
PHYSICAL REVIEW A 105, 022608 (2022)

Quantum state engineering using weak measurements
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State preparation via postselected weak measurements in a three-wave mixing process is studied. We assume
the signal input mode is prepared in a vacuum state, coherent state, or squeezed vacuum state, while the idler
input is prepared in a weak coherent state and passes the medium characterized by the second-order nonlinear
susceptibility. It is shown that when the single photon is detected at one of the output channels of the idler beam’s
path, the signal output channel is prepared in a single-photon Fock state, single-photon-added coherent state, or
single-photon-added squeezed vacuum state with very high fidelity, depending upon the input signal states and
related controllable parameters. The properties of squeezing, signal amplification, second-order correlation, and
the Wigner functions of the weak-measurement-based output states are also investigated. Our scheme promises to
provide an alternate effective method for producing useful nonclassical states in quantum information processing.
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I. INTRODUCTION

New state generation and its optimization have significant
importance in quantum information processing [1–6]. Plenty
of research works have studied various quantum states and
have proposed schemes for generating them. Particular in-
terest has been devoted to Fock states [7–9], Schrödinger’s
cat states [10–18], squeezed states [19], photon-number states
[20–26], binomial states [27–29], and squeezed-state excita-
tions [30–33]. Another interesting class of nonclassical states
that includes photon-added coherent states [34] and photon-
subtracted or -added squeezed states [35] has been a subject of
interest since these states also have potential for many related
quantum information processing applications [36–39]. Those
states can be produced by repeated applications of photon cre-
ation or annihilation operators [40] on a given state [41–45].

We know that proposing feasible schemes to generate
specific quantum states and their implementations in the lab-
oratory is an exciting and challenging task for researchers.
In specific quantum state generation processes we usually
use the conditional measurement since it useful to con-
trol the desired parameters to produce the desired quantum
states [46–53]. The weak measurement proposed in 1988
[54] by Aharonov et al. is a typical conditional measure-
ment characterized by postselection and a weak value. The
weak-measurement theory has various applications (see [55]
and references therein), and it was recently widely used for
state-optimization problems [56–58]. One of the authors of
this work studied state optimization by using weak mea-
surements [59–61] and showed that the postselected weak
measurements really can change the inherent properties of the
given states. Furthermore, in a recent work [62], the authors
proposed a theoretical scheme to amplify the single-photon
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nonlinearity using weak measurements implemented in a
cross-Kerr-interaction medium characterized by third-order
nonlinear susceptibility χ (3), and its experimental realization
was given in [63]. On the other hand, Shikano and his collab-
orators [64] studied the generation of phase-squeezed optical
pulses with large coherent amplitudes by postselection of a
single photon based on the same setup as in Ref. [62]. Most
recently, the protocols for steering the state of the quantum
system from an arbitrary initial state toward any chosen state
was proposed using weak measurements [65,66]. The above-
mentioned results also indicated the potential usefulness of
postselected weak measurements in quantum state engineer-
ing processes. Thus, in order to provide alternate methods
for the implementation of the related quantum information
processes, specific quantum state generation via weak mea-
surements is worth studying.

In this paper, we introduce a scheme to generate some
nonclassical states such as a single-photon Fock state, a
single-photon-added coherent (SPAC) state, and a single-
photon-added squeezed vacuum (SPASV) state in a three-
optical-wave mixing process via postselected weak measure-
ments [54]. In order to achieve our goal, we consider the
signal and idler beams as the pointer (measuring system) and
measured system, respectively. We assume that initially, the
measured system is prepared in a very weak coherent state,
while the pointer (signal) state is prepared in a coherent or
squeezed vacuum state. The moderate-intensity pump field is
treated as classical and the weak coupling between the pointer
and measured system is realized by a beta barium borate
(BBO) nonlinear crystal which can generate entanglement be-
tween them. By properly choosing the pre- and postselection
states of the measured system and detecting one photon in
one of the outputs of the idler mode, the output channel of
the pointer is prepared in the desired state with high purity
for controllable parameters. We found that if our input pointer
state is prepared in a coherent (squeezed vacuum) state, then
we can generate a SPAC (SPASV) state with very high fidelity
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accompanied by a small successful postselection rate. Our
results indicated that in our scheme we also can generate a
single-photon Fock state if the initial pointer state is prepared
in the vacuum state. To further confirm the identities of those
generated states we also investigate their related properties
such as squeezing, second-order correlations, and Wigner
functions. Interestingly, we found that the generated SPAC
state in our scheme has advantages to increase the signal-to-
noise ratio (SNR) in postselected weak measurements over the
nonpostselected case.

