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Variational quantum algorithms (VQAs) have been considered to be useful applications of noisy intermediate-
scale quantum (NISQ) devices. Typically, in VQAs, a parametrized ansatz circuit is used to generate a trial wave
function, and the parameters are optimized to minimize a cost function. On the other hand, blind quantum
computing (BQC) has been studied in order to provide a quantum algorithm with security by using cloud
networks. A client with a limited ability to perform quantum operations hopes to have access to a quantum
computer of a server, and BQC allows the client to use the server’s computer without leakage of the client’s
information (such as input, running quantum algorithms, and output) to the server. However, BQC is designed
for fault-tolerant quantum computing, and this requires many ancillary qubits, which may not be suitable for
NISQ devices. Here, we propose an efficient way to implement the NISQ computing with guaranteed security
for the client. In our architecture, only N + 1 qubits are required, under an assumption that the form of ansätze is
known to the server, where N denotes the necessary number of the qubits in the original NISQ algorithms. The
client only performs single-qubit measurements on an ancillary qubit sent from the server, and the measurement
angles can specify the parameters for the ansätze of the NISQ algorithms. The no-signaling principle guarantees
that neither parameters chosen by the client nor the outputs of the algorithm are leaked to the server. This work
paves the way for new applications of NISQ devices.
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I. INTRODUCTION

Quantum devices have the potential to offer significant
advantages over classical devices. Especially, quantum com-
putation, quantum cryptography, and quantum metrology are
considered promising applications of quantum devices [1–19].
Recently, great efforts have been devoted to the hybridization
between quantum computation, quantum cryptography, and
quantum metrology [20–36].

Blind quantum computation (BQC) is an idea to combine
quantum computation and quantum cryptography [37–42],
where the concept of measurement-based quantum compu-
tation (MBQC) [43–45] is adopted. Suppose that a client
who does not have a sophisticated quantum device hopes
to access a server that has a scalable fault-tolerant quantum
computer. The BQC provides a client with a way to access
the server’s quantum computer in a secure way where the
client’s information such as input, output, and algorithm is not
leaked to the server. The server sends a cluster state, which
is a resource of the entanglement, to the client. On the other
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hand, the client performs the single-qubit measurements on
the cluster state. Importantly, the client needs to change angles
of the single-qubit measurements depending on the algorithm,
while the form of the cluster state generated by the server
does not depend on the choice of the algorithm. Therefore, the
server does not obtain any information of either the details or
output of the algorithm set by the client, and the no-signaling
principle guarantees the security of the protocol [38,46].

Recently, many theoretical and experimental works have
been devoted to developing quantum devices in the noisy
intermediate-scale quantum (NISQ) era. The NISQ device
could involve tens to thousands of qubits with a gate error rate
of around 10−3 [47]. The NISQ computing typically requires
only a shallow circuit to implement quantum algorithms.
Variational quantum algorithms (VQAs) are the typical ap-
plication of the NISQ computing [48–54]. In the VQA, one
generates a trial wave function from a parametrized ansatz
circuit that is typically shallow. To optimize a cost func-
tion tailored to a problem, one updates the parameters with
classical computation to generate a new trial wave function.
One can search exponentially large Hilbert space with the
parametrized quantum circuit via the repetition of such hybrid
quantum-classical operations and thus could find a solution to
a given problem.

A natural question is whether one can implement the NISQ
computing in the blind architecture. If one adopts the BQC
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with the MBQC, one can in principle perform any gate-type
quantum computation including NISQ computing. However,
to implement the BQC with the MBQC on the cluster state,
the necessary number of the qubits is around 3N [43–45],
where N is the number of the qubits required in the original
NISQ algorithm. Since the number of the qubits in the blind
architecture with the MBQC is much larger than that in the
original algorithm without blind properties [37–41], such a
scheme may not be implementable with the NISQ device with
a limited number of qubits.

