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Controlled modifications of the magnetic response of a two-level system are produced in dressed systems by
one high-frequency, strong, and nonresonant electromagnetic field. This quantum control is greatly enhanced
and enriched by a harmonic, commensurable, and orthogonally oriented dual dressing, as discussed here. The
secondary field enables a fine tuning of the qubit response, with control parameter amplitude, harmonic content,
spatial orientation, and phase relation. Our analysis, mainly based on a perturbative approach with respect
to the driving strength, includes also nonperturbative numerical solutions. The Zeeman response becomes
anisotropic in a triaxial geometry and includes a nonlinear quadratic contribution. The long-time dynamics is
described by an anisotropic effective magnetic field representing the handle for the system full engineering.
Through the low-order harmonic mixing, the bichromatic driving generates a synthetic static field modifying the
system dynamics. The spin temporal evolution includes a micromotion at harmonics of the driving frequency
whose role in the spin detection is examined. Our dressing increases the two-level energy splitting, improving
the spin detection sensitivity. In the weak-field direction it compensates the static fields applied in different
geometries. The results presented here lay a foundation for additional applications to be harnessed in quantum

simulations.
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I. INTRODUCTION

Since the early days of quantum mechanics, spectroscopy
probes the energy levels of quantum systems irradiated by
electromagnetic fields. Single, bichromatic, multiple excita-
tions are applied. More recently, those excitations target the
modification and the control of quantum properties for the
targeted object. Quantum variables, energies, and observables
are manipulated. Within the quantum simulation effort, the
electromagnetic driving of simple quantum systems (mainly
natural or artificial atoms) generates Hamiltonians exhibit-
ing interesting properties hard to engineer directly. Driving
a quantum system periodically in time can profoundly alter
its long-time dynamics and constitutes a versatile scenario
to reach unusual quantum properties [1-3]. The dynamics
associated with time-dependent Hamiltonians is well captured
by time-independent effective Hamiltonians, accounting for
the essential characteristics of the modulated system.

Within this area of Floquet engineering, a pioneering role is
played by the “dressed atom” introduced by Cohen-Tannoudji
and Haroche [4], i.e., the strong driving of a two-level quan-
tum system. The application of a nonresonant and linearly
polarized electromagnetic field, typically radio frequency or
microwave, allows one to modify the magnetic response.
The modifications of the Landé g factor were explored and
applied in various atomic vapor experiments [5—13]. The
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magnetic dressing was studied also with cold atoms and
condensates [14-16]. It offers a powerful tool in quantum
control experiments [17], high-resolution magnetometry [18],
and spin-exchange relaxation experiments [19]. A key feature
of this single dressing is the eigenenergy dependence on the
Jo (zero-order first kind Bessel function), allowing a freezing
of the quantum observables. The close connection of this Jy
freezing with the tunneling suppression was pointed out in
[20] and with the dynamical localization in optical lattice
reviewed in [3].

A dual dressed qubit is examined here, more precisely,
a two-level quantum system dressed by strong bichromatic
harmonic drivings based on linearly polarized dressing fields
applied along two orthogonal axes. Its theory and applica-
tions to different experimental configurations are presented.
We compare our analyses to the previous single-dressing ex-
periments and to the dual-dressing Cs atom experiment of
Ref. [21] based on a weak secondary dressing. The dual-
dressing quantum control is based on the combination of key
ingredients as double irradiation by the harmonic bichromatic
field, large interferences in the harmonic excitation processes,
strong dressed-atom driving, and the generation of effective
and synthetic fields controlling the spin dynamics. Even if
each of these ingredients was examined previously, their com-
bined action was not.

The bichromatic harmonic driving belongs to the general
problem of periodically driven quantum systems, with pio-
neering contributions in [22,23]. Multifrequency excitation
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has received much theoretical attention based on the continued
fraction of matrices and complex numerical solutions [24-26].
Double irradiations, i.e., rotary saturation, spin tickling, and
so on, are powerful tools in magnetic resonance to disentangle
complex spectra. In [27] a low-order perturbation analysis of
the Floquet treatment examines those regimes. Experiments
in quantum optics have studied the bichromatic driving as
reviewed in [28,29]. The attention was focused mainly on the
absorption of atoms and molecules, and more recently, also of
artificial atoms in [30-34]. Incommensurable dual driving is
used by [35] for the evaporative cooling control, by [36,37]
for the shield of optical clock transitions from magnetic static
field, and for the probing of atom-photon interactions in [38].

The interference in the driving of a two-level system by
several harmonic fields was examined in the magnetic res-
onance experiments of Refs. [39,40]. The dual modulation
driving in an optical lattice clock by Ref. [41] evidences both
the interference and the driving phase role.

The bichromatic harmonic excitation is important for the
physics of ultracold atoms in optical lattices. The generated
tunneling suppression in a lattice dual well, i.e., a generaliza-
tion of the J freezing, is examined theoretically in [42,43] and
experimentally in [44]. That driving also allows the engineer-
ing of nearest-neighbor interactions in [45] and the dissipation
processes in [46].

The dressed-atom modification by a second electromag-
netic field with its frequency quasiresonant with the dressing
one was briefly explored by Ref. [47] in 1983. An effec-
tive Hamiltonian is often used to analyze the dynamics of
driven quantum systems [1-3]. Reference [43] derives such
a Hamiltonian for a tight-binding model of the bichromatic
driving tunneling suppression. For the atomic trapping by rf
dressed adiabatic potentials, that Hamiltonian describes the
synthetic fields created by commensurable bichromatic or
multiple drivings [48]. An effective Hamiltonian for the action
of the bichromatic drive on a two-level system is introduced
by [49]. As an equivalent of our synthetic field, the bichro-
matic harmonic driving produces a rectified transport when
applied to external degrees of freedom, as for quantum ratch-
ets in [50-52]. That effective Hamiltonian is examined by [53]
in an experimental driving of ultracold atoms. The rectified
transport is studied in [54] for a graphene model based on the
coupling between driven spin and electron momentum.

Our analysis shows that a dressed spin experiences a micro-
motion, i.e., a temporal evolution, at harmonics of the driving
frequency, as for other periodically driven quantum systems
in [1]. From an experimental point of view, the micromotion
has received much attention for trapped ions and for atoms in
optical lattices by [55,56]. We derive that in single and dual
spin dressing the micromotion is composed of two separate
components, one given by a gauge transformation and the
second one by a kick operator. Their role on the dressed
evolution and detection is discussed.

