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Efficiency statistics of a quantum Otto cycle
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The stochastic efficiency [G. Verley et al., Nat. Commun. 5, 4721 (2014)] was introduced to evaluate the
performance of energy-conversion machines in microscale. However, such an efficiency generally diverges when
no heat is absorbed while work is produced in a thermodynamic cycle. As a result, any statistical moments
of the efficiency do not exist. In this study, we come up with a different version of the definition for the
stochastic efficiency (called the scaled fluctuating efficiency) which is always finite. Its mean value is equal to the
conventional efficiency and higher moments characterize the fluctuations of the cycle. In addition, the fluctuation
theorems are reexpressed via the efficiency. For working substance satisfying the equipartition theorem, we
clarify that the thermodynamic uncertainty relation for the scaled fluctuating efficiency is valid in an Otto engine.
To demonstrate our general discussions, the efficiency statistics of a quantum harmonic-oscillator Otto engine is
systematically investigated. The probability that the scaled fluctuating efficiency surpasses the Carnot efficiency
is explicitly obtained. This work may shed new insight for optimizing micromachines with fluctuations.
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I. INTRODUCTION

For a heat engine operating between a hot and cold reser-
voir, the conventional efficiency is defined by the ratio of the
output work and the heat absorbed from the hot reservoir,
which characterizes the performance of the engine. As the
size of the engine decreases, the thermal fluctuations [1,2] and
quantum fluctuations [3,4] become more significant. From
the point of view of stochastic thermodynamics, the work,
heat, and entropy of microscopic systems are all stochastic
quantities. Hence, at a microscopic level, it is natural to expect
that the efficiency, introduced to evaluate the ability of energy
conversion for various thermal machines, is also a stochastic
quantity.

Recently, the stochastic efficiency, defined as the ratio of
the stochastic output work and the stochastic heat absorbed
from the hot reservoir in a cycle, has been widely studied for
classical heat engines [5–9]. This stochastic efficiency is also
applied to a quantum Otto cycle in Refs. [10,11]. However,
such a definition of the stochastic efficiency seems weird
for the following three reasons. (1) The mean value of the
stochastic efficiency is not equal to the conventional effi-
ciency in general. In contrary, the mean values of stochastic
work, heat, and entropy are equal to their counterparts in the
conventional thermodynamics. (2) The efficiency approaches
infinity with a nonzero probability. Such a result is due to
the possibility that no heat is absorbed from the hot reservoir
while work is produced in one realization of the cycle [11]. (3)
Due to the divergent efficiency distribution, any moments of
the efficiency are ill defined [9]. Thus one fails to evaluate the
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performance of the heat engine by the moments of this version
of stochastic efficiency.

To avoid such weirdness, meanwhile, to evaluate the fluc-
tuations in a practical heat engine, we come up with a different
version of the stochastic efficiency (called the scaled fluctuat-
ing efficiency) through a scale transformation of the stochastic
work. Then, the fluctuation theorems [1–4,12,13] are re-
expressed via the efficiency. Moreover, the thermodynamic
uncertainty relation (TUR) [14,15] for the scaled fluctuating
efficiency is investigated. For the working substance satis-
fying the equipartition theorem, we obtain the TUR for a
quantum Otto cycle in the quasistatic limit (a general proof)
and in a finite-time Otto cycle (numerical simulations). As a
specific example, we apply the scaled fluctuating efficiency to
study a quantum harmonic-oscillator Otto cycle. We find that
both the probability that the efficiency surpasses the Carnot
efficiency and the probability that the efficiency is negative
increase as the temperatures of the reservoirs decrease.

This paper is arranged as follows. In Sec. II, we introduce
the quantum Otto cycle and the joint distribution of input work
and absorbed heat from the hot reservoir. In Sec. III, the scaled
fluctuating efficiency is given. The fluctuation theorems and
the TUR are also reexpressed via the scaled fluctuating effi-
ciency. In Sec. IV, we demonstrate our general discussions
in a quantum Otto cycle with the harmonic oscillator being
the working substance. And we systematically investigate the
statistics of the scaled fluctuating efficiency. Section V is the
summary and discussion.

II. JOINT DISTRIBUTION OF WORK AND HEAT
IN A QUANTUM OTTO CYCLE

As illustrated in Fig. 1, we consider a quantum Otto cycle
which involves four strokes: two adiabatic processes and two
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FIG. 1. Schematic of a finite-time quantum Otto cycle.

isochoric processes [16,17]. In the adiabatic compression (ex-
pansion) process, the Hamiltonian of the working substance
is changed from H (λ0) to H (λ1) [from H (λ1) to H (λ0)]
during time τc (τh) through a time-dependent parameter λ. In
the two isochoric processes, during time th (tc), the working
substance contacts a hot (cold) reservoir at the inverse tem-
perature βh (βc) with fixed λ. For simplicity, we assume that a
complete thermalization is achieved in the two isochoric pro-
cesses. Namely, the working substance is thermal equilibrium
with the corresponding reservoir at the end of each isochoric
process.

