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Trapped ions form an advanced technology platform for quantum information processing with long qubit
coherence times, high-fidelity quantum logic gates, optically active qubits, and a potential to scale up in size
while preserving a high level of connectivity between qubits. These traits make them attractive not only for
quantum computing, but also for quantum networking. Dedicated, special-purpose trapped-ion processors in
conjunction with suitable interconnecting hardware can be used to form quantum repeaters that enable high-rate
quantum communications between distant trapped-ion quantum computers in a network. In this regard, hybrid
traps with two distinct species of ions, where one ion species can generate ion-photon entanglement that is
useful for optically interfacing with the network and the other has long memory lifetimes, useful for qubit
storage, have been proposed for entanglement distribution. We consider an architecture for a repeater based on
such dual-species trapped-ion systems. We propose and analyze a protocol based on spatial and temporal mode
multiplexing for entanglement distribution across a line network of such repeaters. Our protocol offers enhanced
rates compared to rates previously reported for such repeaters. We determine the ion resources required at the
repeaters to attain the enhanced rates, and the best rates attainable when constraints are placed on the number of
repeaters and the number of ions per repeater. Our results bolster the case for near-term trapped-ion systems as
quantum repeaters for long distance quantum communications.
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I. INTRODUCTION

Quantum information processing is set to revolution-
ize computation, communication, and sensing technologies
[1,2]. Applications of these technologies range from quan-
tum speedups with NISQ processors [3] to quantum key
distribution [4], to quantum-enhanced distributed sensors [5].
Quantum technologies are currently being actively developed
across different physical platforms—from solid-state systems
such as superconducting circuits [6] and nitrogen vacancies
[7] in diamond, to trapped ions [8], to nanophotonic sys-
tems [9]. Quantum networks capable of faithfully transferring
quantum states between nodes, including the capability to
distribute quantum entanglement [10], are being developed
both over short distances to scale up quantum computers in
a modular fashion, as well as over long distances to connect
remote quantum computers, or a local area network of com-
puters across physical platforms towards building a global
quantum internet [11–13].

Given that photons are the best transmitters of quan-
tum information that can be used to implement scalable
quantum communications, the primary challenge in quantum
networking is the fundamental rate-loss trade-off. This trade-
off exists for quantum communications over a lossy optical
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communication channel that models imperfections such as
photon collection, coupling, and detection inefficiencies, as
well as transmission losses. The entanglement distribution
capacity of the pure-loss optical channel with unlimited signal
power and unlimited local quantum operations and classical
communications (LOCC) is given by C(η) = − log2(1 − η)
ebits per channel use [14], where η is the channel transmissiv-
ity, and an ebit denotes a pair of maximally entangled qubits.
In the limit of low transmissivity η � 1, this quantity scales
as ∝η [15]. As a result, in long-distance communications,
say, over an optical fiber link whose transmissivity de-
creases exponentially with distance as e−αl (α being the fiber
loss coefficient per unit length), the entanglement distribu-
tion capacity drops exponentially with distance independent
of the presence or absence of other imperfections. Quan-
tum repeaters [16,17] help overcome this challenge. They
are special-purpose quantum computers typically consisting
of quantum sources, detectors, elementary logic gates, and
quantum memories. Quantum repeater architectures based on
different physical platforms [18–23] along successive genera-
tions of improved protocols [24,25] have been proposed that
can achieve enhanced entanglement distribution rates beyond
the direct transmission capacity.

Establishing a large-scale quantum network typically calls
for setting up long-distance core networks. Among the large
variety of physical systems that can be utilized to realize
quantum repeaters for the core quantum network backbone,
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trapped-ion based systems form an excellent, robust choice,
due to their inherently long memory coherence times [26].
Moreover, trapped ions are known to be an advanced qubit
technology [8], and one of the front runners in the race
for scalable universal quantum information processing [27].
Repeater networks consisting of single-species trapped-ion
nodes have been considered and analyzed in depth in
Ref. [28]. More recently, Santra et al. [29] analyzed repeaters
based on ion traps consisting of two species of ions with
complementary properties: a communication ion species with
good optical properties that enables the network nodes to com-
municate with one another, and a memory ion species having
a long coherence time, and therefore suitable for information
storage and efficient local quantum processing. Examples of
such complementary pairs of ion species include 138Ba+ and
171Yb+, and 9Be+ and 25Mg+. In the former, e.g., the 138Ba+

ion can emit a photon in the visible part of the spectrum
(493 nm) that is entangled with the atomic state of the ion.
Entanglement can be heralded between the atomic states of
two such 138Ba+ ions by performing an optical Bell-state
measurement [30] on the photons they emit. Such optically
mediated entanglement, when heralded between adjacent re-
peater nodes, can be faithfully transferred onto 171Yb+ ions
present at the respective nodes, whose atomic states have
extremely long coherence times, thus allowing the storage
of entanglement between the nodes which can later be pro-
cessed using efficient quantum gate operations [31,32]. Santra
et al. [29] presented a repeater architecture based on such
dual-species trapped-ion (DSTI) modules, and discussed a set
of logic gates needed to implement repeater protocols. They
analyzed the quantum communication rates attainable over
a line network of such DSTI repeaters using a multiplexed
protocol. The rates were shown to exceed those possible with
direct transmission.

In the present article, we explore a protocol based on spa-
tial and temporal multiplexing for the trapped-ion repeater
architecture involving DSTI modules that is more general
than the one considered in Ref. [29]. In spatial multiplex-
ing, multiple communication ions attempt to generate remote
entanglement between every pair of adjacent repeater nodes
at each time step of a well-defined clock cycle. In time
multiplexing, remote entanglement is heralded from entan-
glement generation attempts across a block of multiple time
steps. While both spatial and time multiplexing were also
considered in Ref. [29], the latter was only considered im-
plicitly with a fixed clock-cycle duration for the photon-ion
entanglement generation at the repeater nodes determined
by the distance between adjacent nodes. Here, we treat the
clock-cycle duration as a free parameter, so that ion-photon
entanglement generation at the nodes can be attempted at rates
independent of the internodal spacing. This enables higher
quantum communication rates than the rates supported by
the protocol of Ref. [29]. Our protocol warrants a suitably
larger number of communication ions and memory ions at
the repeater nodes for ion-photon entanglement generation
and for storing the unheralded ion qubits, respectively. We
determine the enhanced rates enabled by such a general pro-
tocol for different spatial multiplexing, numerically optimized
over the number of repeaters and temporal multiplexing. We
identify the number of repeaters required and the number of

communication and memory ions required per repeater for the
optimal implementation of the protocol, and discuss how the
rates deteriorate from their optimum values when the number
of repeaters, or the number of ions per repeater is constrained.

