wedge
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apex r → ∞ and θ0 → 0 while keeping � = rθ0 = const; for
that we denote ν = qr = q�/θ0, where q =

√
q2

x + q2
y is the

wave number in the (x, y) plane. Then 1
r3 ν

2dν = q2dq, so that
(3.3a) produces in medium 3

σ zz = − 1

2π

∫ ∞

0
dq q2 1

ε1+ε3
ε1−ε3

ε2+ε3
ε2−ε3

e2q� − 1
, (3.4)

while in medium 2 it vanishes identically, σ zz(z) ≡ 0; this is
exactly the nonretarded limit taken from the complete rel-
ativistic Lifshitz theory [33] but obtained here via solving
the problem in the nonretarded setting from the very begin-
ning. To further convince the reader of the validity of such
an approach, in Appendix A we consider in greater detail a
building block of the Lifshitz theory: the classical problem
of Casimir and Polder [34] of interaction between a time-
dependent dipole and a dielectric half-space.

The other stress-tensor component in medium 3 reads

σ xx = − 1

8π

∫ ∞

0
dq q2

2 + ε1+ε3
ε1−ε3

e2qz + ε2+ε3
ε2−ε3

e2q(�−z)

ε1+ε3
ε1−ε3

ε2+ε3
ε2−ε3

e2q� − 1
, (3.5)

with σ yy = σ xx, indicating that near the boundary z → � the
local stresses σ xx and σ yy diverge [see Fig. 1(a)]; similarly in
medium 2

σ xx = 1

8π

∫ ∞

0
dq q2e−2q(z−�)

ε1+ε3
ε1−ε3

e2q� − ε2+ε3
ε2−ε3

ε1+ε3
ε1−ε3

ε2+ε3
ε2−ε3

e2q� − 1
, (3.6)

even if it is the vacuum, and the divergence is not removed by
renormalization [35]; see also analogous calculations [35–39]
showing that the tangential stress σ xx is divergent. This be-
havior arises because of the nonphysical nature of the sharp
interface boundary condition [39] associated with the jump
in ε and the high wave number (momenta) q of the virtual
photon behavior in the idealized spectral representation of the
stress leading to the divergent integrand ∼q2, while in reality
there must be a cutoff [29] at some qmax, which is on the
order of the reciprocal of the interatomic spacing a−1

0 [39].
The equivalence of the latter divergence to that due to the
sharp interface condition is easy to see from the corresponding
equation for the Fourier components of the Green’s function
when interface is smeared on the length scale λ:

{∂z[ε(z/λ) ∂z] − q2}G̃β = −δ(z − z′), z ± ∞ : G̃β → 0;

clearly, the problem in z becomes scale free after the trans-
formation z → κ̃z, while q2 → κ2q2, thus indicating that
the limit to a sharp interface κ → 0 is equivalent to the
limit q → ∞. The divergences in both stress-tensor com-
ponents σ yy and σ xx are proportional to ε2 − ε3, indicating
that the resulting stresses may be seen as stretching (ex-
panding) or shrinking (compressing, such as surface tension)
the interface depending upon the media in which the ef-
fect is considered. From the conservation law, the energy
density ε(z) = σ xx(z) + σ yy(z) + σ zz(z) is divergent as well,
which is a known effect near boundaries in the context of
local analysis of the Casimir effect [35,36]. The tangen-
tial diverging stresses are responsible for the surface-tension
phenomena [39].

For a wedge, we note that divergences in stresses (3.3)
appear already in the normal to the interface stress component

0θ0
π

−10.0

0.0

10.0

θ

σ
’s

σθθ

σrr

σrθ

FIG. 2. Plots of stress-tensor components scaled with respect to
16πβrn with the exponent n adequate for the respective component
as per (3.3) at a single absorption frequency and in the case θ0 = π/4,
ε1 = ε2 = 2, ε3 = 1, i.e., corresponding to a crack in a dielectric.
Integration is performed up to νmax.

σ θθ if integration is performed with respect to ν to infinity.
However, in the context of the wedge geometry it is clear that
since the interface between media has thickness δθ ∼ 1/(2ν)
in the angle coordinate and the shortest distance to be resolved
is intermolecular a0 ∼ δθ r, we find the physically allowed
maximum value of ν to be νmax ∼ r/(2a0); e.g., for r ∼ 10 a0,
νmax = 5. Typical stress distributions, clearly demonstrating
anisotropy, are shown in Fig. 2 for the vacuum wedge sur-
rounded by a sole dielectric material. The case when the
dielectric wedge of the same angle is surrounded by the vac-
uum is a mirror reflection of Fig. 2 with respect to the abscissa.