The stochastic work and heat in a quantum Otto cycle are
defined under the two-point measurement scheme [10]. At
time t = 0, τc, τc + th, τc + th + τh (t = 0 is the initial time of
the adiabatic compression process), we apply the projective
measurements of energy on the working substance according
to the corresponding instantaneous Hamiltonian. Then, the
stochastic work wc (we) in the adiabatic compression (expan-
sion) process and the stochastic absorbed heat q in the hot
isochoric process are defined as

wc = E1
m − E0

n ,

q = E1
k − E1

m, (1)

we = E0
l − E1

k ,

where E0
n , E1

m, E1
k , E0

l are the measured energy of the four
projective measurements corresponding to the times t = 0, τc,

τc + th, τc + th + τh, respectively (n, m, k, l denote the cor-
responding quantum numbers). Thus the joint probability
distribution P(w, q) of the total stochastic input work w =
wc + we, and the stochastic absorbed heat from the hot reser-
voir q is given by

P(w, q) =
∑

n,m,k,l

δ
(
w − E1

m + E0
n − E0

l + E1
k

)
δ
(
q − E1

k + E1
m

)

× |1〈m|Uc|n〉0|2|0〈l|Ue|k〉1|2
e−βcE0

n −βhE1
k

Z0(βc)Z1(βh)
, (2)

where Uc,Ue are the unitary evolution operators correspond-
ing to the compression and expansion processes, | j〉0(1) is the
eigenstate of the Hamiltonian H (λ0) [H (λ1)], and Z0(βc) =

Tr[e−βcH (λ0 )], Z1(βh) = Tr[e−βhH (λ1 )] are the partition func-
tions corresponding to the equilibrium states at t = 0 and
t = τc + th, respectively.

III. SCALED FLUCTUATING EFFICIENCY

A. Definition

We define the scaled fluctuating efficiency of a (classical)
quantum heat engine through a scale transformation of the
stochastic work as

η = − w

〈q〉 , (3)

where 〈·〉 denotes the mean value over numerous measure-
ments, i.e.,

〈q〉 =
∫

dw dq P(w, q)q. (4)

For heat engines, the denominator is always nonzero (〈q〉>0),
so the scaled fluctuating efficiency η in Eq. (3) is finite. More-
over, it follows from Eq. (4) that 〈η〉 = −〈w〉/〈q〉, which is
just the conventional efficiency.

From the joint distribution P(w, q), the distribution of the
scaled fluctuating efficiency P(η) is obtained by

P(η) =
∫

dw dq P(w, q)δ(η + w/〈q〉). (5)

The fluctuation of the scaled fluctuating efficiency is deter-
mined by the output work, which characterizes the reliability
of the heat engine.

For practical calculation of the joint distribution of work
and heat, we show the characteristic function of P(w, q)
[Eq. (2)] in the following:

χ (u, v) ≡ 〈
eiuw+ivq

〉 = χc(u, v)χh(u, v), (6)

where

χc(u, v) = Tr[U †
c e(iu−iv)H (λ1 )Uce(−iu−βc )H (λ0 )]

Z0(βc)
, (7)

χh(u, v) = Tr[U †
e eiuH (λ0 )Uee(−iu+iv−βh )H (λ1 )]

Z1(βh)
. (8)

Thus we find that the characteristic function of the joint distri-
bution of work and heat is associated with the product of two
transformed characteristic functions of work in the adiabatic
process. The cumulant moments of work and heat are obtained
from χ (u, v), such as the average input work

〈w〉 = −i
∂ ln χ (u, v)

∂u

∣∣∣∣
u=v=0

, (9)

the average heat absorbed form the hot reservoir

〈q〉 = −i
∂ ln χ (u, v)

∂v

∣∣∣∣
u=v=0

, (10)

and the variance of input work

	w2 = −∂2 ln χ (u, v)

∂u2

∣∣∣∣
u=v=0

, (11)

where 	(·) =
√

〈·2〉 − 〈·〉2 denotes the standard deviation.
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B. Fluctuation theorems

Fluctuation theorems indicate the equality relation in
a general nonequilibrium process. Using the results of
Refs. [18,19], we can reexpress the fluctuation theorems in
terms of the scaled fluctuating efficiency for the Hamiltonian
of the working substance involving time-reversal symmetry:

〈
e−δs(η,q)

〉 = 1, (12)

P(−η〈q〉, q) = PR(η〈q〉,−q)eδs(η,q), (13)

where δs(η, q) = βc(ηCq − η〈q〉) is the total stochastic en-
tropy production expressed in terms of η and q and ηC =
1 − βh/βc is the Carnot efficiency. The subscript R denotes
the reverse process of the cycle (the clockwise direction in
Fig. 1). Then, using Jensen’s inequality e〈x〉 � 〈ex〉, we have
〈η〉 � ηC for heat engines (〈q〉 > 0), which is the second law
of thermodynamics. It is worth mentioning that this inequality
is not sharp. In fact, for quantum systems without energy-level
crossing when changing the parameter λ, we obtain a sharper
inequality 〈η〉 � ηO as a result of the minimum work principle
[20], where ηO is the Otto efficiency, i.e., the efficiency of an
Otto cycle in the quasistatic limit (see Appendix A).

