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Generation of photonic tensor network states with circuit QED
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We propose a circuit QED platform and protocol to generate microwave photonic tensor network states
deterministically. We first show that using a microwave cavity as ancilla and a transmon qubit as emitter is
a good platform to produce photonic matrix product states. The ancilla cavity combines a large controllable
Hilbert space with a long coherence time, which we predict translates into a high number of entangled photons
and states with a high bond dimension. Going beyond this paradigm, we then consider a natural generalization of
this platform, in which several cavity-qubit pairs are coupled to form a chain. The photonic states thus produced
feature a two-dimensional entanglement structure and can be interpreted as radial plaquette projected entangled
pair states [Wei, Malz, and Cirac, Phys. Rev. Lett. 128, 010607 (2022)], which include many paradigmatic states,
such as the broad class of isometric tensor network states, graph states, and string-net states.
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I. INTRODUCTION

Producing large-scale entangled photonic states is cen-
tral to many quantum technologies, including computing
[1], cryptography [2], networks [3], and sensing [4]. The
standard method for producing multiphoton entanglement uti-
lizes parametric down-conversion (PDC) [5], which has been
used to produce 12-photon entanglement [6]. However, PDC
possesses certain limitations, most notably the exponential
decrease of success probability with photon number. One
promising way to overcome that is to deterministically and
sequentially generate a string of entangled photons using a
single quantum emitter [7–13]. The class of states that can
thus be generated coincides with the set of matrix product
states (MPS) [9], a type of tensor network states (TNS) that
widely appears in one-dimensional quantum many-body sys-
tems [14–17]. Some sequential photon generation protocols
have been experimentally realized in quantum dots [18] and
circuit QED [19,20]. Using coupled emitters [21–25] or al-
lowing the emitted photons to travel back and interact with
the photon source again [26–32], it is possible to produce
certain projected entangled-pair states (PEPS) [33], which are
higher-dimensional generalization of MPS.

Preparing most PEPS is known to be difficult, as they gen-
erally require a preparation time that increases exponentially
with the system size [34,35]. In contrast, a broad subset of
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PEPS that can be prepared efficiently are the radial plaquette
PEPS (rp-PEPS) [36]. These are obtained through the sequen-
tial application of geometrically local unitaries in the form
of plaquettes of side length Lp. rp-PEPS contain isometric
tensor network states (isoTNS) as a subclass [37], which are
PEPS [14–17] subject to an isometry condition. This imme-
diately implies that rp-PEPS include important states such as
the graph states with local connectivities [23,38], toric codes
[34,39], all string-net states [40–44], and hypergraph states
with local connectivities [45]. The experimental preparation
of such states in two dimensions is pursued intensely [46–48].

To date, existing platforms and proposals have almost
exclusively explored photonic MPS of bond dimension D = 2
[7,8,11,12,18,20], with one theoretical protocol forming an
exception, which is capable of deterministically producing
MPS with higher bond dimensions using an ordered array of
Rydberg atoms [13]. These platforms, however, do not easily
extend to produce higher-dimensional PEPS. The existing
proposals that produce higher-dimensional PEPS are also
mostly limited to D = 2, and particularly focus on cluster
state generation. One notable exception is the protocol in
Ref. [27], which produces two-dimensional PEPS with D > 2
utilizing the PDC process in an optical loop, but with a
probabilistic protocol. Thus, despite significant efforts, there
are still important theoretical challenges on deterministically
producing high-fidelity and high-bond-dimension photonic
tensor network states in one and particularly in higher
dimensions. Sequential generation of photonic tensor network
states with high bond dimension would allow creating
states useful for quantum metrology [49,50], ancilla-photon
superposed states [13] useful for quantum networks [51], and
ground states of a large variety of many-body systems useful
for quantum simulation [16,52–55].

In this work, we propose a circuit QED platform capable of
deterministically generating (microwave) photonic rp-PEPS
with the so-called source point [36] in one corner of the lattice.
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FIG. 1. Generating photonic matrix product states (MPS) with circuit QED. (a) We consider a cavity dispersively coupled to a transmon,
which can be controlled by driving both the cavity (εC) and the transmon (εT ). The transmon excitation can be converted into a traveling
microwave photon. By sequentially applying unitary operations followed by photon emissions Mph, one can produce a chain of entangled
photons. (b) The level diagram of the system. The red (gray) levels are used in the protocol for D = 2 MPS generation. The yellow (light gray)
arrows denote driving of the transmon, and the blue (dark gray) arrows denote driving of the cavity. (c) Quantum circuit of the MPS generation
protocol. The SWAP gates correspond to photon emissions (Mph).

We first consider a cavity dispersively coupled to a transmon
qubit and show that this allows one to generate MPS of mod-
erately high bond dimension and many entangled photons,
which is outstanding among currently available platforms.
Our simulations indicate that this platform has the potential
to deterministically generate a one-dimensional cluster state
with a large number of photons using current technologies,
which would improve the experimental results in Ref. [20]
severalfold. We then show that by using an array of m such
MPS sources, one can efficiently generate rp-PEPS. The cir-
cuit depth in terms of plaquette unitaries to prepare such a
state on an n × m lattice of photons asymptotically scales as
[36]

T ≈ Lpn + m. (1)

Since rp-PEPS is a large class, our platform allows one
to create photonic states useful for applications in quantum
computing [38,45], metrology [49,50,56], communication and
networking [57], as well as states that exhibit topological
order [34,39,42,43]. Moreover, the sequential nature of the
protocol leads to temporally separated microwave photons,
which would allow one to efficiently distribute them to mul-
tiple receivers, thus directly building a multiparty entangled
state. Realization of state transfer and distribution between
superconducting quantum processors is intensely pursued cur-
rently [58–60].

The rest of the article is structured as follows. In Sec. II,
we present our setup to generate arbitrary MPS using a
microwave cavity coupled to a transmon qubit, discuss the im-
perfections that arise during the MPS generation, and estimate
the performance of the device. In Sec. III, we present the setup
to generate photonic rp-PEPS and provide the circuits for
generating the two-dimensional cluster state, the toric code,
and isometric tensor network states. Finally, we analyze the
scaling of the state preparation fidelity. We summarize our
work in Sec. IV.

II. GENERATING MPS WITH CIRCUIT QED

In this section, first we introduce the setup in Sec. II A and
the MPS generation protocol in Sec. II B. Then we analyze
the imperfections during the protocol in Sec. II C, and show in

Sec. II D that this protocol can be implemented using current
technology.

A. Circuit QED sequential photon source

We consider the setup sketched in Fig. 1(a), where a cav-
ity (with the Hilbert space HC) is dispersively coupled to a
transmon qubit (with the Hilbert space HT ), with a Hilbert
space Hsrc = HT ⊗ HC [61]. The transmon ground (excited)
state is denoted by |0〉T (|1〉T ). Defining the transition opera-
tor σαβ = |α〉T 〈β| for the transmon, the system Hamiltonian
Hsrc(t ) = H0 + Hdrive(t ) contains a static part

H0 = ωT σ11 + ωCa†a − χσ11a†a, (2)

and time-dependent driving of transmon and cavity,

Hdrive (t ) = εC (t )a + εT (t )σ01 + H.c. (3)

Here ωT (ωC ) is the frequency of the transmon qubit (cav-
ity), and a is the lowering operator of the cavity mode. The
dispersive interaction strength χ sets a timescale for cavity-
transmon gates. The driving amplitude of the qubit (cavity)
is εT (εC ). The level structure of this system is shown in
Fig. 1(b) [62]. This Hamiltonian gives universal control of
the cavity-transmon system [63,64]. We assume that one can
engineer the following on-demand photon emission process
Mph from the transmon excitation:

Mph : |i〉T → |0〉T |i〉ph, i = 0, 1. (4)

For example, one can realize Mph by coupling the qubit to an
emitter via a tunable coupler [20].

B. MPS generation protocol

The setup in Sec. II A can sequentially generate photonic
MPS using the generic protocol proposed in Ref. [9], schemat-
ically shown in Fig. 1(c). We identify the first D Fock states
of the cavity mode as our basis for the D-level ancilla, with a
Hilbert space HD. The MPS generation protocol starts from
an ancilla initial state |ϕI〉C ∈ HD with the transmon in its
ground state. In each photon generation round, the ancilla first
interacts with the transmon, described by a unitary operation
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U[i]. Then, the transmon emits its excitation and returns to its
ground state [denoted by a SWAP gate in Fig. 1(c)], generating
a photonic qubit defined by the presence or absence of a
photon at that time.

Compared to the setup in Ref. [10] which proposes to em-
ploy a D-level atom as ancilla and an optical cavity as emitter,
our setup is better suited to current circuit QED experiments.
In particular, our protocol exploits the long coherence times
that can be achieved in microwave cavities and uses transmon
qubits only to control and emit, but not to store excitations.