Owing to the combination of the above ingredients, impor-
tant original features are associated to this configuration. The
eigenvectors and eigenvalues of the dressed spin are described
by an effective magnetic Hamiltonian, providing a simple
description of the spin dynamics. Its terms are finely tuned
by the dressing amplitudes, their relative phase, the spatial
orientation of the dressing fields, and the driving harmonic

Spins

FIG. 1. Schematic of an atomic spin system dressed by the B,
and B, oscillating fields in the presence of static field B arbitrarily
oriented. Initially the spins are optically pumped into an eigenstate.

order. At weak static fields, the lowest order Zeeman coupling
with the static field is described by an effective tensorial
Landé g factor, with a triaxial magnetic control analog to the
magnetic anisotropies appearing in solid-state materials. A
weak tensorial nonlinear Zeeman coupling contributes to the
effective Hamiltonian. The dual dressing creates an arbitrarily
oriented synthetic static magnetic field, i.e., even in absence
of a real external field. The underlying process, a nonlin-
ear optical rectification of the dressing fields, is equivalent
to light-shifts, even higher-order ones, due to the combined
action of those fields. The effective Hamiltonian components
are determined by the interferences between the absorption
and emission processes of both fields, the interferences being
enhanced by the low-harmonic order of the harmonic driving.
These features introduce additional original degrees of free-
dom in the quantum control of the spin dynamics.

Several applications for quantum technologies are pre-
sented. For instance, our dressing geometry generates ef-
fective magnetic fields one thousand times larger than the
externally applied static field, or produces an arbitrary com-
pensation of external, arbitrarily oriented static fields, with
a reduced sensitivity to the dressing parameters. Even if our
analysis concentrates on a two-level system, the presence of
external levels does not modify the listed features because the
dressing is based on a nonresonant excitation. All these tools
constitute an exceptional handle in a wide range of directions,
from selective spectroscopic detection to quantum simulation
and computation.

This paper is structured as follows. After introducing the
Hamiltonian and the associated Floquet engineering, Sec. 11
presents the dual-dressing main features. Section III investi-
gates the perturbation regime with one dressing field larger
than both the static field and the secondary dressing field.
Section IV discusses the connection between experimental
detection and system dynamics, including the micromotion.
Section V explores original applications allowed by the dual
dressing. A final section concludes our work. Short Appen-
dices report mathematical derivations.

II. HAMILTONIAN AND EFFECTIVE FIELDS
A. The Hamiltonian

We consider a spin-1/2 system (either real or artificial
atom) interacting with static and oscillating magnetic fields,
as schematized in Fig. 1 for an atomic physics setup. The
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spin-field coupling is determined by the gyromagnetic ra-
tio y = gup/h, with g the Landé€ factor and wp the Bohr
magneton. The By static magnetic field has components By,
on the j = (x,y,z) axes. The spin is driven by two time-
dependent and periodic fields oriented along the x and y axes,
respectively, with B; the maximum value and s;(¢) the time
dependence, where (i = x, y). The Hamiltonian is

H=— %[Bo~U+Bxsx(t)(7x+Bysy(t)a_\,], (1)

with o the Pauli matrices. We concentrate on the following
time dependencies:

s¢(t) = cos(wt),  s5,(t) = cos(pwt + D), 2)

with p an integer and @ the phase difference of the harmonic
fields. The role of the s, initial phase is briefly analyzed within
the detection section.

The angular frequency w is taken as the frequency unit.
We introduce the dimensionless time 7 = wt and the di-
mensionless wg = yBy/w and Q; = y B;/w, the bare Larmor
frequency and the Rabi frequencies, respectively. The U (t)
time evolution operator of the Hamiltonian results in

iU(t) = 3[wo - 0 + 2y 5:(1) 04 + @y 5y(1) 0, U (1), (3)

and within this rewriting the spin-field coupling is described
by an effective g-Landé factor equal to 1.
The Floquet theorem [1-3] allows us to write

U(r) = M(r)e™™7, “4)

with M(0) =1 and M(t + 27) = M(t). The M opera-
tor describes the spin micromotion, and e~iAT represents the
stroboscopic evolution operator. For single dressing the M
operator was derived in [57] up to the fourth-order perturba-
tion in the dressing amplitude.

B. Effective field

The spin dynamics is determined by the A time-
independent Floquet Hamiltonian. This matrix is not unique,
since for a given U operator one can subtract multiples of the
w frequency from its diagonal elements and compensate by
multiplying M(7) with a diagonal matrix. The A matrix is
written as

A=1ih-o, (3)

with its eigenvalues limited to the [—1/2, 1/2] first Brillouin
zone, as in Fig. 2 . The h vector, measured in energy units,
represents an effective magnetic field. The AL eigenvalues
result:

h-h
At =:l:T. (6)

The effective magnetic field produces an energy splitting de-
scribed by the dressed €2, Larmor frequency given by

Q=i —A_=~h h. 7)

As in Fig. 2, the Larmor precession frequency may reach the
maximum value of 1, or in natural units the w value. Therefore
at low wy values €2, may become larger than the bare Larmor
frequency, as in the figure.

FIG. 2. First Brillouin zone A, A_ eigenvalues vs wy,. The |h;|
modulus is the energy separation at zero field. The |g| amplitude is
the absolute value for the derivative of that separation. Parameters
woy = woy =0, 2, =5.11,Q, =3, p=1, ® = 7 /2. For this case,
atwy ~ 0, @, = Ay — A_ is larger than wy.

The eigenstates of the A operator of Eq. (5) correspond
to the spin oriented parallel or antiparallel to the k vector,
i.e., the orientation unit vector # = h/S2; . The spin precession
takes place in the plane orthogonal to u. The effective field
definition may be rewritten as

A=1Qu- o (8)

The effective field & depends on both @, and €2;, with (i =
x,y). In the small wy limit of our interest, we introduce the
following Taylor expansion:

hi(@o, Qe Q) =hsi+ Y Gy o,

J=X,0.2

1
+3 Z fijk woj wok ++-+ . (9)

Jik=x,y.z

The (€2, €2,) parameter dependence applies to all the right
side quantities. A similar expansion of the Floquet eigenvalue
at zero magnetic field was derived for the Bloch-Siegert shift
in [58].

The zeroth-order vector h synthetic (or fictitious) field
represents a static field acting on the spin also in absence of
the externally applied static field. It is given by the A, — A_
energy separation at @y = 0, as shown in Fig. 2. The kg field
is equivalent to the light shifts [59] and to the generalized
Bloch-Siegert shifts [29]. Here it contains high-order shifts
due to the combined action of the harmonic driving fields. The
synthetic field is generated by a nonlinear optical rectification
process of the harmonic driving fields.
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Within the Taylor expansion of Eq. (9), the first-order
Jacobian matrix denoted as g is given by

ah;

900, | o0

9 (10)
This tensor produces a linear Zeeman effect and represents
the generalization of the diagonal Landé g factor introduced
by [7]. Its modulus is schematically represented in Fig. 2.
The g factor as a second-order tensor appears in electron spin
resonance in solids. There the tensor principal axes (tensor
eigenstates) are determined by the local fields. Here the g
principal axes define the basic spatial directions of the spin
magnetic response. The Pv; for i = (1, 3) principal values
(tensor eigenvalues) contain phases modifying the spin tem-
poral evolution.

