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Optimal quantum annealing: A variational shortcut-to-adiabaticity approach
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Suppressing unwanted transitions out of the instantaneous ground state is a major challenge in unitary
adiabatic quantum computation. A recent approach consists in building counterdiabatic potentials approximated
using variational strategies. In this contribution, we extend this variational approach to Lindbladian dynamics,
having as a goal the suppression of diabatic transitions between pairs of Jordan blocks in quantum annealing. We
show that, surprisingly, unitary counterdiabatic Ansätze are successful for dissipative dynamics as well, allowing
for easier experimental implementations compared to Lindbladian Ansätze involving dissipation. Our approach
not only guarantees improvements of open-system adiabaticity but also enhances the success probability of
quantum annealing.
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I. INTRODUCTION

Quantum control of noisy-intermediate scale quantum
(NISQ) processors is an invaluable tool for the design of the
ideal time dependence required to realize accurate quantum
state transformations [1–7]. In quantum many-body systems,
new methods of control have been developed [8–10], with ap-
plications ranging from state preparation [11] to optimization
of hybrid quantum-classical algorithms [12–17].

Among the different approaches to quantum control, short-
cuts to adiabaticity (STA) have gained increasing attention
[18–24]. Given a time-dependent Hamiltonian H0, the goal
of STA is to design the evolution of the state in order
to keep the system in one of the instantaneous eigenstates
of H0. A quantum system prepared in an eigenstate of its
Hamiltonian at a time t = 0 will remain in the corresponding
time-evolved eigenstate for all times even if the conditions
for adiabaticity are violated [21,25]. The idea underlying STA
is to compensate diabatic transitions between instantaneous
energy eigenstates by suppressing nondiagonal terms of the
Hamiltonian in the energy eigenbasis using a counterdiabatic
potential.

While in few-body systems the success of STA has been
unquestionable, its application to many-body dynamics has
been initially hindered by the fact that exact counterdia-
batic operators [25,26] are exceedingly difficult to realize
experimentally, as they often involve nonlocal infinite-range
interactions. In addition, they can only be computed if the
full Hamiltonian spectrum is known, a requirement clearly
impossible to satisfy in the many-body case. This issue has
been solved in a breakthrough contribution [27] by using a
variational approach to build approximate counterdiabatic op-
erators. In [27–30], this approximate method has been applied
successfully to many-body systems.

Applications to real-life problems require generalizing and
implementing the variational approach to open quantum sys-
tems. This would be of great importance in the optimization of
NISQ protocols in many-body quantum systems. A key exam-
ple of this sort is quantum annealing (QA) [31–41], where the
aim is to keep the system close to its ground state for the entire
dynamics up to the annealing time τ . This procedure will
eventually lead to the solution of an NP-hard problem [42,43].
When dissipation is present, the adiabatic timescale h̄/�,
where � is the minimum spectral gap [44], has to be compared
with the typical relaxation and decoherence timescales [45].
As a result, the adiabatic theorem is not sufficient to predict
the success probability of QA. The challenge here is to find
a strategy to minimize the effect of environment and, at the
same time, avoid transitions to excited states.

In many relevant situations the dynamical evolution is
governed by a Lindblad master equation. Quantum anneal-
ing is then realized by interpolating a starting and a target
Lindbladian, whose zero-temperature instantaneous steady
state (ISS) encodes the solution to the problem at hand. Dia-
batic and thermal transitions outside of the ISS manifold have
to be minimized so as to realize high-fidelity quantum com-
putation. Many attempts have been proposed in recent years
[46–51] for related questions in unitary evolution [36,52–54].

An important leap forward in the field entails exploiting
STA to advantageously design nonadiabatic protocols in the
presence of dissipation. STA in open quantum systems have
been studied in Refs. [55,56]. In this work, we focus on
the quantum many-body case generalizing the variational ap-
proach of Ref. [27] to open systems. In particular, we derive
a variational approach for Lindbladian dynamics and apply
it to quantum annealing. This allows for the optimization of
quantum driving in real-life scenarios by building approx-
imate Lindbladian counterdiabatic (CD) operators which
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satisfy locality constraints, in order to match with the ac-
tual experimental capabilities. Remarkably, in many relevant
cases, it is sufficient to control the unitary part of the coun-
terdiabatic terms. These are much more easily engineered
experimentally and already realize good approximations of
the exact counterdiabatic superoperator. We show that our
control on the Hamiltonian considerably increases the ground
state fidelity, therefore boosting the performance of quantum
annealing.

This paper is organized as follows. In Sec. II, we discuss
exact CD driving in Lindbladian dynamics adopting a su-
peroperator representation [57]. In Sec. III, we present our
variational approach of the search for the open-system CD
superoperator. Our approach resembles the unitary case of
Ref. [27]; however, there are important differences due to the
fact that the generators of the dynamics are not Hermitian.
In Sec. IV, firstly we validate our analysis by applying our
formalism to a single qubit in interaction with an Ohmic en-
vironment, and, secondly, we study the ferromagnetic p-spin
model with p = 3 as a paradigmatic example of a quantum
annealing protocol of a many-body system. We draw our
conclusions in Sec. V.

