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Application of simultaneous and continuous measurement of noncommutative observables:
Preparation of the pure ideal quadrature-squeezed state by feedback control
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As an application of the simultaneous and continuous measurement of noncommutative observables for-
mulated in our previous paper [C. Jiang and G. Watanabe, Phys. Rev. A 102, 062216 (2020)], we propose a
scheme to generate a pure ideal quadrature-squeezed state in a one-dimensional harmonic oscillator system
by the feedback control based on such type of measurement of noncommutative quadrature observables. We
find that, by appropriately setting the strengths of the measurement and the feedback control, the pure ideal
quadrature-squeezed state with arbitrary squeezedness can be produced. This is in contrast to the scheme
based on the single-observable measurement and the feedback control, where only nonideal squeezed states
are produced. Furthermore, we discuss the transient dynamics of the system and the experimental feasibility of
our scheme.
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I. INTRODUCTION

The squeezed state [1–7] is a kind of nonclassical state
exhibiting many unique properties, which cannot be seen in
the coherent state [1,2,4,5,7–13]. In previous decades, there
has been a dramatic development of the theoretical [14–18]
and experimental [19–23] studies on the squeezed state. These
explorations enable people not only to understand the nature
of quantum mechanics more deeply, but also to find extensive
applications of squeezed states in various situations, such as
reducing the noise in the quantum communication [24,25],
improving the sensitivity of the interferometers to realize
more precise measurement [26–28], and enhancing the per-
formance of the quantum heat engines [29].

The first experimental realization of the squeezed light
was achieved by Slusher and his collaborators by four-wave
mixing in an optical cavity [30]. In addition, several other
practical and effective schemes to generate the squeezed states
have also been proposed and developed in previous decades
[3,31–35]. Among them, the feedback control is a power-
ful and commonly used technique [35–39]. Based on the
measurement signals obtained from the system, the feedback
control scheme allows us to manipulate the evolution of the
system in a robust manner and drive it to the target squeezed
state.

Nevertheless, most of the feedback control schemes used to
generate the squeezed state are based on the single-observable
measurement [36–39], and only a few works have consid-
ered the two-observable measurement case [40]. Actually,
the multiobservable measurement can gain more information
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about the system, and the feedback control based on it of-
fers a more flexible way to prepare the desired squeezed
state. In the present paper, we will specifically consider
the case where two observables of the system are simul-
taneously measured. The issues of the simultaneous and
continuous measurement of two noncommutative observables
have already been addressed in our previous work [41],
and the evolution equations of the system under the mea-
surement, i.e., the Itô stochastic equation and the Lindblad
form master equation, have also been derived there [41]. In
the present paper, as an important application of our pre-
vious works, we shall propose a scheme to generate the
quadrature-squeezed state by the feedback control approach
based on the simultaneous and continuous measurement. We
will show that by properly setting the feedback control Hamil-
tonian, any minimum uncertainty quadrature-squeezed state
of the system can be obtained after sufficiently long, but
experimentally feasible time evolution. These squeezed states
have important applications in, e.g., metrology and quantum
thermodynamics.

As a simple but important example of the quadrature
squeezing, we take a harmonic oscillator model, which pro-
vides a good description of various systems such as a photon
field in a single-mode optical cavity as well as the mi-
crovibration of a trapped atom. Recently, experiments using
levitated particles in vacuum have made many outstanding
achievements in exploring the motion of the quantum systems
[42–47] due to the rapid development of the optomechanics
and levitodynamics [48–50]. By loading the particles into an
optical or magnetic trap in vacuum, the system is extremely
decoupled from the environment and the oscillation of the
particles can be controlled with high precision via tuning
the trapping potential [42–47]. To keep the generality of the
discussion, we do not specify a particular physical setup of
the system in the beginning of the paper. We consider the
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simultaneous and continuous measurement of two quadratures
of the harmonic oscillator system and model the evolution of
the system by the master equations derived in our previous
paper [41]. Then, we work out the time evolution of the
variances of the quadratures, and show that any minimum
uncertainty quadrature-squeezed state can be obtained as the
asymptotic steady state by setting the proper feedback control
strength. It is noted that we can create the ideal quadrature-
squeezed state with arbitrary high squeezing in principle,
which cannot be realized for the feedback control scheme
based on the single-observable measurement. Finally, we ver-
ify our results by numerical simulations and show that the
ideal quadrature-squeezed state can be created by our scheme
within a typical time scale of the experiments of levitated
particles.