The Taylor expansion leads to the f second-order gradient
tensor defined by

92h;

aa)oj Bka

fi k= . (1 1)
(z)0=0
This tensor corresponds to a nonlinear and anisotropic
Zeeman effect. It is equivalent to the Hessian control for the
spin response in [60] and in geophysics to the full gradient

tensor of a magnetic field [61].

III. PERTURBATIVE AND NUMERICAL SOLUTIONS

A perturbative approach allows us to derive in Secs. IIT A
and III B general analytical expressions for the above-defined
quantities for generic sy, s, time dependencies. In the fol-
lowing sections we focus on the cosine driving and present
plots for the values of the components for effective and syn-
thetic fields, g and f tensors. In that context the results of
numerical solutions for the dual-dressing Hamiltonian are also
presented.

A. Frequency-modulated rotating field

The case 2, > €2, is considered here, always in the limit
of a weak @ static field. The opposite case would just cor-
respond to swapping the axis labels. We define the x phase
accumulated by the spin for a periodic s,(t) driving, more
general than in Eq. (2):

6u(1) = 2, / s(x)d. (12)
0

For a rotating dressing field the interaction representation
in a frame rotating about the static field axis simplifies the
description. For our case of weak static fields such a usual
rotating wave approximation is not valid. Therefore we intro-
duce an interaction representation with respect to the strong
2, dressing field, the time evolution operator being factorized
as

U(r) = e /2 U (7). (13)

This gauge transformation represents a unitary change to a
reference frame rotating about the x axis with a rotation angle
presenting a nontrivial time dependence. For the s, sinusoidal
time dependence, the rotation angle experiences a frequency-
modulated rotation (FMR), as denoted in [62].

The U; time evolution is given by
iUy (v) = 17wy - 0 + Qys5,(0)0y]e 7/ Uy(z). (14)

We apply the explicit expression for the exponentials of
Pauli matrices, use the Baker-Campbell-Hausdorff relation,
and manipulate the result with the commutation rules of those
matrices. After this algebra the U; operator is rewritten as

iU(r) = 3[B™R (7)) - 0] Uy (1), (15)
with A™R (1) given by
hFMR(‘E)
Wox
= | woy cos (¢x(7))+wo sin (¢x(7))+€2ys,(T) cos (¢ (7))

o COS (ﬁox(t))_Q)Oy sin ((px(T))_sty(T) sin (¢« (7))
(16)

The vector A"™R (1) represents the time-dependent field acting
on the spin in the FMR reference frame. Because both the
s¢(7) signal of Eq. (2) and the ¢,(7) are periodic functions,
also the B™R vector is periodic.

The time evolution of Eq. (15) being periodic, the Floquet
theorem allows us to write the U;(t) operator as

Ui(t) = efiIC(r) efiA T (17)

where the kick operator KC(7) is defined as in the modulated
optical lattice descriptions [1-3]. The FMR kick operator is
periodic and satisfies C(0) = 0. Because the U () laboratory
frame operator is derived from the U;(t) FMR frame operator
using Eq. (13), the A matrix of Eq. (17) is the stroboscopic
operator introduced in Eq. (4).

B. First- and second-order solutions
The U;(7) evolution in the FMR frame allows us to derive
from the time-dependent hFMR(r) of Eq. (16) an analytical
expression of the effective static field & defined in Eq. (5),
always in the limit of both €, and @ small parameters. From
appropriate time averages of h"™MR(1) of Appendix D, we

derive the first- and second-order perturbation h expressions,
defined as

h~h" +n?. (18)

Using Eq. (D9), the first order, given by the A"} (r) FMR
time average, results in
Wox
Y = | woy(cos ¢r) + wo, (sin @) + 2y (sycos @) |. (19)
W {COS Qx) — woy(Sin @) — 2, (s, sin @y)

Using the «,, and B, definitions in Appendix Egs. (C1), we
obtain the following first-order synthetic field and g tensor:

0
Y =, Re(By) |, (20a)
—Im(Bo)
1 0 0
gV =10  Re(w) Im(ap)
0 —Im(ag) Re(ap)

022619-4



HARMONIC DUAL DRESSING OF SPIN-1/2 SYSTEMS

PHYSICAL REVIEW A 105, 022619 (2022)

1 0 0 1 0 0
=10 Jao| O 0 cos(no)  sin(no) |,
0 0 Jagl/ \O —sin(ng) cos(no)

(20b)

where tan 9 = Im(¢p)/Re(ag). At this order there is no con-
tribution to f.

This gV’ expression represents a tensor nondiagonal and
nonsymmetric, corresponding to a contraction and rotation
of the spin response. Its Pv; (i = 1, 3) principal values are
[1, Re(ap) & ilm(ap)]. These complex conjugates ones corre-
spond to tensor eigenvectors in the (y, z) plane experiencing a
different phase shift with respect to the dressing fields.

The second-order synthetic field derived from Eq. (D10)
contains a single component as

Qz Qx
Y =20 |, Q1)
2 \o
with
2 _ 2R *
0, = Z | Bnl e(,B(),Bn)' (22)
n#0 n
The second-order expression of the g tensor reads as
) QV 0 Qxy sz
g¥=—>12: 0 0 (23)
Qx 0 0
where
Qxy = 2RC (Z ,Bnan _ ,BOan — aOIBn) 9
n#0 n
sz = —2Im <Z ﬁnan _ ﬁoa” — aO/SH),
n
n#0
B
O = 2Re<2 -
n#0
_ B
0, = —2Im Z L) (24)
n#0 n

At this order the fl@ , tensor components, with (i = x, y, z),
are the following ones, respectively:

0 0 0 0 qs  —(qc 0 q. gy
0 g O0).lg O O ). lge O O]}],
0O 0 qo —q. 0 0 qs 0 0
(25)
where
lan|* — 2 Re(a0)
qp0=) o, (26)
n
n#0
oy
R il
. m<2n>, 27)
n#0

g =Re (Z %) (28)

n#0

At this order the f tensor components depend only on the
strong-field variables, as for the g tensor at the first order.

C. Cosine signals
1. Phase-controlled cosines

The (x, y) cosine driving case of Eq. (2) with a controlled ®
phase difference between the driving fields is discussed here.
The FMR accumulated phase of Eq. (12) becomes

@x(1) = Qy sin(7). (29)

For the FMR accumulated phase of Eq. (12), using Egs. (C6)
the o, functions appearing above reduce to the J,(€2,) first-
order Bessel functions and the 8, functions to combinations
of those functions.

At the first-order perturbation, the synthetic field becomes

0
B = Q,7,(Q,) [ cos(@)HFE | (30)
Sin(@)1=G1

For the p-odd case, the z component only is different from
zero, while for p even this applies to the y component.
Figure 3(a) reports the €2, dependencies for the p = 1 h(vlz) and
p = 2h{!) components. The sign changes produced the Bessel
functions are verified in the Cs experiment of [21].

The Q, amplitude of the second-order synthetic field h(vzx)
component of Eq. (21) is derived in Eq. (E1) for the cosine
drivings and plotted vs 2, for (p = 1, 2) in Fig. 3(b). This
second-order contribution is ten times weaker than the first-
order contributions.