II. TRANSITIONLESS LINDBLADIAN DYNAMICS

Let us consider a quantum state |ψ (t )〉 evolving ac-
cording to the Schrödinger equation with a time-dependent
Hamiltonian H0(t ). At any time, the state |ψ (t )〉 can be
decomposed as |ψ (t )〉 = ∑

α cα (t ) |dα (t )〉 where |dα (t )〉 are
instantaneous eigenvectors of H0(t ). The adiabatic regime
is realized for long timescales τ � max{h̄/[εα (t ) − εβ (t )]},
where εα (t ) are the instantaneous eigenvalues of H0(t ). In
this limit, each coefficient cα (t ) evolves independently of the
others. As shown in Refs. [25,26] the same results can be
achieved for any finite time τ , provided the generator of the
dynamics is H (t ) = H0(t ) + Hcd(t ), where

Hcd(t ) = ih̄
∑
α �=β

〈dβ (t )|Ḣ0(t )|dα (t )〉
εα (t ) − εβ (t )

|dβ (t )〉〈dα (t )| (1)

is the so-called CD potential.
In all practical scenarios where dissipation is present, the

evolution of a quantum system is not unitary but can instead
be modeled by a Lindblad equation for the reduced density
operator ρ(t ),

ρ̇(t ) = L(t )[ρ(t )], (2)

where L(t )[•] is a (time-dependent) completely positive tra-
cepreserving (CPTP) map expressed in the Lindblad form

L(t )[ρ] = −i[H (t ), ρ] +
∑

k

γk (t )

(
LkρL†

k − 1

2
{L†

k Lk, ρ}
)

,

(3)
where H (t ) is the Hermitian generator of the unitary part of
the evolution and Lk are Lindblad operators with rates γk (t ) �
0 for all t .

In the superoperator representation [58], first a basis
{ σi }D2−1

i=0 of Hermitian and traceless operators (including the
identity i = 0) is chosen, where D is the Hilbert space dimen-
sion. This defines the Hilbert-Schmidt space, whose vectors

σi ↔ |σi〉〉 are orthonormal with respect to the scalar prod-
uct (σi, σ j ) ≡ 〈〈σi|σ j〉〉 = Tr(σiσ j )/D. In this basis, density
matrices are represented as D2-dimensional coherent vectors
|ρ〉〉 = ∑

i ri|σi〉〉 with coefficients ri = 〈〈σi|ρ〉〉 and the Lind-
blad equation takes the form

|ρ̇〉〉 = L0(t )|ρ〉〉, (4)

where L0(t ) is the Lindbladian supermatrix having compo-
nents [L0] jk = 〈〈σ j |L(t )[σk]〉〉. In this paper, bold symbols
are used to indicate supermatrices and double kets (or bras)
are reserved for coherence vectors, whereas calligraphic let-
ters indicate the action of superoperators in the original
Hilbert space.

While formally identical to the Liouville equation, Eq. (4)
generates a nonunitary evolution since, in general, L0(t )
is not anti-Hermitian and nondiagonalizable. However, it
can always be brought to the Jordan canonical form
(JF), which is unique up to permutations [59]. In this
form, L0(t ) assumes a block-diagonal structure LJ(t ) =
V−1(t )L0(t )V (t ) = diag[J0(t ), . . . , JN−1(t )], where V (t ) is
a similarity matrix and each Jordan block (JB) Jα (t ) is
given by [Jα (t )]i j = λα (t )δi j + δi, j+1. Each JB is associated
with different noncrossing time-dependent (complex) eigen-
values of L0(t ), denoted λα (t ). Each eigenvalue has algebraic
multiplicity Nα and geometric multiplicity equal to 1. If
the Lindbladian has exactly D2 eigenvectors, each JB is a
one-dimensional matrix and LJ(t ) is diagonal. This is the one-
dimensional Jordan form (1DJF). In this case, the Lindblad
supermatrix is diagonalizable with complex eigenvalues.

Given the above, L0(t ) does not generally yield a basis of
eigenvectors. However, we can define a basis of right and left
quasieigenvectors that solve the following problems:

L0(t )
∣∣Dnα

α

〉〉 = ∣∣Dnα−1
α

〉〉 + λα (t )
∣∣Dnα

α

〉〉
, (5)〈〈

Enα

α

∣∣L0(t ) = 〈〈
Enα+1

α

∣∣ + λα (t )
〈〈
Enα

α

∣∣ (6)

with nα ∈ {1, . . . , Nα} (|D0
α〉〉 and 〈〈ENα+1

α | are null vectors).
Nα is the algebraic multiplicity of the eigenvalue λα . These
states are doubly orthogonal (〈〈En

β |Dm
α 〉〉 = δmnδαβ) and de-

compose the identity as I = ∑N−1
α=0

∑Nα

nα=1 |Dnα
α 〉〉〈〈Enα

α |. In
the 1DJF, these quasieigenstates become exact eigenstates
(Nα = 1).