This paper is organized as follows. Section II presents the
basic scheme for generating nonclassical states in a three-
wave mixing process via the postselected weak-measurement
technique. The generation of SPAC and SPASV states and
their verification are discussed in Secs. III and IV, respec-
tively. In Sec. III, we also investigate the advantages of
postselected weak measurements in the signal-amplification
process over the nonpostselected case for the SPAC state by
adjusting the low value of the measured system observables.
Finally, a summary and concluding remarks are given in
Sec. V.

II. MODEL SETUP FOR STATE GENERATION VIA
POSTSELECTED WEAK MEASUREMENTS

The Hamiltonian of a three-wave mixing device [67], under
the rotating-wave approximation, neglecting external drive
and signal fields, is

H = h̄ωsa
†a + h̄ωib

†b + h̄ωpc†c + ih̄χ (2)(a†b†c − abc†),
(1)

where a, b, and c are the annihilation operators of the signal,
idler, and pump with frequencies ωs, ωi, and ωp, respec-
tively, and χ (2) is the coupling strength characterized by a
second-order nonlinear susceptibility of the BBO crystal. This
Hamiltonian can describe the process of nondegenerate para-
metric down-conversion whereby a photon of the pump field
is converted into two photons, one for each of modes a and b
[67]. Using the parametric approximation, assuming that the
pump field is a strong coherent state of the form |γ e−iωpt 〉
[67], we can rewrite the above Hamiltonian in the interaction
picture with ωp = ωi + ωs as

HI = ih̄ξ (a†b† − ab), (2)

where ξ = γχ (2). Further, the above Hamiltonian is
equivalent to

HI = h̄ξ (A ⊗ p − B ⊗ q) (3)

if we introduce

B = i√
2

(b − b†), A = 1√
2

(b† + b), (4)

q = 1√
2

(a† + a), p = i√
2

(a† − a), (5)

with [A, B] = i and [q, p] = i, respectively. The two terms
in the Hamiltonian, Eq. (3), are in the form we usually use
in weak-measurement problems [54]. In this work the signal
beam with variables q and p is the pointer, and the idler beam
with variables A and B is the measured system.

FIG. 1. Schematics of non-Gaussian state generation in a three-
wave mixing process using postselected weak measurements. This
model consists of two Mach-Zehnder interferometers. The signal and
idler beams act as the pointer and measured system, respectively.
The preselection state is prepared by the weak coherent state |α〉
passing through the unbalanced beam splitter (BS) with deviation
ε, and the signal beam is initially prepared in some specific states.
The BBO crystal plays the role of realizing the weak interaction
between the pointer and measured system. The 50:50 BS in the upper
Mach-Zehnder interferometer plays the role of postselection, and the
desired conditional quantum state is generated in the output mode
of the signal beam after we detect one photon by the second photon
detector (D2) in the idler beam’s path.

The schematic setup of our state-generation model is
shown in Fig. 1. As we can see from Fig. 1, there are two
Mach-Zehnder interferometers in our setup, and the beam
splitters have very important roles in the implementation of
our scheme. Beam splitters are basic manipulations in classi-
cal and quantum optics to split and mix the optical beams. The
input and output relations of beam splitters can be described
by Lie algebra [68]. In the Heisenberg picture, the photon
annihilation operators of the output beam bk (k = 1, 2) can
be connected to input beam’s annihilation operators ak as

bk =
2∑

j=1

Vk ja j, (6)

where Vk j is an element of the scattering matrix

V =
(

cos ϑeiϕt sin ϑeiϕr

− sin ϑe−iϕr cos ϑe−iϕt

)
. (7)
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Here T = cos ϑeiϕt and R = sin ϑeiϕr are the transmittance
and reflectance of the beam splitter, respectively. If ϕr =
π
2 , ϕt = 0 and ϑ = π

4 , then it becomes a 50:50 beam splitter.
We assume that initially, the measured system (idler beam)

is prepared in a weak coherent state with a low amplitude
(α � 1) and the signal beam is separately prepared in some
specific states such as the squeezed vacuum state or coherent
state. In the upper optical path of our scheme, we assume
that the first beam splitter is slightly imbalanced with a small
deviation ε from 50:50 so that the preselection state of the
measured system can be written as [69]

|ψi〉 =
∣∣∣∣ α√

2
(1 − ε)

〉
t

∣∣∣∣ iα√
2

(1 + ε)

〉
r

. (8)

Here the subscripts t and r indicate the transmitted and re-
flected beams from the beam splitter. Then, the three-wave
mixing is realized by the nonlinear BBO crystal, which plays
a role in implementing the weak-measurement process. In
this process, the input photon annihilates and produces two
new mutually entangled photons. The unitary evolution op-
erator corresponding to the interaction Hamiltonian HI =
h̄g(A ⊗ p − B ⊗ q) which can be implemented by the BBO
crystal is