Throughout the protocol, unitaries are applied only after
emission of the photon from the emitter, such that they always
act on ancilla-transmon states of form |ϕ〉C |0〉T . As a result we
can specify the action of the unitaries in terms of isometries V
that act only on the cavity Hilbert space:

U[i](|ϕ〉C |0〉T ) =
1∑

j=0

(
V j

[i]|ϕ〉C
)| j〉T . (5)

Since U[i] is unitary, the matrices {V j
[i]} satisfy the

isometry condition
∑1

j=0 V j†
[i] V j

[i] = ID. The quantum
state after n rounds of photon generation is |	〉 =
MphU[n] · · · MphU[1]|ϕI〉C . By disentangling the ancilla and
the photonic state in the last step, we obtain the final
state |	〉 = |ϕF 〉C ⊗ |ψMPS〉, which includes the following
photonic MPS [9]:

|ψMPS〉 ∝
1∑

i1,...,in=0

C〈ϕF |V in
[n] · · ·V i1

[1]|ϕI〉C |in · · · i1〉. (6)

We use the quantum optimal control (QOC) [13,65] to find the
pulse sequences that implement the desired unitary operations
for our protocol (see details in Appendix A). As a demon-
stration, we show how to generate a linear cluster state [66],
which can be written as an MPS of bond dimension D = 2,
where

V 0
[i] = 1√

2

(
1 0
1 0

)
, V 1

[i] = 1√
2

(
0 1
0 −1

)
,

|ϕI〉C = 1√
2

(|0〉 + |1〉), |ϕF 〉C = |0〉. (7)

In each round except the last, we apply the same unitary
U[i 
=n] followed by photon emission represented by Mph, which
adds one site to the state. In the last step, we apply the unitary
U[n] followed by Mph, which emits the last photon and disen-
tangles the source from the photons. The pulse sequence of the
driving [Eq. (3)] for implementing the two unitaries is shown
in Fig. 2, and we provide more details in Appendix A.

C. Analysis of experimental imperfections

Ideally, the above protocol would generate the desired
pure photonic state |ψMPS〉. However, various errors may
occur in this system during the unitary operation and the
photon emission process. Thus the protocol produces an n-
photon density matrix ρph, with a nonunit fidelity FMPS =
ph〈ψMPS|ρph|ψMPS〉ph. Due to the sequential nature of the
protocol, FMPS is an exponentially decaying function of the

FIG. 2. Optimized cavity and transmon drive [Eq. (3)] to im-
plement the unitaries U[i 
=n] and U[n] for the cluster state [Eq. (7)]
generation.

emitted photon number n, that, is

FMPS = e−ξn, (8)

where ξ is the error per photon emission. An example of this
behavior is shown in Fig. 3(a).

Decoherence processes in the cavity-transmon system in-
clude transmon decay at a rate 
T , cavity mode decay at
a rate 
C , and transmon dephasing at a rate 
φ [67,68].
These processes happen during both the unitary operations
and the photon emission process. The finite anharmonicity α

of the transmon further allows leakage into the second excited
state |2〉T in every unitary operation.

To model the imperfections due to finite anharmonicity
α during unitary operations, we model the transmon as a
truncated anharmonic oscillator with basis {|0〉T , |1〉T , |2〉T }.
After further including the decoherence effects, the system
density matrix ρsrc ∈ Hsrc evolves under the master equation

ρ̇src(t ) = −i[H ′
src(t ), ρsrc(t )]

+
∑

n=T,C,φ

(Jnρsrc(t )J†
n − 1

2
{ρsrc(t ), J†

n Jn}), (9)

(a) (b)

FIG. 3. (a) The state fidelity versus the number of photons for
the cluster state generated using the pulse sequence in Fig. 2, with
the state-of-the-art parameters listed in Sec. II D. The horizontal line
denotes FMPS = 1/2, with the corresponding photon number Nph de-
fined as the entanglement length of the photon string. (b) Evolution of
the transmon excited population p1T during one sequence of cluster
state generation. The p1T shows a transient evolution during the uni-
tary operation U[i 
=n] driven by the pulse in Fig. 2, and exponentially
decays during the photon emission process.
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with H ′
src(t ) being the system Hamiltonian including trans-

mon double excitations with anharmonicity α. Defin-
ing the spin operators σi j = |i〉T 〈 j|, the jump opera-
tors are JT = √


T (σ01 + √
2σ12), JC = √


Ca, and Jφ =√

φ (σ11 + 2σ22).
Since current experiments generally have |α| � |χ | �


C, 
T , 
φ [61,67,69], for a gate time T ∼ 1/|χ | we can
estimate the scale of the errors on FMPS during each unitary
operation perturbatively. The total error ξ is a sum of several
parts: (i) transmon decay ξ
T , (ii) transmon dephasing ξ
φ

,
(iii) cavity decay ξ
C , and (iv) transmon nonlinearity ξα . These
contributions scale as

ξ
T ∼ 
T /|χ |, ξ
φ
∼ 
φ/|χ |,

ξ
C ∼ 
C/|χ |, ξα ∼ |χ |2/|α|2. (10)

Imperfections also affect the photon emission process.
First, there is a finite photon retrieval efficiency pem of the
emitter [70] associated to Mph. Second, system decoherence
happens during the photon emission. We assume a finite
photon emission rate 
em, and thus a finite duration of pho-
ton emission, Tem (which we can tune). In the regime of

T , 
φ, 
C � 
em, we can estimate scaling of error on FMPS

due to system decoherences during each emission process as

ξ em

C

∼ 
CTem, ξ em

T

∼ 
T /
em,

ξ em

φ

∼ 
φ/
em, ξpem ∼ − ln pem. (11)

Notably, here ξ em

T

and ξ em

φ

, which are due to transmon de-
coherence, do not depend on the emission time Tem. The
expression for ξpem comes from the fact that e−ξpem nph ∼ p

nph
em.

The finite photon emission time also results in a residual
population of the transmon first excited state p1T (Tem ) =
e−
emTem p1T (0), which reduces the photon retrieval efficiency
pem. The whole photon emission process including all im-
perfections can be described by a process map Wph : Hsrc →
Hsrc ⊗ Hph that maps ρsrc to a system-photon joint density
matrix (see the construction of Wph in Appendix C). Finally,
note that we did not include the imperfections during photon
transmission, which is not a part of our model.

Using the solution of Eq. (9) and the process map Wph,
we can use a matrix product density operator (MPDO) ap-
proach [13] to obtain the photonic state fidelity FMPS and
extract the overall error rate ξ (details in Appendix B). As
a demonstration, we analyze the process of generating the
one-dimensional cluster state using the pulses in Fig. 2. From
the scaling data of ξ as a function of various imperfections
(details in Appendix D), in the regime of small error (ξ � 1),
we have

ξ ≈ ξunit + ξ src
em + ξ ph

em, (12)

which includes imperfections during unitary operation,

ξunit = β0 + βC
C + βT 
T + βφ
φ

|χ | + βα|χ |2
|α|2 , (13)

cavity-transmon decoherence during photon emission,

ξ src
em = βφ,em
φ/
em + βC,em
CTem, (14)

and imperfections of the photon emission,

ξ ph
em = −βem ln

(
(1 − e−
emTem )


em


em + 
T
pem

)
. (15)

The above overall scaling matches our qualitative pre-
diction Eqs. (10) and (11) very well. The nonuniversal
coefficients {βi} depend on the target photonic state and the
pulse shape, and are extracted from scaling data shown in
Appendix C. In our example of cluster state generation, using
the pulses shown in Fig. 2, we obtain

βC = 2.20, βT = 1.43, βφ = 0.92,

βφ,em = 0.51, βC,em = 0.47, βem = 0.47,

β0 = 2.58 × 10−4, βα= 46.7.

(16)

Here β0 corresponds to the imperfect synthesis of the optimal
control pulse, and can typically be made negligible. All other
{βi} are of order O(1), except βα which correspond to the
effect of transmon double excitations, which is particularly
large because it scales with the maximum driving amplitude
of the transmon, which can be several times larger than |χ |
(cf. Fig. 2). Note that the decoherence due to transmon double
excitations [cf. Eq. (13)] is still relatively small, thanks to the
strong anharmonicity |α| that suppresses the transmon double
excitations, and one can further reduce this leakage error by
including higher levels in the pulse optimization [71].