The dynamics of an open quantum system is said to be
adiabatic when the evolution of the density operator in its
Hilbert-Schmidt space can be decomposed into decoupled
Jordan subspaces associated with distinct, time-dependent,
noncrossing eigenvalues of the Lindbladian supermatrix L0(t )
[58,60]. For any finite evolution time τ , it is possible to define
transitionless dynamics generated by L(t ) = L0(t ) + Lcd(t )
introducing a counterdiabatic superoperator Lcd(t ) that en-
sures Jordan blocks are not mixed. The detailed derivation of
Lcd(t ) can be found in Refs. [55,58]. For 1DJF, it reads

Lcd(t ) =
∑
α �=β

〈〈Eβ (t )|L̇0(t )|Dα (t )〉〉
λα (t ) − λβ (t )

|Dβ (t )〉〉〈〈Eα (t )|, (7)

which generalizes the unitary CD operator [25,26] to the 1DJF
open case with Nα = 1, where 〈〈Eα (t )| and |Dα (t )〉〉 are the
left and right eigenvectors of L0(t ) with eigenvalue λα (t ),
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respectively [55]. This formula is derived under the assump-
tion that the Lindbladian spectrum is nondegenerate so that
the denominators are nonzero. The explicit form of the CD
Lindbladian in the case in which the JF is not 1D can be found
in Ref. [58].

Evaluating the open-system CD superoperator would re-
quire the knowledge of the whole Lindbladian spectrum,
a requirement that it is impossible to fulfill in many-body
systems.

III. VARIATIONAL FORMULATION

First of all, we quickly review the variational formulation
of the search for approximate CD operators in closed quantum
systems. If the system Hamiltonian depends on time via a
parameter s = s(t ), then the CD potential of Eq. (1) can be
equivalently [27] written as Hcd(t ) = ṡ(t )As, and the gauge
potential As satisfies

[ih̄H ′
0(s) − [As, H0(s)], H0(s)] = 0, (8)

where the prime denotes derivative with respect to s. Solv-
ing this equation is equivalent to minimizing the functional
S(A∗

s ) = Tr[G2
s (A∗

s )] with respect to A∗
s , where Gs(A∗

s ) =
H ′

0(s) + i[A∗
s , H0(s)]/h̄. At this point one could express A∗

s as
a combination of local operators and minimize the functional
S(A∗

s ) to achieve an approximation of the CD potential. This
variational approach to the CD driving, in the unitary case,
has been successfully applied, achieving high-fidelity transi-
tionless quantum driving, in Refs. [27–30].

We here present a variational approach to approximate
Lcd without knowing the Lindbladian spectrum, general-
izing Ref. [27] to open quantum systems. Assuming the
Lindbladian depends on time via the control field s = s(t ),
we can rewrite Eq. (7) as Lcd(t ) = ṡAs, where As is the
counterdiabatic gauge supermatrix. To formulate the search
for As on a variational basis, we start from the Lindblad
equation and rotate to the Jordan representation using the
similarity superoperator V (t ). The system density matrix
in this basis reads |ρ̃(t )〉〉 = V−1(t )|ρ(t )〉〉 and satisfies the
adiabatic-frame Lindblad equation

∂t |ρ̃(t )〉〉 = (LJ − L̃cd − L̃d)|ρ̃(t )〉〉, (9)

where LJ(t ) = V−1L0(t )V = diag[J0, (t ), . . . , JN−1(t )] and
Jα is the Jordan block associated with the eigenvalue λα

[61], and L̃cd(t ) + L̃d(t ) = −∂t (V−1)V = V−1∂tV . We have
defined

L̃cd(t ) =
∑
α �=β

∑
nαnβ

∣∣Dnα

α

〉〉〈〈
Enα

α

∣∣∂tDnβ

β

〉〉〈〈
Enβ

β

∣∣, (10)

L̃d(t ) =
∑

α

∑
nαnβ

∣∣Dnα

α

〉〉〈〈
Enα

α

∣∣∂tDnβ

α

〉〉〈〈
Enβ

α

∣∣. (11)

Note that the superoperator L̃d(t ) is only diagonal in the
Jordan indices but not necessarily within each Jordan block.

It is easy to prove that the CD superoperator satisfies

∂tL0 + Fad(t ) = [Lcd(t ) + Ld(t ),L0(t )], (12)

where quantities without the tilde are in the time-dependent
basis and

Fad(t ) = −V ∂tLJ(t )V−1 = −
∑
αnα

∂tλα

∣∣Dnα

α

〉〉〈〈
Enα

α

∣∣. (13)

This equation is equivalent to

[L′
0(s) − [As + Ad,L0(s)],L0(s)] = 0, (14)

where Ad is defined via the equation Ld = ṡAd. Equation (14)
is formally equivalent to the unitary case of Ref. [27]. How-
ever, the fact that the Jordan basis is not unitarily equivalent to
the time-independent basis { σi } poses a problem. Inspired by
the unitary case, we can define a superoperator Gs(A∗

tot ) =
L′

0(s) − [A∗
tot,L0(s)] with A∗

tot = A∗
s + A∗

d and notice that
its diagonal elements in the Jordan basis do not depend on
A∗

tot while its off-diagonal elements are zero when A∗
tot =

Atot = As + Ad. Thus, the Hilbert-Schmidt norm of Gs in the
Lindbladian basis is minimized when A∗

tot = Atot. However,
this approach does not provide any insight as the trace in
S = Tr(G†

sGs) has to be evaluated in the Jordan eigenbasis,
requiring the full diagonalization of the Lindbladian.