The article is organized as follows. In Sec. II, we present a
general architecture for the trapped-ion repeaters, along with
the node operations and an associated error model. We also
summarize the different timing parameters of the repeaters
here. In Sec. III, we outline the concepts of spatial and time
multiplexing-based quantum repeater protocols. Section IV
contains our proposed protocol based on spatial and time
multiplexing for the DSTI repeaters for the case of 138Ba+

and 171Yb+ ions, along with numerical results. We conclude
with a discussion and summary in Sec. V.

II. TRAPPED-ION REPEATER ARCHITECTURE

The general architecture of the trapped-ion repeaters and
the overall network analyzed in this work is depicted in Fig. 1.
The repeaters consist of multiple DSTI modules containing (i)
138Ba+ ions, which serve as the communication ions, and (ii)
171Yb+ ions, which serve as the memory ions. The DSTI mod-
ules may thus be thought of as consisting of two independent
ion ensembles. Each repeater node is equipped with lasers
and light collection apparatuses for (i) ion-photon entangle-
ment generation using the communication ions and for (ii)
performing qubit logic gates and measurement readouts on the
memory ions. Since the qubit states in the two ion species have
different transition frequencies, the above functions involve
different lasers and thus do not affect each other.

The photons emitted by the communication ions, upon col-
lection, are first frequency converted to telecom wavelengths
for internodal transmissions [33,34], and then coupled into
optical fibers. The communication ions in a DSTI module are
assumed to be well spaced out so that the rate of resonant re-
absorption of the photon emitted from one communication ion
by another is low. Light collection is assumed to be spatially
resolved so that light from different communication ions can
be fiber coupled and transmitted over distinct spatial modes.
The repeater nodes are assumed to be linked by fiber bundles
capable of transmitting multiple single photons in distinct
spatial modes to support spatial multiplexing.

The qubit logic gate operations on the memory ion qubits
in a DSTI module are effected using highly collimated laser
beams that address individual ions. However, for technical
simplicity of operation of the DSTI modules, the measure-
ment readouts of the memory ions in a module are considered
to be global. This is because readouts are effected by stimu-
lating state-dependent fluorescence that can cause high levels
of cross talk among the memory ions in the module even
when individual ions are addressed for readout. It must be
noted, however, that strategies to circumvent this problem
have been successfully demonstrated, such as separating and
shuttling selective ions into a separate zone for readout [35],
which requires a complex trap geometry, or using another
species for readout [36], which is challenging to combine with
networking as it involves two species already.

Each repeater node also carries a quantum multiplexer
(MUX) [37,38], whose functionalities include (i) optical
switching and (ii) linear optical Bell-state measurements
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FIG. 1. General architecture of a repeater node based on DSTI modules to support entanglement distribution protocols based on mode
multiplexing. The lines denote optical fibers.

(BSMs). With photons transmitted between nodes in well-
indexed spatial modes, independent Bell-state measurements
(discussed under repeater operations below) over the different
multiplexed spatial modes can be effected using the MUX.
The detectors are assumed to be ultrafast so that they can be
reset and used over successive time steps. In other words, it
is assumed that optical BSMs can be effected on successive
time-bin modes using the same MUX to support temporal
multiplexing. The nodes are assumed to share a common
clock reference.

Repeater operations—The basic repeater operations be-
tween and at the DSTI modules that we consider were
proposed in Santra et al. [29], and are summarized below.
Interactions between DSTI modules, both within a repeater
node as well as between adjacent repeater nodes are optically
mediated. Photons emitted by the communication ions are
duly collected, coupled into optical fiber, and interfered and
measured to realize Bell-state measurements. The simplest
linear optical Bell-state measurement for photonic qubits suc-
ceeds probabilistically. When a successful optical Bell-state
measurement is performed on photons from two ions, it results
in entanglement being heralded between the ions. The atomic
states of the communication ions are transferred or “swapped”
to the memory ions by ion-ion gates based on Coulomb in-
teractions such as the Mølmer-Sørensen gate [39] to store
entanglement over the long coherence times of the memory
ions. The action of the swap gate Sc→m (where c and m labels
denote the communication and memory ions, respectively) on
a pair of entangled communication ions is given by

Sc1→m1 ⊗ Sc2→m2 |ψ〉m1 |β〉c1c2 |ψ〉m2 = |ψ〉c1 |β〉m1m2 |ψ〉c2 .

(1)

Here, the various quantum states are, |β〉c1c2
for the entangled

communication ions, |ψ〉mi
for the memory ions before the

linear optical entanglement swap, and |ψ〉ci
for the communi-

cation ions after the ion-ion swapping operation.
Finally, the entanglement swap operation between two en-

tangled memory-ion pairs |β〉m1m2 and |β〉m3m4 , when ions
m2, m3 are in the same DSTI module, is accomplished by
a CNOT gate operation followed by Z and X basis measure-

ments, where the latter may be effected using Hadamard gates
followed by Z basis measurements. This operation extends the
range of entanglement by establishing entanglement between
m1 and m4. With regard to implementing the measurements as
part of the entanglement swap operations, firstly the gates con-
stituting the entanglement swaps (CNOTs and Hadamards) are
applied on individual memory ions in a DSTI module. Subse-
quently, the Z basis measurements, as mentioned earlier, are
effected via a global measurement readout of all the memory
ions in the module. This forms an important consideration in
our repeater protocol, wherein all the memory ions in a DSTI
module end up being measured in the Z basis periodically as
dictated by the protocol.

Error model—The success probability of optically me-
diated heralded entanglement generation between communi-
cation ions present at two adjacent repeater nodes is given
by p = 1

2η2
cη

2
d e−αL0 . Here, ηc is the collection and coupling

efficiency for the optical elements, ηd is the efficiency of the
detectors used in the Bell-state measurement circuit, α is the
fiber attenuation parameter, which is typically 0.2 dB/km at
1550 nm, and L0 is the interrepeater spacing (detector dark
counts and frequency conversion inefficiencies are neglected
in the present analysis, and will be considered in future
works). When the communication ions are present at the same
repeater node, but in different DSTI modules, the success
probability is given by p′ = 1

2η2
cη

2
d , where it is assumed that

the losses in transmission are negligible. Moreover, the entan-
gled state of the communication ions is generally modeled by
a Werner state of fidelity parameter F0, given by

ρc1,c2 = F0�
+ + 1 − F0

3
(�− + �+ + �−), (2)

where �± = |�±〉〈�±| and �± = |�±〉〈�±| are maxi-
mally entangled qubit Bell-state density operators, with
|�±〉 = (|0, 1〉 ± |1, 0〉)/2 and |�±〉 = (|0, 0〉 ± |1, 1〉)/2,
and {|0〉, |1〉} being the computational Z basis eigenstates of
the qubits. The Werner-state model accounts for errors in the
communication ions that may be caused by the presence of
dephasing noise in the photonic qubits that undergo optical
Bell-state measurement.
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TABLE I. Timing parameters associated with trapped-ion
repeaters.