U = exp

(
− i

h̄

∫ t

0
HI dτ

)
= exp (−ig[A ⊗ p − B ⊗ q]),

(9)

where g = ξ t . Actually, the squeezing operator can generate
the two-mode vacuum squeezed state [67]. Here g can be
considered a squeezing parameter which depends on pump
intensity, the crystal length, and its nonlinear coefficients. In
our scheme, the coupling between the idler and signal beams
is weak, and it can be characterized by g. As mentioned above,
when the pump is an intense beam, we can treat it as a classical
field, and an interaction between the signal and idler such
as eg(a†b†−ab) can be realized [44]. Thus, the pump can be
moderate intensity for a not narrow crystal so that g < 1; then
we can take the limit of weak nonlinearity. Following the ex-
perimental work [44], we set g = 0.105 throughout this work.
We can thus rewrite the above unitary evolution operator U as

U � I − ig(A ⊗ p − B ⊗ q). (10)

If we assume that the initial states of the system and pointer
are |ψi〉 and |φ〉, after the unitary evolution the total system
state becomes

|�〉 = U |ψi〉 ⊗ |φ〉 ≈ [I − ig(A ⊗ p − B ⊗ q)]|ψi〉 ⊗ |φ〉.
(11)

This is the total system state before it arrives at the second
beam splitter in our model (see Fig. 1). In our scheme the
second beam splitter is 50:50 with 50% transmission and 50%
reflection. We undertake a postselection of the idler beam that
is accomplished by detectors in the upper optical paths. As-
sume that the second photon detector (D2) detects one photon
and the first photon detector (D1) does not detect a click, i.e.,
|1〉2d |0〉1d . This postselection process can be described by

|ψ f 〉2d = a†
2d |0〉r |0〉t

= 1√
2

(|0〉r |1〉t − i|1〉r |0〉t ), (12)

where

a2d = 1√
2

(at + iar ), (13a)

a1d = 1√
2

(iat + ar ) (13b)

are the field-operator relations between the input and output
modes of the beam-splitter transformation. After making the
postselection with the postselected state |ψ f 〉 in Eq. (11), we
can obtain the non-normalized form of the final state of the
pointer (signal beam), which reads

|�〉 = 〈ψ f |ψi〉[1 − ig(〈A〉w p − 〈B〉wq)]|φ〉

= 〈ψ f |ψi〉
[

1 − gα√
2

a − g√
2αε

a†

]
|φ〉, (14)

where

〈A〉w = 〈ψ f |Â|ψi〉
〈ψ f |ψi〉 = α

2
− 1

2αε
, (15)

〈B〉w = 〈ψ f |B̂|ψi〉
〈ψ f |ψi〉 = i

2αε
+ i

α

2
(16)

are the weak values of A and B, respectively. The probability
of finding one photon at D2 and no photon at D1 is

Ps = |〈ψ f |ψi〉|2 = |αε|2. (17)

As we can see, the success probability of the postselection Ps

depends on the imbalance ε caused by the small difference
between the reflection and transmission coefficients of the
beam splitter in the upper interferometer and weak coherent-
state amplitude α of the idler input state. From Eqs. (15) and
(16), it can be seen that the weak values are generally complex
and can take large values when the preselected state |ψi〉 and
postselected states |ψ f 〉 are almost orthogonal. The magni-
tudes of the weak idler-input-state amplitude α, beam-splitter
deviation ε, and coupling coefficient g are all controllable in
optical experiments. Thus, we can manipulate and change the
inherent properties of the output signal state |�〉 by adjusting
these parameters. In the remaining parts of this paper, we
study the state generation and its verification processes by
taking the initial signal input sate |φ〉 as the coherent state
and vacuum squeezed state, respectively.

III. GENERATION OF THE SPAC STATE

In this section, we assume that the initial signal input state
is prepared in a coherent state, which is defined as

|φ〉 = |β〉 = D(β )|0〉, (18)

where β = |β|eiθ is a complex number. For this case, the
output state of the signal, i.e., Eq. (14), reads

|Θ〉 = N [κ1|β〉 − κ2a†|β〉]. (19)

Here

N = {|κ1|2 + |κ2|2(1 + |β|2) − 2Re[κ1κ
∗
2 β]}− 1

2 (20)

is the normalization constant, κ1 = 1 − gβα√
2

, and κ2 = g√
2αε

.
It is very clear from Eq. (19) that the output signal state is a
superposition of the coherent state |β〉 and SPAC state a†|β〉.
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FIG. 2. State distance between the coherent state |β〉, SPAC state
a†|β〉√
1+|β|2

, and |�〉. Here we take θ = 0, g = 0.105, α = 0.01, and ε =
0.1.