Hence, we work directly with Eq. (14). An approximate
solution to Eq. (14) might lead to a total generator of the sys-
tem dynamics L(s) = L0(s) + ṡAs that does not yield CPTP
dynamics. This problem can be circumvented by simply re-
stricting the variational minimization to a subspace of the
supermatrix space that contains only physically valid super-
operators. In particular, the Kraus representation theorem [62]
and the works by Gorini et al. [63] and Lindblad [64] ensure
that for finite-size or separable Hilbert spaces the most general
form of a CPTP map is given by

A∗
tot[•] = − i

h̄
[A∗

s , •]

+
∑

i

γ 2
i

(
�i • �

†
i − 1

2
{�†

i �i, •}
)

, (15)

where (A∗)† = As and �i are Lindblad operators. By postulat-
ing this form, we can expand the superoperator A∗

tot as

A∗
tot =

∑
i

εiA
uni
i +

∑
i

γ 2
i A

diss
i ≡

∑
j

α jA j, (16)

where we separated the unitary and dissipative contributions
to A∗

tot so as to impose the positivity of the rates in the
Lindblad form of Eq. (15). The map of Eq. (15) would re-
quire bath engineering, which might be daunting in practice.
However, as proven in Ref. [55], there exist cases (e.g., when
the system purity is unaffected by the dynamics) where the
unitary part of this map is sufficient to express the exact CD
superoperator of the Lindbladian dynamics, providing an im-
portant simplification. Furthermore, in Appendix B, we show
that the closed-system variational formulation can be obtained
as a limiting case of our more general approach when all maps
are unitary.

Equation (14) can then be recast into �B · �X = Y , where
Xi = αi, Bi = [[Ai,L0],L0], and Y = [L′

0,L0]. Therefore,
the search for αi can be reformulated as a minimization prob-
lem of the form

�X = arg min
�X ∗

‖ �B · �X ∗ − Y ‖2
, (17)
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where the norm is defined as ‖Q‖ ≡ Tr(Q†Q). The outcome
of this minimization does not depend on the choice of the
starting state.

Lindbladians having a 1DJF are more likely to appear
when modeling dissipative systems using weak-coupling mas-
ter equations, therefore in the following we will focus on this
case, where the superoperator Ad commutes with L0(s) and
Eq. (14) simplifies to

[L′
0(s) − [As,L0(s)],L0(s)] = 0. (18)

First, we validate our method by applying it to a single
qubit in interaction with an Ohmic environment. Then, we
will focus on the ferromagnetic p-spin model, a prototypi-
cal many-body system that will showcase the power of our
method to improve quantum annealing of complex systems.

IV. RESULTS

A. Single qubit in an Ohmic environment

We consider a single qubit in interaction with a thermal
Ohmic bath. The qubit Hamiltonian reads

H0(s) = −[1 − q(s)](ωx/2)σx − q(s)(ωz/2)σz, (19)

where ωx = ωz = 1 GHz is the energy scale (in units in which
h̄ = 1) and q(s) = 6 s5 − 15 s4 + 10 s3 with s = t/τ . The
minimum gap is � = 1/

√
2 at s = q = 1/2.

The gauge potential in the absence of system-bath coupling
can be found analytically using Eq. (18) and reads

As = −q′(s)/[1 − 2q(s) + 2q2(s)] σy. (20)

Let us now assume that the system is weakly coupled to a
dissipative bath and can be described by a Lindblad mas-
ter equation [45,65]. The system is coupled to the bath via
U = σz, which induces dephasing, where the details of the
system-bath coupling and of the Lindblad equation are re-
ported in Appendix C. We consider a temperature of T =
17 mK = 2.23 GHz and a dimensionless qubit-bath coupling
strength of ηg2 = 1 × 10−4. The weak-coupling Lindbla-
dian has a zero eigenvalue (λ0 = 0) for any given t , whose
right eigenvector |D0(t )〉〉 is the ISS and corresponds to the
thermal state exp[−βH (t )]/Tr{exp[−βH (t )]}. The Lindbla-
dian has a 1DJF for every choice of parameters, thus there
are D2 = 4 Jordan blocks whose eigenvalues are known
explicitly [47].

We initialize the qubit in the ground state of the
Hamiltonian at s = 0, i. e., the eigenstate of σx with eigenvalue
+1. Then, we fix an annealing time τ and evolve the system
according to the Lindblad equation. We calculate the ground
state probability and also the projections of the time-evolved
state onto the four Jordan blocks. When the unitary evolution
is adiabatic, the populations of the energy eigenstates stay
constant in time. This is a consequence of the fact that each
eigenstate will only acquire a phase factor. As opposed to
the unitary case, however, open-system adiabaticity does not
imply constant projections onto the Jordan blocks, due to
the fact that the eigenvalues of the Lindbladian are complex
in general. In particular, only the projection onto the ISS
will remain constant in time if the adiabatic condition is
met, whereas the numerical values of the other blocks might

change. However, if some of the populations are zero at the
beginning of the dynamics, they are bound to remain zero
for the entire adiabatic dynamics and this is a measure of
adiabaticity.