Timing parameter Associated meaning

τ Clock-cycle duration
τg Ion-ion gate and measurement times
τo Communication ion lifetime
τm Memory ion lifetime

Errors in the swap gate are compactly modeled jointly for
a pair of instances of swap gates acting on two entangled
communication ions to store the entanglement in two memory
ions. The model is a two-qubit Pauli channel acting on the
initial entangled state of the two communication ions resulting
in a noisy mapping onto two memory ions (see Santra et al.
[29, Eq. 3] for details), and is described as

ρm1m2 = (1 − εg)ρc1c2 + εg

16

3∑

k,k′=0

σk′ ⊗ σkρc1c2σk′ ⊗ σk (3)

= Fi�
+ + 1 − Fi

3
(�− + �+ + �−), (4)

Fi = (1 − εg)F0 + εg

4
, (5)

where {σk}k=0,1,2,3 are the Pauli matrices I, X, Y , and Z ,
the state ρc1c2 is the Werner state of (2), and εg is the error
parameter associated with the swap gate.

Finally, imperfections in the entanglement swap operation
are modeled in two parts, namely, errors associated with (i)
the CNOT gate and (ii) the X, Z measurement. (i) The action of
a noisy CNOT gate, also of error parameter εg, acting on two
qubits m2, m3 initially in state ρm2 ⊗ ρm3 , is modeled as

ρ ′
m2m3

= (1 − εg)CNOT(ρm2 ⊗ ρm3 )CNOT† + εg
Im2m3

4
, (6)

where m2, m3 are the control and the target qubits, respec-
tively, for the CNOT operation and Im2m3 is the two-qubit
identity operator. Note that εg is an overestimate for the er-
ror in this gate, since it involves fewer Coulomb gates than
the swap operation. (ii) Errors associated with the X and Z
measurements on the control and target qubits of the CNOT

gate are functions of the gate error parameter εg and the initial
fidelity of the entangled Werner state of two communication
ions. When entanglement swaps are performed across a chain
of n ∈ Z+ repeater nodes, the final noisy entangled state her-
alded between memory ions at the end nodes of the chain can
be described also as a Werner state of the form in (2) with a
fidelity parameter given by Ff = 1 − 3

2 Q(n), where

Q(n) = 1
2

[
1 − (

1 − 2εg − 4
3 (1 − F0)

)n]
. (7)

Timing parameters—The proposed repeaters have a few
characteristic timing parameters that are summarized in
Table I. Firstly, the clock-cycle duration τ (or sometimes de-
noted as τrep) is the primary time unit, which denotes the rate
at which the repeater nodes attempt ion-photon entanglement
generation. This is a tunable parameter for the repeater oper-
ation. Secondly, there are the gate and measurement times τg.
Typical values for this time are of the order of microseconds.

For example, high-fidelity swap from 138Ba+ to 171Yb+ has
been demonstrated in 100 μs [31,32]. Thirdly, there are the
lifetimes of the communication and memory ions denoted by
τo, τm, respectively. A typical value for the former is 100 μs
(as has been reported for 138Ba+ ions), while the latter can
be taken to be long; the lifetime of 171Yb+ transitions has
been engineered to run in the order of minutes [40]. The
parameters τo, τm, τg are governed by the choice of ions and
gate implementation and hence take fixed values in any given
physical realization of the repeaters.

III. REPEATER PROTOCOLS BASED ON SPATIAL
AND TEMPORAL MULTIPLEXING

In this section, we provide a brief background on
multiplexing-based repeater protocols. To begin with, due to
the no-cloning theorem [41], unlike classical communication,
the simple strategy of “amplify and retransmit” is not physi-
cally viable for entanglement generation between two remote
parties, Alice and Bob. The rates for direct transmission of
qubits over a M ∈ Z+ quantum channel with a source rep-
etition rate of 1/τ are limited by the repeaterless bound on
the entanglement generation capacity, which for pure loss
channels of transmissivity η, is given by [14]

Cdirect(η, M, τ ) = −M

τ
log2(1 − η) ebits/s, (8)

referred to as the PLOB bound hereinafter. The PLOB bound
tends to be ∝η for η � 1.

There are multiple paradigmatic approaches using quan-
tum repeaters to beat this bound. A widely recognized
classification of these approaches is in terms of the so-
called one-way versus two-way repeaters. One-way quantum
repeaters encode the transmitted qubits using error correct-
ing codes and the task for quantum repeaters is to decode,
correct for transmission errors, reencode, and transmit from
predetermined locations on the channel. Entanglement can be
distributed using these repeaters by encoding and transmitting
one share of a logically encoded ebit through the repeater
links. This is a similar strategy as repeaters for one-way classi-
cal communication. Two-way quantum repeaters, on the other
hand, rely on the generation of local entanglement on smaller
segments of the network. These locally shared ebits are con-
catenated with the aid of entanglement swaps to eventually
achieve shared entanglement between the end parties on the
channel. Such protocols could potentially be interspersed with
entanglement purification to improve the quality of the shared
ebit that is ultimately generated.

In this work, we focus on two-way repeaters. Two-way
repeaters are equipped with sources of photonic entangled
pairs, quantum memory (QM) registers (trapped memory ions
for our proposed designs in this work), and additional circuitry
to perform quantum logic on the qubits stored in the QM
register (including entanglement swaps on the memory ions).
We begin with the assumption that the sources can produce
perfect Bell pairs on demand every τ s. For simplicity, we
initially assume arbitrarily large QM registers and infinitely
long coherence times for the qubits stored in the QM. This
is a necessary consideration for a constraint-free analysis of
multiplexing.
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For the simplest network topology, namely, a line network
connecting two communicating parties, the total link distance
L is divided into n + 1 elementary links. The repeater stations
occupy the nodes at either end of each elementary link in this
segmented network. The core strategy of the protocol is to
generate shared entanglement on the elementary links before
attempting entanglement swaps (between QMs) internally in
the repeater stations. This is achieved by performing a linear
optical BSM between the transmitted qubits from neighbor-
ing repeater stations. The simplest linear optical BSM is a
probabilistic operation, which has a probability p � 1/2 of
succeeding. Note that p is dependent on the length of the
elementary links, i.e., increasing the length of the elementary
links deteriorates p. Since loss on fiber scales exponentially
with distance, p ∝ exp[−αL/(n + 1)]. Note that increasing n,
i.e., reducing the elementary link length, boosts p. However,
this also means that a larger number of elementary links must
simultaneously succeed, which shows a clear trade-off. Fur-
ther we assume that the QM entanglement swap can succeed
with a probability q � 1, where q = 1 is possible with high-
fidelity entanglement swapping gates for trapped-ion qubits.
The achievable rate is given by

R0(n) = pn+1qn

τ
. (9)

Since R0(n) < e−αL/τ , we perform worse than with direct
transmission.