IV. MECHANICAL EQUILIBRIUM OF THE WEDGE

The next question to consider is on mechanical equilibrium
of the wedge. The force density f i = σ ik

;k reads

f θ = ∂θσ
θθ + ∂rσ

θr + 3

r
σ θr, (4.1a)

f r = ∂rσ
rr + ∂θσ

θr + 1

r
σ rr − rσ θθ , (4.1b)

and, due to symmetry, f y = 0. In the bulk both f θ and f r van-
ish identically. However, f θ , which proves to be independent
of θ outside the interface, if integrated over an elementary
volume containing the interface between media 2 and 3,
yields the force dF⊥ = rdF θ = r2drdy

∫
dθ f θ ≡ dF⊥|θ0+0 −

dF⊥|θ0−0 acting on every surface element drdy of the inter-
face [40]. The corresponding normal pressure P⊥ = dF⊥/drdy
tends either to collapse or unfold the wedge [see Fig. 1(b)]:

P⊥ = 8

r3

∫ ∞

0
d ν̃ν

λ+−− sinh 2ν(θ0 − π ) − λ−+− sinh 2νθ0

W
.

This pressure is finite because the divergences on either side
of the interface have opposite signs; hence, P⊥ is independent
of the cutoff νmax! First, a few clarifications about the sign of
P⊥ follow, which can be illustrated using the asymptotics of
the integrand I in the expression for P⊥:

θ0 → 0 : I ∼ (ε1 − ε3)(ε3 − ε2)

2(ε1 + ε2)ε3
, (4.2a)

θ0 → π : I ∼ (ε1 − ε2)(ε3 − ε2)

2(ε1 + ε3)ε2
. (4.2b)
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0π/2π
−5.0

−2.5

0.0

2.5

5.0

θ0

P
⊥

at ζe
sum

NW NW

W

FIG. 3. Plot of P⊥ for water shown at a single absorption fre-
quency ζ = ωa and summed over all Matsubara frequencies ζn using
the corresponding ε(ζn) dependence [13]: solid curves correspond
to water on mica, and dashed ones to carbon disulfide on Teflon.
Red arrows show the nonwetting (NW) tendency to turn away from
θ0 = 0 towards π . The blue arrow shows the wetting (W) tendency
θ0 → 0.

As we know from the planar-geometry case [7,29,33], the
force between two dielectric media ε1 and ε2 separated by the
vacuum ε3 = 1 corresponding to the limit (4.2a) is P⊥ < 0,
implying attraction between the two dielectrics. The other
limit (4.2b) can be verified with a liquid-helium film on glass,
ε1 > ε2, which leads to P⊥ < 0 corresponding to repulsion in
this case, consistent with the tendency of the liquid-helium
film to thicken [29].

An example computation of P⊥ for a single frequency ζ =
ωa and a sum over all Matsubara frequencies using empirical
dependence ε(ζn) is demonstrated in Fig. 3 for (a) water on
mica, which is known to wet perfectly, with the macroscopic
contact angle being 0◦–5◦, and (b) carbon disulfide on Teflon,
which on a macroscopic scale exhibits the macroscopic con-
tact angle of 80◦. Let us first consider the implications of the
computed P⊥ in isolation from the surface-tension effects; this
is possible since P⊥ does not account for any contributions to
interfacial tensions because in the sharp interface formulation
considered here, due to antisymmetry of the stresses, the latter
provide zero contribution to these tensions [37,39]. In case (a)
the fact that P⊥ is positive and nonzero implies that there is no
mechanical equilibrium (angle θ0), i.e., the wedge interface
tends to turn to θ0 = π . In case (b) there is an equilibrium
angle, but it is obviously unstable, so the contact angle θ0 may
collapse either to zero or π , as dictated by the minimum of
potential energy including not only the surface-tension energy
but also the energy of the van der Waals stress field. The same
behavior as that for water on mica is exhibited for water on
PVC, which is known to be nonwetting, and for benzene on
fused quartz, which exhibits the macroscopic contact angle
of 11◦. In the latter case the liquid is nonpolar, and hence,
the Lifshitz theory accounting for only London forces should
be more accurate, although it is still widely applied even
to polar liquids such as water [13]; in the latter case, one
can anticipate that due to the polarity of water molecules,
which leads to strong hydrogen bonds, and the Keesom ef-
fect dominating that of London, the deviations from the
Lifshitz theory could be significant [39]. Both generic up-
ward parabola and cotangentlike curves shown in Fig. 3