The structure of our paper is as follows. In Sec. II, we
derive the master equation of the harmonic oscillator sys-
tem under the simultaneous, continuous measurement and the
feedback control. In Sec. III, we work out the time evolution
equations of the uncertainties of two quadratures, and find
the condition under which the arbitrary pure ideal quadrature-
squeezed state can be generated. Moreover, the comparison
between our scheme and the single-observable measurement
case is also given in this section. The numerical demonstra-
tions and the experimental feasibility are presented in Sec. IV.
Section V concludes our paper and gives future prospects of
the scheme.

II. MEASUREMENT AND FEEDBACK CONTROL MODEL

We consider a one-dimensional harmonic oscillator. For
photons in a single-mode optical cavity with frequency ω, the
Hamiltonian of the system Ĥs is given by

Ĥs = h̄ω
(
ĉ†ĉ + 1

2

)
, (1)

where ĉ† and ĉ are the creation and annihilation operators of
a photon, respectively. For simplicity, we will set h̄ = ω = 1
throughout the remaining part of the paper. By introducing the
following two quadrature operators of the system,

x̂ = 1√
2

(ĉ† + ĉ), (2)

p̂ = i√
2

(ĉ† − ĉ), (3)

the Hamiltonian can be rewritten as

Ĥs = 1
2 ( p̂2 + x̂2). (4)

For mechanical harmonic oscillator systems, x and p quadra-
tures correspond to the position and the momentum of the
oscillator, respectively, and thus the Hamiltonian can be
divided into the kinetic energy part and the potential en-
ergy part. For the convenience of the discussion, we use
both representations of Eqs. (1) and (4) in the following
analysis.

We consider the situation in which x̂ and p̂ are simulta-
neously and continuously measured. The state of the system
at time t is denoted by ρ̂(t ), and the conditioned master
equation of the system under the measurement is given by

[40,41,51]

d ρ̂ = − i[Ĥs, ρ̂] dt − γx

8
[x̂, [x̂, ρ̂]] dt − γp

8
[p̂, [ p̂, ρ̂]] dt

+ √
γx H [(x̂ − 〈x̂〉)ρ̂] dξx + √

γp H [( p̂ − 〈 p̂〉)ρ̂] dξp.

(5)

Here, γ j > 0 is the strength of the measurement of x̂ (for j =
x) and p̂ (for j = p), 〈Â〉 is the average of the observable Â,
which is defined as

〈Â〉 ≡ Tr (Âρ̂), (6)

the symbol H [Ô] is the Hermitian part of operator Ô,

H [Ô] ≡ 1
2 (Ô + Ô†), (7)

and dξ j’s ( j = x and p) are independent Itô increments satis-
fying [52–54]

E [dξ j] = 0, (8)

E [dξx(t ) · dξp(t )] = 0, (9)

E [dξ j (t ) · dξ j (t )] = dt . (10)

This Itô stochastic master Eq. (5) can be derived from a par-
ticular measurement model by Arthurs and Kelly [41,51,55]
within the Born-Markov approximation [56–58]. It is noted
that even though the simultaneously measured quantities x̂
and p̂ are noncommutative, the master Eq. (5) obtained in
the Born-Markov approximation does not contain a cross
term of these two measurements [41]. Moreover, although
the underlying measurement model by Arthurs and Kelly is
schematic, the resulting master equation (5) is widely used
in theoretical studies [40,41,51,57–60] and the analysis of
experimental results [61–64].