However, with the aid of multiple parallel attempts, i.e.,
multiplexing, the entanglement generation rate can be en-
gineered to surpass direct transmission. This is the natural
strategy to consider when individual links can only be gener-
ated in a probabilistic manner; instead of independent single
attempts succeeding simultaneously, we perform multiple
parallel attempts for each elementary link and concatenate
successful links. Spatial (or equivalently spectral) multiplex-
ing is the easiest modification to this protocol which is based
on this paradigm. Here, the design incorporates parallel chan-
nels spatially, i.e., with separate optical fibers. With this
modification, instead of a single BSM attempt every time
slot, we can perform M attempts and look for one success.
With a spatial multiplexing size of M, and by considering the
probability of at least one success per elementary link, the
end-to-end entanglement generation rate is given by

R1(n) = [1 − (1 − p)M]n+1qn

τ
. (10)

It has been shown that with optimal choice of n and suitable
M, the rate equation in Eq. (10) can surpass the direct trans-
mission PLOB bound at a given link length. In fact, the rate
envelope for Eq. (10) has been derived in [42], and has been
shown to scale as R1 ∝ e−sαL with s < 1, which allows the
protocol to surpass rates possible with direct transmission.

Another strategy for multiplexing is to accumulate suc-
cesses from m ∈ Z+ attempts over blocks of the fundamental
time slot of τ seconds. This is called time multiplexing and
mimics the effect of using multiple channels without the
necessity for additional physical channels. Hence, we can
perform the entanglement swap between different QMs at a
repeater node only after every m time slots. An achievable

entanglement generation rate for the time multiplexed proto-
col is given by

R2(n, m) = [1 − (1 − p)m]n+1qn

mτ
. (11)

It has been shown in [25,43] that a time-multiplexed proto-
col can achieve a subexponential rate-vs-distance scaling i.e.,
R2 ∝ e−t

√
αL with t < 1. This is an improved performance

over spatial multiplexing, and it has been shown that a proto-
col may surpass the PLOB bound with just time multiplexing.
However, in a practical implementation, time multiplexing re-
quires highly reliable QMs and large switching trees that scale
as log2(m). Imperfections in these components can lead to the
loss of the subexponential advantage [25]. In general, with
the incorporation of both spatial and temporal multiplexing,
a two-way repeater protocol can achieve the rate R(L, n, m)
given as

R(L, n, m) = [1 − (1 − p)mM]n+1qn

mτ
. (12)

It is important to note that there is a key difference be-
tween the multiplexing degrees in the spatial (M ) and time
(m) strategies. Increasing M in a spatially multiplexed pro-
tocol requires the use of additional channels, which may be
highly constrained (i.e., we may be limited by the number
of physical optical fibers). In fact, it is generally something
that the network architect cannot modify, and hence it is
not practical to optimize the rate with respect to M. Rather,
given a certain maximum value of M, the rate envelope, as
derived in Ref. [42], gives us an idea about the viability of
the protocol to surpass the PLOB bound. Increasing the time
multiplexing degree m is only governed by the lifetime of
the QM. As long as the lifetime surpasses a certain threshold
governed by the protocol design, we can modify m without
the need for additional resources. Unlike spatial multiplexing,
time multiplexing can boost the probability of link creation
on the elementary link seemingly arbitrarily, by increasing m.
However, by increasing m, the effective time step increases
from τ to mτ which degrades the rate [see Eq. (11)]. The
boost in the success probability of the link, along with the
optimization of the number of quantum repeater (QR) nodes
n, overcompensates degradation, and an optimal value of m
for a given L achieves the subexponential scaling.

Note that the repeater protocol considered in this work
belongs to the second generation in the classification of suc-
cessive generations of repeater protocols [24]. This is so,
because they do not include intermediate, iterative entan-
glement distillation steps, but instead are based on multiple
redundant entanglement generation attempts across the ele-
mentary links over spatial or spectral, and temporal modes,
which can be perceived as the use of a repetition-based er-
ror correcting code for elementary entanglement generation.
This is followed by identifying the latest successful heralded
elementary links across each time multiplexing block and syn-
chronous entanglement swapping of these elementary links at
the repeater nodes.
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TABLE II. Unit distance and multiplexing parameters.

Parameter Associated meaning

L0 Interrepeater spacing
M Degree of spatial multiplexing
m Degree of time multiplexing

IV. MULTIPLEXING-BASED PROTOCOL FOR
TRAPPED-ION REPEATERS: PROTOCOL DESIGN

AND EVALUATION

In this section, we present our proposed protocol based on
spatial and time multiplexing for entanglement distribution
across a line network of trapped-ion repeaters described in
Sec. II, followed by numerical performance analyses. The
protocol design is independent of the number of repeater
nodes, and it is assumed that the ion resource parameters of
the repeater nodes are unlimited and can be chosen to be as
large as necessary to support any choice of values of the clock-
cycle duration τ and multiplexing parameters M, m. However,
when analyzing the performance of the protocol, we will also
consider constraints on these resources since in practice they
are often constrained.

The unit distance (interrepeater spacing) and multiplexing
parameters used in defining our protocol, and the repeater
resource parameters are listed in Tables II and III, respectively.
For simplicity, similar to Ref. [29], we will consider the case
of one DSTI module per node, i.e., s = 1. However, the proto-
col leverages the multiple communication ions present within
the DSTI modules for multiplexed entanglement generation
attempts across elementary links in the network. The funda-
mental time step τ , or in other words, the clock-cycle duration,
multiples of which are used as time multiplexing blocks, is
chosen as a free parameter, and not tied to the physical dis-
tance between the repeaters. This makes our protocol more
general than the one presented in Ref. [29].

A. Protocol design and rates

For n equally spaced repeaters and a total distance L (be-
tween the end nodes), consider a (m, M ) repeater protocol
with spatial multiplexing M ∈ Z+ and time multiplexing m ∈
Z+. The interrepeater spacing is given by L0 = L/(n + 1).
For a given L0, the time it takes for the heralding informa-
tion of success or failure of optically mediated entanglement
generation across adjacent repeater nodes to arrive at the
nodes is T = L0/c, where c is the speed of light in the
optical fiber used for interrepeater node transmissions (hence-
forth referred to as the heralding time). The protocol aims
to successfully herald one elementary link entanglement in

TABLE III. Resource parameters.