demonstrate either perfect wetting or nonwetting: even if equi-
libria exist, they prove to be unstable. The only stable situation
would be possible if the cotangentlike curve in Fig. 3 is mirror
reflected to become tangentlike. However, as follows from the
asymptotics (4.2), for a typical wetting situation when ε2 ≈ 1,
this would require ε1 > ε3, thus violating the Lifshitz limit
at θ0 → π . Hence, for all liquid-on-solid wetting situations
with air being phase 2, there is no stable contact angle θ0

other than zero or π , should one focus on the force P⊥ alone.
However, if one considers a liquid wedge on a solid substrate,
then it is known from classical macroscopic considerations
that minimization of the sum of energies of all interfaces leads
to the Young equation [41], γ21 − γ31 = γ23 sin θ0, which can
be viewed as the projection of surface-tension forces (Young’s
force diagram) on the substrate plane. This equation, how-
ever, does not account for the bulk van der Waals stresses,
which makes Young’s equation inapplicable near the wedge
corner in the same way that one would not apply it to solids,
where internal stresses play the dominant role. Therefore, as
opposed to the commonly used Frumkin-Derjaguin approach
[42,43], in which Young’s equation stays unmodified in the
presence of disjoining pressure, the correct force balance
should add the projection of the resultant van der Waals force
−〈P⊥〉 sin θ0 acting on the interface between media 2 and 3
to Young’s equation. Since surface-tension forces applied to
flat interfaces in the Young force diagram are independent
of the distance r to the wedge tip, at sufficiently short dis-
tances they are dominated by dF⊥ ∼ r−3, which tends to turn
the wedge interface toward either θ0 = 0 or π . When the
nonzero width of the interface between media 2 and 3 is taken
into account, this happens at distances close to the interface
thickness, i.e., on the order of a few molecular distances a0,
where van der Waals stresses and their part contributing to
surface tension become inseparable [39]. As a result, our study
establishes that the contact angle θ0 reported in the literature
from macroscopic observations is different from the actual
one, at which the interface meets the substrate, and instead
is set asymptotically at the distances r where surface-tension
effects become dominant, thus leading to the classical Young
force diagram. Therefore, the wedge interface between media
2 and 3 must necessarily be curved, which also follows from
the nonuniformity of pressure P⊥ along the interface.

The presented theory is applicable to the case of a wedge
dynamically moving with velocity V along the substrate, i.e.,
the moving contact-line problem. Clearly, the viscous stresses
∼μV/r are on the order of the Derjaguin stresses computed
here at r∗ ∼ √

AH/6πμV ∼ 100 nm, where AH is taken for
water on mica. Below this scale, the Derjaguin stresses dom-
inate due to the r−3 divergence. Effectively, this means that
for r < r∗ the liquid cannot be considered Newtonian with
the same bulk viscosity μ as that for r > r∗. The increased,
but nondivergent, stresses for r < r∗ enable tearing the “so-
lidified” liquid off the substrate, thus naturally resolving, at
the microscopic level, the Huh-Scriven paradox of a singu-
lar friction force at the contact line. In the context of the
present discussion, it transpires that the paradox arose from
the assumption that liquids behave ordinarily regardless of the
distance to the contact line.
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V. CONCLUSIONS

In this study we were interested in understanding the quan-
tum EM stresses in a static wedge of a dielectric material
in the vicinity of its tip and, as a tool, used the Lifshitz
theory of van der Waals forces. Since the latter is applicable
at distances r greater than interatomic a0, it was natural to
limit the range of our focus from above by the wavelength
λa of the EM absorption peak, i.e., to a0 � r � λa, which
enabled significant simplification of the theory while still
serving the main purpose of our work. This range corresponds
to the Derjaguin approximation as the effects of retardation
are negligible at these scales and all computations can be
accurately performed in the nonretarded setting from the very
beginning, e.g., by working in the Coulomb gauge ∇iAi = 0
and keeping only the terms dependent on A0. The geometry of
the problem inevitably required a local version of the theory,
i.e., determining the pointwise distribution of stresses due to
spatial anisotropy.