C. Thermodynamic uncertainty relation

Since the fluctuation theorems always imply the genralized
thermodynamic uncertainty relation (TUR) [21], it follows
from Eq. (13) that

	η2

〈η〉2 � f (〈δs〉), (14)

where f (x) = csch2[g(x/2)] and g(x) is the inverse function
of x tanhx. Equation (14) expresses a trade-off between the
relative fluctuation of the efficiency and the dissipation quan-
tified through the entropy production in a cycle. When 〈δs〉 →
0, f (〈δs〉) ≈ 2/〈δs〉, which reproduces the TUR [14,15] for
the efficiency. Since the scaled fluctuating efficiency is a scale
transformation of the stochastic work, the TURs for the effi-
ciency and work are equal.

For the spectra of the working substance with scale prop-
erty, i.e., E1

n = E0
n /ε [10] (ε is n independent), the general

expression of the joint characteristic function [Eq. (6)] is ob-
tained in the quasistatic limit (see Appendix B). From Eqs. (9)
and (11), we obtain (the Boltzmann constant kB = 1 here

and after)

〈w〉 = ηOTc

(
σc

1 − ηO
− σh

1 − ηC

)
,

	w2 = η2
OT 2

c

[
Cc

(1 − ηO)2
+ Ch

(1 − ηC )2

]
, (15)

where Tc (Th) is the temperature of the cold (hot) reservoir,
ηO = 1 − ε, σc ≡ Ec/Tc (σh ≡ Eh/Th), Ec (Eh) is the inter-
nal energy of the working substance corresponding to the
equilibrium state at t = 0 (t = τc + th), and Cc ≡ ∂Ec/∂Tc

(Ch ≡ ∂Eh/∂Th) is the heat capacity at constant volume. In
addition, the average heat absorbed from the hot reservoir
and the average entropy production of the cycle follow as
〈q〉 = −〈w〉/ηO and 〈δs〉 = βc〈q〉(ηC − ηO), respectively. If
the working substance satisfies the equipartition theorem Ec ∝
Tc and Eh ∝ Th in the high-temperature limit, one has

	η2

〈η〉2 = 	w2

〈w〉2 = 1

〈δs〉
(

1 − ηO

1 − ηC
+ 1 − ηC

1 − ηO

)
� 2

〈δs〉 , (16)

with the equal sign saturated at ηO = ηC . The inequality (16)
is consistent with the TUR in steady states [14,15] or in a
specific Otto cycle [22].

Moreover, due to the third law of thermodynamics,
〈δs〉 → 0 in the low-temperature limit. Using the property of
the function f (x) in Eq. (14), the TUR for the efficiency is
also reproduced in the low-temperature limit. Consequently,
we expect that the TUR for efficiency is valid for an arbitrary
temperature under these conditions. For a finite-time cycle, we
numerically study the TUR in a specific model below.

IV. QUANTUM HARMONIC-OSCILLATOR HEAT ENGINE

In this section, we illustrate our general discussions above
with a specific example: the working substance of the Otto
cycle is modeled as a quantum harmonic oscillator. The
frequency of such an oscillator is changed from ω0 to ω1

(ω1 > ω0) in the adiabatic compression process. Recently,
the stochastic thermodynamics of this model has been widely
studied. For example, the work statistics in the adiabatic pro-
cess is studied in Refs. [23,24] and the TUR in the Otto cycle
is studied in Ref. [22]. In the quasistatic limit, a delta distribu-
tion for the previous definition of the stochastic efficiency is
reported in Ref. [10].

According to Refs. [23,24], χc(u, v) and χh(u, v) of the
joint characteristic function in Eq. (6) are explicitly obtained
as (see Appendix C for detailed derivation)

χc(u, v) = 2 sinh

(
βcω0

2

)
{2 cos [(u − v)ω1] cos [(u − iβc)ω0] + 2Qc sin [(u − v)ω1] sin [(u − iβc)ω0] − 2}− 1

2 (17)

and

χh(u, v) = 2 sinh

(
βhω1

2

)
{2 cos (uω0) cos [(u − v − iβh)ω1] + 2Qh sin (uω0) sin [(u − v − iβh)ω1] − 2}− 1

2 , (18)

where Qc(h) � 1 is the corresponding nonadiabatic fac-
tor [25,26] and we have set h̄ = 1 for simplicity. The
equal sign is hold when the quantum adiabatic condition

is satisfied. In the following, we study the statistics of the
scaled fluctuating efficiency of the Otto cycle in different
circumstances.
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FIG. 2. Average efficiency as the function of Qc and Qh. In this
figure, we use ηO = 0.5, Th = 1, ηC = 0.8, and ω1 = 1.