Parameter Associated meaning

s DSTI modules per repeater
No

138Ba+ ions per DSTI module
Nm

171Yb+ ions per DSTI module

each elementary link from m × M total attempts spread over
mτ s. The heralding time and the gates and measurement
time together add up to dictate the rate of generating the
elementary link entanglements. Since all the memory ions
are in one DSTI module, entanglement swapping across these
elementary link entangled memory ions, which can be per-
formed deterministically using CNOT gate followed by X and
Z measurement, distributes entanglement between the end
nodes.

Rate formulas under ideal repeater operations—Assuming
gate operations at the repeaters to be ideal and the optical
fibers to be pure loss channels (no dephasing errors) for the
moment, the rate in ebits per second attained by the protocol
is given by the general formula

R = [1 − (1 − p)Mm]n+1

T
, (13)

where the numerator denotes the probability of successfully
heralding at least one entangled ion-ion pair across each of
the n + 1 elementary links (p being the success probability
of optical Bell swap discussed in Sec. II), and the T in the
denominator is the time it takes to complete m time steps of
entanglement generation attempts across the elementary links.
In order to attain optimal rates at any distance L, an opti-
mal number of repeaters nopt would be required to be placed
along the distance. Too few repeaters would result in exces-
sive errors due to photon loss, whereas too many repeaters
would result in excessive operational errors at the repeater
nodes.

Notice that the rate in Eq. (13) is a function of the parame-
ters m, M, and n along with physical system parameters such
as collection and detection efficiencies ηc, ηd and the total
distance L that enter the formula through p = 1

2η2
cη

2
d e−αL0 ,

where L0 = L/(n + 1). The denominator T is a function of the
time multiplexing block length m and the clock-cycle duration
τ , but also depends on the ion-ion gate and measurement times
τg and the heralding time T , which is in turn a function of L0.
The dependence on τg is due to the fact that it takes a nonzero
amount of time to perform the essential entanglement swap
operations at the repeater nodes, which is 2τg s (τg for the
CNOT gate and τg for the X, Z measurements).

The precise formula for the rate attainable with an (m, M )
repeater protocol over n repeaters placed along a total dis-
tance L, along with the ion requirements to support the
protocol are tabulated in Table IV. The rate depends on the
clock-cycle duration for ion-photon entanglement generation
attempts at the nodes τ , and the relative values of the herald-
ing time T , ion-ion gate times τg, and the communication
ion lifetime τo. Consider T = kτ and the τg = jτ , where
and j, k ∈ R+. Values of k, j < 1 clearly lead to suboptimal
rates, since they imply ample idle time at the repeater nodes,
when the ions are not attempting entanglement distribution.
Thus, we focus on operations that correspond to j, k � 1.
For simplicity of analysis, let us consider j, k ∈ Z+. Values
of j = τg/τ > 1 can in principle be realized with multisector
traps. These are traps with distinct sectors of ions (say j of
them) with each containing a batch of communication ions,
such that at every time step, ions in one of the sectors are
collectively excited, and the different sectors being excited
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TABLE IV. Rates and ion requirements for s = 1 operation of the (m, M ) multiplexed repeater protocol. The rate expressions correspond
to ideal gate operations, and the optical fibers are assumed to be a pure loss channel. For realistic gate operations, the overall rate is modified
by the reverse coherent information of the end-to-end state, which is a function of the gate error parameter εg and the initial fidelity of the
entangled Werner state F0. See Appendix A for detailed timing charts and corresponding timing diagrams.

Table A Criterion: T � τo > τg Required No Required Nm Rate

2M j �2Mm [1−(1−p)Mm]n+1

(k+m+2 j−1)τ

Table B Criterion: τo > T � τg Required No Required Nm Rate
Case 1: T + τg > τo > T Same as Table A

Case 2: τo � T + τg > T 2(Mk + j) 2m [1−(1−p)Mm]n+1

(k+m+3 j−1)τ

Table C Criterion: τo > τg > T Required No Required Nm Rate

Case 1: T + τg > τo > τg 2M j �2Mm [1−(1−p)Mm]n+1

(m+3 j−1)τ

Case 2: τo � T + τg > τg Same as Table B, case 2

in a cyclical fashion. It is implicitly and reasonably assumed
that (i) τo > τg so that a communication ion’s quantum state
can be faithfully transferred to a memory ion with ion-ion
gates before it irrecoverably decoheres and (ii) τm � mτ for
a large range of values m, so that the memory ions can be
considered to be noise-free. Among the 6 = (3

2

)
orderings of

the relative values of T, τg, and τo, due to the reasonable
assumption τo > τg, we are left with three possible order-
ings, namely, T � τo > τg, τo > T � τg, and τo > τg > T .
Table IV discusses the rates and the ion requirements achieved
by the repeater protocol for each of these cases. Timing
charts and timing diagrams that describe the protocol includ-
ing the operations at the repeater nodes from time step to
time step, under these different conditions are elucidated in
Appendix A.

As an example, consider the case T � τ0 > τg described
in Table V in Appendix A. In this scenario, at every time step,
2M communication ions generate ion-photon entanglement,
with M of the photons being directed towards the left of the
node and the other M towards the right of the node. The mo-
ment these photons are generated, an ion-ion gate is initiated
on each of the communication ions, to swap their atomic state
into memory ions. For gate time τg = jτ, j ∈ Z+, at time
t = jτ, the communication ions that were used to generate
ion-photon entanglement at time step t = 0 are freed up due
to the completion of the ion-ion gate, and hence are ready to
be reused. At this point, the first 2M atomic states have been
loaded into memory ions. At time step t = kτ, k ∈ Z+, the
information about which two (one to the left of the node and
one to the right), if any, of the 2M entanglement generation
attempts at time t = 0 actually heralded an elementary link
entanglement, is received, at which point, the other 2(M − 1)
memory ions are freed up and ready for reuse. At time t =
(k + m − 1)τ , similarly, all potentially successfully heralded
elementary link entanglements across the time multiplexing
block length of m are stored in the memory ions. At this
point, the repeater nodes choose the latest successful heralded
link to the left and to the right and perform entanglement
swap on those corresponding memory ions. Performing the
entanglement swap involves measuring these memory ions,
which takes a time duration 2τg, i.e., 2 jτ . Thus, the rate of
distributing one ebit across the end nodes of the trapped-ion
repeater chain is ∝1/(k + m − 1 + 2 j)τ . Since we consider

global measurements that measure all ions in the DSTI, all
the other accumulated entanglement resources at the nodes are
also cleared in the process. The protocol then starts once again
from time step t = 0.

Note that typically with time-multiplexed repeaters the
heralding time only causes latency in the protocol without
affecting the rates [25]. However, in the present scheme of
trapped-ion repeaters, as mentioned above, ion measurements
are considered to be global, full-trap measurements that mea-
sure all ions present in a DSTI, as opposed to measurement of
individual ions in a trap. As a result, all the other accumulated
entangled resources at the nodes are also cleared in the pro-
cess, which negatively impacts the entanglement distribution
rates.