The key findings are as follows. First, the stress distribution
is no longer isotropic as it would be in classical fluid mechan-
ics with isotropic pressure on the diagonal of the stress tensor;
therefore, the concept of disjoining pressure is replaced by
disjoining (or conjoining) stresses. Second, for most common
liquid-air-solid triple-point combinations, the contact angle
θ0 either collapses to θ0 = 0 or unfolds to θ0 = π , which in
the case of a liquid wedge corresponds to perfect wetting
and nonwetting, respectively. The presented theory reveals
the quantum nature of the forces governing the wedge be-
havior near its tip, being the result of increasingly dominant
vacuum polarization. One can say that compared to the fluid
in the bulk, where its pressure is isotropic in accordance
with Pascal’s principle, fluid’s behavior near the wedge tip is
anomalous due to anisotropy of the stresses in the sense that it
becomes akin to solids. This conclusion resurrects Derjaguin’s
idea, although later denied by Derjaguin himself [44] on the
basis of suspected contaminants in experiments, that water in
sufficiently small amounts behaves abnormally. As our study
shows, even without contaminants, when a liquid’s volume
is small enough, its properties are strongly affected by the
presence of interfaces.

The derivation presented here can be extended to retarded
potentials leading to Casimir forces on the dielectric wedge
in the same manner as originally done by Lifshitz [7], which
is beyond the scope of this work but represents a promising
future direction of research. Also, the calculation of finite-
temperature corrections might be helpful for more accurate
predictions of experimental observations.
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APPENDIX A: A TIME-DEPENDENT DIPOLE
ABOVE A DIELECTRIC HALF-SPACE

Since we were interested in quantum effects at scales
shorter than the wavelength λa of the electromagnetic absorp-
tion peak, our derivation above was based on the nonretarded

limit of the Maxwell equations in the Coulomb gauge, which
is grounded in the fact that the limit from a complete relativis-
tic Lifshitz theory to its nonretarded case gives asymptotically
the same result as that obtained by working out the Lifshitz
theory in the nonretarded approximation from the very begin-
ning. As an illustration, here we treat the classical problem
of Casimir and Polder [34] of interaction between a time-
dependent dipole (such as an anisotropic atom) with a moment
p(t ), placed in the upper (z > 0) dielectric medium charac-
terized by frequency-dependent permittivity ε2(ζ ), with the
lower half-space of dielectric permittivity ε1(ζ ). Computa-
tions in the complete retarded theory can be conveniently
performed in either the Weyl, A0 = 0 [33], or Lorenz,
∇νAν = 0 [45,46] gauge.

Here we follow Lifshitz and Pitaevskii [33] in the Weyl
gauge, in which the Maxwell equations read

∇k∇kAi − ∇i∇kAk − ε ζ 2Ai = − ĵi, (A1)

where the current density ĵi of the time-dependent dipole
moment pk (t ), written here in Fourier space in terms of the
Euclidean time-Fourier transform p̂ k (ζ ), is

ĵtE (ζ ) = p̂ k (ζ )∂kδ(x, x′), ĵtE (ζ ) = ĵtE (ζ ), (A2a)

ĵk (ζ ) = −iζ p̂ k (ζ )δ(x, x′); (A2b)

here x′ is the position of the dipole. Our goal is to compute the
force acting on such a dipole positioned at the distance z above
the interface. Since the problem is conservative, the calcula-
tion of this force can be reduced to that of the Casimir-Polder
potential U such that fi = −∂iU , where it can be shown that
in the Weyl gauge this potential naturally depends only on the
spatial components of the vector potential Ai:

U = 1

2β

∑
n

p̂ i p̂ j′ζ 2
n �Ĝβ

i j′ (ζn; x, x′)|x=x′ , (A3)

where �Ĝβ

i j′ = Ĝβ

i j′ − Ĝβ(div)
i j′ and Ĝβ

i j′ are the time-Fourier
components of the Euclidean Green’s function

Gβ

i j′ (tE − t ′
E ; x, x′) = 〈Ai(tE , x)A j (t

′
E , x)〉, (A4)

which describes the quantum mean value of
the product of operators corresponding to
vector potential Ai. In accordance with the
Lifshitz subtraction procedure, Ĝβ(div)

i j′ is the Green’s function
of the Maxwell field in a homogeneous dielectric (without
interfaces) of permittivity ε.

The Green’s function satisfies the equation(
δ

j
i ∇k∇k − ∇i∇ j − εζ 2δ

j
i

)
Ĝβ

jk′ (ζ ; x, x′) = −δik′δ(x, x′).