By taking the ensemble average of Eq. (5), we readily
obtain the following unconditioned master equation:

d ρ̂

dt
= − i[Ĥs, ρ̂] − γx

8
[x̂, [x̂, ρ̂]] − γp

8
[p̂, [ p̂, ρ̂]]

= − i[Ĥs, ρ̂] + γp

4
(D[ĉ] + D[ĉ†])ρ̂

+ γx − γp

8
D[ĉ + ĉ†]ρ̂, (11)

where the superoperator D[Ô] is defined for an arbitrary op-
erator Ô as

D[Ô] ρ̂ ≡ Ôρ̂Ô† − 1
2 (Ô†Ôρ̂ + ρ̂Ô†Ô). (12)

The first term in the right-hand side of Eq. (11) represents
the unitary evolution governed by the Hamiltonian, while the
remaining terms represent the effects of the measurement. To
get more insights into the measurement effects, we consider
the change of the average of the kinetic and potential energies
induced by the measurement, which is given by

d〈 p̂2〉
dt

= γx

4
> 0, (13)

d〈x̂2〉
dt

= γp

4
> 0. (14)

Notice that the measurement of x̂ leads to the increment of
the average of the kinetic energy, and its increase rate is larger
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for larger measurement strength γx, while the measurement
of p̂ yields the similar results for the average of the potential
energy.

Equations (13) and (14) show that the system keeps on
getting the energy by the continuous measurement, and thus
it never reaches the steady state. This result can easily be
understood from Eq. (11): The term (D[ĉ] + D[ĉ†])ρ̂ in the
equation represents that the system is effectively connected
to a heat bath with infinite temperature, which leads to the
divergence of the asymptotic internal energy of the system.

In order to regulate the energy of the system to be finite,
we perform the feedback control based on the outcome of the
continuous measurement. As will be clarified later in Sec. III,
to obtain squeezed states, we take the feedback control Hamil-
tonian Ĥf in the following form [40]:

Ĥf dt ≡ −κ f x̄(t )dt · p̂ + κ f p̄(t )dt · x̂, (15)

where κ f is a real positive parameter called feedback control
strength, and x̄(t )dt and p̄(t )dt are measurement signals de-
fined as [40]

x̄(t )dt ≡ 〈x̂〉dt + dξx√
γx

, (16)

p̄(t )dt ≡ 〈p̂〉dt + dξp√
γp

. (17)

We now further assume that the delay time of the feedback
control is short enough such that the total process can be
approximated by a Markovian process [36], and then the state
of the system under the simultaneous, continuous measure-
ment and the feedback control becomes exp(−iĤ f dt ) (ρ̂ +
d ρ̂ ) exp(iĤ f dt ). By applying the Baker-Campbell-Hausdorff
formula and the Itô rule, and keeping all the terms up to
the first order of dt , we have only four terms: (ρ̂ + d ρ̂ ),
−i[Ĥf dt, ρ̂], −i[Ĥf dt, d ρ̂], and −2−1[Ĥf dt, [Ĥf dt, ρ̂]]. The
resulting master equation of the system after taking the en-
semble average reads [41,65]

d ρ̂

dt
= −i[Ĥs, ρ̂] + k1D[ĉ]ρ̂ + k2D[ĉ†]ρ̂ + k3D[ĉ + ĉ†]ρ̂,

(18)

with

k1 ≡ γp

4
+ κ2

f

γx
+ κ f , (19)

k2 ≡ γp

4
+ κ2

f

γx
− κ f , (20)

k3 ≡ γx − γp

8
− κ2

f

2γx
+ κ2

f

2γp
. (21)

Equations (11) and (18) share the similar structure, and
the former master equation for the case without feedback
control can easily be obtained by simply setting κ f = 0 in
Eq. (18). Comparing these two equations, we find that there
are two kinds of additional terms in Eq. (18) resulting from
the feedback control. One is the term whose coefficients
are proportional to κ2

f , and the other is the term whose co-
efficients are proportional to κ f . Let us first focus on the
effect of the former kind of additional term, which comes

from the fluctuations of the measurement signals, i.e., the
term −2−1[Ĥf dt, [Ĥf dt, ρ̂]], and temporarily ignore the latter
term. After introducing the following two parameters �x and
�p,

�x ≡ γx + 4κ2
f

γp
, (22)

�p ≡ γp + 4κ2
f

γx
, (23)

the master Eq. (18) without the additional terms proportional
to κ f can be rewritten as

d ρ̂

dt
= − i[Ĥs, ρ̂] + �p

4
(D[ĉ] + D[ĉ†])ρ̂

+ �x − �p

8
D[ĉ + ĉ†]ρ̂. (24)

By comparing Eqs. (11) and (24), we can see that �x and
�p play a role of effective measurement strengths of x̂ and
p̂, respectively. Hence, as can be seen from Eqs. (22) and
(23), the effect of κ2

f terms is to enhance the increase rate of
the internal energy of the system according to our previous
discussion.