Here, we propose an efficient scheme to implement the
variational secure cloud quantum computing. The purpose of
our scheme is that the client accesses the quantum computer
of the server to implement the NISQ computing in a secure
way where the information of the ansatz circuit’s parameters
and output of the algorithm are not leaked to the server. This
is essential for security, because the ansatz circuit’s parame-
ters could contain important information such as private data,
especially when we perform machine learning with NISQ
devices [55–59]. Importantly, our scheme requires only N + 1
qubits while MBQC on the cluster state requires around 3N
qubits. The key idea of our scheme is to use an ancillary qubit
for the implementation of the quantum gates on register qubits
of the server. The server performs only a limited set of gate
operations with fixed angles, namely, Hadamard operations
and controlled-Z gates on the register qubits, while the client
performs arbitrary single-qubit measurements on the ancillary
qubit.

A key idea of our scheme is the use of ancilla-driven quan-
tum computation (ADQC) [60–63]. While the ADQC was
originally discussed as one of the novel ways to perform the
gate-type quantum computation, we adopt the ancilla-driven
architecture for NISQ computing with security inbuilt. In
our architecture, the server couples an ancillary qubit to a
register qubit via a fixed two-qubit gate at the server side,
and the ancillary qubit is sent to the client. Then the client
implements a single-qubit measurement on the ancillary qubit
either to specify a parameter for the NISQ computing or to
readout a computational result. Importantly, since the client
does not send any qubits or classical signals to the server, the
information about the parameters and output of the NISQ al-
gorithm cannot be leaked to the server due to the no-signaling
principle [38,46].

The paper is structured as follows: In Secs. II and III,
we review the ADQC and NISQ algorithm, respectively. In
Sec. IV, we describe our architecture of the NISQ computing
with security inbuilt. In Sec. V, we conclude our results.

II. ANCILLA-DRIVEN QUANTUM COMPUTATION

In the ADQC [60], we define register qubits to execute
algorithms and also define an ancillary qubit that can be spa-
tially transferred from one place to another. The basic idea of
the ADQC is to entangle the register qubit and ancillary qubit,
and the ancillary qubit is sent to another place for the mea-
surement at a specific angle. These operations allow one to
perform a universal set of operations. For the implementation
with the physical systems, register qubits can be solid-state
systems that can interact with photons, and the ancillary qubit
can be an optical photon that is transmitted to a distant place.

FIG. 1. The circuit for implementing the ancilla-driven quantum
computation (ADQC). The upper horizontal lines (the lower line)
represents register qubits (an ancillary qubit), where CZAR denotes
the controlled-Z gate between one of the register qubits and the
ancillary qubit, HR (HA) denotes the Hadamard gate for the register
(ancillary) qubit, and Rz(β ) denotes a parametrized rotation around
the z axis with any value β. We prepare the initial states |ψ〉 and |+〉A

for the register qubits and the ancillary qubit, respectively, where
|ψ〉 denotes an arbitrary input state. After implementing the unitary
operation HARz(β )EAR and measuring the ancillary qubit in the z
basis, where EAR ≡ HAHRCZAR, we obtain X jA HRRz(β ) |ψ〉 at the
register qubits, where X denotes the Pauli X gate and jA = 0 or 1 is
the result of the measurement.

A. Single-qubit rotation on a register qubit

We explain a realization of single-qubit rotation along the
z axis as follows (see Fig. 1):

(1) We prepare a state |+〉A ≡ 1√
2
(|0〉 + |1〉) of an ancilla

qubit (which we call qubit A) and any state |ψ〉 of register
qubits (which we call qubits R).

(2) The ancillary qubit A is coupled with one of the regis-
ter qubits R via a controlled-Z gate CZAR, and, subsequently,
we implement two Hadamard gates HA and HR to the qubit
A and the qubit R, respectively. Thus, we have a unitary
operation of EAR ≡ HAHRCZAR.

(3) A rotation about the z axis Rz(β ) and a Hadamard gate
are implemented on the ancillary qubit, where β is an arbitrary
rotation angle.

(4) Measuring the ancillary qubit in the z basis projects the
state of the register qubit onto X jA HRRz(β ) |ψ〉, where jA =
0 or 1 is the result of the measurement on the ancillary qubit.

The third and final steps can be unified into a single mea-
surement step if an arbitrary-angle single-qubit measurement
can be implemented on the ancillary qubit. The details of
performing an arbitrary single-qubit rotation and two-qubit
gates with ADQC are explained in Appendix A.