Expanding in Fourier modes in the x and y directions, we get

Ĝβ

i j′ (ζ ; x, x′) =
∫

dqxdqy

(2π )2
eiqx (x−x′ )+iqy (y−y′ )Di j′ , (A5)

with Di j′ = Di j′ (ζ ; qx, qy; z, z′). Without loss of generality we
can choose the momentum directed along the x coordinate
[33], so that qx = q, qy = 0. Then the set of equations for Di j′

in each medium takes the form(
∂2

z − εζ 2
)
Dxx′ − iq∂zDzx′ = −δ(z − z′), (A6a)
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(
∂2

z − w2
)
Dyy′ = −δ(z − z′), (A6b)

−w2Dzz′ − iq∂zDxz′ = −δ(z − z′), (A6c)(
∂2

z − w2
)
Dyx′ = 0, (A6d)

−w2Dzx′ − iq∂zDxx′ = 0, (A6e)(
∂2

z − εζ 2
)
Dxy′ − iq∂zDzy′ = 0, (A6f)

−w2Dzy′ − iq∂zDxy′ = 0, (A6g)(
∂2

z − εζ 2
)
Dxz′ − iq∂zDzz′ = 0, (A6h)(
∂2

z − w2
)
Dyz′ = 0, (A6i)

where we introduced w(ζ , ε) =
√

q2 + ε(ζ )ζ 2, so that wm =
w(ζ , εm) for m = 1, 2. From Eqs. (A6d) and (A6i) we have
Dyx′ = 0, Dyz′ = 0, and using symmetry with respect to in-
terchanging x and x′, we also have Dxy′ = 0, Dzy′ = 0. After
some algebra we are left with the set of independent equations[

∂2
z − w2

]
Dyy′ = −δ(z − z′), (A7a)

[
∂2

z − w2
]
Dxx′ = − w2

εζ 2
δ(z − z′), (A7b)

Dxz′ = iq

w2
∂z′Dxx′

(
Dzx′ = − iq

w2
∂zDxx′

)
, (A7c)

Dzz′ = δ(z − z′)
w2

+ q2

w4
∂z∂z′Dxx′ . (A7d)

The boundary conditions for (A7) at z = 0 follow from the
continuity of the tangential components of the electric and
magnetic fields at the interface [33]:

[Dxx′]2
1 = [Dxz′]2

1 = [Dyy′ ]2
1 = 0, (A8a)[ ε

w2
∂zDxx′

]2

1
= 0, (A8b)

[∂zDyy′ ]2
1 = 0, (A8c)

[−iqDzz′ + ∂zDxz′]2
1 = 0, (A8d)

where [·]2
1 stands for the jump in values across the interface

between media 1 and 2. As soon as we compute Dxx′ and
Dyy′ , the nondiagonal components Dxz′ and Dzx′ can be found
from (A7c). To calculate Dyy′ (ζ , qx, qy; z, z′) we look for the
solution in the form

Dyy′ = 1

2 w2

{
a e−w2z + e−w2|z−z′ |, z > 0,

b ew1z, z < 0,
(A9)

where the constants are fixed by the corresponding boundary
conditions (A8a) and (A8c) and prove to be

a = rTEe−w2z′
, b = 2 w2

w2 + w1
e−w2z′

. (A10)

Here we introduced the conventional notation for the trans-
verse electric Fresnel coefficient rTE = (w2 − w1)/(w2 + w1)
[45], and for later purposes we will also need the transverse
magnetic Fresnel coefficient rTM = (ε1w2 − ε2w1)(ε1w2 +
ε2w1); both are functions of the imaginary frequency ζ . Since
we are interested in finding the force acting on the dipole
located in the upper half-space z > 0 and because the cur-
rent density (A2a) is concentrated at z′ > 0, the relevant part

leading to the divergent Green’s function, which describes the
solution in the homogeneous space without interfaces, is

D(div)
yy′ = 1

2w2
e−w2|z−z′ |, (A11)

while the other part, which accounts for finite observable
effects, has the form

�Dyy′ = Dyy′ − D(div)
yy′ = rTE

2 w2
e−ν2(z+z′ ). (A12)

The corresponding Green’s functions in the coordinate space

Gβ(div)
yy′ (ζ ; x, x′) = 1

2π

∫ ∞

0
dq q J0(qr)

e−w2|z−z′ |

2w2

= 1

4π

e−ε2ζ
2
√

r2+(z−z′ )2√
r2 + (z − z′)2

, (A13)

where r2 = (x − x′)2 + (y − y′)2, and

�Gβ

yy′ (ζ ; x, x′) = 1

4π

∫ ∞

0
dqq J0(qr)

rTE

w2
e−w2(z+z′ ).