D. Performance estimation of protocol

We estimate the performance of this sequential photon
source using current state-of-the-art experimental parameters.
Specifically, we use cavity and transmon parameters [67]

C = 0.37 kHz, 
T = 5.88 kHz, 
φ = 23.26 kHz, α = 2π ×
−236 MHz, and χ = 2π × −2.194 MHz, and the photon
emission parameters [20] 
em = 2π × 1.95 MHz and pem =
1 [72]. We choose the photon emission duration as T opt

em =
ln(1 + βem
em/βC,em
C )/
em to minimize ξ [cf. Eq. (12)]
under the assumption of a fixed photon emission rate 
em. For
the one-dimensional cluster state generated using the pulse
sequence in Fig. 2, we plot the resulting fidelity FMPS in
Fig. 3(a). Defining the entanglement length Nph = ln 2/ξ [for
which ξ has been defined in Eq. (8)], which is the photon
number at which the fidelity drops down to FMPS = 1/2, we
obtain Nph ≈ 123, which would mean an eightfold increase
compared to the experimentally demonstrated Nph ≈ 15 in
Ref. [20]. This improvement partly comes from the fact that
we exploit the long transmon lifetime reported in Ref. [67].
If we use the transmon properties reported in Ref. [20], our
protocol gives Nph ≈ 47 (see Appendix D), which is still a
substantial improvement.

To understand this improvement, we plot the population
p1T of the transmon excited state |1〉T during one photon gen-
eration round in Fig. 3(b). We see that |1〉T is only transiently
populated during the unitary operation U[i 
=n] (driven by the
pulse in Fig. 2), compared to the protocol in Ref. [20] where
one always has p1T = 1/2 during the cluster state generation.
This leads to a substantial improvement of the entanglement
length obtained in our protocol [73]. Moreover, it is possible
to further reduce p1T by adding a corresponding penalty in the
optimal control algorithm (cf. Appendix A).
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Finally, we estimate the scaling of Nph with the bond di-
mension D of the desired MPS as (see Appendix D 3)

Nph ∝ D−2, (17)

and this scaling mainly comes from the time T D
MPS = O(D2)

[74] taken to implement a unitary on the 2D-dimensional
Hilbert space dim Hsrc = 2D (cf. Sec. II B). This scaling in-
dicates that our system can create MPS of moderate bond
dimensions. This already finds many applications and can
efficiently capture the ground states of one-dimensional local
gapped Hamiltonians [52–55].

III. GENERATING RP-PEPS WITH CIRCUIT QED

The previous section shows that the proposed cavity-
transmon system can produce high-fidelity one-dimensional
photonic MPS. In this section, we demonstrate how to extend
this to implement the high-dimensional photonic state gen-
eration protocol introduced in Ref. [36]. First, in Sec. III A
we introduce the array of coupled sequential photon sources
and prove the universality of the Hamiltonian for this system,
which allows this system to implement arbitrary local unitary
transformations. Then we show in Sec. III B that, using this
setup, one can generate rp-PEPS, whose source point (cf.
Sec. III B) sits on a corner of the lattice. After that, in Sec. III C
we demonstrate this protocol by discussing the preparation of
two-dimensional cluster states, the toric code, and the isoTNS.
Finally, we analyze the scaling of the state preparation fidelity
for this protocol in Sec. III D. Here we mainly focus on gener-
ating two-dimensional photonic states; however, this protocol
readily extends to higher spatial dimensions [36].

A. Setup: Array of sequential photon sources

Let us consider a natural generalization of the setup in
Sec. II A to a quasi-one-dimensional array of Lc × m cavity-
transmon pairs, and use the first D′ Fock states of each cavity.
The Lc cavities in each row form an ancilla A of dimension
D = D′Lc . While Lc = 1 is the most straightforward choice,
sometimes it may be beneficial to choose Lc > 1, as we
comment on in Sec. III D. Moreover, in each row there is
one emitter {Tj} j=1,...,m [see Fig. 4(a)], while other transmon
qubits are used to provide universal control to the correspond-
ing cavities [75].

We couple each neighboring pair of photon sources by a
coupler that interacts with both cavities [76] [shown as green
boxes in Fig. 4(a)]. By driving the coupler with two-tone
pumps, the four-wave mixing process of the coupler reduces
to the following bilinear interaction [77]:

Hi j
int (t ) = gi j (t )

(
eiϕi j (t )a†

i a j + H.c.
)
. (18)

Here a†
i denotes the creation operator of the cavity for the

i-th photon source. The coupling strength gi j (t ) and phase
ϕi j (t ) can be controlled through drives. Let us denote the set
of vertices of the array of sources in Fig. 4(a) as V , where
each vertex vi j connects the cavities of the ith and jth cavity-
transmon pairs. One can thus write down the Hamiltonian of

coupler

emitter

(a) (b)

FIG. 4. (a) The setup to generate photonic rp-PEPS, which con-
sist of a quasi-one-dimensional array of cavity-transmon pairs [the
notations follow that in Fig. 1(a)]. In each row there is a transmon
emitter that can emit photons. The neighboring cavities are connected
by Y-shaped couplers [the green (dark gray) boxes]. (b) rp-PEPS with
open boundary conditions are produced by sequentially applying
unitaries on overlapping regions. Here the source point [36] of the
state is denoted by the red dot.

this system as

Harray(t ) =
Lc×m∑
i=1

Hi
src(t ) +

∑
vi j∈V

Hi j
int (t ), (19)

where Hi
src is the Hamiltonian for the i-th source, containing

the terms in Eqs. (2) and (3). Equipped with the universal
control of each source and the bilinear couplings, we prove in
Appendix F that Harray provides universal control. Given this,
we can assume that one can implement arbitrary local unitary
operations on this system.

In sum, this system can be represented by a one-
dimensional array of D′LC -level ancillas (labeled by
{Aj} j=1,...,m) coupled to transmon emitters (labeled by
{Tj} j=1,...,m), illustrated in Fig. 5. Note that one can let
more transmons in each row emit photons, which effectively
increases the dimension of the transmon emitters. Finally,
in the next sections we will treat each ancilla effectively as
Lp − 1 qubits by choosing D′ and Lc such that

D′LC � 2Lp−1. (20)

end

transmon ancilla photon

FIG. 5. The preparation of photonic rp-PEPS (Lp = 2 here). In
the preparation of the (i, j)th site, we apply a unitary Û[i, j] followed
by a photon emission of the transmon Tj . After the initial steps (1)
and (2), steps (3) and (4) will be repeated. At the end of the protocol,
we swap the excitations on the ancillas to the emitters and then
convert them to photons, denoted as S.
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B. Preparation of rp-PEPS

Reference [36] introduces a generic protocol to produce
rp-PEPS on flying qubits. rp-PEPS are states prepared by
sequentially applying unitaries on plaquettes of size Lp × Lp

(Lp � n, m) in a radial fashion [see Fig. 4(b) for an example].
They possess long-range correlations and area-law entangle-
ment, and photonic rp-PEPS can be efficiently prepared with
the circuit depth, Eq. (1).

The generation procedure of rp-PEPS is shown in Fig. 5.
We start from an initial state where all the cavities and the
transmons are in their ground states |ϕ0〉 = |0{Aj}〉 ⊗ |0{Tj}〉,
and sequentially apply unitaries {Û[i, j]}. The unitary U[i, j] is
applied in the ith layer on the ancillas {Aj, . . . , Aj+Lp−1} and
transmons {Tj, . . . , Tj+Lp−1}. As each ancilla can be viewed
effectively as Lp − 1 qubits [Eq. (20)], the unitary equiva-
lently acts on a plaquette of qubits of size Lp × Lp. After each
unitary, we trigger the photon emission from the transmon
Tj [denoted as isometry M j

ph; cf. Eq. (4)]. Note that after
the last unitary per column, the last emission process per
column M

m−Lp+1
ph (see step 4 of Fig. 5) converts excitations

of transmons {Tm−Lp+1, . . . , Tm} to multiple photonic qubits at
the same time. Repeatedly applying this procedure following
the order shown in Fig. 5 [also see below in Eq. (21)], and in
the end emitting the remaining excitations in the ancillas (an
operation collectively denoted as S), we generate the desired
two-dimensional photonic state [36],

|ψrp〉 = 〈ϕ0|S
n−Lp+1∏

i=1

m−Lp+1∏
j=1

(
M j

phÛ[i, j]
)|ϕ0〉. (21)

Given the universal control of Eq. (19), this protocol can
produce arbitrary states of the form of Eq. (21) [schematically
shown in Fig. 4(b)], which are two-dimensional rp-PEPS of
plaquette size Lp with open boundary condition, with their
source point located at the first photon being created [78].
Also note that, in the above protocol, photon emissions reset
the transmon. This allows one to efficiently reuse them, and
this parallelizes the preparation procedure (shown in steps 3
and 4 of Fig. 5), such that the circuit depth for preparing
rp-PEPS of plaquette length Lp on an n × m lattice asymp-
totically scales as Eq. (1) [36]. This system further allows
increasing the plaquette size by increasing the number of
cavity-transmon pairs, LC , or using more modes D′ in the
cavity.

Finally, we note that by replacing the photon emissions
with qubit measurements, this state generation protocol nat-
urally becomes a qubit-efficient quantum variational scheme
[79,80].