Next, we focus on the terms proportional to κ f :
κ f (D[ĉ] − D[ĉ†])ρ̂. Note that they originate from the term
−i[Ĥf dt, d ρ̂], which represents the effect of the interplay be-
tween the noise of the measurement outcome and the feedback
control signals. These additional terms reduce the energy of
the system since

Tr { p̂2κ f (D[ĉ] − D[ĉ†])ρ̂} = −2κ f 〈p̂2〉 < 0, (25)

Tr {x̂2κ f (D[ĉ] − D[ĉ†])ρ̂} = −2κ f 〈x̂2〉 < 0. (26)

Because of these terms, the energy increase by the continuous
measurement can be balanced with the energy reduction by
the feedback control, so that the system can reach a steady
state after a sufficiently long time.

III. DISCUSSION

Before proceeding, let us briefly review the definition of
squeezed states and ideal squeezed states [1–3]. For two
arbitrary Hermitian operators Â and B̂, the product of the un-
certainties of the operators, 〈�Â2〉〈�B̂2〉 with �Â ≡ Â − 〈Â〉
and �B̂ ≡ B̂ − 〈B̂〉, satisfies

〈�Â2〉〈�B̂2〉 � 1
4 |〈[Â, B̂]〉|2, (27)

according to the Heisenberg uncertainty principle. The state
of the system is a squeezed state if either

〈�Â2〉 < 1
2 |〈[Â, B̂]〉| (28)

or

〈�B̂2〉 < 1
2 |〈[Â, B̂]〉| (29)

is satisfied. In particular, squeezed states for which the equal-
ity in Eq. (27) holds are ideal squeezed states.

Squeezing implies various physical meanings depending
on the system considered. Taking the harmonic oscillator
as an example, the quadrature squeezing for photons in a
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single-mode cavity means that the noise in the corresponding
quadrature is reduced below that of the coherent state. On the
other hand, for an atom trapped in a harmonic oscillator poten-
tial, the squeezing of the x quadrature means the localization
or confinement of the atom in the position space, while the
squeezing of the p quadrature implies that the atom is cooled
[37].

Here, we propose a scheme to prepare quadrature-squeezed
states based on the simultaneous, continuous measurement
and the feedback control introduced in the previous section.
In our proposal, the target squeezed state is obtained as an
asymptotic steady state of the system. To study the condition
under which the squeezed states can be generated, we mainly
focus on the first and the second moments of observables x̂
and p̂, since the uncertainties are determined only by these two
moments. In order to get clear understanding of the effects of
the measurement and feedback control by themselves, we first
ignore the unitary evolution term −i[Ĥs, ρ̂]. This is valid when
the effects of the measurement and the feedback control is
predominant compared to the unitary evolution: For instance,
the absolute values of the coefficients k1, k2, and k3 are much
larger than unity [66]. The effect of the unitary evolution term
will be briefly discussed later in Sec. IV.

We first consider the time evolution of the average of x̂ and
p̂, which can easily be obtained from Eq. (18):

d〈x̂〉
dt

= k2 − k1

2
〈x̂〉 = −κ f 〈x̂〉, (30)

d〈p̂〉
dt

= k2 − k1

2
〈p̂〉 = −κ f 〈p̂〉. (31)

These two averages reach the steady values exponentially in
time, and the steady solutions of Eqs. (30) and (31) are

〈x̂〉 = 0, (32)

〈p̂〉 = 0, (33)

respectively. Therefore, the uncertainties of x̂ and p̂, 〈�x̂2〉
and 〈�p̂2〉, are determined solely by the second moments
of x̂ and p̂, or in other words, the averages of the potential
and the kinetic energies of the system, respectively. This
provides us another point of view on the preparation of
quadrature-squeezed states as the control of the energy. As
shown in the previous section, the kinetic energy and the po-
tential energy can be tuned by the measurement and the feed-
back control. Consequently, it is possible to generate the
quadrature-squeezed state through this scheme.