Outside the perturbation regime, the numerical anal-
yses for p=1 produce the h, effective values of the
Fig. 3(c) two-dimensional (2D) (€2, 2,) plot. That fig-
ure evidences the periodic structures in the spin dynamic
response to the dual dressing. In this strong regime the
hy value is comparable to h;, while A, remains identically
Zero.

The first-order g tensor results

1 0 0
gV=10 nHnw) o | (31)
0 0 Jo(£2y)

This diagonal g‘!, as in the original single-dressing treatment
of Ref. [7], denotes that the tensor principal axes are parallel
to the coordinate axes. Numerical results for Jy Bessel depen-
dence of the gV on Q, are shown in Fig. 4(a).

The «, and B, dependencies on the Bessel functions of
Eq. (E2) determine the Q;; amplitudes of the g® tensor
components of Eq. (23). For the p = 1 harmonic the four
components different from zero are plotted vs €2, in Fig. 4(b),
all of them ten times weaker than the first order. The plots
evidence the nonsymmetric form of the tensor. The g‘" 4 g»
tensor three principal values are either all real or one real
and two complex conjugates, as presented in Fig. 4(c). While
for (p =1, ® = 0) the three values are all real, the (S, 2,)
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0.005

-10

FIG. 3. Cosine driving synthetic and effective fields for w,, =
0.1 and wy, = wpy, = 0. In (a) and (b) synthetic fields derived from
the perturbation treatment vs 2, at 2, = 0.1. In (a) black line for
K at p=1and ® = 7/2; red line h(” atp=2and ® = /6. In
(b) second-order h?) vs Q, at Q, = 0.2 and (p =1, 2).In (c) numer-
ical results for the h effective field in a (R4, ;) two-dimensional
(2D) plotat p=1and ® = /2.

region of complex values increases with @. For (p =1, ® =
7 /2) the regions with two complex values are denoted in red
in the 2D plot of Fig. 4(c). Notice that from a physical point of
view, the spin response should be symmetric by swapping €2,
and €2,. This symmetry does not appear in the Fig. 4(c) plot,
because for each ¢ phase the gauge transformation to the FMR
reference frame leads to a different eigenvalue phase shift.

Figure 5 reports the ¢go and ¢, quantities of @
components as derived in Eqgs. (E4), g. being equal
zero. At this perturbation level no dependence on £,
is present. The nonlinear Zeeman contribution to the ef-
fective field assumes a maximum value ~0.5(wj, + @5,)
for both diagonal and nondiagonal components of the
tensor.

2. Shifted cosine driving
In order to present the role played by the initial phase
within the FMR gauge transformation. We examine the case
of the dual dressing with
sx(1) = cos(t + ),
sy(t) = cos[(pt + ¢) + @],

(32)

1.09
® [
0.8 yx
0.05+ Xz
0.6 =
N
on 0.4
Il 0.00
< 0.2
S
an
0.0
-0.051
-0.2
-0.4 - | T T T T 1
0 0 2 4 6 8 10
QX
0.010
1 real
2 complex|
0.008
O=
15
:.006 -
— 60|
d — 90|
0.004
01002 3 real
(©)
0.000 - T T T T T

0.00 0.05 0.10 0.15 0.20 0.25
X

FIG. 4. Cosine driving results for the g components. In (a) g'!) =
g!)) components vs ., given by the J, Bessel function and inde-
pendent of ,. In (b) ggj) tensor components vs 2, at , =0.2,
p=1,and ® = /3. In (c) perturbation-derived lines separating the
(L., ©2,) regions of real principal values, below the parabole, and
of real or complex principal values, above the parabole. Parameters
p = 1 and different @ values.

Q

X

FIG. 5. Results for the gy and g, functions determining the @
tensor components vs £2,. They are independent of the 2, parameter.
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with ® again the relative phase between the drivings. An
equivalent role of the initial phase occurs for the Floquet
gauges of periodically driven optical lattices [63]. In ad-
dition, the €, =0 case with the i phase not properly
controlled describes all the single-dressing atom experiments
of Refs. [5-8,10-13,16].

The first-order synthetic field is given by Eq. (20) with the
following By expression:

{JP(QX)cos(pl/f — @)e i sin(y) p even 33)
(@0 sin(py — @)e ) podd
For the g tensor we obtain
1 0 0 1 0 0
gV =[0 K 0 0 cos(¥) —sin(¥) |,
0 0 Jo(R2y) 0 sin(¥) cos()
(34)

where W = Q, sin(y/), and the tensor is written as the prod-
uct of a contraction and a rotation. The nondiagonal matrix
elements depending on the i parameter lead to complex
principal values corresponding to phase rotations in the plane
orthogonal to the single-dressing field. As presented in the
following section, the i phase modifies the detected spin
evolution.

IV. SPIN EVOLUTION AND DETECTION
A. Micromotion

The dressing operation modifies mean value and time evo-
lution of the spin components. These quantities are derived
from the U (7) time evolution operator of Eq. (13) rewritten
using Eq. (17) as

U(l’) — e*itpxal/Z efiKZ(r) efiA r’ (35)
leading to the micromotion operator in the laboratory frame
M) = e ix (D)0 /2 ,—ik(T) (36)

The K kick operator, as derived at the first-order perturbation
in Appendix F, is the sum of two terms, one proportional
to @y and the other to €2,. Therefore for all the single- and
dual-dressing experiments performed so far with low values
for those fields, the spin micromotion of Eq. (36) is dominated
by the first term determined by the transformation to the FMR
frame.

B. Expectation values

Using the Pauli matrix exponentiation and the effective
field A expression of Eq. (8), the o, (t) operator becomes

0.:(1) = U(D) o, (0)U (r) ~ [(1 — u) cos .7 + 1} |0, (0)
+[uyuy, (1 — cos Qp.7) — u, sin(Q2;1)]oy(0)
+ [uyu (1 — cos Q1) 4+ uy sin Q,7)]o,(0),  (37)

where the kick operator contribution is neglected. A similar
algebra derives the o,(7) and o.(7) evolutions. For an initial
(0.(0)) = 1 eigenstate, the spin expectation values, measured
by the absorption or dispersion of lasers propagating along the

Fig. 1 axis, are
(oc(x)) = (1 — ul) cos(QuT) + uZ,
(0y(1)) = [uy sin ¢, + u; cos ¢, ]sin(£2,7)
+ [uxuy cos @, — uyu; sin @, (1 — cos(RL1)),
(0.(7)) = [u; sin ¢, — uy, cos ¢, ] sin(Q.7)

+ [uxu; cos @ + u,uy, sin @, J(1 — cos(RL1)),
(33)

where ¢,(7) is given by Eq. (29). These expressions gener-
alize the derivation in Ref. [9]. The spin coherences contain
two separate time dependencies, the 2; frequency precession,
and a more complex micromotion one determined by the
cos (¢,(1)) and sin (¢,(7)) functions at the harmonics of the
driving frequency.