C. Examples

1. Two-dimensional cluster state

Consider a two-dimensional square lattice, with the
position vector of each site denoted as �a ≡ (i, j). The two-
dimensional cluster state |Cl〉2D is prepared starting from a
product state of all qubits in |+〉 by applying controlled-Z (CZ)

emit emit SWAP+H

SWAP+Hemit emit

H

H

H

FIG. 6. Preparing two-dimensional cluster state |Cl〉2D following
the rp-PEPS preparation protocol (cf. Fig. 5, and we keep the same
notation as there). Here both the ancillas and transmons have two
levels (qubits), initialized in the state |+〉. The lines connecting two
qubits mean that they have been acted on by a controlled-Z (CZ) gate
in a previous step, whereas the thick red (gray) lines denotes that CZ

gates are being applied in that step. Steps 1–4 prepare the first column
of photons. To create the next column of photons, in each unitary we
first swap certain ancilla states to the corresponding transmons in the
same row [illustrated by green (gray) arrows], then apply Hadamard
gates to set the ancilla states to |+〉 (see steps 5.1 and 7.1), and finally
apply CZ gates, which prepares the second column (see step 8). By
repeating steps 5.1 to 8, one can prepare |Cl〉2D of arbitrary size.

gates on each nearest-neighbor pairs of qubits [66]:

|Cl〉2D =
∏

�b adjacent �a
CZ�a�b

⊗
{�a}

|+〉. (22)

This state is an rp-PEPS of plaquette size Lp = 2; thus it
can be prepared by the protocol in Sec. III B, where each
ancilla consists of a qubit (this means that we use Lc = 1
cavity with D′ = 2 Fock basis). The preparation procedure is
shown in Fig. 6, where the corresponding plaquette unitaries
{U[i, j]} in Eq. (21) are formed by CZ, SWAP, and Hadamard
gates.

One can easily extend the size of the state horizontally
by repeatedly applying the steps 5.1–8 in Fig. 6, and verti-
cally by fabricating a longer chain of ancilla-transmon pairs.
Moreover, omitting some photon emissions, one can create
arbitrary graph states of local connectivities in this way [23].

To prepare |Cl〉2D of size n × m, the depth for this circuit in
terms of plaquette unitaries is T ≈ 2n + m [cf. Eq. (1)]. We
also point out that this can be further improved to Tcl ≈ 2n,
since the CZ gates commute with each other. As an example,
steps 1–4 in Fig. 6 can be combined such that we apply
CZ gates on all adjacent pairs in the ancilla-transmon array
in parallel (which are contained in two layers of plaquette
unitaries), then emit one column of photons. The CZ gates
between two cavities can be realized by combining single-
qubit rotations and a controlled-NOT (CNOT) gate, which has
been experimentally implemented in Ref. [81].

The above further parallelization of the circuit shows a
generic feature of photonic rp-PEPS [Eq. (21)]: if the sequen-
tial product of unitaries Û i

col = ∏m−Lp+1
j=1 Û[i, j] for preparing

each column of photons can be parallelized as a circuit of
depth O(1), one can directly implement Û i

col followed by the
photon emission of all transmon emitters ⊗ j M j

ph to prepare
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(a) (b) (c)

(d)

FIG. 7. Preparation of photonic toric code |TC〉, inspired by
Ref. [47]. Throughout this figure, we keep the same notation as that
in Fig. 5. The support of the star operators As is shown in green
(light gray), and that of the plaquette operators Bp in red (dark gray).
(a) The toric code is the unique +1 eigenstate of all star and plaquette
operators As and Bp. Each plaquette has a “representative qubit,”
denoted by a purple dot. (b) We group the Hadamard and CNOT

gates that will be applied to each plaquette as V̂ . The SWAP gates
are denoted as Ŝu and Ŝud . (c) We alternatively apply V̂ or identity
gate I in each step (dashed lines separate different steps), followed
by a photon emission (for example, from steps 1 to 3). Also after
each photon emission, one needs to swap the corresponding ancilla
state to the transmon; thus in steps 4–9 the unitaries are generally
the product of SWAP gates (Ŝu or Ŝud ) with V̂ or I . (d) After step 9 of
panel (c), one obtains |TC〉 of size 4 × 4 with the same geometry as
that in panel (a), consisting of three columns of photonic qubits and
the column of ancilla qubits. By further repeating steps 4–9 in panel
(c) and using more ancilla-transmon pairs, one can generate |TC〉 of
arbitrary size.

the ith column of the rp-PEPS. This also applies to the toric
code below.

2. The toric code

The toric code [82,83] is an example of a string-net state,
and finds important applications in quantum error correction.
It is defined as the simultaneous +1 eigenstate of all star
operators As = ∏

i∈s Zi [green boxes in Fig. 7(a)] and pla-
quette operators Bp = ∏

j∈p Xj [red boxes in Fig. 7(a)], i.e.,
As|TC〉 = Bp|TC〉 = +1|TC〉. Here {Zi} and {Xj} are Pauli
operators.

The toric code has recently been prepared on a stationary
lattice, with the following procedure [47]:

(1) Initialize the whole lattice in the state
⊗

{�a} |0〉, where
all 〈As〉 = 1 and 〈Bp〉 = 0.

(2) Choose a qubit for each plaquette as the representa-
tive qubit [an example choice is denoted by purple dots in
Fig. 7(a)], and apply a Hadamard gate on it.

(3) Within each plaquette, sequentially apply CNOTs with
the representative qubit as the control and other qubits as
targets, with an ordering such that the representative qubits
are not changed until the CNOTs in their plaquette have been
applied [cf. Fig. 7(b)].

Inspired by this procedure, one can prepare |TC〉 as a pho-
tonic rp-PEPS of Lp = 2 using the protocol in Sec. III B, with
each ancilla consisting of a single qubit. To ease the notation,
in Fig. 7(b) we group the gates in steps 2 and 3 of the above
procedures that act on each plaquette as V̂ , and the gates used
to swap the ancilla and transmon state as Ŝu and Ŝud .

The preparation circuit is shown in Fig. 7(c), where the
plaquette unitaries are alternatively formed by V̂ or the iden-
tity gate Î , and their product with SWAP gates (Ŝu or Ŝud ). The
V̂ implement desired operations for each toric code plaquette
region [47], while the photon emission and SWAP gates will
“push” the produced entangled states toward the photon lattice
(denoted by blue circles). After all operations in Fig. 7(c), one
obtains |TC〉 of size 4 × 4 on three columns of photonic qubits
and the ancilla qubits, shown in Fig. 7(d). By further repeating
steps 4–9 in Fig. 7(c) and using more ancilla-transmon pairs,
one can generate |TC〉 of arbitrary size. We also point out that,
by further parallelizing the unitaries [47], one can apply the
same procedure as described in the two-dimensional cluster
state generation protocol (cf. Sec. III C 1) to obtain a circuit
depth TTC ≈ 2n in terms of plaquette unitaries for generating
|TC〉 of size n × m.

The schemes presented here for cluster state generation
and toric code generation are directly derived from their cir-
cuit generation on stationary lattices. This idea allows one to
obtain photonic state generation circuits by utilizing existing
circuits on stationary lattices. For example, one can generate
string-net states by extending the protocol in Sec. III C 2,
using similar circuits as in Ref. [84].

3. Isometric tensor network states

The rp-PEPS contain the isometric tensor network states
[37] (isoTNS) as a subclass [36]. An isoTNS is parametrized
by its bond dimension D [37], which bounds the entanglement
entropy of the state, and its physical dimension d , which
specifies the Hilbert space dimension of each site.

As the protocol in Sec. III B can prepare rp-PEPS with the
source point in the corner of the lattice, one can prepare the
subclass of isoTNS whose orthogonality center (see details in
Appendix E) is in this corner. To do so, one has to require
the unitaries to have an “L” shape [36], as shown in Fig. 8
for the case of D = 2 and d = 2. Here each unitary B̂[i, j] acts
on the ancilla Aj and transmons {Tj, . . . , Tj+Lp−1} to produce
isoTNS of bond dimension D � 2Lp−1. Increasing the isoTNS
bond dimension corresponds to increasing the arm length
of the L-shaped unitary. In the end of the protocol, we can
disentangle the ancilla from the photonic state being produced
[36]. We provide more details on isoTNS in Appendix E.