We now turn to evaluate the second moments 〈x̂2〉 and
〈p̂2〉. The evolution equations of these two quantities take the
following form:

d〈x̂2〉
dt

= (k2 − k1)〈x̂2〉 + k1 + k2

2

= −2κ f 〈x̂2〉 + �p

4
, (34)

d〈 p̂2〉
dt

= (k2 − k1)〈p̂2〉 + k1 + k2 + 4k3

2

= −2κ f 〈p̂2〉 + �x

4
, (35)

and the solutions of Eqs. (34) and (35) are

〈x̂2〉 = C1e−2κ f t + �p

8κ f
, (36)

〈p̂2〉 = C2e−2κ f t + �x

8κ f
, (37)

where C1 and C2 are constants determined by the initial state
of the system. Same with the averages 〈x̂〉 and 〈p̂〉 discussed
before, the second moments, 〈x̂2〉 and 〈p̂2〉, converge to their
own steady values exponentially, and the time scale for ap-
proaching the steady values is of the order of κ−1

f .
The corresponding steady solutions of Eqs. (34) and (35)

are therefore

〈x̂2〉 = �p

8κ f
= γp

8κ f
+ κ f

2γx
, (38)

〈p̂2〉 = �x

8κ f
= γx

8κ f
+ κ f

2γp
. (39)

Here, we can see that for fixed κ f , the uncertainty of x̂ in the
steady state monotonically increases with γp but monotoni-
cally decreases with γx, and vice versa for the uncertainty of
p̂. This can be understood by the balance between the effects
of the energy increment and reduction discussed in the pre-
vious section. In particular, the variances of two quadratures
are equal when γx = γp, which has already been discussed
in Ref. [40]. There, the authors have shown that the steady
state of the system is an effective thermal state when the two
measurement strengths are equal [40].

From Eqs. (38) and (39), it is straightforward to obtain the
uncertainty relation of x̂ and p̂ for the steady state:

〈x̂2〉〈p̂2〉 =
(

γp

8κ f
+ κ f

2γx

)(
γx

8κ f
+ κ f

2γp

)

= 1

8
+ γxγp

64κ2
f

+ κ2
f

4γxγp

� 1

8
+ 2

√√√√ γxγp

64κ2
f

κ2
f

4γxγp

= 1

4
. (40)

The minimum-uncertainty relation given by the equality in the
third line of Eq. (40) holds under the following condition:

γxγp = 4κ2
f . (41)

Since the parameters γx, γp, and κ f are controllable by the
observer, it is noted that as long as Eq. (41) is satisfied, there
is still flexibility to control either 〈x̂2〉 or 〈p̂2〉 with keeping
the ideal squeezing, 〈x̂2〉〈p̂2〉 = 1/4, by tuning the values
of these three parameters. In addition, it has been proven
that a state satisfying the minimal uncertainty relation of x̂
and p̂, 〈x̂2〉〈p̂2〉 = 1/4, must be a pure state [67]. Therefore,
our scheme allows us to produce any pure ideal quadrature-
squeezed state with arbitrary squeezedness irrespective of the
initial state.

In contrast, the feedback control based on the sin-
gle observable measurement cannot generate an arbitrary
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quadrature-squeezed state. Without loss of generality, we as-
sume that only x quadrature is measured, and the feedback
control Hamiltonian Ĥ ′

f corresponding to Eq. (15) but for the
single observable case is given by

Ĥ ′
f dt ≡ −κ f x̄(t )dt · p̂. (42)

Following the same approximation and calculation pre-
sented in the previous section, the ensemble averaged master
equation under the single-observable measurement and the
feedback control reads

d ρ̂

dt
= − i[Ĥs, ρ̂] + k′

1D[ĉ]ρ̂ + k′
2D[ĉ†]ρ̂ + k′

3D[ĉ + ĉ†]ρ̂

+ k′
4(ĉĉρ̂ + ρ̂ĉ†ĉ† − ĉ†ĉ†ρ̂ − ρ̂ĉĉ), (43)

with

k′
1 ≡ κ2

f

γx
+ κ f

2
, (44)

k′
2 ≡ κ2

f

γx
− κ f

2
, (45)

k′
3 ≡ γx

8
− κ2

f

2γx
, (46)

k′
4 ≡ κ f

4
. (47)