A. Average efficiency and efficiency distribution
of the heat engine

Combining Eqs. (9), (10), (17), and (18), the average effi-
ciency is obtained as (see Appendix D)

〈η〉 = −〈w〉
〈q〉 = ηO − ε

∑
α=h,c ϑα (Qα − 1)

ϑh − Qcϑc
, (19)

where ηO = 1 − ε (ε = ω0/ω1) is the Otto efficiency achieved
in the quantum adiabatic case with Qc,h = 1, and ϑh ≡
coth(βhω1/2), ϑc ≡ coth(βcω0/2). Equation (19) indicates
that the nonadiabatic effect decreases the average efficiency
of the engine, which is demonstrated in Fig. 2.

On the other hand, the variance of the efficiency is obtained
from Eq. (11) as

	η2 = 	w2

〈q〉2 = η2
O

(
ϑ2

h + ϑ2
c − 2

) + 2
[
ϑ2

h

(
Q2

h − 1
)
ε2 + ϑ2

c

(
Q2

c − 1
) − ε

∑
α=h,c (Qα − 1)

(
ϑ2

α − 1
)]

(ϑh − Qcϑc)2 . (20)

In the quasistatic limit, the variance of efficiency 	η2
adi ac-

cordingly becomes

	η2
adi = η2

O

(
ϑ2

h + ϑ2
c − 2

)
(ϑh − ϑc)2 . (21)

It is worth mentioning that the efficiency fluctuation does not
vanish for a quantum harmonic-oscillator Otto cycle in the
quasistatic limit, while the fluctuation of the previous version
of the stochastic efficiency vanishes in this case [10].

It is shown in Fig. 3(a) that, in the quasistatic limit (Qc,h =
1), the efficiency fluctuation decreases as the temperature
increases, which is consistent with the TUR for efficiency
[Eq. (16)] since 〈δs〉 increases with the temperature increase.
In the nonadiabatic case, the efficiency fluctuation as the func-
tion of Qc and Qh is illustrated in Fig. 3(b), which reflects
the enhancement of the fluctuation due to the nonadiabatic
driving.

The efficiency distribution is obtained with χ (u, v) by the
discrete Fourier transform. With different chosen parame-
ters, we plot the efficiency distribution in Fig. 4 (adiabatic
case) and Fig. 5 (nonadiabatic case) with the black dots. As
comparisons, the Otto efficiency (ηO = 0.5) and Carnot effi-
ciency (ηC = 0.8) are respectively represented with the blue
dash-dotted line and the red dotted line. And we show the
probability that the scaled fluctuating efficiency of an Otto cy-
cle surpasses the Carnot efficiency in the figure. By comparing
Fig. 4(a) (Th = 10) with Fig. 4(b) (Th = 1) or Fig. 5(a) (Th =
10) with Fig. 5(b) (Th = 1), one can infer that lower tempera-
ture leads to greater probability of the heat engine surpassing
the Carnot efficiency. Meanwhile, the lower temperature in-
creases the probability of the engine to be useless, namely, the
engine outputs negative stochastic work. The greater fluctu-
ation at lower temperature is illustrated via the TUR. Since
2/〈δs〉 → ∞ at low temperature due to the third law of ther-
modynamics and 〈η〉 is finite, 	η2 should also go to infinity.

We would like to emphasize that, since the expressions of
the characteristic functions [Eqs. (17) and (18)] are infinitely
differentiable, the decay of the distribution in Fig. 5 should be

faster than any power-law function. This property is different
from the distribution of the previous stochastic efficiency with
±∞ values in Ref. [10] and ensures the existence of the
variance of the efficiency, which indicates the fluctuation of
the cycle.

B. Finite-time performance of the heat engine

To further explore the finite-time performance of the cy-
cle, we first analyze the explicit time dependence of the
nonadiabatic factors for a specific protocol. For an adiabatic
process with frequency changed from ωi to ω f during time t ∈
[0, τ ], the time dependence of the frequency of the harmonic
oscillator is [22,27,28]

ω(t ) = ωi

(ωi/ω f − 1)t/τ + 1
. (22)

Then, the nonadiabatic factor Q(τ ) is obtained as (see
Appendix E for detailed derivation)

Q(τ ) = 1 + 1 − cos
[√

a2τ 2 − 1 ln(ω f /ωi )
]

a2τ 2 − 1
, (23)

where

a ≡ 2ω f ωi

ω f − ωi
. (24)

As shown in Fig. 6, the nonadiabatic factor Q(τ ) (blue
solid line) oscillates with the driving time τ , reflecting the
quantum coherence effect in the nonadiabatic transition. The
orange dashed line represents Q(τ ) = 1, which is achieved
for the quantum adiabatic driving or with some special values
of τ [27,28].