The subclass of isoTNS whose orthogonality center is in
the corner of the lattice already contains all graph states of
local connectivities [23] and all string-net states [43], and thus
the two-dimensional cluster state and toric code discussed
previously can be also created in this way. However, we point
out that, the circuits we presented in Secs. III C 1 and III C 2
are more efficient than the circuit derived from their isoTNS
representation. For example, the isoTNS representation of
arbitrary Zλ toric code [85] is shown in Appendix E, where
the physical dimension of the tensor is λ4. Thus for the qubit
(λ = 2) toric code (|TC〉 discussed in Sec. III C 2, this isoTNS
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FIG. 8. Preparation of isoTNS with bond dimension D = 2 and
physical dimension d = 2. In the preparation of the (i, j)th site, we
apply a unitary B̂[i, j] connecting the cavity Cj and the transmons
Tj, Tj+1, followed by a photon emission of the transmon Tj . After the
initial steps (1 and 2), steps 3 and 4 will be repeated to build up the
desired 2D isoTNS. The red (dark gray) dot denotes the orthogonality
center of the isoTNS.

generation scheme requires each transmon emitter to be 16
dimensional, for which we need to couple multiple transmons
to the same ancilla, and thus is more complex than the scheme
shown in Sec. III C 2. The existence of the isoTNS represen-
tation of Zλ toric code for arbitrary λ also implies that our
scheme can create photonic qudit toric code, and such states
show certain advantages as quantum error-correcting codes
compared to the qubit toric code [86,87].

Finally, the isoTNS is a class of states that can be efficiently
prepared as shown here (also see Ref. [36]), and serve as an
ansatz for classical variational algorithms [37]. Combining
these two features may allow one to implement interesting
protocols such as variational quantum metrology [49,50,56].

D. Scaling of rp-PEPS generation fidelity

In the presence of imperfections, the rp-PEPS generation
protocol (cf. Sec. III B) will yield a mixed photonic state ρrp.
Here we provide a qualitative estimation of the fidelity Frp =
〈ψrp|ρph|ψrp〉 of the rp-PEPS generation protocol. Moreover,
one can calculate the fidelity exactly by extending the MPDO
approach in Appendix B.

Let us consider the array shown in Fig. 5(b) with m rows,
where each row consists of LC cavity-transmon pairs, with
each cavity and transmon having the decoherence channels
described in Sec. II C. Since we use the first D′ Fock states
of the cavity, we take the worst-case estimation of the cavity
decay rate 
′

C = (D′ − 1)
C .
To prepare a generic rp-PEPS of size n × m and plaquette

length Lp (Lp � n, m), when preparing each photon we need
to apply a unitary acting on L2

p qubits, thus dim Û[i, j] ≈ 2L2
p .

We estimate the time Trp of implementing a generic unitary
using optimal control methods as Trp ∼ (dim Û[i, j] )2 = O(4L2

p )
[74]. Note that the numerical cost of the pulse optimization
also increases exponentially with L2

p. Since both the initial
and the final states of the sources are the ground state |ϕ0〉
[cf. Eq. (21)], in the preparation procedure (cf. Fig. 5), each
source remains excited for a time LpnTrp. Moreover, there
are in total around nm photon emissions. Thus by applying
the same argument as in the MPS generation protocol (cf.

Sec. II C), one can estimate the scaling of the fidelity as

Frp ∼ exp
[−ξ ′D′

unit · mLc · LpnTrp − (
ξ ′src,D′

em + ξ ′ph
em

) · nm
]
,

(23)
with ξ ′D′

unit, ξ ′src,D′
em , and ξ ′ph

em of the same form as that in
Eqs. (13)–(15), but with cavity decay rate 
C replaced by 
′

C
and different nonuniversal constants {β ′

i }.
Given Lp, the number of cavities in each ancilla LC is

LC = �(Lp − 1)/log2D′�. We can thus write overall scaling

[Eq. (23)] as Frp ∼ exp(−ξ
Lp,D′
rp nm), with the error rate of

generating each photon ξ
Lp,D′
rp as

ξ
Lp,D′
rp ≈ 4L2

p (Lp − 1)Lpξ
′D′
unit/log2D′ + ξ ′src,D′

em + ξ ′ph
em. (24)

From the above analysis, we see that using more cavities
Lc > 1 reduces the maximum number of excitations in each
cavity D′ = �2(Lp−1)/Lc� significantly, which leads to a cor-
responding reduction in the error due to cavity decay, 
′

C =
(D′ − 1)
C . In addition, it is experimentally easier to control
cavities with small Hilbert space than controlling a single
cavity with a large Hilbert space. However, the fidelity of
the intercavity connection is generally lower than the single-
cavity operation [77]. So depending on the desired plaquette
length Lp of the rp-PEPS, one needs to choose appropriate Lc

and D′ to get the highest possible fidelity. A precise determi-
nation of the optimal Lc and D′ further depends on the specific
target state, the details of the unitary operations, as well as the
errors in the intercavity operations [77,88].

We expect an experimental realization of the simplest Lc =
1 protocol could be a good first step to further understand the
performance of the rp-PEPS protocol. In the end, an experi-
ment aiming at large plaquette sizes may have to be optimized
regarding the total number of cavities used, but this is beyond
the scope of the present paper.

IV. CONCLUSION

We propose a physical platform and a protocol to sequen-
tially generate microwave photonic tensor network states with
moderately high bond dimensions based on a dispersively
coupled cavity-transmon system. The good coherence prop-
erties of microwave cavities lead to favorable scaling of the
photon number for the MPS; in particular, we show this plat-
form can potentially create a one-dimensional cluster state of
over a hundred photons deterministically with current technol-
ogy. The good connectivity makes this platform a promising
candidate for generating a large class of high-dimensional
rp-PEPS, and we show how to create a two-dimensional
cluster state, the toric code, and isoTNS as examples. Our
work thus serves as systematic guidance for sequential photon
generation experiments in circuit QED platforms, and can nat-
urally be applied to other dispersively coupled qubit-oscillator
systems.

Our work can be extended in many ways. First, there are
plenty of ideas to further reduce the imperfections during
the protocol by applying error-correction techniques [89,90],
applying error-transparent gates or path-independent gates
[91] on the bosonic modes, or applying open system optimal
control techniques [65,92,93]. Second, the ability to generate
strongly correlated photonic tensor network states opens the
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door of developing quantum information processing protocols
that go beyond MPS [49,50,56]. One can further simulta-
neously use coupled arrays of emitters and non-Markovian
feedback approaches [26–32] to reduce the component over-
head of the system and possibly generate a larger class of
photonic states.
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APPENDIX A: MPS GENERATION WITH CIRCUIT QED
USING QUANTUM OPTIMAL CONTROL APPROACH

In this section, we introduce our quantum optimal control
(QOC) approach (similar to that used in Ref. [13]) to imple-
ment unitaries on this setup.

We aim to find the driving amplitude εC (t ), εT (t ) for the
control Hdrive(t ) [Eq. (3)] that implements the desired unitary
operations U[i] [Eq. (5)] in HD ⊗ HT .

Given the target MPS to be prepared [Eq. (6)], one can
construct a series of isometries {Â[i]} that needs to be imple-
mented on the system [9]. For generating the n-photon cluster
state [Eq. (7)], this construction gives two kinds of isometries
Â[i 
=n] and Â[n], as well as the ancilla initial state |ϕI〉C needed
in the protocol [cf. Eq. (6)]:

Â[i 
=n] =
(

V 0
[i]

V 1
[i]

)
= 1√

2

⎛
⎜⎝

1 0
1 0
0 1
0 −1

⎞
⎟⎠,

Â[n] =

⎛
⎜⎝

1 0
0 0
0 1
0 0

⎞
⎟⎠, (A1)

|ϕI〉C = 1√
2

(|0〉C + |1〉C ).

Note that here Â[n] is different from all other Â[i 
=n], as it
contains an additional operation to disentangle the cavity from
the photons.

We can embed above {Â[i]} into U[i] to realize Eq. (5)
[see Eq. (A2), below]. In numerical calculations we keep the
first NC > D Fock states in HC . Thus dim HC = NC in our
numerical calculation. One can then write U[i] as

U[i] =
(

Â[i] B1

O B2

)
, (A2)

with its basis vector permuted as

Base(U[i] ) ≡ [Base(HD ⊗ HT ), others]. (A3)

The O is a zero matrix, which physically means that U[i]

does not cause the population to leak out of HD ⊗ HT . The
parts B1 and B2 are arbitrary, as long as U[i] is a unitary
of dimension 2NC . One needs two kinds of unitaries. Each

application of U[i 
=n] followed by the photon emission adds
one site to the cluster state. The last unitary U[n] followed by
a photon emission disentangles the source from the photonic
MPS.

To apply QOC to our circuit QED (cQED) platform with
Hamiltonian Hsrc [Eqs. (2) and (3)], we go to the rotating
frame to remove energy terms of the transmon and the cavity
mode in Hsrc, getting

H ′
src(t ) = χσ11a†a + [εC (t )a + εT (t )σ01 + H.c.], (A4)

and readily apply the QOC algorithm in Ref. [13] with the
control Hamiltonian H ′

src(t ) to find the pulse sequences to im-
plement desired U[i]. The pulse sequence to implement U[i 
=n]

and U[n] for the cluster state generation are shown in Fig. 2,
where we choose NC = 5.