III. VARIATIONAL QUANTUM ALGORITHM
FOR NISQ DEVICE

Variational quantum algorithms (VQAs) perform a re-
quired task by preparing a parametrized wave function on
a quantum circuit |ψ (�θ )〉 with the variational parameters �θ
to be optimized by minimizing a cost function C(�θ ) tailored
to a problem. The parametrized wave function can be gener-
ally described as |ψ (�θ )〉 = UAN(�θ ) |0̄〉 with |0̄〉 ≡ ⊗N

i=1 |0〉,
where the ansatz quantum circuit is represented as a repeti-
tion of parametrized quantum gates and fixed quantum gates
as UAN(�θ ) = VL+1UL(θL )VLUL−1(θL−1) · · ·U1(θ1)V1. Here, L
is the number of parameters, Uk (θk ) and Vk are the kth
parametrized and fixed gates, respectively, and θk is the kth
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component of the parameter set �θ . As an example of the cost
function, in the celebrated variational quantum eigensolver
(VQE) [48,51], one uses the expectation value of the Hamil-
tonian H , i.e., 〈ψ (�θ )| H |ψ (�θ )〉. Typically, the parameters at
( j + 1)th step �θ[ j + 1] is obtained by optimizing the cost
function at the jth step C(�θ[ j]) by using, e.g., gradient descent
methods. The total number of iteration steps to update the
parameters is defined as M. The other example of VQAs is
variational quantum simulations (VQSs), which are used to
simulate quantum dynamics such as the Schrödinger equa-
tion [53,54]. By using the variational principles, it is possible
to minimize the distance between the ideal state in the exact
evolution and the parametrized trial state, which provides us
with the feasible update rule of parameters.

In variational algorithms, we should implement not only
the original quantum circuit but also variant types of
the original circuit. For example, in many variational al-

gorithms, derivatives of quantum states, i.e., ∂|ψ (�θ )〉
∂θk

are
used. They are generated from a different quantum cir-
cuit from the original ansatz circuit. To discuss these
cases in a general form, we denote the set of variational
quantum circuits used in the algorithm as {U (i)

AN(�θ )}G
i=1 ≡

{V (i)
L+1U

(i)
L (θL )V (i)

L U (i)
L−1(θL−1)V (i)

L−1 · · ·U (i)
1 (θ1)V (i)

1 }G
i=1, where

G is the number of variational quantum circuits including
the original and variants. Accordingly, we denote the set
of the observables measured in these quantum circuits as
{Â(i)

1 , Â(i)
2 , . . . , Â(i)

K (i)}G
i=1, where Â(i) is a Pauli matrix (or an op-

erator made up of tensor products of the Pauli matrices), and
K (i) is the number of observables measured in the ith quantum
circuits. We use these notation throughout this paper. We
show a prescription about how to implement the conventional
variational algorithms with these notation in Appendix B.

IV. VARIATIONAL SECURE CLOUD QUANTUM
COMPUTING

We explain our protocol of the variational secure cloud
quantum computing. Suppose that a client who has the ability
to perform only single-qubit measurements hopes to access
the NISQ computer of the server in a secure way. The main
purpose of our scheme is to hide the information of the ansatz
parameters �θ set by the client and output of the algorithm. In
our scheme, the ansatz circuit to be implemented by the server
is publicly announced beforehand. Our scheme is efficient
for the NISQ device that has a limited resource, because our
scheme requires only a single ancillary qubit independently of
the number of qubits needed in the original NISQ algorithm.
This is in stark contrast with the original BQC. In the BQC, all
information of the choice of the client is hidden [37–41], while
3N qubits are approximately required to execute an algorithm
using N qubits.