In the following, we adopt the protocol of Eq. (22) for the
finite-time adiabatic processes in the Otto cycle; then we use
the explicit form of Q(τ ) given in Eq. (23) to study the power
at maximum efficiency (PME) and efficiency at maximum
power (EMP) of the cycle. In this sense, the nonadiabatic
factors become Qc(h) = Q(τc(h) ), and then the average power
〈P(τc, τh)〉 ≡ −〈w〉/(τh + τc) and the efficiency 〈η(τc, τh)〉 of
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FIG. 3. Efficiency fluctuation. (a) Efficiency fluctuation as the
function of temperature Th with different ηO in the quasistatic limit.
(b) Efficiency fluctuation as the function of Qc and Qh, where
ηO = 0.5 and Th = 1 are chosen. In this figure, ηC = 0.8 and ω1 = 1
are fixed.

the Otto engine are respectively

〈P(τc, τh)〉 = ω1

2

{[Q(τc) − ε]ϑc − [1 − εQ(τh)]ϑh}
τh + τc

(25)

and

〈η(τc, τh)〉 = ηO − ε
∑

α=h,c ϑα[Q(τα ) − 1]

ϑh − Q(τc)ϑc
, (26)

where the total duration of the two isochoric processes, i.e.,
tc + th, is assumed to be much smaller than τc + τh and is thus
ignored.

Since Qc(h) = 1 can be achieved within finite time (called
the shortcut to adiabaticity [27,29]), the average efficiency
of some cycles approaches the Otto efficiency ηO with
nonvanishing power. These cycles happen to have the spe-
cial operation time sets (τ ∗

c , τ ∗
h ) corresponding to Qh(τ ∗

h ) =
Qc(τ ∗

c ) = 1. With the help of Eq. (23), one finds the special
operation time follows as

τ ∗
h,c = ηO

ω0

√
1

4
+

(nh,cπ

ln ε

)2
, (27)

with nh,c = 1, 2, 3, . . .. Therefore, the PME is

P(τ ∗
c , τ ∗

h ) = ω0ω1(ϑh − ϑc)

2
∑

α=h,c

√
1/4 + (nαπ/ ln ε)2

. (28)

FIG. 4. Efficiency distribution in the adiabatic case with Qh =
Qc = 1. The probability distribution of the scaled fluctuating effi-
ciency is plotted with the black dots. The Otto efficiency and Carnot
efficiency are respectively represented with the blue dash-dotted line
and the red dotted line. The (gray) area in the left side denotes the
negative work output regime; the (light red) area in the right side of
the red dotted line represents the regime of η > ηC . The parameters
are chosen as (a) Th = 10, Tc = 2 and (b) Th = 1, Tc = 0.2. In this
figure, we choose ω0 = 0.5, ω1 = 1, and the Carnot efficiency is
fixed at 0.8.

It should be noted that, in the usual finite-time thermodynamic
cycles, the PME generally approaches zero [30–34]. Here,
thanks to the special protocol we have chosen to realize the
quantum adiabatic process in finite time, the current quantum
Otto cycle outputs nonzero or even relatively large power
(comparable to the maximum power) when the Otto efficiency
is reached. Obviously, the maximum P(τ ∗

c , τ ∗
h ) is

Pmax(τ ∗
c , τ ∗

h ) = ω0ω1(ϑh − ϑc)

2
√

1 + (2π/ ln ε)2
, (29)

which is achieved at nc = nh = 1. Besides, the second largest
and third largest power are reached at (nc = 1, nh = 2)
and (nc = 2, nh = 2), respectively. For (nαπ/ ln ε)2 � 1/4,
Eq. (28) can be approximated as

P(τ ∗
c , τ ∗

h ) ≈ ω0ω1 ln ε(ϑh − ϑc)

2π (nc + nh)
, (30)

which shows that P(τ ∗
c , τ ∗

h ) is a monotonically decreasing
quasicontinuous function of nc and nh.

In addition, the EMP of this Otto engine as the func-
tion of ηO is illustrated in Fig. 7, where the ratio ηO/ηC =
0.8 is fixed. As shown in this figure, the EMP of our
cycle (blue solid curve) is found to surpass the upper bound,
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FIG. 5. Efficiency distribution in the nonadiabatic case with
Qh = Qc = 1.2. The probability distribution of the scaled fluctuating
efficiency is plotted with the black dots. The Otto efficiency and
Carnot efficiency are respectively represented with the blue dash-
dotted line and the red dotted line. The (gray) area in the left side
denotes the negative work output regime; the (light red) area in the
right side of the red dotted line represents the regime of η > ηC .
The parameters are chosen as (a) Th = 10, Tc = 2 and (b) Th = 1,
Tc = 0.2. In this figure, we choose ω0 = 0.5, ω1 = 1, and the Carnot
efficiency is fixed at 0.8.