The quantity r used here should not be confused with the
coordinate r in the cylindrical coordinate system employed in
the main text. Other components of the Green’s functions are
found in a similar fashion. In the computation of the Casimir-
Polder potential U we need to know the Green’s functions
only at the coincident points �Gi j ≡ �Gi j′ (ζ ; x, x′)|x=x′ :

�Gβ
yy = 1

4π

∫ ∞

0
dqq

rTE

w2
e−2w2z, (A14)

�Gβ
xx = − 1

4π

∫ ∞

0
dqq

w2 rTM

ε2ζ 2
e−2w2z, (A15)

�Gβ
zz = − 1

4π

∫ ∞

0
dqq

q2 rTM

w2ε2ζ 2
e−2w2z. (A16)

In the cylindrical coordinates (z, r, φ) with the z axis going
through the dipole position, the fluctuating dipole moment has
the components p̂ = ( p̂ z, p̂ r, 0), with ( p̂ r )2 = ( p̂ x )2 + ( p̂ y)2,
so that

U =
∑

n

ζ 2
n

2β

[
( p̂ z )2�Gβ

zz + ( p̂ r )2

2

(
�Gβ

xx + �Gβ
yy

)]
. (A17)

The factor of 1
2 in the last term appears due to integration of

sin2 φ and cos2 φ over φ in momentum space. Note that the
contribution by off-diagonal terms �Gβ

xz and �Gβ
zx drops out

from the expression because of their symmetry with respect
to interchanging x and x′ [33]. Thermal fluctuation effects at
T = 300 K are negligible compared to those due to quantum
fluctuations at scales that are much shorter than the thermal
scale h̄c/(kBT ) ∼ 7.6 μm � λa. Therefore, at scales below
λa the sum over the Matsubara frequencies ζn can be replaced
by the integral [33]

1

2β

∑
n

f (ζn) →
∫ ∞

0

dζ

2π
f (ζ ). (A18)
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Eventually, from (A17) we obtain

U = −
∫ ∞

0

dζ

2π

∫ ∞

0
dqq

e−2w2z

4πε2w2

[
q2 rTM ( p̂ z )2

+ 1

2

(
w2

2 rTM − ε2ζ
2rTE

)
( p̂ r )2

]
, (A19)

which for the dipole in the vacuum ε2 = 1 reproduces the
result by Marachevsky [45,46] derived in the Lorentz gauge.

Now let us compare the small-scale z < λa (nonretarded,
i.e., Derjaguin) and large-scale z > λa (retarded, i.e., Casimir)
limits. For simplicity, we restrict our further consideration
to ε2 = 1, in which case w2 =

√
q2 + ζ 2. By introducing a

dimensionless integration variable b = w2/ζ , the Casimir-
Polder potential can be rewritten in the form

U = − 1

4π

∫ ∞

1
db

∫ ∞

0

dζ

2π
ζ 3 e−2ζ zb

×
[

(b2 − 1) rTM ( p̂ z )2 + 1

2
(b2rTM − rTE)( p̂ r )2

]
,

(A20)

and the Fresnel coefficients become

rTE = b −
√

b2 + ε1 − 1

b +
√

b2 + ε1 − 1
, rTM = ε1b −

√
b2 + ε1 − 1

ε1b +
√

b2 + ε1 − 1
.

While one can substitute here a function ε1(ζ ) known from
experiments [13] and integrate over ζ as we did in Sec. IV,
for the purpose of distinguishing between retarded and nonre-
tarded effects we consider a steplike model,

ε1 = 1 + (ε − 1) θ (ωa − ζ ), (A21)

which allows us to perform all integrations analytically and
captures all the essential features of the problem we are in-
terested in. The analysis can also be simplified by assuming
that the quantum mean value of the dipole moments αi j =
〈p̂ i(ζ ) p̂ j (ζ )〉 does not depend on frequency. Then we get

U = Uzα
zz + Urα

rr, αrr = αxx + αyy, (A22)

where

Uz = − 1

8π2

∫ ∞

1
dbWz, Ur = − 1

8π2

∫ ∞

1
dbWr, (A23)

and the integrands are

Wz =
∫ ∞

0
dζ ζ 3 e−2ζ zb(b2 − 1) rTM, (A24a)

Wr =
∫ ∞

0
dζ ζ 3 e−2ζ zb 1

2
(rTMb2 − rTE). (A24b)

1. Derjaguin’s limit: Small distances ωaz � 1

Expanding Wz and Wr for small ωaz, we obtain

Wz = 2Wr = ε − 1

ε + 1

1

8 b2z4
{3 − [3 + 6(ωazb)

+ 6(ωazb)2 + 4(ωazb)3]e−2ωazb} + O(ωaz). (A25)