We consider three different values of τ , corresponding to
three different regimes: τ = 1, 10, and 100 ns. The value
of τ = 1 ns is the quench limit: in the absence of CD terms
unitary and dissipative dynamics overlap, as the time is too
short with respect to the typical timescales of the bath. For
τ = 10 ns, the fidelity in the unitary limit (calculated as the
ground state probability at time τ ) is close to 91%, and is sim-
ilar in the presence of the environmental bath (90%) since the
evolution time is again shorter than the relaxation timescale.
In addition, the dissipative adiabatic criterion is violated, and
thus we cannot follow each Jordan block adiabatically in the
absence of a CD driving term. Indeed, it has been proven in
Ref. [47] that, in order to follow the ISS with a maximum
error in the norm of the evolved state of ε when U = σz,
the annealing time must be chosen as τ � C/ε3 where C is
a positive constant depending on the specific norm used. For
τ = 100 ns, the time evolution is almost adiabatic as shown
in the following, and the CD plays a marginal role. Here, the
annealing time is larger than the relaxation timescale and the
ground state probability at the end of a dissipative evolution
drops to 95%, as opposed to the unitary limit in which it is
close to 100% up to numerical errors.

As a variational Ansatz, we take inspiration from the ana-
lytic unitary result of Eq. (20) and consider As → Atest

s [•] =
−i[yσy, •], where y is the variational parameter to be opti-
mized minimizing Eq. (17).

In Fig. 1, we plot the populations of each JB
|〈〈Eα (s)|ρ(s)〉〉| as a function of the dimensionless time s =
t/τ . In the left-hand column, the qubit has been evolved by
using L0 alone without including CD corrections. The center
column shows the same quantities when the qubit has been
evolved using L0 + ṡAs with the exact CD superoperator
computed using Eq. (7). The right-hand column shows the
populations when the qubit has been evolved using L0 +
ṡAtest

s . When there is no CD term, the populations of the last
two Jordan blocks quickly grow as the two subspaces mix
with the second block due to nonadiabatic transitions when
τ violates the dissipative adiabatic condition. By contrast,
these populations remain small when τ = 100 ns. The exact
CD potential decouples the dynamics of the last two JBs and
the populations of these levels remain zero for all choices
of τ . The population of the block with α = 1 slightly de-
creases as a consequence of the fact that the (real) eigenvalue
λ1(t ) is small and negative. The variational CD superoperator
successfully decouples the dynamics of the different blocks
as well.

Adding the dissipative CD superoperator to the
Lindbladian L0 increases the ground state probability as
well. This is due to the fact that the target state is decomposed
onto the first two Jordan blocks at s = 1 as well, thus the
suppression of nonadiabatic transitions outside of these
Jordan blocks allows one to reach the target state with
more accuracy. This is shown in Fig. 2, where we plot the
ground state probability P−(s) = Tr[|d0(s)〉 〈d0(s)| ρ(s)] as a
function of s, where |d0(s)〉 is the instantaneous ground state
of H0(s).
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FIG. 1. Jordan blocks overlaps |〈〈Eα (s)|ρ(s)〉〉| as a function of s = t/τ , for a single qubit in interaction with an Ohmic environment. In
panels (a), (d), and (g), we show results obtained without the CD superoperator. In panels (b), (e), and (h), we show results obtained with
the exact CD superoperator of Eq. (7). In panels (c), (f), and (i), we show results obtained with the variational CD superoperator As[•] =
−i[yσy, •], where y is the variational parameter found by minimizing Eq. (17). Panels (a)–(c): τ = 1 ns; panels (d)–(f): τ = 10 ns; panels
(g)–(i): τ = 100 ns.

B. Ferromagnetic p-spin model

Next, we consider the ferromagnetic p-spin model, whose
Hamiltonian reads

Hp(s) = −�[1 − q(s)]
n∑

i=1

σ x
i − J

np−1
q(s)

(
n∑

i=1

σ z
i

)p

(21)

with � = J = 1 GHz and q(s) = 6s5 − 15s4 + 10s3 with s =
t/τ . We consider n = 3 qubits with p = 3. The unitary
dynamics of this system is easy to simulate due to the
fact that the p-spin Hamiltonian commutes with the total

angular momentum S2 = S2
x + S2

y + S2
z with 2Sα = ∑

i σ
α
i

(α ∈ { x, y, z }) at all times. In addition, the interesting
states for QA, i. e., the paramagnetic ground state of Sx

and the ferromagnetic ground state of Sp
z , both belong

to the symmetry subspace corresponding to S = n/2 and
D = 2S + 1 = n + 1, therefore numerical simulations of any
unitary dynamics can be restricted to this D-dimensional
space.

To preserve this symmetry, we consider a collective de-
phasing model where the whole system is collectively coupled
to a single dephasing Ohmic bath via the total magnetization

FIG. 2. Ground state probability as a function of s = t/τ , for a single qubit in interaction with an Ohmic environment. Panel (a): τ = 1 ns;
panel (b): τ = 10 ns; panel (c): τ = 100 ns. Note the different scale on the vertical axis.
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Sz. This form can appear experimentally when a qubit sys-
tem is coupled to a long-wavelength mode of the bath, so
that the qubit system is insensitive to spatial variations of
the bath modes [37,38]. The coupling to the environment is
modeled via the adiabatic master equation [65]. We consider
a temperature of T = 1/β = 17 mK = 2.23 GHz and dimen-
sionless qubit-bath coupling strengths of ηg2 = 1 × 10−4 and
1 × 10−2.