As mentioned, since the parameters g, α, ε, and β are ad-
justable, the dominance of the coherent state |β〉 and SPAC
state a†|β〉 can be completely controlled by adjusting the
related parameters. From Eq. (19), we can see that if κ2 
 κ1,
the state |Θ〉 reduces to the SPAC state |1, β〉 = a†|β〉√

1+|β|2 . The

SPAC state was initially proposed by Agarwal and Tara in
1991 [34] and was first experimentally implemented in 2004
[41]. The SPAC state has many applications in quantum in-
formation processes, including quantum communication [70],
quantum key distribution [37,38,71,72], and quantum digital
signatures [39]. In the next sections we extend the discussions
about the verification of the conditional output state |Θ〉.

A. State distance

In quantum information theory, the quantification of the
distance of two quantum states described by density operators
ρ and σ can be characterized by the quantum fidelity (the
so-called Uhlmann-Jozsa fidelity), which is defined as [73]

F = (Tr
√√

ρσ
√

ρ)2. (21)

If both states are pure, i.e., ρ = |ψ〉〈ψ | and σ = |φ〉〈φ|, then

F = |〈ψ |φ〉|2. (22)

This quantity is, indeed, a natural candidate for the state
distance since it corresponds to the closeness of states in the
natural geometry of the Hilbert space. If F = 0, the states are
orthogonal or called something totally different (i.e., perfectly
distinguishable). If F = 1, then the two states are completely
the same, |ψ〉 = |φ〉.

Here, in order to study the similarity of the output signal
states |Θ〉 between the coherent state |β〉 and the normalized
SPAC state |1, α〉, the fidelities between |β〉, |1, α〉, and |Θ〉
are calculated, and the results are given by

F1 = |〈β|Θ〉|2 = |N (κ1 − κ2β
∗)|2, (23)

F2 = |〈1, α|Θ〉|2 = |N |2|κ1β − κ2(1 + |β|2)|2
1 + |β|2 , (24)

respectively. In Fig. 2, we plot fidelities F1 and F2 as a function
of the coherent-state parameter |β| for other fixed system

parameters. In Fig. 2, the red dashed line shows the closeness
between the output signal state and the SPAC state, and it can
be seen that the fidelity of these two states always remains a
constant value (F = 1) for all |β|. Figure 2 also indicates that
F1 increases from zero to unity as |β| increases. It can be seen
that when α and ε are much less than 1 and |β| is smaller, we
can deduce that κ2 
 κ1. Under this condition our generated
output signal state is exactly the SPAC state.

B. Second-order correlation and the Mandel factor

Here we study the second-order correlation function g(2)(0)
and the Mandel factor Qm of our generated signal state |Θ〉.
The second-order correlation function of a single-mode radi-
ation field is defined as

g(2)(0) = 〈a†2a2〉
〈a†a〉2

. (25)

Its relation to the Mandel factor Qm is

Qm = 〈a†a〉[g(2)(0) − 1]. (26)

If 0 � g(2)(0) < 1 and −1 � Qm < 0 simultaneously, the cor-
responding radiation field has sub-Poissonian statistics and
is more nonclassical. We have to remember that the Mandel
factor Qm can never be smaller than −1 for any radiation
field, and negative Qm values, which are equivalent to sub-
Poissonian statistics, cannot be produced by any classical
field.

The second-order correlation function g(2)(0) and the Man-
del factor Qm of our generated output signal state |Θ〉 are
given as [74]

g(2)(0) = 〈Θ|a†a†aa|Θ〉
〈Θ|a†a|Θ〉2

, (27)

Qm = 〈Θ|a†a|Θ〉[g2(0) − 1], (28)

respectively, with

〈Θ|a†2a2|Θ〉 = |N |2{|κ1|2|β|4 − 2κ∗
2 κ1Re(2|β|2β + |β|4β )

+ |κ2|2(5|β|4 + |β|6 + 4|β|2)}, (29)

and

〈Θ|a†a|Θ〉 = |N |2{|κ1|2|β|2 − 2κ∗
2 κ1Re(β + |β|2β )

+ |κ2|2(3|β|2 + |β|4 + 1)}. (30)

In Fig. 3, we plot g(2)(0) and Qm as functions of the
coherent-state parameter β by fixing the other parameters
to θ = 0, g = 0.105, α = 0.01, and ε = 0.1. As observed in
Fig. 3, 0 � g(2)(0) < 1, and−1 � Qm < 0 for all plotted re-
gions. This means that our generated signal output field has
sub-Poisson statistics which is possessed by only nonclassical
states. Actually, the curves shown in Fig. 3 match well the
corresponding curves of the SPAC state |1, α〉 [34]. Thus,
we can further verify that in our scheme we can effectively
generate the SPAC state if the initial signal input state is in the
coherent state with moderate parameter β.