η+ = 2ηO/(3 − ηO) (black dashed curve), of the Otto cycle’s
EMP without considering the oscillation of the output work
[34]. Meanwhile, the blue solid curve is also located above
the Curzon-Ahlborn efficiency [35] ηCA = 1 − √

1 − ηC (red
dashed curve), which is a typical EMP of the finite-time

0 10 20 30 40

1

1.05

1.1

1.15

1.2

1.25

FIG. 6. Time dependence of the nonadiabatic factor. In this
figure, the blue solid curve represents Q(τ ) in Eq. (E7); the orange
dashed line is Q(τ ) = 1. The initial and final frequencies of the
harmonic oscillator in the adiabatic process are chosen as ω0 = 0.5
and ω1 = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 7. Efficiency at maximum power of the Otto engine as the
function of ηO. In this figure, ηO/ηC = 0.8 is fixed. The blue solid
curve represents the EMP of the Otto engine. The black dash-dotted
curve is the upper bound for EMP, η+ = 2ηO/(3 − ηO ), of the Otto
cycle obtained in Ref. [34] without considering the oscillation of
work. The red dashed curve represents the Curzon-Ahlborn effi-
ciency ηCA = 1 − √

1 − ηC and the black dotted line represents the
Otto efficiency.

Carnot cycle. This indicates that the quantum effect of the
working substance in the Otto cycle is conducive to improving
the EMP [34,36].

C. Thermodynamic uncertainty relation (TUR)
for the scaled fluctuating efficiency

Because the spectra of a quantum harmonic oscillator
have scale property and the system follows the equiparti-
tion theorem in the high-temperature limit, we conclude that,
in the quasistatic limit, the TUR [Eq. (16)] is valid according
to the discussions in Sec. III C.

For the nonadiabatic driving cycle, the results are shown in
Fig. 8. The TUR [Eq. (16)] is still valid since 	η2

〈η〉2 /( 2
〈δs〉 ) ≡ ψ

increases monotonically with Qh and Qc. Here, without loss
of generality, we take Qh as the independent variable in the
figure. On the contrary, the TUR may be violated due to the in-
complete thermalization in the isochoric processes [22]. One
can conclude from Fig. 8(a) that higher temperature makes
ψ lower. Moreover, as shown in Fig. 8(b), when Qh → 1, ψ

is closer to 1 in the case with ηO = 0.7. This is consistent
with the discussions in Sec. III C that the condition for ψ → 1
is ηO → ηC .

V. SUMMARY AND DISCUSSION

In this paper, we come up with the scaled fluctuating ef-
ficiency for heat engine in microscale. The moments of the
efficiency always exist, and its mean value is equal to the con-
ventional efficiency. Moreover, the fluctuation theorems are
reexpressed via the scaled fluctuating efficiency. For spectra
of the working substance with scale property, the statistics of
the efficiency is fully determined by the partition functions of
the working substance in the quasistatic limit. Importantly, we
reveal the connection between the TUR and the equipartition
theorem.

For a quantum Otto cycle with a harmonic oscillator being
the working substance, we obtain the exact expression of the
joint characteristic function of work and heat. We find that
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FIG. 8. Thermodynamic uncertainty relation for the scaled
fluctuating efficiency with different nonadiabatic factors.
(a) Th = 1, 2, 10, ηO = 0.5; (b) Th = 10, ηO = 0.5, 0.6, 0.7. In
this figure, Qc = 1, ηC = 0.8, and ω1 = 1 are fixed parameters.

the Otto efficiency can be reached with a finite output power
(the power at maximum efficiency) with some special duration
and the EMP surpasses the upper bound obtained in Ref. [34].
It is worth mentioning that the definition in Eq. (3) is not the
unique definition of the stochastic efficiency which satisfies
the requirements above. For other definitions, the fluctuation
of the stochastic efficiency may not be only determined by
the output work but by a mixture of the output work and
the absorbed heat, e.g., to define the stochastic efficiency as
[−w + a(w − 〈w〉) + b(q − 〈q〉)]/〈q〉 with two optional di-
mensional parameters a, b. In the current work, we choose
a = b = 0. Consequently, the stochastic efficiency fully re-
flects the influence of the fluctuation of output work, while
cannot explicitly reflect the fluctuation of the absorbed heat
of the engine. Especially for a = 0, b = ηC , the efficiency is a
linear combination of work and heat, which is a linear function
of the stochastic entropy production [Eq. (13)].

The theoretical predictions of the current study can be
tested on some state-of-art experiments, such as the Brownian
particle system [8] and trapped ion system [37]. As a direct
extension, similar to extension efficiency, the coefficient of
performance of a refrigerator can be defined as the ratio of the
stochastic released heat to the average input work. Then, the
statistics of a stochastic refrigerator can be further discussed
[38]. Besides, it is expected that the many-body effect of the
working substance [25,27,39–43] and the influences of the
control protocols for the cycle [33,44–46] on the efficiency
statistics and TUR will be taken into consideration in future
investigations.

ACKNOWLEDGMENTS

We thank Y. Chen for helpful suggestions. We are grate-
ful to the anonymous referees for enlightening comments.
This work is supported by the National Natural Science
Foundation of China (Grants No. 12088101, No. 12147157,
No. U1930402, and No. U1930403). Y.-H.M. and Z.-Y.F.
acknowledge support from the China Postdoctoral Science
Foundation (Grants No. BX2021030 and No. 2021M700359).