APPENDIX B: THE MATRIX PRODUCT DENSITY
OPERATOR APPROACH TO COMPUTE STATE FIDELITY

In this section we recall the MPDO approach [13] to com-
pute the fidelity FMPS of the photonic state. We can rewrite
the master equation, Eq. (9), in a vectorized form:

d �ρsrc(t )

dt
= L(t )�ρsrc(t ), �ρsrc =

Nh∑
a,b=1

ρab|a ⊗ b̄〉. (B1)

Here L(t ) is the Liouville operator, |a〉 is a basis element in
Hsrc, and |ā〉 represents its complex conjugate. The solution
of Eq. (B1) is

�ρsrc(T ) = T
{
e
∫ T

0 L(t )dt
}
�ρsrc(0) = WL�ρsrc(0). (B2)

The photon emission process can be described by a process
map

Wph =
1∑

i, j=0

Nh∑
a,b,c,d=1

W i j
P,abcd |c, d̄, i, j̄〉|a, b̄〉, (B3)

which maps �ρsrc with vectorized basis |a, b̄〉 to a system-
photon joint density matrix with vectorized basis |c, d̄, i, j̄〉 =
|c, d̄〉 ⊗ |i, j̄〉ph. Thus each photon generation round results in
a map from the joint density matrix �ρ[k−1] of k − 1 photons
and system to the joint density matrix �ρ[k] of k photons and
system:

�ρ[k] =
d−1∑

ik , jk=0

Nik , jk
[k] �ρ[k−1], with Nik , jk

[k] = W ik jk
ph WL[k] . (B4)

The fidelity FMPS can be efficiently evaluated as [13]

FMPS =
1∑

{ik , jk}=0

Tr
[
Nin, jn

[n] · · · Ni1, j1
[1] B̃

]

× Tr
[(

Ajn
[n] ⊗ Āin

[n]

) · · · (Aj1
[1] ⊗ Āi1

[1]

)
(B ⊗ B)

]
, (B5)

where we denote B̃ ≡ ∑Nh
α=1 |ϕ′

I〉〈α| ⊗ |ϕ′
I〉〈α|, B ≡ |ϕI〉〈ϕF |,

and Ā as the complex conjugate of a matrix A. For higher-
dimensional rp-PEPS, the Frp can be computed in the same
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way by viewing the high-dimensional rp-PEPS as an MPS
with bond dimension and physical dimension scaling expo-
nentially with the number of sequential photon sources, m.

APPENDIX C: CONSTRUCTION OF PROCESS MAP Wph

The decoherence effects and the finite photon retrieval
efficiency pem during the photon emission will modify Wph

from its ideal form Wph = Mph ⊗ M̄ph with Mph of the form
in Eq. (4). A good way to construct Wph is to include envi-
ronmental photon modes which capture the erroneous jump
events. When there is a finite photon retrieval efficiency pem,

we can include an environmental photon mode εT , and the
Mph : HT → HT ⊗ Hph ⊗ HεT becomes

Mph :
|1〉T → |0〉T (

√
pem|1〉ph|0〉εT

+√
1 − pem|0〉ph|1〉εT

),
|0〉T → |0〉T |0〉ph|0〉εT

.

(C1)
Here the label “ph” marks the desired photon mode, and εT

is an environmental mode that marks the erroneously emit-
ted photon. We construct Wph by Wph = TrεT [Mph ⊗ M̄ph], in
which we trace out the εT mode.

The effect of a transmon decay 
T similarly leads to
a branching of the emission, whereby Mph : HT → HT ⊗
Hph ⊗ HεT becomes

Mph : |1〉T → |0〉T

(√

em


em + 
T
|1〉ph|0〉εT

+
√


T


em + 
T
|0〉ph|1〉εT

)
|0〉T → |0〉T |0〉ph|0〉εT

.

(C2)

The transmon dephasing leads to an exponential decay of the density matrix elements that are off diagonal on the transmon
basis with rate 
φ/2. In the regime of 
φ � 
em the probability accumulates as∫ Tem

0


φ

2
〈σeg(t )〉dt ≈

∫ ∞

0


φ

2
e−
emt/2dt = 
φ/
em. (C3)

Thus, the mapping will lead to

W 10
ph →

(
1 − 
φ


em

)
W 10

ph , W 01
ph →

(
1 − 
φ


em

)
W 01

ph , (C4)

in Eq. (B3).
The cavity decay will explicitly depend on the photon emission time Tem. Since 
C � 
em, we can solve the dynamics

analytically using the quantum trajectory approach [94] and include up to one jump process of the cavity photon. During the
emission process, the decay probability for the Fock state |n〉 of the cavity mode is approximately n
CTem. By including a cavity
decay environmental mode εC , we can write Mph : HC ⊗ HT → HC ⊗ HT ⊗ Hph ⊗ HεC as

Mph :
|n〉C |1〉T → √

1 − n
CTem|n〉C |0〉T |1〉ph|0〉εC
+ √

n
CTem|n − 1〉C |0〉T |1〉ph|1〉εC
,

|n〉C |0〉T → √
1 − n
CTem|n〉C |0〉T |0〉ph|0〉εC

+ √
n
CTem|n − 1〉C |0〉T |0〉ph|1〉εC

.
(C5)

Similarly, we obtain Wph by Wph = TrεC [Mph ⊗ M†
ph]. A finite photon emission time also leads to a residue population on

p1T (Tem ) = e−
emTem p1T (0) on the state |1〉T . This can be modeled by a further reduction factor on pem whereby pem →
(1 − e−
emTem )pem.

With the above analysis, we can write down the Mph : HC ⊗ HT → HC ⊗ HT ⊗ Hph ⊗ HεT ⊗ HεC that includes all the
above effects as

|n〉C |1〉T →
√

1 − n
CTem|n〉C |0〉T

⎛
⎝

√
(1 − e−
emTem )
em pem


em + 
T
|1〉ph|0〉εT

|0〉εC
+

√
1 − (1 − e−
emTem )
em pem


em + 
T
|0〉ph|1〉εT

|0〉εC

⎞
⎠

+
√

n
CTem|n − 1〉C |0〉T

⎛
⎝

√
(1 − e−
emTem )
em pem


em + 
T
|1〉ph|0〉εT

|1〉εC
+

√
1 − (1 − e−
emTem )
em pem


em + 
T
|0〉ph|1〉εT

|1〉εC

⎞
⎠,

|n〉C |0〉T →
√

1 − n
CTem|n〉C |0〉T |0〉ph|0〉εT |0〉εC +
√

n
CTem|n − 1〉C |0〉T |0〉ph|0〉εT |1〉εC . (C6)

And we further trace out the environmental modes to get Wph = TrεT ,εC [Mph ⊗ M̄ph]. After that, we include the transmon
dephasing by applying Eq. (C4), to finish the construction of Wph.

APPENDIX D: ADDITIONAL SCALING DATA FOR MPS
PREPARATION FIDELITY

1. Scaling of the error rate χ

As shown in the main text, we can compute the scaling
of the coefficient ξ of the exponentially decaying fidelity

FMPS = e−ξn with the slope (error rate) ξ as a function of
various imperfections. This scaling is numerically shown here
in Figs. 9(a)–9(g), where each data point is extracted from
a MPDO calculation of the relation between FMPS and the
photon number n [an example is shown in Fig. 3(a)], with
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FIG. 9. Scaling of the error rate ξ in FMPS for creating the cluster state [Eq. (7)] using pulse sequence in Fig. 2 as a function of (a) the
transmon decay during unitary operation, (b) the transmon dephasing during unitary operation, (c) the cavity decay during unitary operation,
(d) the transmon anharmonicity during unitary operation, (e) the transmon dephasing during photon emission, (f) the cavity decay during
photon emission, and (g) the photon retrieval efficiency. (h) The MPDO calculation of FMPS versus the cluster state photon number n, with
transmon parameters in section D 2. The horizontal line denotes FMPS = 1/2.

only the specific decoherence channel turned on. For example,
in Fig. 9(a) only the transmon decay 
T is turned on. From
Figs. 9(a)–9(g) we obtain all individual terms in Eq. (12), with
nonuniversal coefficients in Eq. (16) for the cluster state gen-
eration with the pulse sequence in Fig. 2. In the regime where
the error per photon generation is small, we can estimate the
total error ξ by simply adding these individual terms, thus
obtaining Eq. (12).

2. Fidelity versus photon number for transmon
parameters in Ref. [20]

In Fig. 3(a) we showed the fidelity versus the cluster
state photon number for the state-of-the-art experimental pa-
rameters shown in Sec. II D. To better compare it with the
experimentally demonstrated result [20], here we compute the
same relation with the transmon properties reported there,
while other parameters stay the same as that in Sec. II D.
Specifically, we choose 
T = 47.62 kHz, 
φ = 58.82 kHz,
α = 2π × −303 MHz, and χ = 2π × −5 MHz [20]. The re-
sult is shown in Fig. 9(h), from which we get Nph ≈ 47.