Rate formulas under realistic (noisy) gate operations—
When realistic noisy operations are considered at the repeater
nodes, the rate formulas in Table IV get scaled by the distill-
able entanglement of the noisy end-to-end entangled state ρAB

across the line repeater network. The noisy entangled state is
given by a Werner state of fidelity parameter F = 1 − 3

2 Q(n),
where Q(n) is as given in Eq. (7). A lower bound on the
distillable entanglement is given by the reverse coherent in-
formation of the state ρAB, defined as IR(ρAB) := H (B)ρ −
H (AB)ρ, where H (B)ρ = − Tr(ρB log2 ρB) is the von Neu-
mann entropy of ρB. For Bell diagonal states, and hence for
Werner states, IR can be easily computed, since ρB is the
maximally mixed state of entropy H (B)ρ = 1 and the entropy
H (AB)ρ = −F log2 F − (1 − F ) log2

1−F
3 .

Ion requirements—For the case T � τ0 � τg, the ion re-
quirements can be identified from the timing chart in Table V.
The requirement on the number of communication ions is
2 jM, which is the value at which freed ions begin getting
reused and the number of loaded Ba+ ions saturates. In other
words, 2 jM Ba+ ions are sufficient to support the optimal
(m, M ) repeater protocol. The maximum number of memory
ions required in this case is given by 2mM. The actual number
could be smaller, depending on the value of m and its relation
to j, k, which might allow for some freed memory ions to be
reused. On the other hand, for the cases where τo > (k + j)τ ,
the communication ion requirement is 2(Mk + j), whereas
the memory ion requirement is independent of M, and given
by 2m. This is because the large τo allows one to wait for the
heralding information and subsequently apply the swap gate
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TABLE V. Timing chart for Table IV, type A, i.e., when T � τo > τg, and Table IV B, case 1, i.e., (τo > T � τg) ∧ (T + τg > τo > T ).
Both of these involve subcases 1 and 2 corresponding to k − j + 1 � m and k − j + 1 < m, respectively, where T = kτ, τg = jτ . The timing
diagrams for the different cases of this protocol type are shown in Figs. 11 and 12.

Case 1 Ba+ occupancy Yb+ occupancy

Time Initialized Freed Loaded Loaded Freed Max. number of heralded ions

0 2M 0 2M 0 0 0
τ 4M 0 4M 0 0 0
...

...
...

...
...

...
...

( j − 1)τ 2 jM 0 2jM 0 0 0
jτ 2( j + 1)M 2M 2 jM 2M 0 0
...

...
...

...
...

...
...

(m − 1 + j)τ 2(m + j)M 2mM 2 jM 2mM 0 0
...

...
...

...
...

...
...

kτ 2(k + 1)M 2(k − j + 1)M 2 jM 2(k − j + 1)M 2(M − 1) 2
...

...
...

...
...

...
...

(k + m − 1)τ 2(k + m)M 2(k + m − j)M 2 jM 2(k + m − j)M 2m(M − 1) 2m

Case 2 Ba+ occupancy Yb+ occupancy

Time Initialized Freed Loaded Loaded Freed Max. number of heralded ions

0 2M 0 2M 0 0 0
τ 4M 0 4M 0 0 0
...

...
...

...
...

...
...

( j − 1)τ 2 jM 0 2jM 0 0 0
jτ 2( j + 1)M 2M 2 jM 2M 0 0
...

...
...

...
...

...
...

kτ 2(k + 1)M 2(k − j + 1)M 2 jM 2(k − j + 1)M 2(M − 1) 2
...

...
...

...
...

...
...

(m − 1 + j)τ 2(m + j)M 2mM 2 jM 2mM 2(m + j − k)(M − 1) 2(m + j − k)
...

...
...

...
...

...
...

(k + m − 1)τ 2(k + m)M 2(k + m − j)M 2 jM 2(k + m − j)M 2m(M − 1) 2m

only between the successfully heralded communication ion
and the corresponding memory ions.

B. Performance evaluation: Numerical results

Unconstrained repeaters—Here we numerically analyze
the performance of the repeater protocol assuming there are
no constraints on the number of repeater nodes, or the number
of ions per node. We begin with the rate-vs-distance trade-off.
To illustrate the results, we choose operating parameters of
the repeater to be τ = 1 μs, τg = 1 μs (i.e., j = 1), τo =
50 μs, ηc = 0.3, ηd = 0.8, and the interrepeater transmis-
sions are assumed to be over optical fiber of attenuation α =
0.2 dB/km and refractive index 1.47. The operational errors
in gates and measurements are chosen as εg = 1 − F0, where
F0 is the Werner fidelity of the elementary link states. The
value of F0 is varied from 0 (for ideal repeaters) to 10−4, 10−3

(with noisy operations). Different values of spatial multiplex-
ing M = 1, 5, 10 are considered. The rates are numerically
optimized over the time multiplexing block length m and the
number of repeaters n. The maximum of the optimal values of
the different rate expressions corresponding to the different
cases in Table IV (which for the chosen set of parameters
happens to correspond to Table IV B, case 2), is plotted in
Fig. 2. The rates are found to show subexponential decay with

respect to distance, primarily owing to deterministic entan-
glement swapping and additionally due to time multiplexing.
The rates are higher for higher M, but the advantage over the

FIG. 2. Entanglement distribution rate as a function of total dis-
tance optimized over the number of repeater nodes and the degree
of time multiplexing, for different values of spatial multiplexing M,
noise parameter εg, and τg = τ = 1 μs. These rates are compared
against the direct transmission benchmark, namely, the correspond-
ing PLOB bounds (dot-dashed lines) given by − M

τ
log2(1 − η).

022623-8



MULTIPLEXED QUANTUM REPEATERS BASED ON … PHYSICAL REVIEW A 105, 022623 (2022)

FIG. 3. Optimal degree of time multiplexing as a function of
total distance for different values of spatial multiplexing M, noise
parameter εg, τg = τ = 1 μs, and optimal number of repeaters.

corresponding PLOB bounds calculated as per Eq. (8) also
occurs at commensurately longer distances. In the presence of
operational errors in the repeaters, the degradation of the rates
with distance is more pronounced with increasing values of
the noise parameter. Nevertheless, the rate-distance trade-off
still beats the PLOB bound.