For n = 3, the Hilbert space dimension is D = 4. The 4 × 4
operator space is spanned by the basis of operators { �i }D2−1

i=0 ,
where �0 is the identity and the remaining D2 − 1 operators
are Hermitian, traceless, and orthonormal. In particular,
the basis operators are (m > l) (�2i−1)lm = √

2δl,m+1 +√
2δl+1,m and (�2i )lm = −i

√
2δl,m+1 + i

√
2δl+1,m with

i = (m − l ) + (l − 1)(2D − l )/2 ∈ { 1, 2, . . . , 6 }. The re-
maining three operators are �13 = diag(1, 1,−1,−1), �14 =
diag(1,−1, 1,−1), and �15 = diag(1,−1,−1, 1). The
Lindbladian is diagonalizable and there are D2 = 16 1D
Jordan blocks.

We prepare the p-spin system into the thermal state
|D0(0)〉〉, i.e., the starting density matrix is ρ(0) =
exp(2β �Sx )/Tr[exp(2β �Sx )]. For β → ∞, this state corre-
sponds to the ground state of the Hamiltonian in Eq. (21).
At the beginning of the evolution, only the JB corresponding
to the ISS steady state is populated. An adiabatic evolution
will hence leave the system in the ISS of the Lindbladian
at all times: |ρad(t )〉〉 = |D0(t )〉〉 for all t . In this setting, no
transitions towards other Jordan blocks are allowed, since
〈〈Eα (t )|ρad(t )〉〉 ≡ 〈〈Eα (t )|D0(t )〉〉 = δα,0. The density-matrix
fidelity between the time-evolved state |ρ(t )〉〉 and the ISS will
therefore provide a measure of adiabaticity. It reads

F (ρad(s), ρ(s)) =
(

Tr
√√

ρad(s)ρ(s)
√

ρad(s)

)2

. (22)

We restrict ourselves to final times τ = 1 and 10 ns [61].
In the unitary case the Sy operator breaks time-reversal

invariance and is the zeroth-order term of a number of expan-
sions such as the local ansatz [27], the nested commutators
ansatz [28], or the cyclic ansatz [29]. When τ is very short,
the environment does not have enough time to act and the
dynamics are almost unitary, thus in this regime we expect
Sy to be the most relevant part of the Ansatz. For longer
evolutions, the environment kicks in and the dissipative part of
the Ansatz might play a more important role in the suppression
of diabatic transitions between pairs of Jordan blocks. In the
following, we will show that this is indeed not the case and a
unitary Ansatz for the CD superoperator is enough to decouple
the system’s Jordan blocks.

In order to highlight the different contributions to the vari-
ational CD operator, we here considered the following test
Lindbladian:

Atest
s → Atest

s [•] = −i[b1Sy + b2S3
y + b3(SxSySz + H. c.), •]

+
15∑

i=1

a2
i

(
�i • �i − 1

2
{�i�i, •}

)
. (23)

The first line of Eq. (23) describes the unitary part and is rem-
iniscent of the cyclic Ansatz of Ref. [29], which is particularly
successful in the unitary case of the p-spin model with p = 3.

FIG. 3. Fidelity between the time-evolved density matrix ρ(s)
and the thermal state ρad(s) as a function of s = t/τ , for ηg2 =
1 × 10−4. The different curves refer to the three Ansätze described
in the main text.

On the one hand, the possible experimental implementation of
this 3-local term is a nontrivial task. On the other hand, terms
like this are likely to appear, for instance, when using the
nested commutators Ansatz [28]. In addition, we only employ
the cyclic Ansatz as a proof of principle: as we will show later
on, our results remain valid even if we consider the simpler
Sy. The second line describes the (diagonal) dissipative part,
including all possible basis operators for this system in the
(4 × 4)-dimensional operator space barring the identity �0,
thus we have a maximum of 18 variational parameters to
optimize.

In the following calculations, we consider three special
cases:

(1) Case Bath: b1 = b2 = b3 = 0 so as to consider a
purely dissipative ansatz.

(2) Case Sy: ai = 0 ∀i and b2 = b3 = 0, i. e., the Ansatz is
unitary and only includes Sy.

(3) Case Cyclic: ai = 0 ∀i so as to consider the unitary
cyclic Ansatz.

In Fig. 3, we plot the fidelity between the density matrix
at the time s and the thermal density matrix at the same time,
in these three cases, compared to the case with no CD su-
peroperator, for τ = 1 ns (main panel) and τ = 10 ns (inset),
and a coupling strength of ηg2 = 1 × 10−4. The efficiency
of the Ansatz of Eq. (23) is mostly due to its unitary part,
while the dissipative part plays a negligible role for both
annealing times. As expected, for the shortest annealing time,
the Sy term is responsible for the largest improvement in the
fidelity. For τ = 10 ns, the fidelity is above 0.96 even in the
absence of CD corrections: the instantaneous state is close to
the ISS. It is remarkable that, even in this case, which should
be governed by thermal processes, unitary CD superoperators
allow improving the fidelity with the thermal density matrix
as opposed to a purely dissipative Ansatz.