Throughout our paper, we assume that the client has his
or her own private space, and any information in the private
space is not leaked to the outside. This is the standard assump-
tion in the quantum key distribution [64]

The key of our protocol is to use the concept of the ADQC
when the server runs the NISQ computing algorithm. We
assume that the server has register qubits, and an ancillary
qubit can be sent from the server to the client. When the

FIG. 2. A quantum circuit to implement a single-qubit rotation
by the client in our scheme. The circuit is the same as that in
Fig. 1. First, the server entangles one register qubit with an ancillary
qubit by the unitary operation EAR = HAHRCZAR. Second, the server
sends the ancillary qubit to the client. Third, the client performs a
single-qubit rotation of HARz(β ) on the ancillary qubit, where β is
determined only by the client. Finally, after the client measures the
ancillary qubit in the z basis, X jA HRRz(β ) |ψ〉 is generated for the
register qubit. Since the client does not send any signals to the server,
the server does not have any information about the rotation angle β

and a measurement result jA, which is guaranteed by the no-signaling
principle. By repeating this process several times, arbitrary single-
qubit rotations on a register qubit can be implemented.

server needs to implement a single-qubit operation based on
the ansatz, the server uses the single-qubit rotation scheme
of the ADQC as shown in Fig. 2. More specifically, the server
performs a two-qubit gate EAR between the register qubit (that
we want to perform the single-qubit rotation) and the ancillary
qubit, and sends the client the ancillary qubit to be measured
by the client side. The angle and axis of the single-qubit
rotation are determined by the client. With three sets of the
rotation, an arbitrary single-qubit rotation can be achieved in
a register qubit (see Appendix A).

We explain how the information of the parameters and the
output is hidden from the server and define that our scheme is
secure in this case. During the implementations of the gates in
our scheme, the gate operations executed by the server do not
depend on the ansatz parameters. Moreover, the client does
not send any information to the server during our protocol.
Therefore, the server cannot find the parameters of the ansatz
circuit set by the client. This discussion is based on the no-
signaling principle [38,46].

Moreover, by performing a single-qubit rotation on every
register qubit in our scheme, we have byproduct operators of
X j1+ j3 Z j2 on every register qubit as shown in Eq. (A1).

It is known that, when Pauli matrices or an identity operator
are randomly implemented on a quantum state (see Sec. 8.3.4
in Ref. [65]), the state becomes completely mixed. This means
that the byproduct operators make the state completely mixed
for the server. Due to this property, any measurements on the
register qubits provide random outcomes if the server side
does not have any information of the client’s dataset, which
is helpful for the client to hide the output of the algorithm. In
our scheme, we assume that the server and the client perform
the ancilla-driven single-qubit rotation on each qubit at least
once during the protocol. We show that, even if the server does
not obey the instructions from the client, the client can still
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(a)

(b)

FIG. 3. An implementation of two-qubit gates in our scheme.
(a) An equivalent circuit with a controlled-gate operation. We can
decompose an arbitrary two-qubit gate into several gates such as
single-qubit rotations (including parameters) and controlled-Z gates,
where we need to choose appropriate parameters of α, β, γ , and δ

for the equivalence. (b) A quantum circuit to implement an arbitrary
controlled-gate operation by the client while the rotation parameters
are hidden to the server in our scheme. The basic structure of the
circuit is the same as that in panel (a), where S denotes a phase
gate. The Hadamard, the controlled-Z , and the phase gates are im-
plemented by the server in the register qubits. An important point is
that every single-qubit rotation in the circuit should be performed by
the client in the same way as described in Fig. 2. In this case, the
no-signaling principle guarantees that the rotation parameters (α, β,
γ , and δ) cannot be inferred by any operation on the server.

hide the information of the ansatz parameters and output in
the Appendix C.

When the server needs to perform a two-qubit gate based
on the ansatz with a specific angle, we adopt a quantum circuit
shown in Fig. 3(a). The point is that an arbitrary two-qubit
gate can be decomposed by arbitrary single-qubit gates and
controlled-Z gates. We combine the single-qubit rotations in
the ADQC with two controlled-Z gates as shown in Fig. 3(b).
In this case, the angles of the two-qubit gates can be deter-
mined by the client because the angle of the single-qubit gate
can be specified just by the client. Similar to the case of the
single-qubit gates, the no-signaling principle guarantees that
the server does not obtain any information about the ansatz
parameters during the implementation of the two-qubit gates.

The combinations of the single-qubit gates and two-qubit
gates in our architecture are shown in Fig. 4. The server
performs only Hadamard gates, phase gates, and controlled-Z
gates, which are clifford gates. Therefore, when the server
measures the observables in the register qubits and sends the
measurement results to the client, the client can effectively
remove the effect of the byproduct operators by changing the
interpretation of the measurement results (see Appendix A).