C. Wigner function

To further verify our claim, in this section, we investigate
the Wigner function of |Θ〉. A state of a quantum-mechanical
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g
Q
m

FIG. 3. Second-order correlation g(2)(0) and Mandel factor Qm of
our generated signal output state |Θ〉 as a function of the coherent-
state parameter |β|. (a) g(2)(0) is varied. (b) Qm is varied. Other
parameters are the same as in Fig. 2.

system is completely described by the density matrix of a
phase-space distribution such as the Wigner function. Ev-
ery state function has unique phase-space distributions, and
the Wigner distribution function is the closest quantum ana-
log of the classical distribution function in phase space. By
evaluating the Wigner function we can intuitively determine
the strength of the corresponding quantum nature, and most
importantly, the negative value of the Wigner function can
prove the nonclassicality of the state. In general, the Wigner
function is defined as the two-dimensional Fourier transform
of the symmetric order characteristic function, and the Wigner
function for the state ρ = |Θ〉〈Θ| can be written as [67]

W (z) ≡ 1

π2

∫ +∞

−∞
exp(λ∗z − λz∗)CN (λ)e− λ2

2 d2λ, (31)

where CN (λ) is the normal ordered characteristic function and
is defined as

CN (λ) = Tr[ρeλa†
e−λa]. (32)

After some calculations we can get the explicit expression of
the Wigner function of the state |Θ〉, which is given as

W (z) = 2|N |2
π

{|κ1|2e−2|z−β|2 −|κ2|2(1−|2z − β|2)e−2|z−β|2

− Re
[
κ2κ

∗
1 (2Re[β] − z)e

1
2 [(z−β )2+(z∗−β∗ )2]]}. (33)

We can see that this Wigner function consists of three
parts. The first and second terms corresponded to the Wigner

FIG. 4. The Wigner function of the output signal state |�〉.
(a) |β| = 0, (b) |β| = 1, and (c) |β| = 2. Other parameters are the
same as in Fig. 2.

function of the coherent state |β〉 and the SPAC state |1, β〉,
respectively, and third term is caused by their superposition. In
Fig. 4, we plot the Wigner function of the state |Θ〉 for differ-
ent amplitudes β. From Fig. 4, we can see that the negativity
of W (z) vanishes gradually with increasing the amplitude
β. We know that every wave function has its phase-space
distribution characterized by the Wigner function, and it is
unique. The presented phenomenon in Fig. 4 is exactly the
phase-space distribution of the SPAC state |1, β〉 [34]. Thus,
when κ2 
 κ1, |Θ〉 gives us a different type of nonclassical
state, i.e., |1, β〉.

D. Signal-to-noise ratio

As shown in our schematic in Fig. 1, the output state |Θ〉 of
the signal beam is generated after we make the postselection
of the idler beam accomplished by D1 and D2. If we did not
do the postselection, then the final state of the signal would
be given by Eq. (11) after taking a trace of the idler beam
with state |ψi〉. However, since in the nonpostselection case
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weak values of operators A and B which possess the signal-
amplification feature will not occur, the postselected weak
measurement may have advantages over the nonpostselected
measurement in the signal-amplification process. To show the
usefulness of our generated state |Θ〉, here we study the ratio
of SNRs between the postselected and nonpostselected weak
measurements [74],

χ = Rp
X

Rn
X

. (34)

Here Rp
X represents the SNR of the postselected weak mea-

surement, defined as

Rp
q =

√
NPsδq√

〈q2〉 f − 〈q〉2
f

, (35)

with

δq = 〈Θ|q|Θ〉 − 〈β|q|β〉. (36)

Here N is the total number of measurements; Ps is the proba-
bility of finding the postselected state for a given preselected
state and, for our scheme, equals Ps = |αε|2; and NPs is the
number of times the system was found in a postselected state
|ψ f 〉. Here 〈q〉 f denotes the expectation value of the measur-
ing observable defined in Eq. (5) under the final state of the
pointer (signal beam) |Θ〉.