The optimal time multiplexing block length and the op-
timal number of repeaters for different degrees of spatial
multiplexing M are plotted as functions of the total distance
in Figs. 3 and 4, respectively. Notice that the optimal value
of m increases with distance, saturating at large distances.
The optimal value of m in relation to noise in the gates
and measurements is found to behave nonmonotonically, first
decreasing then increasing with noise at large distances. How-
ever, most importantly, the values of m are higher for the
lower value of M. In fact, at any given distance L and noise
parameter, when M is varied, the optimal m (call it mopt)
satisfies the same mode multiplexing product m = m × M.
For a total distance of 150 km and noise parameter εg � 10−4,
the optimal product is found to be mopt ≈ 220. The reason
we find an optimal value for the product is that the rate (in
ebits/s) per spatial mode, i.e., the rate in Eq. (12) divided

FIG. 4. Optimal number of repeater nodes as a function of total
distance for different values of spatial multiplexing M, noise param-
eter εg, τg = τ = 1 μs, and optimal time multiplexing.

FIG. 5. Required number of communication ions as a function
of total distance for different values of spatial multiplexing M, noise
parameter εg, τg = τ = 1 μs, and optimal number of repeaters and
time multiplexing.

by M, has a direct dependence on the product of the two
multiplexing parameters, i.e., m × M. (The value 220 itself,
though, is a function of the choice of system parameters such
as the communication ion lifetime, gate times, optical fiber
attenuation, and coupling and detection efficiencies.) As a
result, for M = 1, 5, 10, we have mopt = 220, 44, 22, respec-
tively. The optimal number of repeaters is seen to grow with
the total distance at a rate proportional to M. It is found to
naturally slow down with increasing gate and measurement
noise, as more QR nodes would add more operational noise
to the shared ebits. For example, for M = 10 and a total
distance of L = 150 km, the optimal number of repeaters for
noise parameter values εg = 10−4, 10−3, are found to be 87
and 25, respectively, which amount to interrepeater spacing
values of L0 ≈ 1.7 and 6 km, respectively. The number of
communication and memory ions per repeater node (No, Nm)
required to support the optimal rates under the proposed
mode-multiplexing protocol are shown in Figs. 5 and 6, re-
spectively. The value of No decreases subexponentially with
distance so long as the gate and measurement noise εg is

FIG. 6. Required number of memory ions as a function of total
distance for different values of spatial multiplexing M, noise param-
eter εg, τg = τ = 1 μs, and optimal number of repeaters and time
multiplexing.
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FIG. 7. Entanglement distribution rate as a function of total dis-
tance optimized over the number of repeater nodes and the degree
of time multiplexing, for different values of spatial multiplexing
M, with realistic noisy gate operations of infidelity εg = 10−4, τ =
1 μs, and τg = 10τ = 10 μs. These rates are compared against the
direct transmission benchmark, namely, the corresponding PLOB
bounds (dot-dashed lines) given by − M

τ
log2(1 − η).

small. In such a scenario, the required numbers are smallest
for protocol with smaller M and increases with M. The value
of No tends to increase with distance for εg above a threshold.
This is because large εg drives down the optimal number of
repeaters and consequently drives up the inter-repeater spac-
ing. With increasing inter-repeater spacing, the protocol in
Table IV B, case 2 warrants higher number of communication
ions given by 2(MT + τg)/τ . On the other hand, the required
number of memory ions always increases with distance, since
the optimal time multiplexing block length m increases, too,
and the required number of memory ions is proportional to m.
It is higher for lower values of M (or in other words for higher
values of m).

We note that the rates attained in Fig. 2 based on the
protocol in Sec. IV are higher than those reported in Ref. [29,
Fig. 7(b)]. For instance, at a total distance of 150 km, noise

FIG. 8. Entanglement distribution rate as a function of total dis-
tance optimized over the degree of time multiplexing, for spatial
multiplexing degree M = 10, noise parameter εg = 10−4, τg = τ =
1 μs, and different values of inter-repeater spacing L0. These rates
are compared against the direct transmission benchmark, namely, the
corresponding PLOB bound given by − M

τ
log2(1 − η).

FIG. 9. Entanglement distribution rate as a function of total
distance under constrained resource availability, Nmax

o = 125. The
values of M are specified with realistic noisy gate operations of
infidelity εg = 10−4 and τg = 1 μs, and j = τg/τ . The operational
clock-cycle duration τ is different for the solid (τ = 1 μs) and dotted
(τ = 10 μs) lines.

parameter εg = 10−4, M = 10 spatial multiplexing, and all
other parameters being identical, our protocol attains 20 000
ebits/s, whereas the protocol in Ref. [29] achieves 700 ebits/s.
The rate enhancement does come at the cost of higher ion
number requirements. For the said parameter values, the re-
quired number of communication ions and memory ions per
repeater for our protocol are No = 170 and Nm = 55, respec-
tively, whereas the protocol in Ref. [29] required only No =
10, Nm = 2.

To conclude this section, in Fig. 7, we plot the entangle-
ment distribution rates when τ = 1 μs, and τg = 10 μs, i.e.,
for j = 10. In other words, this refers to a scenario where
the gate operations are an order of magnitude slower com-
pared to the clock-cycle duration for ion-photon entanglement
generation, which is still retained at 1 μs. The end-to-end
entanglement distribution rates are seen to decrease only
marginally (compared to the case τg = τ = 1 μs). This is
made possible by an increased requirement on the number of

FIG. 10. Entanglement distribution rate as a function of total
distance under constrained resource availability, Nmax

m . For spatial
multiplexing M = 5, realistic noisy gate operations of infidelity εg =
10−4 and τg = τ = 1 μs, the rates corresponding to different values
of Nmax

m are plotted.
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TABLE VI. Timing chart for Tables IV B and IV C, case 2, i.e., when (τo > T � τg) ∧ (τo � T + τg > T ) and (τo > τg > T ) ∧ (τo �
T + τg > τg), respectively. The timing diagram for this protocol type is shown in Fig. 13.

Case 2 Ba+ occupancy Yb+ occupancy 0

Time Initialized Freed Loaded Loaded Freed Max. number of heralded ions

0 2M 0 2M 0 0 0
τ 4M 0 4M 0 0 0
...

...
...

...
...

...
...

kτ 2(k + 1)M 2(M − 1) 2(kM + 1) 0 0 0
...

...
...

...
...

...
...

(k + j)τ 2(k + j + 1)M 2(M − 1)( j + 1) + 2 2(kM + j) 2 0 2
...

...
...

...
...

...
...

(k + j + m − 1)τ 2(k + j + m)M 2(M − 1)( j + m) + 2m 2(kM + j) 2m − 2m

communication ions in the DSTI modules. For example, for
M = 10, εg = 10−4, while the required number of commu-
nication ions in the case of τg = τ = 1 μs was 170, it is 220
for the case τg = 10τ = 10 μs. Further, the repeater operation
in the latter scenario warrants traps with distinct sectors of
communication ions ( j = τg/τ = 10 number of sectors) that
can be excited successively in a cyclical manner.