C. Detection in shifted cosine single dressing

The spin detection in the pioneer single-dressing experi-
ment by Landré ez al. [7] highlights the role of the off-diagonal
elements in the g tensor of Eq. (34). No phase control is
applied to the dressing field, and that experiment is described
by the shifted single cosine treatment of Sec. III C2 with Q, =
0. With the (0,(0)) = 1 mercury atoms prepared initially, at
t = 0 time a weak wg, # 0 magnetic field is switched on. No
synthetic field is created because €2, = 0. The effective field
h vector derived from Eq. (34) is

0
h = | woyJo(S2) cos (2, sin(y)) |, 39
oy Jo(§2;) sin (€2, sin(y))

leading to €27, = woy|Jo(£2;)| and to the u orientation vector

0
u = | sgn(Jyp) cos (2, sin(yr)) |, 40)
sgn(Jo) sin (€2, sin(yr))

with no dependence on the static field. Using Eq. (C5) for
dealing with the cos (¢, (7)) and sin (¢,(7)) of Egs. (38), we
obtain

(0x(7)) = cos(£2.7),
(oy(7)) = sin(Q,7) sin [ sin(T + /)]
= 2sin(Q2.7)[J; sin(t + )
+J3sin(3r +3y)+--- 1,
(0,(1)) = —sin(2,7) cos [€2, sin(T + ¥)]
= —sin(QLt)[Jo + 2/, cosRt +2¢) +---]. (41)

The Jy response in (o,(t)) is produced by the cos(¢,(7))
dependence, as pointed out in [16]. In the Landré et al. [7]
experiment, the oscillations at the frequency €2 of the (o, (7))
and (o,(7)) spin components are detected by the probe beam
propagating along those axes of Fig. 1. The xz plane spin
evolution follows an ellipse contracted by Jy(€2,) on one axis.
Within that €, detection, the g tensor nondiagonal form of
Eq. (34) does not play any role. In a detection sensitive to
the sideband frequencies, the ¥ dependence of the nondiag-
onal tensor terms, and also the micromotion contributions,
can be detected. For an arbitrary static field orthogonal to
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FIG. 6. The 2, Larmor frequency (left axis) and the Ps_ peak of
the 2, oscillating Faraday signal peak (right axis) vs the applied w,
magnetic field measured in the Cs dual-dressing experiment [21]. Pa-
rameters: wy, = 0.1993(2), 2, = 1.833(5), p =1, Q, = 0.0118(1),
and & = /2.

the dressing x axis, an ellipse evolution takes place on the
plane perpendicular to the static field. Such evolution matches
the uniaxial cylindrical symmetry associated to the single
dressing.

D. Detection in dual dressing

In Ref. [21] the dual dressing is tested for optically pumped
Cs atoms. Because the detection is synchronized by the x
dressing field and the €2, phase is fixed in the experiment, the
system is described by the sinusoidal laws of Eq. (2). Optical
pumping along the x axis and synchronous with the €2; pre-
cession frequency is applied to the spins. Faraday detection of
a probe beam propagating along the x axis of Fig. 1 monitors
the (o,(t)) time response at that frequency. Therefore the
2 dressed Larmor frequency and the P, peak amplitude of
a signal proportional to the €; component of (o,(t)) are
measured. We examine here the p = 1 dual-dressing detection
at fixed values of (€2, £2,) and wy, as a function of an wy,
applied field. At the first perturbation order this field plays a
dual role. It modifies €2;, given by

QA (@00) = 03, + [o(Qy)on: + 11 ()L, sin(®)P.

(42)
and the u spatial orientation, given by
1 Wox
u=—g 0 . (43)
2 \Do(Qoo, +J1(2:)2, sin(P)

The Faraday detection signal monitors the following (o, (7))
derived from Eq. (38):

@ox 2
(0:(1)) = Accos(@u) + (o) (44)
Q
with A, the oscillation amplitude,

A, = [1 - (g—‘i‘)z] (45)

The measured €2;, Larmor frequency and P, value proportional
to A, are plotted in Fig. 6 vs the applied w, field for the exper-
imental parameters in the figure caption. The €2; dependence
is well fitted by Eq. (42). The Lorentzian-shaped decrease
of P, with wy,, observed in the experiment but not carefully
measured, is produced by the change in the spin precession
plane orthogonal to the u orientation vector as modified by
woy. These results demonstrate the triaxial symmetry of the
spin response. The micromotion does not appear on the ex-
perimental observed (o, (¢)) signal. Equations (38) show that it
can be monitored, detecting the orthogonal spin components.

V. DUAL-DRESSING APPLICATIONS

The control provided by the dual dressing leads to quantum
technology advances in a variety of experimental configura-
tions. Several ones are presented here, based on the flexible
effective field tuning in amplitude and direction, for either one
or two different spins.

A. Increased magnetic response

Because in magnetic resonance and other spectroscopic
techniques the detection sensitivity increases with the spin
precession frequency, it is important to increase, at a given
real static magnetic field, the €, Larmor frequency. This
result, implemented by the dual dressing, is measured by the
following a€2; accelerated Larmor frequency:

QL
aQ, = —, (46)
wo

equal to 1 in the absence of the dressing. Owing to the periodic
structure of the eigenfrequency Brillouin zones, the maximum
allowed €2, value is 1. Therefore in the low-magnetic-field
range of our interest a$2; becomes quite large. As shown in
the numerical data of Fig. 7(a), for p = 3, wy, = 0.001, and
with a proper choice of the (L2, 2,) values, a2, reaches
a maximum value of around 1000, as allowed by the Bril-
louin zone boundary. Such high frequency response leads to
a very high sensitivity in the spin detection. Brillouin zone
boundary ratios are reached for all the wy, values. A p =3
perturbation treatment produces the a€2; of Fig. 7(b) with
a maximum value at ® = /2. The ® phase dependence of
the perturbation treatment applies also to the strong dressing
regime. For each phase the maximum is obtained at different
dressing parameters. Similar periodic maxima appear also for
the p=1, Q, = Q,, and ® = £7 /2 rotating dressing case
where the Larmor frequency is determined by the effective
field in the rotating frame. They are originated by the folding
of the dressed Larmor frequency into the periodic Brillouin
structure.