When dealing with nonpostselected measurements, there
is no postselection process after the interaction between the
system and pointer. Thus, the definition of the SNR for non-
postselected weak measurements can be given as

Rn
X =

√
Nδq′√

〈q2〉 f ′ − 〈q〉2
f ′

, (37)

with

δq′ = 〈�|q|�〉 − 〈β|q|β〉. (38)

Here 〈q〉 f ′ denotes the expectation value of the measuring
observable under the final state of the pointer without postse-
lection, which can be derived in Eq. (11). In order to evaluate
the ratio χ of SNRs, we have to calculate the related quanti-
ties, and the related expressions are given as follows.

(1) The expectation value of 〈q〉 f is

〈q〉 f = 〈�|q|�〉 = N |2{|κ1|2h1 + |κ2|2h2 − 2Re[κ1κ
∗
2 h3]},

(39)

where

h1 = 〈β|q|β〉 =
√

2Re[β], (40a)

h2 = 〈β|aqa†|β〉 =
√

2(2 + |β|2)Re[β], (40b)

h3 = 〈β|aq|β〉 = 1√
2

(1 + |β|2 + β2). (40c)

(2) The expectation value of 〈q2〉 f is

〈q2〉 f =〈�|q2|�〉=|N |2{|κ1|2w1+|κ2|2w2 − 2Re[κ1κ
∗
2 w2]},

(41)

where

w1 = 〈β|q2|β〉 = 1
2 (2Re[β2] + 2|β|2 + 1), (42a)

FIG. 5. The ratio χ of SNRs between postselection and non-
postselection weak measurements as a function of the coherent-state
parameter β for different values of the slightly unbalanced parameter
ε of the beam splitter in our scheme. Other parameters are the same
as in Fig. 2.

w2 = 〈β|aq2a†|β〉
= 1

2 (3 + 7|β|2 + 2|β|4 + 2(3 + |β|2)Re[β2]), (42b)

w3 = 〈β|aq2|β〉
= 1

2 (3β + β3 + 2β∗ + β∗|β|2 + 2β|β|2). (42c)

The other quantities can also be obtained, and here we
do not show all of them. The ratio of SNRs between posts-
elected and nonpostselected weak measurements is plotted as
a function of the coherent-state parameter β, and the results
are shown in Fig. 5. As we observe in Fig. 5, the ratio χ

is increased and can be larger than unity with increasing the
unbalanced parameter ε of the beam splitter for not very large
|β|. We have noticed that the magnitudes of weak values of
Â and B̂, Eqs. (15) and (16), are the inverse of ε. Thus, the
smaller the weak value is, the better the postslected SNR is
compared with the nonpostselected one. Briefly, one can draw
the conclusion that the postselected weak measurement can
improve the SNR better than the case without postselection.

IV. GENERATION OF THE SINGLE-PHOTON-ADDED
VACUUM SQUEEZED STATE

We assume the initial input state |φ〉 of the signal beam is
prepared as the squeeze vacuum state [75]

|φ1〉 = S(ξ )|0〉, (43)

with S(ξ ) = exp( 1
2ξa†2 − 1

2ξ ∗a2) and ξ = ηeiϕ . Then, the
output state of the signal beam, Eq. (14), becomes

|Ψ 〉 = χ (|φ1〉 − λ1a|φ1〉 − λ2a†|φ1〉). (44)

Here λ1 = gα√
2
, λ2 = g√

2αε
, and

χ−2 = 1 + |λ1|2 sinh2 η −Re[λ1λ
∗
2eiθ ] sinh(2η)

+|λ2|2 cosh2 η (45)

is the normalization constant. In the discussion below, we
can neglect the term associated with the coefficient λ1 since
it is too small compared to λ2 for our allowed parameters.
As we can see, the state we prepared by optical modeling
|�〉 is the superposition of the vacuum squeezed (VS) and
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FIG. 6. The state distance of |�〉 between SVS and PASVS as
a function of the squeezed-state parameter η (a) for α = 0.01 and
(b) for α = 0.75. Other parameters are the same as in Fig. 2.

single-photon-added vacuum squeezed (SPAVS) states. These
two states’ dominance depends on the coefficients λ1, and
their amplitudes can be controlled by beam splitters and the
BBO crystal in our scheme (see Fig. 1). The states gener-
ated by excitations on a squeezed vacuum state have some
interesting nonclassical properties [76,77] and have potential
applications that include entanglement distillation [78–80],
the fidelity of continuous-variable teleportation [81,82], and
nonlocality [83]. In this section, by calculating the state dis-
tance, squeezing parameter, and Wigner function we prove
that in the allowed parameter region our generated state |�〉
is very distinguishable over the initial input state |φ1〉.

A. State distance

In order to investigate the similarities and differences of the
generated state |�〉 between the SV state and SPASV state, we
evaluate the state distances between them.