Before the client performs the secure cloud NISQ
computation, the server publicly announces the set of
unitary operators {U (i)

AN}G
i=1, the set of the observables

FIG. 4. A quantum circuit to implement our variational secure
cloud quantum computing. The NISQ algorithm requires the param-
eters {θ j}L

j=1 to change the ansatz circuit in a variational way. The
server implements gate operations that do not depend on the param-
eters and sends the ancillary qubit to the client. On the other hand,
the client can specify the parameters by changing the measurement
angles on the ancillary qubits sent from the server. Importantly, in
our scheme, the client does not send any signal to the server, and
thus the server does not know the parameters set by the client, due to
the no-signaling principle.

{Â(i)
1 , Â(i)

2 , . . . , Â(i)
K (i)}G

i=1, the repetition numbers {N (i)}G
i=1

for sampling with the quantum circuits, initial states
{|ψ (i)(�θ[0])〉}G

i=1, the number of variational parameters L, the
total number of iteration steps for VQAs M, and the number of
variants of variational quantum circuits G, as shown in Fig. 5.

We summarize our scheme in Fig. 6 as follows:
(1) Adopting the quantum circuits of {U (i)

AN}G
i=1, the server

and client implement these unitary operations to generate
the trial wave functions {|ψ (i)(�θ[1])〉}G

i=1. Here, parametrized
single- and two-qubit gates should be implemented in the
specific ways as described in Figs. 2 and 3(b), respec-
tively. More specifically, the server performs operations, such
as the Hadamard, the controlled-Z , and the phase gates
[Fig. 6(1.a)], while the client specifies the measurement angles
[Fig. 6(1.b)].

We do not need to prepare {|ψ (i)(�θ[1])〉}G
i=1 simultane-

ously by using G quantum computers, but we can prepare

FIG. 5. Before the client starts the protocol, the server broad-
casts the information about their quantum circuit. This includes
the set of unitary operations {U (i)

AN}G
i=1, the set of the observ-

ables {Â(i)
1 , Â(i)

2 , . . . , Â(i)
K (i) }G

i=1 to be measured, the repetition numbers

{N (i)}G
i=1 for the quantum circuits, initial states {|ψ (i)(�θ [0])〉}G

i=1, and
the total number M of iteration steps to update the parameters. The
client implements the NISQ algorithm based on this information.
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FIG. 6. The sequence of our scheme to implement a NISQ algorithm with a parameter set of �θ in a variational secure cloud quantum
computing. (1) The server sequentially performs the unitary operations {U (i)

AN}G
i=1 for the register qubits, where G denotes the number of

the quantum circuits to be performed. (1.a) The server implements a unitary (non-parametrized) operation V (i)
n for n = 1, 2, . . . , L + 1; a

Hadamard or a controlled-Z , or a phase gate, on the register qubits. (1.b) The server entangles a register qubit with an ancillary qubit and sends
the ancillary qubit to the client in the same way as Fig. 2. The client measures the ancillary qubit sent from the server, where the client specifies
a measurement angle based on the initial parameters �θ [1]. (2) The server measures Â(i)

1 , Â(i)
2 , . . . , and Â(i)

K (i) for i = 1, 2, . . . , G and sends the

results to the client by the classical communication. (3) For each {U (i)
AN}G

i=1, the server and the client repeat these two steps {N (i)}G
i=1 times, and

then the client obtains expectation values of {Â(i)
1 , Â(i)

2 , . . . , Â(i)
K (i) }G

i=1 with {|ψ (i)(�θ[1])〉}G
i=1. (4) The client updates the parameters as �θ [2] by

processing the measurement data with classical computation. (5) The server and the client repeat these four steps M − 2 times updating the
parameters from �θ [ j] to �θ [ j + 1] for j = 2, 3, . . . , M − 1, and the client obtains the output. Since the client does not send any signals to the
server during the computation, the server cannot obtain any information about �θ [1], �θ [2], . . . , �θ [M], because of the no-signaling principle.

and measure these in sequence by using a single quantum
computer, similar to the standard VQA for NISQ devices (see
Appendix B).