In atomic interferometry experiments with a Stern-Gerlach
deflection, a magnetic field gradient splits the particles into
spatially separated paths, for instance, see Ref. [64]. The
accelerated dressed Larmor frequency may be used to increase
that deflection owing to the modified linear Zeeman splitting.
This occurs when the bare Landé g factor, equal to 1 in our
units, is replaced by a large principal value of the g tensor.
Such a case is presented in Fig. 8 for the caption parameters.
The absolute principal value of Pv; (the largest one) increases
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FIG. 7. In (a) numerical results for a$2; in the 2D (£2,, ) plane
at wy, = 0.001, woy = wyy, =0, p=3, and ® = 7 /2. The ~ 1000
maximum value is reached at (22, >~ £3.9, Q, ~ £2.4) and (Q, =~
£7.5, Q, ~ £3.6) values. In (b) from the perturbation treatment,
a2, vs @ derived at p = 3, wp, = 0.001, Q, =3.9,Q, =1, with
maximum 43,

for dressing parameters close to a transition from one real and
two complex conjugates to three real ones, as those plotted
in Fig. 4(c). The four-times increase produced by the dual-
dressing increase is certainly useful in experiments such as
that quoted above. The effective negative sign of the effective
Landé€ g factor should be no problem for the experimentalists.
In an experimental implementation, because the remaining
g-tensor principal values remain around one or below, the

-0.06

RC(P V])
(lag)yuy
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FIG. 8. Numerical results for Py, the largest principal value of
the g tensor, vs Q,, for Q, = 3.5, p = 1,and ® = 7 /2. Real Re(Pv;)
and complex Im(Pv;) parts are plotted. The 2, parameter is varied in
the transition region from one real and two complex principal values
to three real values. Notice that the largest absolute Re(Pv;) value is
negative.

dressing fields should be oriented in space in order to align
the principal axis of interest with the experimentally applied
Stern-Gerlach magnetic gradient.

B. Magnetic field compensation

We target here the compensation of a static field arbitrarily
oriented in space by generating an opposite sign synthetic
magnetic field. Three-dimensional (3D) compensation is ex-
pressed by the following expression:

QL =0, (47)
or equivalently,
hy =hy =h, =0. (48)

Instead, for one or two dimensions (1D or 2D) we impose h; =
0 for the required dimensions. Compensations of 3D and 2D
magnetic fields are required in high-resolution experiments.
For instance, in interferometric investigations with artificial
or natural atoms as in [65,66], the fine tuning of the magnetic
response with a controlled compensation on different spatial
directions produces a higher precision.

Nearly periodic zero values of the Larmor frequency ap-
pear in Figs. 2 and 7(a). From the h{", g") expressions of
Egs. (30) and (31) we derive that the applications of dressing
fields along the three spatial directions produce the compen-
sation of an arbitrary magnetic field configuration. However,
the action of several strong dressings cannot be handled by a
perturbation approach, and numerical solutions are required.

A more ambitious goal, denoted as second-order magic
compensation or a magic shield, is to produce a reduced sen-
sitivity to fluctuations of the dressing field or of the magnetic
field, respectively [36,37,67—71]. These magic solutions are
obtained by solving Eq. (48) and simultaneously imposing
zero values for their derivatives with respect to the com-
pensation parameter(s). Second-order magic dressing requires
a nonlinear dependence on the control parameters, for in-
stance, through the Bessel functions for the dressing Rabi
frequencies. Nonlinear dependencies on the static magnetic
fields appear at the second- and higher-order perturbation
treatments.

We derive here the dressing parameters realizing a 2D
magic compensation for the 3’Rb atomic chip studies of
Refs. [72,73] for an applied 300-uT field. There the target
was to reduce the transverse fields from the 0.3-u T range into
the nT one. For such 2D compensation, an €2, dressing field
is applied parallel to the noncompensated wy, field. Within
the first-order perturbation treatment we derive that an hgl) =
0 effective synthetic field is produced by a properly cho-
sen Qs cos(5t + 7 /2) driving. Instead, h{") = 0 is reached,
adding a properly chosen €2,5cos(67) dressing, these high
harmonics being useful for the 2, magic compensation. Up
to the second-order perturbation level the 2D compensation is
given by

hy =Js(82:)26 + Jo(S2,)woy
+ 300 (Q)2y600: + 245 (R )wocoy = 0,
h, =J5(82,)2y5 + Jo(£2,)wo,
+ 30::(Q)Qy500c + 2¢5(Q)woswo; = 0. (49)

022619-9



GIUSEPPE BEVILACQUA et al.

PHYSICAL REVIEW A 105, 022619 (2022)

- 0.4
. - 02
< o
3 1]
~ -
>
< =
N - 0.0~
%
s v
Y 9]
= =
N 02
0.1 A o001
Sl 0000 0.4
P ; 280 2.85 2.90 295 3.00
0.2 f T g T T
2.0 2.5 3.0 35 4.0

Q,

FIG. 9. On the left scale, compensation results for the hy, h,
effective transverse magnetic fields vs the strong €2, dressing field in
awy =0.1, wgy = wp, =1 x 10~ configuration, with weak dress-
ing fields Q5 =0.6 x 107, Q6 =2.4 x 107°. The plot of the
normalized hy/wy,, h,/wy, ratios evidences the magic compensa-
tions. On the right scale the 0h,/0€2,, 0h,/0S2, derivatives vs €,
in the second-order magic compensation search. Even if the null
derivatives are not exactly coincident for the magic compensation,
the sensitivity to the strong dressing fluctuations is reduced by three
orders of magnitude. This appears in the inset plot for the normalized
effective fields in the 2,4 (2.87,2.92) range.

The second-order contributions to these effective fields are
greatly reduced by choosing a large dressing frequency, for
instance, 30 times greater than the bare Larmor frequency,
i.e., wg, = 0.1. The above equations contain a nonlinear de-
pendence on the €2, dressing field and therefore allow a
magic compensation for that parameter, as presented in Fig. 9.
The above equations, not containing a nonlinear dependence
on the (wqy, wo;) parameters, do not support transverse field
magic fluctuation shields. For those parameters as well for
the (2,5, £2,6) ones, magic compensations can be determined
by numerical analyses. Multiple harmonic driving produces
interesting compensation schemes to be explored.

C. Inhomogeneous dressing

A spatial gradient of the dressing field can increase the
forces on the spins using an inhomogeneous oscillating field
as for trapped ions in [74,75] and as for the Cs experiments
[21,76], where we tested the dual dressing. Therefore the
magnetometry applications with € deliberately spatially de-
pendent can be enlarged by the dual-dressing configuration.
Such a spatial distribution is more easily realized by operating
on the position dependence of a weak-field tuning the dressing
of the strong one. The atomic trapping with spatially inho-
mogeneous radio frequency potentials, reviewed in [77], can
produce a new spatial configuration by replacing the single
dressing by the dual one.

VI. CONCLUSION AND OUTLOOK

For a spin one-half system in the presence of an arbi-
trary static magnetic field, we study the dual dressing by a

primary field and a secondary one oscillating at a harmonic
frequency. Within a perturbative treatment the secondary field
acts as a tuning of the first strong dressing. The two fields
play an equivalent role in numerical analyses. The dual dress-
ing introduces a very rich dynamics into a quantum system.
The standard spin Larmor precession around the external
static field is replaced by a dressed Larmor precession whose
frequency is controlled by the dressing fields. We present
dressing parameters where that frequency is, under the proper
conditions, either increased 1000 times or decreased down to
zero. These conditions are reached in experiments operating
with nT static fields, applying electromagnetic fields whose
frequency, amplitude, and phase are accessible experimen-
tally. In magnetic resonance, i.e., the dressing by a rotating
field, a resonant field creates in the rotating frame a spin pre-
cession around the rotating field with frequency determined
by the rotating field amplitude. The dual dressing extends that
feature to an arbitrary spatial orientation of the spin and also
leads to a precession frequency as large as the electromagnetic
field frequency. In addition, our nonresonant dressing acts not
only on the resonant species but on all spin species of the
sample, as for the investigated two-species case.