APPENDIX A: PROOF OF 〈η〉 � ηO

As a result of the minimum work principle [20], when
the energy levels do not cross during the driving, the average
work under finite-time driving 〈wc(e)〉 is not less than it under
quantum adiabatic driving 〈wc(e)〉adi. Namely, δwc(e) ≡
〈wc(e)〉 − 〈wc(e)〉adi � 0. Thus the average efficiency of a
quantum Otto cycle with the complete thermalization satisfies

〈η〉 = −〈w〉
〈q〉 = −〈wc〉adi + 〈we〉adi + δwc + δwe

〈q〉adi − δwc

� −〈wc〉adi + 〈we〉adi

〈q〉adi
= ηO, (A1)

for 〈q〉adi > −〈wc〉adi − 〈we〉adi > 0 and δwc � 0, δwe � 0,
where 〈q〉adi denotes the heat absorbed from the hot reservoir
in the quasistatic limit.

APPENDIX B: JOINT CHARACTERISTIC FUNCTION FOR
A QUANTUM OTTO CYCLE IN THE QUASISTATIC LIMIT

According to Eq. (6), the expression of the joint
characteristic function χ (u, v) is obtained by a transformation
of the characteristic function of work χc(u) ≡ χc(u, 0) and
χh(u) ≡ χh(u, 0), i.e.,

χc(u, v) = χc(u)|u→u−v,βc→βc+iv,

χh(u, v) = χh(u)|βh→βh−iv, (B1)

with scale property (E1
n = E0

n /ε); in the quasistatic limit, the
expressions of the characteristic function χc(u) and χh(u) read

χc(u) =
∑

n

e−βcE0
n

Z0(βc)
eiu

(
E1

n −E0
n

)

=
∑

n

e−[βc−iu(ε−1−1)]E0
n

Z0(βc)

= Z0[βc − iu(ε−1 − 1)]

Z0(βc)

(B2)

and

χh(u) =
∑

n

e−βhE1
n

Z1(βh)
eiu

(
E0

n −E1
n

)

=
∑

n

e−[βc−iu(ε−1)]E1
n

Z1(βh)

= Z1[βh − iu(ε − 1)]

Z1(βh)
.

(B3)
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Then, it follows from Eq. (B1) that the joint characteristic
function χ (u, v) reads

χ (u, v)

= Z0[βc + iv − i(u − v)(ε−1 − 1)]Z1[βh − iv − iu(ε − 1)]

Z0(βc)Z1(βh)
.

(B4)

APPENDIX C: JOINT CHARACTERISTIC FUNCTION FOR
A QUANTUM HARMONIC-OSCILLATOR HEAT ENGINE

For a harmonic oscillator with time-dependent frequency
in an adiabatic process during time [0, τ ], the Hamiltonian is

H (t ) = p2

2m
+ 1

2
mω(t )2x2. (C1)

Then, the characteristic functions of work χc(u), χh(u) (see
Appendix B) read [23,24]

χc(u) = 2 sinh

(
βω0

2

)
{2 cos(uω1) cos[(u − iβc)ω0] + 2Qc sin(uω1) sin[(u − iβc)ω0] − 2}− 1

2 , (C2)

χh(u) = 2 sinh

(
βω1

2

)
{2 cos(uω0) cos[(u − iβh)ω1] + 2Qh sin(uω0) sin[(u − iβh)ω1] − 2}− 1

2 , (C3)

where

Qc = ω1

2ω0

[
y1(τc)2 + y2(τc)2 + ẏ1(τc)2 + ẏ2(τc)2

ω2
1

]
, (C4)

the overhead dot denotes the time derivative, and y1 and y2 are the two general solutions of the classical harmonic oscillator, i.e.,

ÿ(t ) + ω(t )2y(t ) = 0, (C5)

with the initial value {y1(0), y2(0), ẏ1(0), ẏ2(0)} = {1, 0, 0, ω0}. Similarly, the expression of Qh is given by the replacement
ω0 ↔ ω1, t ∈ [0, τc] → t ∈ [τc + th, τc + th + τh].

Then, the expression of χ (u, v) is obtained by χ (u, v) = χc(u, v)χh(u, v), where [Eq. (B1)]

χc(u, v) = χc(u)|u→u−v,βc→βc+iv

= 2 sinh

(
βω0

2

)
{2 cos[(u − v)ω1] cos[(u − iβc)ω0] + 2Qc sin[(u − v)ω1] sin[(u − iβc)ω0] − 2}− 1

2 ,

χh(u, v) = χh(u)|βh→βh−iv

= 2 sinh

(
βω1

2

)
{2 cos(uω0) cos[(u − v − iβh)ω1] + 2Qh sin(uω0) sin[(u − v − iβh)ω1] − 2}− 1

2 .