Again, ignoring the effect of the unitary evolution term, the
resulting evolution equations of the first and the second mo-
ments of the two quadratures read

d〈x̂〉
dt

= k′
2 − k′

1 − 4k′
4

2
〈x̂〉 = −κ f 〈x̂〉, (48)

d〈p̂〉
dt

= k′
2 − k′

1 + 4k′
4

2
〈p̂〉 = 0, (49)

and

d〈x̂2〉
dt

= (k′
2 − k′

1 − 4k′
4)〈x̂2〉 + k′

1 + k′
2

2

= −2κ f 〈x̂2〉 + κ2
f

γx
, (50)

d〈p̂2〉
dt

= (k′
2 − k′

1 + 4k′
4)〈p̂2〉 + k′

1 + k′
2 + 4k′

3

2

= γx

4
, (51)

respectively. Equation (48) shows that the average of x quadra-
ture also reaches zero after a sufficiently long time for the
single-observable measurement case, and Eq. (49) shows that
the average of p quadrature is unchanged during the evolu-
tion. Consequently, the convergence and divergence of the
uncertainties of two quadratures are exactly determined by the
second moment of themselves, respectively. From Eqs. (50)
and (51), we can clearly see that the expectation value of
the potential energy converges to a finite value while that of
the kinetic energy is diverging after long time evolution. This
means that by tuning the strengths of the measurement and the
feedback control, the value of the uncertainty of the x quadra-
ture can be manipulated to be as small as possible, while the

uncertainty of the p quadrature is out of control. Thus, the ar-
bitrary quadrature-squeezed state cannot be produced through
this scheme based on the single observable measurement.

In addition, there are two other types of schemes pro-
posed to prepare the quadrature-squeezed light using feedback
control based on the measurement of a single quadrature ob-
servable: one is mediated by the homodyne measurement, and
the other is based on the quantum nondemolition measure-
ment [36]. For the former proposal, the source light is initially
pumped to be squeezed, while the feedback control is per-
formed to reduce the fluctuation of the unsqueezed quadrature.
The quality of the squeezedness, of course, depends on the
pump of the laser, and the minimum of the variance is half
of that value of the coherent state for the perfectly regularly
pumped laser. In addition, for the perfectly regular laser, the
minimum of the uncertainty relation is around 20% greater
than the lower bound of the Heisenberg uncertainty princi-
ple [36]. In other words, neither the arbitrary nor the ideal
quadrature-squeezed state can be realized by this method. For
the latter scheme, despite the fact that the variance of one
quadrature can be squeezed to be arbitrarily small, that of
the other unsqueezed quadrature is highly increased by the
measurement [36]. Consequently, the ideal squeezed state in
general cannot be produced.

IV. NUMERICAL DEMONSTRATIONS

In this section, we verify our results obtained in the previ-
ous section by numerical simulations. Then, we shall discuss
experimental feasibility of our scheme.

A. The properties of the steady state

Let us first focus on the squeezedness of the steady state.
It is convenient to introduce the following two parameters rx

and rp to characterize the squeezing:

rx ≡ 〈x̂2〉
1/2

= 2〈x̂2〉, (52)

rp ≡ 〈 p̂2〉
1/2

= 2〈p̂2〉, (53)

where 〈x̂2〉 and 〈p̂2〉 are normalized by their value, 1/2, for
the coherent state. The values of both rx and rp range from
zero to infinity, and the value of either rx or rp smaller than
unity represents that the state is quadrature squeezed. To better
illustrate it, we take rx as an example and plot the contour of
rx with respect to parameters γx/κ f and γp/κ f in Fig. 1(a).
From this figure, one can observe that rx is monotonically
increasing with parameter γp/κ f and monotonically decreas-
ing with parameter γx/κ f . For a given value of γp/κ f , rx

decreases to zero with increasing γx/κ f , which means that we
can generate squeezed states with arbitrarily high squeezing
of the x quadrature in principle. A similar discussion ap-
plies to the squeezing parameter rp for the p quadrature as
well, which concludes that we can generate squeezed states
with arbitrarily high squeezing of the p quadrature by taking
sufficiently large γp/κ f . Next, we consider the behavior of
the quantity 〈x̂2〉〈p̂2〉 in terms of the parameters γx/κ f and
γp/κ f as shown in Fig. 1(b). As has been discussed in the
previous section, 〈x̂2〉〈p̂2〉 takes the minimum value 1/4 along
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(a)