The generalization of the dressed atom to the dual driv-
ing configuration enriches the spin control, produces features
useful to several quantum control directions, and enables new
quantum technology explorations. The effective or fictitious
fields, providing a simple and direct access to the qubit con-
trol, represent the dual-dressing handle. The commensurable
and low harmonic driving is a key component of its great
impact on the spin dynamics. For an initially symmetric spin
system, the triaxial response created by the dual dressing
introduces a controlled anisotropy where the effective field
orientation is the anisotropy helm. These characteristics apply
also to a multiple harmonic dressing, as a straightforward
extension of our theoretical treatment.

As for other modulated systems, the micromotion repre-
sents an essential component of the spin dynamics under
dual-dressing driving. Its main component is associated to
the FMR frame transformation, with an additional component
produced by the kick operator. The influence of the kick
operator can be neglected operating at low static field, as for
all dressing experiments so far. The micromotion produces
additional high-harmonic components, easily separated by
performing a spectral analysis of the detected experimental
signal. This spectral separation allows an employ of the micro-
motion components to enhance the fidelities of quantum gates
based on dual-dressed qubits, as performed for the trapped
ions qubits; see [78] and references therein.

We have presented several dual-dressing applications in
spectroscopy, atomic physics, quantum simulation, and com-
putation. For spectroscopy, the controlled increase of the
Larmor frequency shifts the spin detection towards higher
frequencies where the experimental sensitivity is larger. On
the opposite direction, in atomic physics experiments as atom
chips or atomic interferometers the externally applied mag-
netic field should be compensated in order to improve the
experimental precision. Under the combined action of even
and odd harmonics in the secondary dressing field, the syn-
thetic field drastically reduces the magnetic splittings in all
chosen directions.
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For spintronics, the dual dressing can be applied to artificial
atoms, where the energy splittings produced by the solid host
are equivalent to static magnetic fields considered here. Our
scheme leads to a control of those energy splittings to be in-
creased or compensated. A wide range of g-factor anisotropies
appears in solid-state physics, from less than 1% in nitrogen-
vacancy color centers for precision magnetic sensors [79-81]
to up to 30% in InSb quantum wells for topological quan-
tum computing [82]. The bichromatic dressing can be used
either to compensate the Landé g-factor anisotropy for higher
precision magnetic sensors or to increase the anisotropy and
therefore the topological importance of the material.

The results of our perturbative and numerical treatments
evidence the presence of symmetries for the eigenvalues and
the effective and/or synthetic fields. These symmetries de-
pend on the harmonic order and dressing phase. In [83] the
group theory of the dynamical symmetries in periodic Flo-
quet systems is applied to the nonlinear harmonic generation.
Those group operations, as rotations, reflection, and differ-
ent symmetries, as inversion, spatio-temporal or spatial only,
should be used to analyze the response of a dual-dressed spin
for a wider parameter range.

Owing to the easy experimental implementation of the
double dressing, the introduction of another handle, such as
the time dependence of the dressing field amplitudes, with
properly designed adiabatic or superadiabatic temporal evo-
lutions, can be used to produce new quantum superposition
states. On a different direction, the application of a sinusoidal
modulation to the dressing fields can open new directions for
the dynamical driving of ultracold atoms in optical lattices.

The attention is here focused on qubit systems with negli-
gible relaxation processes, as in the experiment of Ref. [21]
and similar ones in ultracold atoms. It will be interesting to
investigate the dual-dressing features also in the presence of
relaxation processes, where Ref. [84] has proven the existence
of a periodic steady state independent of the initial conditions.
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APPENDIX A: NUMERICAL SOLUTION

The numerical solution of the A Floquet matrix requires
the propagation of the operator U(t) from 7 = 0 to T = 2,
then the diagonalization of U (27r) = e~/2* * [2], leading to

UQm)laz) = ™27 |1s), (A)
with Ay eigenvalues and the Floquet A matrix
A=) (gl (A2)
j=%
The components of the vector & are obtained as
hj = trace(Ao;), j=x 2. (A3)

APPENDIX B: FMR FLOQUET-MAGNUS EXPANSION

The Magnus expansion writes in an exponential form the
time evolution operator of a linear system [85]. When applied
to the FMR U; time evolution operator of Eq. (13) under a
generic H; Hamiltonian,

iU;(t) = Hy(t) Uy(v), (B1)
it parametrizes the operator as
Ui(t) = e @, (B2)
This leads to, for the W () exponent,

W(r) = Hy(z) + %[W(r), H@l+---. (B3

If H;(7) is “small,” i.e., Hy — eH; for a small €, expressing
W = eW; + €2W, + - - - one finds for the first terms

Wl(f)=/ Hi(ty)dry,
0

W) = o fo dv (i), W)l (B4)

Within the Fourier description of Eq. (17), the Magnus expan-
sion is applied to the K and A exponents. Letting H — ¢H
as above, we write K(7) = €/C1(t) + €2K(7)... and A =
€A + €*Ay + - --. Thus the following formulas are obtained:

2

1
A= — Hi(t)d,
27 0
Ki(1) =/ Hy(t))dt" — tAy,
0
i 2
Ay = i [Hi(T)+ Ay, Ki(D)ld T,
T Jo

Ka(r) = —tAr - ﬁ/ [H(t) + Ay, Ki(z)ld o' (BS)
0

APPENDIX C: FOURIER EXPANSIONS OF THE DRIVING

In order to simplify the mathematical derivations, we
introduce a few time-dependent functions. For a generic ac-
cumulated phase introduced by Eq. (12), more general than
the sinusoidal one, we define the functions (cy = cos ¢y, s =
singy), (c; =8, COS@y, S| =5y singy), and (o, B,), given
by

~+00
¢ = co(r) +iso(r) = Z e,

(DD = ei(m) +isi(t) = Y pe (€

From the o, definition, |ag| < 1 is easily derived.
In addition we introduce C;(t), S;(t) as the primitives of
the lower case functions, respectively, as

/ e dr = Co(r) +iSo(T)
0

int -1
—ar—iY a——,  (C2a)
n
n#0
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f s,(t)e dt’ = Cy(v) +i81(7)
0

R

n#0

(C2b)

Explicitly we obtain

Co = Re(ag)t  + Z

n>1

|:Im(ot,,n——oz_,,)(cos(nr) —1)

+Reln +0-n) sin(nr)j|, (©3)
So =Im(a)r + 3 [M(cos(iﬂ) —1
n=1
Im(e,, — _y,)

sin(nt )] , (C4

and a similar expression for C; and S, replacing «, by B,.
|

For the cosine signal drivings of Eq. (2) and the sinusoidal
accumulated phase of Eq. (12) we obtain