APPENDIX D: AVERAGE EFFICIENCY
AND EFFICIENCY FLUCTUATION

The average output work and average absorbed heat per
cycle can be obtained using Eqs. (9), (10), (17), and (18) as

−〈w〉 = −1

2
[(ω1Qc − ω0)ϑc − (ω1 − ω0Qh)ϑh] (D1)

and

〈q〉 = ω1

2
(ϑh − Qcϑc), (D2)

where

ϑh ≡ coth
βhω1

2
, ϑc ≡ coth

βcω0

2
. (D3)

Substituting Eqs. (D1) and (D2) into Eq. (3), the average
efficiency is obtained as

〈η〉 = (ω1 − ω0Qh)ϑh − (ω1Qc − ω0)ϑc

ω1(ϑh − Qcϑc)
. (D4)

Then, Eq. (D4) is further expressed as Eq. (19) with ηO as

〈η〉 = ηO − ε
∑

α=h,c ϑα (Qα − 1)

ϑh − Qcϑc
. (D5)

In addition, the variance of work is obtained from
Eq. (11) as

	w2 = ω2
1

4
(1 − ε)2

(
ϑ2

h + ϑ2
c − 2

) + ω2
1

2

[
ϑ2

h

(
Q2

h − 1
)
ε2 + ϑ2

c

(
Q2

c − 1
) − ε

∑
α=h,c

(Qα − 1)
(
ϑ2

α − 1
)]

. (D6)

Then, the variance of the efficiency, 	η2 = 	w2/〈q〉2, illustrated in Eq. (20) is obtained by using Eq. (D6) and Eq. (D2).
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APPENDIX E: EXPLICIT TIME DEPENDENCE
OF THE NONADIABATIC FACTOR

For the specific driving protocol in Eq. (22), the time de-
pendence of the nonadiabatic factor in Eq. (23) can be directly
calculated from its definition [Eq. (C4)] [27]. Here, we present
another approach with respect to the internal energy of the
working substance. It follows from Ref. [22] that the evolution
of the harmonic oscillator in an adiabatic process during time
t ∈ [0, τ ] can be described by a linear differential equation as

d

dt
−→
φ (t ) = M(t )

−→
φ (t ). (E1)

Here,
−→
φ (t ) ≡ [〈H (t )〉 〈L(t )〉 〈D(t )〉]T

, (E2)

where 〈·〉 denotes the ensemble average with respect to
the density matrix of the oscillator and T denotes the
matrix transpose. H (t ) = p2/(2m) + mω2(t )x2/2, L(t ) =
p2/(2m) − mω2(t )x2/2, and D(t ) = ω(t )(xp + px)/2 are re-
spectively the Hamiltonian, the Lagrangian, and the generator
of the scale transformation. The time-dependent matrix reads

M(t ) =
⎛
⎝ ω̇/ω −ω̇/ω 0

−ω̇/ω ω̇/ω −2ω

0 2ω ω̇/ω

⎞
⎠. (E3)

The general solution of Eq. (E1) follows as

−→
φ (τ ) = T← exp

[∫ τ

0
M(t )dt

]−→
φ (0), (E4)

where T← denotes the time-ordered operation. For the spe-
cific protocol in Eq. (22), the matrix M(t ) is independent

of t . For the thermal equilibrium initial state,
−→
φ (0) =

[〈H (0)〉 0 0 ]T, we find

−→
φ (τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ω f
ωi

[
(

ω f
ωi

)
−
√

1−a2τ2
+(

ω f
ωi

)
√

1−a2τ2
−2a2τ 2

]
2(a2τ 2−1)

(
ω f
ωi

)
1−

√
1−a2τ2

[
1−(

ω f
ωi

)
2
√

1−a2τ2
]

2
√

1−a2τ 2

aτ (
ω f
ωi

)
1−

√
1−a2τ2

[
1−(

ω f
ωi

)
√

1−a2τ2
]2

2(a2τ 2−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

〈H (0)〉,

(E5)
where a = 2ωiω f /(ω f − ωi ). Thus the internal energy of the
system at t = τ is

〈H (τ )〉 = a2τ 2 − cos[
√

a2τ 2 − 1 ln(ω f /ωi )]

a2τ 2 − 1

ω f

ωi
〈H (0)〉.

(E6)
Consequently, the nonadiabatic factor is obtained by [25]

Q(τ ) = 〈H (τ )〉
〈H〉adi

= 1 +
{
1 − cos[

√
a2τ 2 − 1 ln(ω f /ωi )]

}
a2τ 2 − 1

,

(E7)
where 〈H〉adi = 〈H (aτ → ∞)〉 = 〈H (0)〉ω f /ωi is the inter-
nal energy of the system at the end of the process under
quantum adiabatic driving. In the short-time limit aτ → 0 and
long-time limit aτ → ∞, it is easy to check that

lim
aτ→0

Q(τ ) = 1 + [ln(ω f /ωi )]2

2
, lim

aτ→∞ Q(τ ) = 1. (E8)
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