(b)

FIG. 1. (a) The contour of rx with respect to γx/κ f and γp/κ f .
In the region where rx < 1, the x quadrature is squeezed. (b) The
contour of 〈x̂2〉〈 p̂2〉 with respect to γx/κ f and γp/κ f . The ideal
squeezing, 〈x̂2〉〈 p̂2〉 = 1/4, is realized when γxγp = 4κ2

f , which is
shown by the thick line.

the line of γp/κ f = 4(γx/κ f )−1 or γxγp = 4κ2
f , which corre-

sponds to the pure ideal quadrature-squeezed state. Together
with Fig. 1(a), it is clearly seen that we can generate a pure
ideal squeezed state with arbitrary high squeezing of the x
quadrature by taking sufficiently large γx/κ f and choosing γp

as γp = 4κ2
f /γx. A similar argument holds for the p quadrature

as well. As a conclusion, any pure ideal quadrature-squeezed
state can be generated by tuning γx/κ f and γp/κ f provided
γxγp = 4κ2

f .
Finally, we complete our demonstration of the steady state

by numerically showing the effect of the unitary evolution
term. The parameter κ f is set to be κ f = 1.5 as an example,
and the remaining two parameters γx and γp are chosen as
independent variables of order unity. In this case, k1, k2, and k3

are comparable to unity, and the unitary evolution term should
be taken into consideration. The numerical results of rx and
〈x̂2〉〈p̂2〉 for the steady state as functions of γx/κ f and γp/κ f

are shown in Figs. 2(a) and 2(b), respectively. Comparing
Figs. 1(a) and 2(a), we find that the region to obtain the x
quadrature-squeezed state (rx < 1) is narrowed down in the
latter case with the unitary evolution term. Besides, for given
values of γx/κ f and γp/κ f in this region, the squeezedness

(a)

(b)

FIG. 2. Same as Fig. 1 but with the unitary evolution term, and
setting κ f = 1.5. (a) The contour of rx with respect to γx and γp.
(b) The contour of 〈x̂2〉〈 p̂2〉 with respect to γx and γp. 〈x̂2〉〈 p̂2〉 = 1/4
when γx = γp = 2.

parameter rx becomes larger when we take account of the
unitary evolution term. This means that the squeezedness
is degraded. In addition, the ideal quadrature-squeezed state
can no longer be generated: As can be seen from Fig. 2(b),
〈x̂2〉〈p̂2〉 takes its minimum value 1/4 only when γx/κ f =
γp/κ f = 2. However, from Fig. 2(a), it can be observed that
rx = 1 at this point, namely the resulting state is a coherent
state without squeezing. In summary, the effect of the unitary
evolution term is to degrade the quality of the squeezedness.

B. The behaviors during the evolution

The time scale to reach the steady state is of great concern
in the practical experiments. Without loss of generality, here
we take x quadrature as an example, and the discussion of the
p quadrature can be made by following the same procedure.
In Fig. 3, we plot the time evolution of the variance of the x
quadrature and the purity for different initial states and the
feedback control strengths κ f . In this figure, the measure-
ment strengths γx and γp are fixed while the feedback control
strength κ f is varied since κ f , as mentioned previously, plays
an essential role in the time scale for reaching the steady state.
For ease of comparison, the initial states are distinguished by
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(a)

(b)

FIG. 3. Relaxation behavior of the variance 〈�x2〉 and the purity
Tr (ρ2) to their steady value. (a) Time evolution of 〈�x2〉. (b) Time
evolution of the purity Tr (ρ2). The system is assumed to start from
the thermal state with the inverse temperature β = 1 (dashed lines)
and 2 (solid lines). The green lines with triangles, blue lines with
squares, and red lines with circles represent κ f = 1, 2, and 3, respec-
tively. The other parameters are ω = 1, γx = 9, and γp = 4.