Then after integrating (A23), the potentials to leading order
become

Uz = 2Ur ≈ −ε − 1

ε + 1

ωa

32 π2z3
+ O(z−2), (A26)

and

U = − ωa

64 π2

ε − 1

ε + 1

1

z3
[2 αzz + αrr]. (A27)

Note that the contribution of only zero-frequency mode ζ0 can
be found directly from (A14)–(A17),

U (0) = − 1

64πβ

ε − 1

ε + 1

1

z3
[2αzz + αrr]. (A28)

A comparison of U (0) and U , i.e., (A28) and (A27), in the
Derjaguin limit shows that, as expected, U = NU (0), where
N = β ωa/π is the number of Matsubara modes in the interval
−ωa � ζn � ωa. Thus, for the model (A21) only Matsubara
modes |ζn| � ωa contribute (equally) to the force. In the gen-
eral case of a realistic ε1(ζ ), each mode would contribute with
the weight ε1(ζ )−1

ε1(ζ )+1 [2 αzz(ζ ) + αrr (ζ )]. Because at large fre-
quencies ε1 → 1, the integrals (A24) converge. Higher-order
corrections to the Derjaguin limit of the Casimir-Polder poten-
tial U are due to the retardation effects and are smaller than
the main contribution (A27) by a factor of (ωaz)3/3 � 1. It is
straightforward to demonstrate that the result (A27) obtained
by taking the nonretarded limit of the complete relativistic
Lifshitz theory is exactly the same as that deduced by solving
the problem in the nonretarded setting from the very begin-
ning, e.g., in the Coulomb gauge (see Sec. A 3).

2. Casimir’s limit: Large distances ωaz � 1

In this limit the contribution of large frequencies is expo-
nentially suppressed, and (A24a) leads to

Wz = 3

8

(b2 − 1)

b4

rTM

z4
+ O(e−2ωabz ), (A29a)

Wr = 3

16

1

b4

1

z4
[b2rTM − rTE] + O(e−2ωabz ). (A29b)

Integrals over the parameter b give (A22), where

Uz = − 1

32π2z4
Cz(ε), Ur = − 1

32π2z4
Cr (ε), (A30)

with Cz(ε) and Cr (ε) computable analytically. For large ε �
1 their asymptotics are Cz = 1 + O(ε−1/2) and Cr = 1 +
O(ε−1/2), so that

U = − 1

32π2z4
[αzz + αrr]. (A31)

This result reproduces the Casimir-Polder potential for a
dipole above the metal [34]. At large scales the dependence on
the absorption frequency drops out, as it should in the Casimir
effect.

3. A dipole above a half-space in the nonretarded setting

At small distances the physics is governed by the Derjaguin
limit, which using the Coulomb gauge can be reduced to the
computation of only one Green’s function G00. After the Wick
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rotation it can be written as the Fourier time series (2.3), where
for each Matsubara frequency ζ = ζn we have

∇i[ε(ζ )∇i]Ĝβ (ζ ; x, x′) = δ(x, x′), (A32)

with x = (x, y, z). At the interface between two dielectrics
with ε1 and ε2, the Green’s function Ĝβ must satisfy the
boundary conditions (2.5).

After the Fourier decomposition in the x and y directions

Ĝβ (ζ ; x, x′) =
∫

dqxdqy

(2π )2
eiqx (x−x′ )+iqy (y−y′ )D, (A33)

the Fourier-transformed Green’s function D =
D(ζ ; qx, qy; z, z′) inherits the following equation and
boundary conditions:

(
∂2

zz − q2
)
D = 1

ε
δ(z − z′), q =

√
q2

x + q2
y , (A34a)

D1 = D2, ε1∂zD|1 = ε2∂zD|2. (A34b)

Consider the point x′ inside the slab of the dielectric with
ε2. First, we look for a solution of (A34a) which vanishes for
z → ±∞:

D =
{

a e−qz − 1
2qε2

e−q|z−z′ |, z > 0,

b eqz, z < 0.
(A35)

Next, using the boundary conditions (A34b) at z = 0, we find
the coefficients a and b,

a = 1

2qε2

ε1 − ε2

ε1 + ε2
e−qz′

, b = −1

q

1

ε1 + ε2
e−qz′

. (A36)

In the absence of the interface, the corresponding Green’s
function would be

D(div) = − 1

2qε2
e−q|z−z′ |. (A37)

Thus, in the sector z, z′ > 0 we have D = D(div) + �D, where
�D is the contribution left after the Lifshitz subtraction:

�D = 1

2qε2

ε1 − ε2

ε1 + ε2
e−q(z+z′ ). (A38)

Upon the inverse Fourier transform of �D back to the coordi-
nate space we get

�G(ζ ; x, x′) = 1

4πε2

ε1 − ε2

ε1 + ε2

1√
r2 + (z + z′)2

. (A39)

In accordance with the Lifshitz subtraction, we consider
the difference �AtE of the vector potential AtE and the
“vacuum” one A(div)

tE in the homogeneous media with ε2:

�AtE (ζ ; x, x′) =
∫

dx′′�G(ζ ; x, x′′) jt ′′
E
(ζ ; x′′, x′),

where jtE (ζ , x, x′) is given by (A2a). We assume that the
pointlike dipole is located at x′ = (0, 0, z′); then

�AtE (ζ ; x, x′) = −[ p̂ k∂x′k ]�G(ζ ; x, x′), (A40)

and the corresponding contribution to the Maxwell field reads

�FitE = ∂i(�AtE ).

The force density fi acting on the dipole pk in turn takes
the form

fi = �FitE jtE

= 1
2∂i([ p̂m∂m][ p̂ k′

∂k′]�G(ζ ; x, x′)
∣∣
x=x′ ),

and only the z component of the force fi = (0, 0, fz ) is non-
vanishing,

fz(ζ ) = − 3

64πε2

ε1(ζ ) − ε2(ζ )

ε1(ζ ) + ε2(ζ )
[2αzz + αrr]

δ(x, x′)
z′4 .

The force acting on the dipole is the integral over the space
and the sum over all Matsubara frequencies

Fz = 1

β

∑
n

∫
dx fz(ζn). (A41)

At small distances from the interface the temperature effects
are negligible, and the sum in (A41) can be replaced by the
integral

Fz = 2
∫ ∞

0

dζ

2π

∫
dx fz(ζ ). (A42)

For the toy model (A21) of steplike ε1 and ε2 = 1 the final
result for the force in the Derjaguin limit becomes

Fz = −∂zU, (A43)

U = − ωa

64 π2

ε − 1

ε + 1

1

z3
[2 αzz + αrr], (A44)

which exactly reproduces the small ωa z limit (A27) of the
force derived using the complete retarded calculations. This
confirms the expectation that, at small scales in comparison
to the absorption wavelength, one may neglect all retardation
effects and perform much simpler (nonretarded) calculations
instead.

APPENDIX B: BASIC FORMULAS IN CYLINDRICAL
COORDINATES

The EM stress-energy tensor in an arbitrary coordinate
system has the form

T μν = Fμα Dν
α − 1

4 gμν Fαβ Dαβ, (B1)

where μ, ν = (0, 1, 2, 3). The spatial components of this
tensor give the stress tensor with the standard sign
convention [24]

σ i j = −T i j, i, j = (1, 2, 3). (B2)

At small scales � λa, where the nonretarded approximation
produces the leading contribution, one can use the Coulomb
gauge ∇iAi ≡ Ai

;i = 0 and keep only the terms involving A0.
In the standard notations a semicolon denotes the covariant
derivative defined using the metric gi j , while a comma denotes
the partial derivative. Therefore, the only component of the
Maxwell tensor that contributes in the nonretarded limit is
F0i = −∇iA0 ≡ −A0;i and D0i = εF0i. Substituting these into
(B2), we obtain (3.1) for the stress tensor of the Maxwell field
in the nonretarded limit. Note that in the Minkowski signa-
ture F0iF 0

j = −A0;iA0; j , while in the Euclidean one we have
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FtE iF tE
j = AtE ;iAtE ; j . Substituting these relations into (B2) and

(B3), we obtain (3.1).
Raising and lowering spatial indices are performed using

the metric gi j . For example, in the cylindrical coordi-
nates xi = (r, θ, y) we have gi j = diag(1, r2, 1) and gi j =
diag(1, r−2, 1). Then for the renormalized Fourier com-
ponents of the stress tensor we get σ i j = gikg jlσ

kl , or
explicitly,

σ rr = σ rr, σ θθ = r4σ θθ , σ rθ = r2σ rθ , σ yy = σ yy.

The force density reads

f i = σ ik
;k = σ ik

,k + �i
jkσ

jk + �k
jkσ

i j . (B3)

The necessary nonvanishing components of the Christoffel
symbols �i

jk are

�r
θθ = −r, �θ

rθ = 1

r
, �k

rk = 1

r
. (B4)

Substitution of these expressions into (B3) leads to the com-
ponents of the force density (4.1).
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