3. Achievable entanglement length Nph with MPS bond
dimension D

The entanglement length Nph = ln 2/ξ is determined by the
error rate per photon ξ [Eq. (12)]. To produce an MPS with
bond dimension D, we need to implement unitaries on 2D-
dimensional Hilbert space. As numerical evidence suggesting
that [74] the time cost of implementing a general unitary
in N-dimensional Hilbert space using the quantum optimal
control approach scales as O(N2), it takes T D

MPS = O(D2) to
implement the above unitaries. This leads to increased deco-
herence as the coefficients βC , βT , βφ , and βα in Eq. (8) are
proportional to T D

MPS. In the regime of pem ≈ 1 and β0 ≈ 0
(typical for current experimental platforms [20,67]), one can
thus estimate the scaling of ξ as

ξ ≈ T D
MPSξunit + ξ src

em + ξ ph
em ∼ O(D2). (D1)

Thus the dominant part leads to a qualitative scaling of
Nph ∼ D−2.

APPENDIX E: ISOMETRIC TENSOR NETWORK STATES

In this section, we provide more details on the definition
of isometric tensor network states (isoTNS) [37]. To start,
first we recall the definition of the projected entangled-pair
states (PEPS) [33], which are defined through a network of
tensors that are connected with each other, with one tensor at
each lattice site [see Fig. 10(a)]. The wavefunction of PEPS
is obtained by contracting the connected (virtual) legs of the
tensors, as

|	PEPS〉 =
d−1∑
{k}=0

F2D
({

Bk
[i, j]lurb

})|{k}〉, (E1)

where the Bk
[i, j]lurd is a rank-5 tensor on the site (i, j), which

has virtual indices l , u, r, and b of bond dimension D and
physical index k of physical dimension d . And the symbol
F2D denotes the contraction of the connected virtual indices.
The PEPS serves as a natural extension of the MPS in higher
dimensions, and has wide applications in describing higher-
dimensional many-body systems [16,17,95].

The IsoTNS is a subclass of the PEPS, where the tensors
satisfy certain isometry conditions. The isometry condition
means that, when the incoming legs [denoted by the arrows
in Fig. 10(b)] and the physical legs of a tensor are contracted
with corresponding legs of the complex conjugate of this
tensor, the remaining legs yield an identity. For example, the
tensor in the dashed box in Fig. 10(b) obeys∑

k,ur

Bk
[i, j]lurb

(
Bk

[i, j]l ′urb′
)∗ = δbb′δll ′ , (E2)

which is shown graphically in Fig. 10(c). Moreover, the
two red shaded lines in Fig. 10(b) only have incoming ar-
rows, which are termed the orthogonality hypersurface of the
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(a) (c)

(b) (d)

FIG. 10. The projected entangled pair states (PEPS) and isomet-
ric tensor network states (isoTNS). (a) PEPS are states represented
by a network of tensors, where the tensor at each site is of physical
dimension d , and is connected to that of the neighboring sites with
virtual bonds of dimension D. (b) IsoTNS are a subclass of PEPS,
where the tensors satisfy isometry conditions denoted by the arrows.
The red (gray) shaded lines denote the orthogonality hypersurface
of isoTNS, and their crossing point [the red (dark gray) dot] denotes
the orthogonality center of isoTNS. (c) The isometry condition for
the tensor inside the dashed box in panel (b). Here the incoming
virtual legs and the physical legs of the tensor are contracted with the
corresponding legs of the complex conjugate of the tensor, yielding
identity on the outgoing legs. This is also mathematically shown in
Eq. (E2). (d) One can map a three-qubit L-shaped quantum gate (see
Fig. 8) to an isoTNS tensor of bond dimension D = d .

isoTNS, and their intersection is the orthogonality center of
the isoTNS [37].

As shown in Ref. [36], one can convert an isoTNS tensor
Bk

[i, j]lurb of the bond dimension D into a ‘L’-shaped unitary of
the form

B̂[i, j] =
∑

lurb,k

Bk
[i, j]lurb

|u, k, r〉〈0, b, l|, (E3)

where the indices are identified in Fig. 10(d) for the case of
bond dimension D = d . Here the rank-5 tensor Bk

[i, j]lurb
also

satisfies the same isometry condition, Eq. (E2). This shows
that the gates in the photon generation scheme shown in Fig. 8
can be identified as isoTNS tensors. Increasing isoTNS bond
dimension corresponds to increasing the arm length of the L-
shaped unitary.

In this way, one can generate isoTNS by sequentially
applying overlapping L-shaped unitaries, which lead to the

photonic isoTNS generation protocol discussed in Sec. III C 3.
This fact further implies that isoTNS is a subclass of rp-PEPS
[36] since we can cover the L-shapes unitaries by plaquette
unitaries.

IsoTNS representation of the toric code

In general, the Zλ toric code can be written as an isoTNS
with the translational-invariant tensor at each site as [39]

Bi1i2i3i4
lurd = 1

λ
δ

i1
l−uδ

i2
u−rδ

i3
r−bδ

i4
b−l , (E4)

where

δa
b =

{
1 for a = b mod λ

0 otherwise. (E5)

This is a tensor of bond dimension λ and physical dimension
λ4, and satisfies the isometry condition Eq. (E2).

APPENDIX F: CONTROL UNIVERSALITY OF Harray(t )

Here we show the Hamiltonian Harray(t ) [Eq. (19)] can
universally control the Hilbert space HLC×m

array = (Hsrc)⊗LC×m.
Let us consider case of two cQED sequential photon sources
coupled to each other (LC = 1 and m = 2), whereby the whole
Hilbert space is

H1×2
array = HT ⊗ HC ⊗ HC ⊗ HT . (F1)

We know the Hamiltonian for each sequential photon
source can control one Hsrc universally. This means one can
create arbitrary Hamiltonians that act on each Hilbert space
HC of the cavity mode [see Eq. (F2), below]. Together with
the bilinear interaction Hi j

int [Eq. (18)] between two cavities,
one can apply an analogous argument in Ref. [96], that by
arithmetic operation and taking commutators between the
bilinear coupling H12

int [cf. Eq. (18)] and single-cavity Hamil-
tonians

H1 = poly(a1, a†
1), H2 = poly(a2, a†

2), (F2)

we can generate an arbitrary polynomial form of Hamiltonian,

H12 = poly(a1, a†
1, a2, a†

2) ∈ HC ⊗ HC . (F3)

This immediately implies that we can universally control the
Hilbert space of two cavities [96]. Together with universal
control on each sequential photon source, we can use Lemma
5.5 of Ref. [97] to combine the universality of two Hsrc and
HC ⊗ HC to the whole H1×2

array, which shows that we can uni-
versally control H1×2

array with Harray(t ) (here LC = 1 and m = 2).
By repeatedly applying Lemma 5.5 of Ref. [97], one can show
Harray(t ) is further able to control HLC×m

array .
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Dobrzański, Nat. Commun. 11, 250 (2020).

[51] J. Miguel-Ramiro, A. Pirker, and W. Dür, npj Quantum Inf. 7,
135 (2021).

[52] Y. Huang, arXiv:1505.00772.
[53] A. M. Dalzell and F. G. Brandão, Quantum 3, 187 (2019).
[54] Y. Huang, arXiv:1903.10048.
[55] N. Schuch and F. Verstraete, arXiv:1711.06559.
[56] B. Koczor, S. Endo, T. Jones, Y. Matsuzaki, and S. C. Benjamin,

New J. Phys. 22, 083038 (2020).
[57] K. Azuma, K. Tamaki, and H. K. Lo, Nat. Commun. 6, 6787

(2015).
[58] C. J. Axline, L. D. Burkhart, W. Pfaff, M. Zhang, K. Chou,

P. Campagne-Ibarcq, P. Reinhold, L. Frunzio, S. M. Girvin, L.
Jiang, M. H. Devoret, and R. J. Schoelkopf, Nat. Phys. 14, 705
(2018).

[59] P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal,
J. Heinsoo, Y. Salathé, A. Akin, S. Storz, J. C. Besse, S.
Gasparinetti, A. Blais, and A. Wallraff, Nature (London) 558,
264 (2018).