On the other hand, if we increase the system-environment
coupling strength to ηg2 = 1 × 10−2, the dissipative part of
the Ansatz starts to play a role as shown in Fig. 4. For
τ = 1 ns (main panel), the scenario is similar to that reported
in Fig. 3 (main panel): for short annealing times, it is rea-
sonable to expect that unitary CD superoperators would be
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FIG. 4. Fidelity between the time-evolved density matrix ρ(s)
and the thermal state ρad(s) as a function of s = t/τ , for ηg2 =
1 × 10−2. The different curves refer to the three Ansätze described
in the main text.

the most effective ones since the environment will act on
longer timescales. By contrast, the dissipative dynamics for
τ = 10 ns are close to being adiabatic, and the environment
affects the dynamics significantly. This is evident from the
inset of Fig. 4. Here we see that the unitary part of the Ansatz
alone performs similarly to the case of ηg2 = 1 × 10−4. In ad-
dition, the cyclic and Sy Ansätze have similar performances, as
opposed to ηg2 = 1 × 10−4. However, the striking difference
is that the Bath Ansatz is detrimental instead in this case: a
naive minimization of the Ansatz of Eq. (23) does not yield
coefficients that satisfy the detailed balance Kubo-Martin-
Schwinger condition [65]. Therefore, the time-evolved state
departs from the ISS around the middle of the dynamics.

Having shown that our method is able to improve open-
system adiabaticity, we now prepare the p-spin system in its
ground state at t = 0 and evolve it using the approximate
CD superoperator found previously. It can be easily done
exploiting the fact that the variational minimization does not
depend on the starting state. We show that we can addi-
tionally improve the success probability of QA, i. e., the
ground state probability at t = τ . Our results are summarized
in Fig. 5, where we report the ground state probability at
t = τ = 10 ns for the three Ansätze, for ηg2 = 1 × 10−4 and
1 × 10−2. Clearly, a unitary Ansatz for the gauge potential is
more geared towards the optimization of QA. The inclusion

FIG. 5. Ground state probability at t = τ = 10 ns for the various
Ansätze considered in the main text, compared with the case without
the CD superoperator.

of dissipation in the Ansatz negatively affects the ground state
probability: a purely dissipative Ansatz (bath) decreases the
success probability of QA, whereas we observe an enhance-
ment in the ground state probability for the Sy and cyclic
Ansätze, consistently with known results for unitary dynamics
[29]. Thus, we stress that no quantum channel engineering is
required in this scheme: controlling the unitary evolution of
a dissipative quantum system alone can improve open- and
closed-system adiabaticity.

V. CONCLUSIONS

In conclusion, we have formulated the search for dissi-
pative counterdiabatic superoperators on variational grounds.
We have applied our method to a relevant system for adiabatic
quantum computation and we have shown that known uni-
tary Ansätze for the counterdiabatic gauge potential offer an
excellent compromise between open- and closed-system adi-
abaticity in that they are able to reduce the coupling between
the Jordan blocks in which Lindbladians are decomposed and,
at the same time, enhance the ground state probability at the
end of the dynamics.

Our approach can be applied if the system dynamics
can be expressed in the Lindblad form, which is al-
ways the case if the Markovian approximation holds. In
general, the non-Markovian limit does not admit a generic
form of the dynamical equation, hence methods have to be
developed case by case. This is still an open point that we
leave to future analysis.
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APPENDIX A: UNITARY ADIABATIC THEOREM IN THE
SUPEROPERATOR FORMALISM

We start from the Liouville equation for the density opera-
tor ρ(t ) = |ψ (t )〉 〈ψ (t )|:

ρ̇(t ) = − i

h̄
[H0(t ), ρ(t )]. (A1)

The adiabatic basis, in which H0(t ) is diagonal, allows us
to expand the ket state as |ψ (t )〉 = ∑

n cn(t ) |dn(t )〉. Insert-
ing this decomposition into Eq. (A1) and remembering that
ρ̇ = |ψ̇〉 〈ψ | + |ψ〉 〈ψ̇ |, we can write∑

nm

[ċn(t )c∗
m(t ) + cn(t )ċ∗

m] |dn(t )〉 〈dm(t )|

+
∑
nm

cn(t )c∗
m(t )

(|ḋn(t )〉 〈dm(t )| + H. c.
)

= − i

h̄

∑
nm

[εn(t ) − εm(t )]cn(t )c∗
m(t ) |dn(t )〉 〈dm(t )| .

(A2)

If we now define the multi-index α = Dn + m ∈
{ 0, 1, . . . , D2 − 1 }, introduce the (coherence) operator
basis |dn(t )〉 〈dm(t )| → |Dα〉〉, and define the coefficient of
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the coherence vector as cn(t )c∗
m(t ) → rα (t ), we see that the

unitary Lindbladian has a 1D Jordan representation with
purely imaginary eigenvalues −i[εn(t ) − εm(t )]/h̄ → λα (t ).
The Lindbladian spectrum is always degenerate here since,
when n = m, the corresponding λα is zero.

Suppressing the second term on the left-hand side of
Eq. (A2) amounts to suppressing diabatic transitions between
energy eigenstates, which in turn corresponds to suppressing
transitions between 1D Jordan blocks.