(2) The server measures the states of the register qubits
with {Â(i)

1 , Â(i)
2 , . . . , Â(i)

K (i)}G
i=1, and sends the results to the client

with classical communications.
(3) For the sampling, the server and client repeat the

first and the second steps with {N (i)}G
i=1 times for each state

{|ψ (i)(�θ[1])〉}G
i=1 so that the client should obtain the expecta-

tion values of {Â(i)
1 , Â(i)

2 , . . . , Â(i)
K (i)}G

i=1.
When the observables are measured, the effect of the

byproduct operators can be canceled out by the client (see
Appendix A).

(4) By processing the measurement results with a classical
computer at the client side, the client updates the parameters
and obtains �θ[2] = (θ1[2], . . . , θL[2])T for the next step.

(5) The client and the server repeat the steps 1–4 (M −
2) times with {U (i)

AN}G
i=1 and �θ [ j], where classical computation

based on the results at the jth step provides the client with the
updated parameters of �θ [ j + 1] for j = 2, 3, . . . , M − 1. The
client finally obtains the desired results in a secure way from
the server.

As a physical implementation, the register qubits can be
the solid-state systems that interact with a photon, and the
ancillary qubit can be an optical photon that transmits to
a distant place. We implicitly assumed that the photon loss
would be negligible during the transmission in the discussion
above.

We discuss the effect of photon loss on our scheme. When
the server sends the client an ancillary qubit that corresponds
to an optical photon, there is a possibility that the photon
can be lost during the transmission. In principle, if the server
and the client have quantum memories, they can share a
Bell pair under the effect of photon loss by repeating the
entanglement generation process until success [66], and they
can use the Bell pairs to perform our gate operations in a
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deterministic way. In this case, the client needs to ask the
server to send the photons again and again, depending on how
many times the photon is lost [66]. However, in order to apply
the no-signaling principle, the client is not allowed to send the
server any information. This means that the client cannot ask
the server to send the photon again. So we cannot adopt the
repeat-until-success strategy with quantum memories.

Thus, we assume that the client adopts the observation
results of the readout of the register qubits by the server only
when all photons are successfully transmitted to the client dur-
ing the computation. In this case, the probability of no photon
loss during the computation exponentially decreases as the
number of sending photons increases. The number of required
photons sent to the client can be determined by the number
of the tunable parameters used in the ansatz circuit. When
U (i)

AN is composed of n(i)
single single-qubit operations and n(i)

two =
L − n(i)

single two-qubit operations, the necessary number N (i)
ph of

the photons to send the client is at most N (i)
ph = 3n(i)

single + 6n(i)
two

as shown in Eq. (A1) and Figs. 2 and 3(b). The probability for

all the photons to be detected by the client is (1 − ploss )N (i)
ph ,

where ploss is a photon loss probability for a single transmis-
sion. Therefore, the repetition number N (i) with the photon

loss should be set to be much larger than N (i)
ideal/(1 − ploss )N (i)

ph ,
where N (i)

ideal denotes the required number of repetition with no
photon loss. To keep N (i) within a reasonable amount, ploss

should be smaller than 1% under the assumption that N (i)
ph is

around a few hundreds.
We could overcome such a problem due to the recent

experimental and theoretical developments of quantum re-
peating technology. The best single-photon detector in optics
has 99% efficiency [67–69]. A microwave quantum repeater
with a short distance such as 100 m has been proposed [70],
and a qubit can catch a microwave photon with 99.4% ab-
sorption efficiency in the microwave regime [71]. Also, there
are proposals to physically move the solid-state qubit [72,73]
for distributed quantum computation or a quantum repeater.
Through the combination of these protocols and a long-lived
quantum memory such as a nuclear spin [74,75], the ancillary
solid-state qubits might be carried to the client without the
problems of the photon loss.

In our scheme, the depth of the quantum circuit increases
compared with the conventional NISQ algorithms without
security. For example, if the client and the server implement
single-qubit rotations for every register qubit with those vari-
ational parameters in the ansatz circuit, our scheme requires
	(N ) steps, where N denotes the number of register qubits.
However, we can reduce the depth of the quantum circuit in
our scheme as follows: Suppose that the client has N photon
detectors and can perform single-qubit rotations on N pho-
tonic qubits in parallel. In this case, the server can interact
with each solid-state qubit (register qubit) with a photonic
qubit (ancillary qubit) and emit N photons to the client, who
can measure these photons in parallel. This scheme allows
the client to implement the single-qubit measurements on all
qubits with N variational parameters at the same time, and
therefore the depth of the quantum circuit becomes shorter.