(1) The state distance between |�〉 and the SV state|φ1〉 is
given as

F1 = |〈ξ |�〉|2 = |χ |2. (46)

(2) The state distance between |�〉 and the SPASV state
|φ2〉 = a†|ξ〉

cosh η
is given as

F2 = |〈φ2|Ψ 〉|2 =
∣∣∣∣ χ

cosh η

∣∣∣∣
2∣∣∣∣1

2
eiθλ1 sinh 2η − λ2 cosh2 η

∣∣∣∣
2

.

(47)

In Fig. 6, we plot separately the state distances between |�〉
and the two states vs the squeezing parameter η. As indicated
in Fig. 6(a), when the input idler coherent state is too weak,

α = 0.01, the output signal state |�〉 is very different from
the initial input state, and the generated state is totally the
same as the SPASV state. For α = 0.75, for a very weak
squeezing parameter η, the output state |�〉 is very similar to
the SV and SPASV states. But with increasing the squeezing
parameter η, the similarities between |�〉 and the SPASV (SV)
state are increased(decreased) significantly [see Fig. 6(b)].
Although the SPASV state is only one photon different from
the SV state, it has very different features from the SV state.
Next, we study the squeezing parameter and Wigner functions
of our generated state |�〉. We notice that in Ref. [84] the
authors proposed a scheme to generate a photon-added SV
state by mixing the SV state with a single-photon state on
a low-reflectivity beam splitter. But that process is highly
nondeterministic and less efficient than the scheme we present
here.

B. Squeezing parameter

As we know, the SV state is an ideal state which possesses
a very strong squeezing effect. To investigate the squeezing
effect of the field quadrature of the generated state |�〉, in
this section we study the squeezing parameter of |�〉. The
squeezing parameter of the radiation field is defined as

Sφ = (�Xφ )2 − 1
2 , (48)

where

X̂φ = 1√
2

(ae−iφ + a†eiφ ), φ ∈ [0, 2π ], (49)

is the quadrature operator of the field and �Xφ =√
〈X̂ 2

φ 〉 − 〈X̂φ〉2 is the variance of variable Xθ . The minimum
value of Sφ is −0.5, and if −0.5 � Sφ < 0, the field is called
nonclassical. We can calculate the squeezing parameters of the
SV state |φ1〉, SPASV state |φ2〉, and generated output state
|�〉 easily, and their curves are given in Fig. 7. We observe
from Fig. 7(a) that when α = 0.01, the squeezing parameter
of the generated output signal state |�〉 is exactly the same
as the squeezing parameter of the SPASV state |φ2〉, and it
has very good squeezing in the initial input state |φ1〉 when
the squeezing parameter η becomes larger. Furthermore, as
shown in Fig. 7(b), if α = 0.75, then the squeezing parameter
of |�〉 is the same as the initial input state |φ1〉. Here we have
to mention that in our scheme it is required that the measured
system is initially prepared in a very weak coherent state.
Thus, the α = 0.75 case is not our main point.

C. Wigner function of the generated state

To further confirm the similarities between the SPASV
state |φ2〉 and the generated state |�〉, in this section we study
the Wigner function of |�〉. The Wigner function for the state
ρ = |�〉〈�| can be written as [67]

W (z) ≡ 1

π2

∫ +∞

−∞
exp(λ∗z − λz∗)CW (λ)d2λ. (50)

Here CW (λ) is the characteristic function and is defined as

CW (λ) = Tr[ρeλa†−λ∗a], (51)
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S
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(b)

FIG. 7. The squeezing parameter Sφ of |�〉, the SV state |φ1〉, and
the SPASV state |φ2〉 vs the squeezing parameter η (a) for α = 0.01
and (b) for α = 0.75. Here we take φ = 0, and other parameters are
the same as in Fig. 2.

and z = x + ip represents the normalized dimensionless posi-
tion and momentum observables of the beam in phase space.
After some math, we can calculate the explicit expression
of the Wigner function of the generated state |�〉, which
reads

W (z) = |χ |2w1(z) + |λ1|2|χ |2w2(z) + |λ2|2|χ |2w3(z)

− 2|χ |2Im[λ1eiϕ]w4(z) − 2Im[λ2]|χ |2w5(z)

− 2|χ |2Re[λ∗
1λ2e−iϕ]w6(z), (52)

with

w1(z) = 2

π
exp[−2|z̃|2], (53a)

w2(z) = 2

π
sinh2 η exp−2|z̃|2 (4|z̃|2 − 1), (53b)

w3(z) = 2

π
cosh2 η exp−2|z̃|2 (4|z̃|2 − 1), (53c)

w4(z) = 4

π
μ sinh ηe−τ , (53d)

w5(z) = 4

π
μ∗ cosh ηe−τ , (53e)

w6(z) = 1

π
sinh 2η exp−2|z̃|2 (4|z̃|2 − 1). (53f)