022611-13

https://doi.org/10.1103/PhysRevLett.121.250505
https://doi.org/10.1103/PhysRevA.58.R2627
https://doi.org/10.1103/PhysRevA.61.062311
https://doi.org/10.1103/PhysRevLett.95.110503
https://doi.org/10.1103/PhysRevA.75.032311
https://doi.org/10.1103/PhysRevLett.103.113602
http://arxiv.org/abs/arXiv:2007.09295
https://doi.org/10.1103/PhysRevResearch.3.023021
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1126/science.aah4758
https://doi.org/10.1103/PhysRevX.5.041044
https://doi.org/10.1038/s41467-020-18635-x
https://doi.org/10.1103/PhysRevLett.105.093601
https://doi.org/10.1103/PhysRevLett.123.070501
https://doi.org/10.1088/1367-2630/ab193d
https://doi.org/10.1038/s41567-020-0845-5
http://arxiv.org/abs/arXiv:2101.09310
https://doi.org/10.1073/pnas.1711003114
https://doi.org/10.1103/PhysRevLett.120.130501
https://doi.org/10.1063/1.5044248
https://doi.org/10.1103/PRXQuantum.2.040345
https://doi.org/10.1103/PhysRevLett.125.223601
https://doi.org/10.1103/PhysRevA.104.013703
http://arxiv.org/abs/arXiv:2103.08612
http://arxiv.org/abs/arXiv:cond-mat/0407066
https://doi.org/10.1103/PhysRevLett.96.220601
https://doi.org/10.1103/PhysRevLett.98.140506
https://doi.org/10.1103/PhysRevLett.128.010607
https://doi.org/10.1103/PhysRevLett.124.037201
https://doi.org/10.1103/PhysRevA.69.062311
https://doi.org/10.1016/j.aop.2010.05.008
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1103/PhysRevB.79.085118
https://doi.org/10.1103/PhysRevB.79.085119
https://doi.org/10.1103/PhysRevB.101.085117
https://doi.org/10.1038/s41598-019-49968-3
https://doi.org/10.1126/science.aay2645
https://doi.org/10.1126/science.abi8378
https://doi.org/10.1126/science.abi8794
https://doi.org/10.1103/PhysRevLett.110.240405
https://doi.org/10.1038/s41467-019-13735-9
https://doi.org/10.1038/s41534-021-00472-5
http://arxiv.org/abs/arXiv:1505.00772
https://doi.org/10.22331/q-2019-09-23-187
http://arxiv.org/abs/arXiv:1903.10048
http://arxiv.org/abs/arXiv:1711.06559
https://doi.org/10.1088/1367-2630/ab965e
https://doi.org/10.1038/ncomms7787
https://doi.org/10.1038/s41567-018-0115-y
https://doi.org/10.1038/s41586-018-0195-y


WEI, CIRAC, AND MALZ PHYSICAL REVIEW A 105, 022611 (2022)

[60] P. Magnard, S. Storz, P. Kurpiers, J. Schar, F. Marxer, J. Lutolf,
T. Walter, J.C. Besse, M. Gabureac, K. Reuer, A. Akin, B.
Royer, A. Blais, and A. Wallraff, Phys. Rev. Lett. 125, 260502
(2020).

[61] M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek,
K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J.
Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J.
Schoelkopf, Phys. Rev. B 94, 014506 (2016).

[62] Here we neglected the higher-order Hamiltonian terms such as
the Kerr nonlinearity [67]. In principle, one can also include
these terms in the pulse optimization.

[63] F. W. Strauch, Phys. Rev. Lett. 109, 210501 (2012).
[64] S. Krastanov, V. V. Albert, C. Shen, C. L. Zou, R. W. Heeres,

B. Vlastakis, R. J. Schoelkopf, and L. Jiang, Phys. Rev. A 92,
040303(R) (2015).

[65] S. Machnes, E. Assémat, D. Tannor, and F. K. Wilhelm,
Phys. Rev. Lett. 120, 150401 (2018).

[66] H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910
(2001).

[67] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang,
M. H. Devoret, and R. J. Schoelkopf, Nat. Commun. 8, 94
(2017).

[68] Note that the thermal excitations (photon gain) in the cavity and
the transmon are neglected here.

[69] K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold,
C. J. Axline, Y. Y. Gao, L. Frunzio, M. H. Devoret, L.
Jiang, and R. J. Schoelkopf, Nature (London) 561, 368
(2018).

[70] The photon retrieval efficiency pem depends on the explicit
realization of the on-demand photon emission process, which
we do not specify in this work. For example, in Ref. [20] the
system is modeled with pem = 1.

[71] P. Rebentrost and F. K. Wilhelm, Phys. Rev. B 79, 060507
(2009).

[72] Here we assume that the realization of our protocol using a
cavity + transmon system can also be modeled with the photon
retrieval efficiency pem = 1, the same as that in Ref. [20].

[73] Since the emitter is always in its ground state at the start of
each unitary operation (i.e., after each photon emission), the
transmon will only be transiently populated during each unitary
operation.

[74] J. Lee, C. Arenz, H. Rabitz, and B. Russell, New J. Phys. 20,
063002 (2018).

[75] Here we do not include the transmons in the ancilla space
due to their relatively short coherence time compared to the
photons in the cavities. However, in principle, one can include
the transmons in the ancilla as well to further increase its Hilbert
space dimension.

[76] C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek,
K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L.
Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret,
and R. J. Schoelkopf, Science 352, 1087 (2016).

[77] Y. Y. Gao, B. J. Lester, Y. Zhang, C. Wang, S. Rosenblum, L.
Frunzio, L. Jiang, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev.
X 8, 021073 (2018).

[78] The source point of the rp-PEPS is precisely defined as the
location of the first plaquette unitary [36].

[79] W. Huggins, P. Patil, B. Mitchell, K. Birgitta Whaley, and E.
Miles Stoudenmire, Quantum Sci. Technol. 4, 024001 (2019).

[80] J.-G. Liu, Y.-H. Zhang, Y. Wan, and L. Wang, Phys. Rev.
Research 1, 023025 (2019).

[81] S. Rosenblum, Y. Y. Gao, P. Reinhold, C. Wang, C. J. Axline, L.
Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret,
and R. J. Schoelkopf, Nat. Commun. 9, 652 (2018).

[82] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys.
43, 4452 (2002).

[83] A. Y. Kitaev, Ann. Phys. 303, 2 (2003).
[84] Y.-J. Liu, K. Shtengel, A. Smith, and F. Pollmann,

arXiv:2110.02020.
[85] S. S. Bullock and G. K. Brennen, J. Phys. A: Math. Theor. 40,

3481 (2007).
[86] G. Duclos-Cianci and D. Poulin, Phys. Rev. A 87, 062338

(2013).
[87] F. H. E. Watson, H. Anwar, and D. E. Browne, Phys. Rev. A 92,

032309 (2015).
[88] Y. Zhang, B. J. Lester, Y. Y. Gao, L. Jiang, R. J. Schoelkopf,

and S. M. Girvin, Phys. Rev. A 99, 012314 (2019).
[89] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas,

B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang,
M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Nature
(London) 536, 441 (2016).

[90] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-
Geller, N. E. Frattini, V. V. Sivak, P. Reinhold, S. Puri, S.
Shankar, R. J. Schoelkopf, L. Frunzio, M. Mirrahimi, and M. H.
Devoret, Nature (London) 584, 368 (2020).

[91] W.-L. Ma, M. Zhang, Y. Wong, K. Noh, S. Rosenblum, P.
Reinhold, R. J. Schoelkopf, and L. Jiang, Phys. Rev. Lett. 125,
110503 (2020).

[92] T. Schulte-Herbrüggen, A. Spörl, N. Khaneja, and S. J. Glaser,
J. Phys. B: At. Mol. Opt. Phys. 44, 154013 (2011).

[93] M. Abdelhafez, D. I. Schuster, and J. Koch, Phys. Rev. A 99,
052327 (2019).

[94] M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998).
[95] R. Orús, Nat. Rev. Phys. 1, 538 (2019).
[96] S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).
[97] T. Hofmann and M. Keyl, arXiv:1712.07613.

022611-14

https://doi.org/10.1103/PhysRevLett.125.260502
https://doi.org/10.1103/PhysRevB.94.014506
https://doi.org/10.1103/PhysRevLett.109.210501
https://doi.org/10.1103/PhysRevA.92.040303
https://doi.org/10.1103/PhysRevLett.120.150401
https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1038/s41586-018-0470-y
https://doi.org/10.1103/PhysRevB.79.060507
https://doi.org/10.1088/1367-2630/aac6f3
https://doi.org/10.1126/science.aaf2941
https://doi.org/10.1103/PhysRevX.8.021073
https://doi.org/10.1088/2058-9565/aaea94
https://doi.org/10.1103/PhysRevResearch.1.023025
https://doi.org/10.1038/s41467-018-03059-5
https://doi.org/10.1063/1.1499754
https://doi.org/10.1016/S0003-4916(02)00018-0
http://arxiv.org/abs/arXiv:2110.02020
https://doi.org/10.1088/1751-8113/40/13/013
https://doi.org/10.1103/PhysRevA.87.062338
https://doi.org/10.1103/PhysRevA.92.032309
https://doi.org/10.1103/PhysRevA.99.012314
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/s41586-020-2603-3
https://doi.org/10.1103/PhysRevLett.125.110503
https://doi.org/10.1088/0953-4075/44/15/154013
https://doi.org/10.1103/PhysRevA.99.052327
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1103/PhysRevLett.82.1784
http://arxiv.org/abs/arXiv:1712.07613