Constrained repeaters—Here we numerically analyze how
restrictions on the number of repeater nodes and on the
amount of ion resources at the repeaters affect the entangle-
ment distribution rates supported by the proposed protocol.

To understand how the entanglement distribution rates de-
teriorate upon moving away from the optimal number of
repeaters, the rates for different but fixed values of inter-
repeater spacing L0 are plotted in Fig. 8 for repeater operations
with M = 10 and εg = 10−4. For L0 larger than the distance-
dependent Lopt

0 , the rates are seen to be significantly smaller.
For example, with L0 = 20 km, the rate at a total distance
of 150 km drops to ≈25% of its value corresponding to the
optimal value of L0 ≈ 1.7 km. However, the rate-distance
scaling remains unchanged in the limit of large distances,
which implies it is still possible to operate at rates higher than
direct transmission rates even with fewer and farther-spaced
repeaters at large distances.

With regard to the number of communication ions, packing
too many of these ions in a DSTI module can cause issues
with ion-photon entanglement due to resonant reabsorption of

emitted photons by neighboring communication ions. Hence,
the effect of restrictions on the number of communication ions
is an important consideration. Given a limit on the maximum
number of communication ions Nmax

o , a fixed gate operation
time τg, and the minimum allowed clock-cycle duration τmin,
the rates can be optimized over the number of repeaters and
time multiplexing parameter for different combinations of
spatial multiplexing M and j where j = τg/τ can be varied
by choosing different values for the clock-cycle duration τ .
For Nmax

o = 125, τg = τmin = 1 μs, and noise parameter εg =
10−4, Fig. 9 shows the plots of the repeater performance for
a few different allowed M, j combinations, when the number
of optical ions is constrained to 125. The solid lines show the
repeater performance when j = 1, which appears to allow a
maximum M of 5. By changing τ to 10 μs, i.e., by reducing
j = 0.1, the maximum allowable M increases to 50. The per-
formance under this modified regime of timing parameters is
shown by the dashed line, which is clearly suboptimal. Thus, a
higher degree of spatial multiplexing at the expense of slower
clock rate 1/τ does not appear to yield higher rates. Instead,
the optimal strategy appears to be to pick the highest possible
j value and then optimally choosing M such that the constraint
Nmax

o is still satisfied.
Finally, with regard to the number of memory ions, given

a limit on the maximum number of these ions, the set of
allowed values for the time multiplexing parameter becomes
restricted. The reader may refer to the steady-state value of ion

TABLE VII. Timing chart for Table IV C, case 1, i.e., when (τo > τg > T ) ∧ (T + τg > τo > τg). The timing diagram for this protocol
type is shown in Fig. 14.

Case 2 Ba+ occupancy Yb+ occupancy 0

Time Initialized Freed Loaded Loaded Freed Max. number of heralded ions

0 2M 0 0 0 0 0
τ 4M 0 0 0 0 0
...

...
...

...
...

...
...

kτ 2(k + 1)M 0 0 0 0 0
...

...
...

...
...

...
...

jτ 2( j + 1)M 2M 2jM 2M 2(M − 1) 2
...

...
...

...
...

...
...

(j + m − 1)τ 2( j + m)M 2mM 2 jM 2mM 2m(M − 1) 2m
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FIG. 11. Timing diagram for Table I, type A, when k − j +
1 � m.

occupancy values in Tables V–VII to understand the depen-
dence of various constraints on the protocol and network
parameters. As a result the optimal rate drops faster with
distance for smaller values of Nmax

m as illustrated in Fig. 10.
When Nmax

m falls below a threshold, the rate-distance scaling
no longer beats the direct transmission benchmark.

V. CONCLUSION

To conclude, we presented a general architecture for a re-
peater node based on DSTI modules, and discussed a repeater
protocol based on spatial and time multiplexing. For DSTI
modules with 138Ba+ as communication ions and 171Yb+ as
memory ions, assuming reasonable values for operating pa-
rameters (operation errors under εg < 10−4, gate time τg =
1 μs, clock-cycle duration τ = 1 μs, communication ion life-
time τo = 50 μs, coupling efficiency ηc = 0.3, and detection
efficiency ηd = 0.8), the proposed repeater protocols based
on spatial and time multiplexing can attain entanglement
distribution rate ∼20 000 ebits/s at a distance of 150 km,

FIG. 12. Timing diagram for Table I, type A, when k − j +
1 < m.

FIG. 13. Timing diagram for Table I, type B.

with repeaters placed at ≈1.7 km spacing, and each contain-
ing about 170 and 55 138Ba+ and 171Yb+ ions, respectively.
This constitutes a nearly 30 times improvement over the rate
reported in the earlier work of [29] for the same set of op-
erating parameters, but requires a larger number of ions at
the repeater nodes. The larger ion number requirements can
potentially be met by bootstrapping several DSTI modules at
the repeater nodes. However, the modular interactions even
within a repeater node would then require probabilistic opti-
cally mediated entanglement swapping operations, which can
cause a degradation of the entanglement distribution rates.
This calls for the design of more advanced protocols that
can assuage this degradation and optimally leverage multiple
DSTI modules at repeater nodes. In this regard, allowing
for arbitrary optically heralded intranode ion-ion logic across
traps along with universal-capable logic in the traps, we will
explore protocols that incorporate block entanglement dis-
tillation codes [44] as part of future work. These protocols
will take advantage of multiple successful, elementary entan-
glement generation attempts, while alleviating the drawbacks
stemming from the constraint of having to measure all the

FIG. 14. Timing diagram for Table I, type C.
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FIG. 15. Decision tree to determine relative timing parameter ordering and associated rate equations.

ions in a trap simultaneously and the probabilistic, optically
heralded intranode logic.
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APPENDIX A: TIMING ANALYSIS FOR RESOURCE
COUNT CALCULATION

There are multiple operating regimes for realistic opera-
tions with noisy and noninstantaneous quantum gates. The
reader may refer to Table IV for a summary of the various

protocol types. We have examined the timing analysis of each
protocol type in depth in Tables V–VII. The corresponding
timing diagrams are shown in Figs. 11–14.

APPENDIX B: OPTIMIZATION PROCESS

Since the protocol in Sec. IV is determined by a relation
between the timing parameters, it is not directly apparent,
which rate equation holds true for a given set of protocol
parameters (refer to Table II). The number of repeaters plays
a primarily role in determining the heralding time T . For
the present numerical analysis, we find the optimal parameter
values for a given set of conditions using standard optimiza-
tion techniques. Depending on the optimal values calculated,
we now have to make a decision about which type of rate
equation from Table IV is actually applicable. This is done by
traversing the decision tree for the optimal parameter values
shown in Fig. 15. One can note that based on the conditions
(red diamonds) that are satisfied, the end leaves of the decision
tree indicate which rate equation holds true (blue boxes).
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