Here z̃ = z cosh η − z∗eiθ sinh η, τ = 2(Re[z])2(cosh η −
sinh η)2 − 2(Im[z])2(cosh η + sinh η)2, and μ = Re[z]
(sinh η − cosh η) + iIm[z](sinh η + cosh η). We can observe
that this Wigner function is a real function, and its value is
bounded by − 2

π
� W (α) � 2

π
in the whole phase space. In

the derivation of the above Wigner function we have used the
identities

S(ξ )aS†(ξ ) = a cosh(η) − a†eiϕ sinh(η), (54a)

S(ξ )a†S†(ξ ) = a† cosh(η) − ae−iϕ sinh(η). (54b)

w2(z) in the Wigner function (52) is the Wigner function of
the SV state |φ1〉. Although the SV state |φ1〉 is a nonclassical
state, its Wigner function is Gaussian and positive in phase
space [35]. It is very clear in Eq. (52) that it contains non-
Gaussian terms such as w2(z), w3(z), and w6(z). Thus, the
Wigner function of our generated signal state is non-Gaussian
in the phase space. We present the plots of the Wigner func-
tions of the initial input signal state |φ1〉, our generated output
signal state |�〉, and the SPASV state |φ2〉 in phase space in
Fig. 8 for different squeezing parameters which we set as η =
0, 1, 2. Figures 8(a)–8(c) represent Wigner functions of the
SV state |φ1〉, Figs. 8(d)–8(f) represent Wigner functions of
the generated state |�〉, and Figs. 8(g)–8(i) represent Wigner
functions of the SPASV state |φ2〉. By comparing the curves
of those Wigner functions, we observe that the generated state
in our scheme is a nonclassical state. It is very clear from
Figs. 8(d)–8(f) that as the initial input state |φ1〉, the state
|�〉 has squeezing in one of the quadratures, and there are
also some negative regions of the Wigner functions in the
phase space. These two features of the state |�〉 show its
nonclassicality. Furthermore, it is proved that our generated
state |�〉 has exactly the same phase-space distribution as the
SPASV state |φ2〉 (see the second and third rows of Fig. 8).
As indicated in Fig. 8(d), if the input state of the pointer
is a vacuum, then the output signal state is prepared in the
single-photon Fock state.

V. CONCLUSION

In summary, we have designed a fully laboratory feasi-
ble optical model to successfully prepare nonclassical states
such as the single-photon Fock state, SPAC state, and SPASV
state by using postselected weak measurements in a three-
wave mixing process. In our scheme the signal and idler
beams are taken as the pointer and measured system, re-
spectively, and entanglement between them is realized by a
BBO crystal which can play the role of weak measurement.
In other words, in our study, a nonlinear BBO crystal was
chosen to introduce weak interaction in three-wave mixing
including pump, idle, and signal light. By making the pre-
and postselections in the measured system, the final pointer
state is the desired nonclassical state which depends on the
initial input signal state (initial pointer state). Further, we
investigated other properties, including squeezing, second-
order correlation, and Wigner functions of conditional output
states.

We found that if the input signal (pointer) is the vac-
uum state, then the output signal state is prepared in the
single-photon Fock state, which is a typical quantum state
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FIG. 8. Comparison of the Wigner functions of the SV state |φ1〉, the SPASV state |φ2〉, and the generated state |�〉 in phase space. Each
column is defined by a different value of the squeezing parameter η (set η = 0, 1, 2), and they are ordered accordingly from left to right.
(a)–(c) correspond to the Wigner functions of the initial input SV state |φ1〉, (d)–(f) correspond to the Wigner functions of the generated output
signal state |�〉, and (g)–(i) correspond to the Wigner functions of the SPASV state |φ2〉. Other parameters are the same as in Fig. 2.

exclusively used in many quantum information processes. We
also found that if the input signal state is a coherent (squeezed
vacuum) state, then the output signal state is prepared in
the SPAC (SPAVS) state, and their purities can easily be
controlled by optical elements. Furthermore, we also found
that the postselective measurement characterized by weak
values and postselection has a positive effect on the out-
put SNR over nonpostselection for the coherent-state input
case.

Our scheme for the preparation of nonclassical states can
be implemented in optical laboratories, and we anticipate that

this scheme could provide other effective methods for the gen-
eration of other useful nonclassical state such as Schrödinger’s
kitten states [13].
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