APPENDIX B: VARIATIONAL UNITARY CD DRIVING AS
A LIMITING CASE OF THE 1DJF

Here we show that the unitary variational formulation of
CD driving [27] is contained into the 1DJF open system for-
mulation when both the Lindbladian L0(s) and the CD gauge
potential A∗

s are unitary maps, i. e.,

L0(s) → Ls[•] = − i

h̄
[H0(s), •], (B1)

L′
0(s) → L′

s[•] = − i

h̄
[H ′

0(s), •], (B2)

A∗
s → A∗

s [•] = − i

h̄
[A∗

s , •]. (B3)

In fact, in this case we have

Gs → Gs[•] = L′
s[•] − A∗

s [Ls[•]] + Ls[A∗
s [•]]

= − i

h̄
[H ′

0(s), •] + 1

h̄2 [A∗
s , [H0(s), •]]

− 1

h̄2 [H0(s), [A∗
s , •]]. (B4)

Using the Jacobi identity [a, [b, c]] + [b, [c, a]] +
[c, [a, b]] = 0, the last two terms yield [[A∗

s , H0(s)], •]/h̄2,
therefore Eq. (B4) is equivalent to

Gs → Gs[•] = − i

h̄

[
H ′

0(s) + i

h̄
[A∗

s , H0(s)], •
]

≡ − i

h̄
[Gs, •], (B5)

where Gs is defined in the main text. We now show that
S is minimized if and only if S is minimized, i. e., A∗

s =
As ⇐⇒ A∗

s = As [66]. To see this, it is sufficient to evaluate
the matrix elements of Gs in the eigenbasis of the Lindbla-
dian, which, as shown in Appendix A, in the case of unitary
Lindbladian dynamics corresponds to the operator bases
〈〈Eα| → |dn(t )〉 〈dm(t )| with α = Dn + m and |Dβ〉〉 →
|d j (t )〉 〈dk (t )| with β = D j + k. We consider the case where
there are no degeneracies in the Hamiltonian spectrum so that
all Bohr frequencies with different indices are nonzero. We
have

(Gs)αβ = 〈〈Eα|Gs|Dβ〉〉 = 1

D
Tr(E†

αGs[Dβ])

= − i

Dh̄
Tr(E†

α[Gs,Dβ])

= − i

Dh̄
Tr(Gs[Dβ, E†

α])

= − i

Dh̄

∑
ab

(Gs)ab[Dβ, E†
α]ba

= − i

Dh̄

∑
ab

(Gs)ab(δb jδkmδna − δbmδn jδka)

= − i

Dh̄

[
(Gs)n jδkm − (Gs)kmδn j

]
. (B6)

Four cases must be distinguished:
(1) n �= j, k �= m. In this case, (Gs)αβ = 0.
(2) n = j, k �= m. In this case, (Gs)αβ = i

Dh̄ (Gs)km.
(3) n �= j, k = m. In this case, (Gs)αβ = − i

Dh̄ (Gs)n j .
(4) n = j, k = m (so α = β). In this case, (Gs)αα =

− i
Dh̄ [(Gs)nn − (Gs)mm].
Therefore, we have

S =
∑
αβ

|Gs|2αβ =
∑

α

|Gs|2αα +
∑
α �=β

|Gs|2αβ

=
∑
nm

1

D2
(ω′

nm)2 + 2

Dh̄2

∑
m �=k

|Gs|2km. (B7)

Therefore, S is minimized when (Gs)km = 0 for k �= m, that
is, when A∗

s = As. Conversely, if (Gs)αβ = 0 with α �= β, then
according to points (2) and (3) we must have (Gs)km = 0 for
k �= m, thus the unitary variational approach to CD driving of
Ref. [27] is a particular case of the more general Lindbladian
formulation.

APPENDIX C: WEAK-COUPLING LIMIT LINDBLAD
EQUATION

Consider a system-bath Hamiltonian of the form HSB(t ) =
H0(t ) + HB + gU ⊗ B, where U is a system operator, HB =∑

k ωkb†
kbk is the Hamiltonian of the bath modeled as non-

interacting bosons, and B = ∑
k (bk + b†

k ). The system-bath
coupling strength is g. The weak-coupling-limit adiabatic
Lindbladian of Refs. [45,65] reads

Lt [•] = −i[H0(t ) + HLS(t ), •]

+
∑

ω

γ [ω(t )]

(
�ω(t ) • �†

ω(t ) − 1

2
{�†

ω(t )�ω(t ), •}
)

,

(C1)

where �ω = ∑
a,b:εa−εb=ω |εa〉 〈εa|U |εb〉 〈εb| are Lindblad op-

erators, the Lamb shift is HLS(t ) = ∑
ω ζ [ω(t )]�†

ω(t )�ω(t ),
and the (Ohmic) spectral functions read

γ (ω) = 2πηg2ωe−|ω|/ωc

1 − e−βω
, (C2)

ζ (ω) = P. P.
∫ ∞

−∞

γ (ω′)
ω − ω′

dω′

2π
, (C3)

with ηg2 being a dimensionless parameter related to the
system-bath coupling strength (ηg2 � 1), β = 1/T is the in-
verse temperature (kB = 1), and ωc is a high-frequency cutoff
that we fix to ωc = 8π GHz. Equation (C1) assumes that the
Born, Markov, and rotating wave approximations are valid,
as a consequence of the separation between system and bath
timescales [65].
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