different line types, and the feedback control strengths are
distinguished by different colors and symbols. The initial state
of the system is set to be a canonical state with the inverse
temperature β = 1 (dashed lines) and 2 (solid lines), and the
measurement strength is set to be κ f = 1 (green lines with
triangles), 2 (blue lines with squares), and 3 (red lines with
circles). From Fig. 3, we find that the time for reaching the
steady state monotonically decreases with respect to κ f for
a given initial state. When κ f is larger compared with ω,
this relaxation time, which is independent of the initial state,
can be approximated by ∼κ−1

f . Remarkably, when Eq. (41) is
satisfied, and κ f is sufficiently greater than but still in the same
order with ω, we can almost approach the results obtained in
the previous section after sufficiently long time evolution. For
instance, κ f = 3, γx = 9, and γp = 4 (red lines with circles
in Fig. 3), the asymptotic value of the variance of the x
quadrature is 0.35, which is close to the value (∼0.33) given
by Eq. (38), and the purity of the density matrix eventually
converges to 0.99.

Finally, we discuss the experimental feasibility of our
scheme taking a system of levitated particles in vacuum as

an example. Levitated particles in vacuum is a promising
platform for quantum sciences by virtue of its long coherence
time and high precision of the control. Recently, Walker et al.
proposed an experimentally feasible scheme to manipulate the
motion of a levitated particle confined in a static magnetic trap
by the measurement and the feedback control [64]. Compared
with an optical trap widely used in the current experiments,
the magnetic trap gets rid of the problem of intrinsic laser
recoil heating due to its low trap frequency (ω ∼ 100 Hz)
[64,68,69]. Thus, the reheating on the system mainly comes
from the interaction with the environment. By putting the
particle in the high vacuum (10−10 mbar) or cooling the trap
chamber cryogenically, this heating rate �th can be dramat-
ically reduced to the order of 1 Hz [64,70]. The feedback
control strength κ f determines the relaxation rate of the sys-
tem, whose typical value is around 103 Hz in the experiments
[64,71]. Therefore, the system has already reached the target
squeezed state before being reheated by the environment.

V. CONCLUSION AND FUTURE PROSPECTS

As an important application of our previous work [41], we
have proposed a theoretical scheme to produce the quadrature-
squeezed state of a harmonic oscillator system by the feedback
control based on the simultaneous and continuous mea-
surement of the noncommutative quadrature observables.
Focusing on the asymptotic steady state, we have found that
any pure ideal squeezed states can be generated by properly
tuning the strengths of the measurements and the feedback
control, which cannot be realized by the feedback control
based on the single-observable measurement. Finally, we have
demonstrated our conclusions by the numerical simulations.

Levitated microscopic systems have shown broad applica-
tions in various fields of physics [49,50]. One of the most
promising and inspiring applications is the ultrasensitive force
detection, such as the precision measurement of the weak
force (e.g., gravity and dispersion force) at short distances and
that of weak force field. In recent years, great efforts have been
devoted to realize such precision detection using the levitated
particles as a sensor [72–75]. In the experiment, the motion of
the center of mass of particles, such as spatial displacement or
rotation, is measured as a response of the external force. Since
the system is well isolated from the environment and the state
of the particles is sensitive to the force, the measurement can
be realized in a highly accurate level. In addition, the sensitiv-
ity of the detector could be further increased with an assist of
the quadrature squeezedness of the oscillators [44,74–76], due
to the enhancement of the resolution of the position of the par-
ticles. Another exciting application can be found in quantum
thermodynamics. There, the novel phenomena introduced by
the squeezed thermal reservoirs have been attracting increas-
ing attention [29,77–79]. Recently, it is theoretically verified
that the Landauer energy bound, i.e., the minimal energy for
erasing 1 bit information, can be exponentially reduced once
the reservoir is in a quadrature-squeezed state [80]. In the
near future, squeezed levitated particles may offer an excellent
platform for further experimental study of this issue. We hope
our scheme will be used to prepare quadrature-squeezed states
in experiments of the above fields in the future.
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