¢'#™) = cos (p(T)) + isin (p(1)) = D Jn(Qo)e"",
n
(CS)
where J, are the Bessel functions of first kind. Therefore the
o, and B, functions become

ay = Jn(Qx)v
Bn = 3(€'® Jump(QR0) + €7 Juip(Q0)). (C6)
The ¢y and sy functions become

co(t) = Jo(R) +2) (@) cos2nt),  (CT)

n>1

50(1) =2 D1 (Qo)sin[n + Drl,  (C8)

n=0

and the ¢; and s; functions become

2e1(t) = cos DU, + ) + D _[=sin® (U = Jon_p = Juyp + Jonyp) sin(nr)

n>1

+c08 @(Jy—p + Jon—p + Jusp + Jonip) cos(nr)l,

251(7) = sin ® (J_, — J,)x + Z [0S @(Jn_p = Jn_p + Jusp — Jnyp) sin(nt)

nx1

+sin CD(-Infp - anfp - Jner + aner) cos(nt)], (C9)

where, here and also in the following, all the Bessel functions are calculated at the €2, value. The primitive functions then become

Co(v) = Jot + ) (Jau/n) sin(2n),

n>1

So(r) = 22:(J2n+1/(2n + 1)1 = cos[(2n + 1)7],

n=0

- J—n—p - Jn+p + J—n+p

Jn—
201(t) = cos DU, + )T+ Y [sin @ p

n>1

+ cos ®

Jnp +Tnep + Jnip + Jnip

n

281(0) = sin (U, — Syt + Y [— cos ®

n>1

+ sin @

[cos(nt) — 1)]
n

sin(nr)],
n—p J—n—p + Jn+p

— Iy [cos(nt) — 1)]

Jn—p - J—n—p - Jn+p + J—n+p

n

APPENDIX D: FMR EFFECTIVE FIELDS

To handle the €2, dressing through the FMR gauge transfor-
mation, we examine here the action of Q,s,(¢) and wy on the
spin evolution, applying the Magnus perturbation approach.
Using the functions defined by Egs. (C1), we write the A™R
of Eq. (16) as

0 1 0 0 wOx
hFMR(‘L') = Qy ci]+10 co S0 Woy
—51 0 —s0o oo W0z

= h"® (1) + go(T)wo, (D1)

sin(nr)].

n

(C10)

(

with the 3 x 3 g, (7) matrix determining the static field contri-
bution in analogy to the effective field perturbation expansion.
We define the H™R vector as definite integral of h"™R:

H™R(7) = / MR ())d 7' (D2)
0

For the hFMR(t) and H™R(¢) quantities, also the mean val-
ues over the (0, 2r) interval are required and denoted in the
following as (h™R) and (H™R), respectively. Notice

H™R 7)) = 27 (B"™MRy, (D3)
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and the following connection between mean values:
(th™®) = 27 (B™R) — (H™R), (D4)

Similarly for H™R(¢), using the functions of Eqs. (C2) we
write

0 T 0 0 W0y
HFMR(‘L') = Qy Cl+10 Co So Woy
—Sl 0 —S() Co Wz

= H™ (1) + Go (7)o, (D5)

again with the Go(r) 3 x 3 matrix characterizing the static
field dependence.

Replacing the above FMR quantities within the Fourier-
Magnus expansions of Eqs. (B5), we find

1

A = 5<hFMR) .0, (D6)
]Cl(-[) _ |:% /OThFMR(T/)dT/ _ ‘E%(hFMR):| .o
= l[HFM“m — (™% 0. (D7)

2

Replacing these quantities within the A, expression of
Egs. (BS5) and using Egs. (D3) and (D4), the second-order
correction results in

Ay = L(B™R x H™MR) . g (D8)

From the above A and A, expressions, the first- and second-

order effective fields of Eq. (18) result in
h ~ h(]) +h(2) — <hFMR> + %(hFMR x HFMR). (D9)

Using the expressions of Egs. (D1) and (D5) and performing
some algebra, the second-order contribution is rewritten as

h® — %(thR < HgMR>
+ 3 (g™ x [Gowol) — (HE™™ x [gowol))
+ 3{[g9owo] x [Gowol), (D10)

where the three lines give the contributions of Egs. (21), (23),
and (25), respectively.

APPENDIX E: COSINE SECOND-ORDER PERTURBATION
The Q, amplitude of the synthetic field £®) is derived

8§,X
from Eq. (22), inserting the cosine driving S, expressions of
Egs. (C6):

J Jntp — Jpen
Qr = — L1+ (=) cos2)] Y L2
2 n
n>1
Jp Jn—p - J—p—n
— S U1 +cos2®)] o

n>1

(EL)
n

For the g tensor components of Eq. (23), by inserting the o,
and B, expressions quoted above one finds

Oy = (A + B)cos(P),

sz =—(A—-B) sin(CD),

Oyx = Ccos(D),
sz =-D sin(d>),

(E2)

where

1
A= Z Z(Jn—pJn - JnJ—p - JOJn—p)a
n#0

1
B=3  —Uniph = Judp = Joduip),
n#0

1
C= Z ;(Jp+n - Jp—n +Jn—p - J—n—p)’

n>1
1
D=3 ~Upin—=pn—Juip+p)  (E3)
n>1

Finally, from the («,, B,) Bessel function dependencies we
obtain for the f* components of Egs. (26),

‘Ic = Oa
+00
_ Jont1
= 2:(; w1
g0 = —Jo gs. (E4)

APPENDIX F: KICK OPERATOR
The kick operator K, given in Eq. (D7) at the first perturba-

tion order is rewritten, inserting Eq. (D5) for the H™R vector
and deriving (™R} from Eq. (D1). It leads to
Q0 1 (00 0\ [on
K:](T)=7) Cl 'O'—I-E 0 CQ 5:0 woy | + O,
=51 0 =S G/ \wor

(F1)

where for the cosine driving the following combined (€, SH
functions are introduced:

Co(t) =Y _(Jau/n)sin(2n7),

n>1

So(r) =2 Z(J2n+1/(2n + I)[1 = cos ((2n + D1)],

n>0
Ci(z) = C1 — t{c1) = C1 — tRe(Bp),
Si(v) =81 —t(s1) = $1 — tIm(By), (F2)
and
Bo = cos(®)(J, +J_p) — isin(P)(J, — J_,). (F3)

For the class of single cosine dressing experiments, as for the
original one by Landré et al. [7] where Q, = 0 and wo, =
wp; = 0, the above kick operator reduces to

K1(t) = Jwo,(Cooy — So02). (F4)

For the Cs dual-cosine-dressing experiment of [21] where
wgy = 0, the above kick operator reduces to

Qy ~ ~ oz =~ ~
Ki(r) = T(Clay = S10;) + T(Sotfy + Cooy).  (F5)

For all these experiments operating with low €2, and e val-
ues, the spin micromotion of Eq. (36) is dominated by the first
term due to the transformation to the FMR frame.
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