Finally, we present some future works. First, in principle,
we could also reduce the depth of the quantum circuit in
another approach as follows: In our scheme, we assume that

the client tries to hide all variational parameters in the ansatz
circuit from the server. However, if the client just wants to
hide a part of the variational parameters, the depth of the
quantum circuit in our scheme should be shorter. Although
this approach seems to be important for the NISQ devices
using a short-depth quantum circuit, further research is needed
to assess the feasibility. Second, our scheme requires quantum
communications while some previous blind quantum compu-
tation protocols for the fault tolerant architecture with graph
states require only classical communications [76,77]. It is
important to investigate whether the client can implement
the NISQ algorithm with the server’s quantum computer by
using classical communications while the information of the
ansatz parameters and output is hidden. Third, if the server is
adversary to perform some POVM measurements by deviating
from the instructions, the client may not be able to obtain
correct calculation results. It would be interesting if one could
find a scheme to check whether the server obeys the client’s
instruction so that the client can verify the calculated results.
We leave these points for further research.

V. CONCLUSION

In conclusion, we proposed a noisy intermediate-scale
quantum (NISQ) computing with security inbuilt. The main
targets of our scheme are variational quantum algorithms
(VQAs), which involve parameters of an ansatz to be op-
timized by minimizing a cost function. We considered a
circumstance that a client with a limited ability to perform
quantum operations hopes to access a NISQ device possessed
by a server and the client tries to avoid leakage of the in-
formation about the quantum algorithm that he or she runs.
Importantly, the naive application of the previously known
blind quantum computation (BQC) [38] requires around 3N
qubits [43–45], where N denotes the number of the qubits to
run the quantum algorithm in the original architecture. That
may not be suitable for the NISQ devices with the limited
number of qubits. Our proposal is more efficient in the sense
that we use a single ancillary qubit and N register qubits
required in the original NISQ algorithm. In VQAs, we use
a parametrized trial wave function, and our scheme prevents
the information about the parameters from the leakage to the
server. We rely on the no-signaling principle to guarantee
security. Our scheme paves the way for new applications of
the NISQ devices.
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APPENDIX A: DETAILED ANCILLA-DRIVEN
QUANTUM COMPUTATION

1. Arbitrary single-qubit rotation

We describe a way to implement an arbitrary single-qubit
rotation. Any single-qubit rotation U can be represented by
U = Rz(β ′)Rx(γ ′)Rz(δ′), where Rx denotes a rotation about
the x axis, and β ′, γ ′, and δ′ denote the rotation angles about
the corresponding axis. Defining J (β ) ≡ HRz(β ), one can
rewrite U as U = J (β )J (γ )J (δ), where we choose β, γ , and
δ to satisfy Rz(β )Rx(γ )Rz(δ) = HU . As we explained, one
can implement the single-qubit rotation of X jHRRz(β ) |ψ〉
on the register qubit by the coupling with an ancillary qubit
and a subsequent measurement. Therefore, three sequential
operations of this type of the single-qubit rotation provide us
with the following operation:

{X j3 HRRz[(−1) j2β]}X j2 HRRz[(−1) j1γ ][X j1 HRRz(δ)]

= X j3 J[(−1) j2β]X j2 J[(−1) j1γ ]X j1 J (δ)

= (−1) j1· j2 X j1+ j3 Z j2 J (β )J (γ )J (δ), (A1)

where ji denotes the result of the ith measurement on the
ancillary qubits. For the implementation of this operation, we
change the rotation angle of the ancillary qubit depending
on the previous measurement results. Equation (A1) involves
the byproduct operator X j1+ j3 Z j2 . However, as long as we
measure the qubit in a computational basis for the readout, the
byproduct operators just flip the measurement result from 0 to
1 or vice versa, and so we can effectively remove the byprod-
uct operators from the states by changing the interpretation of
the measurement results.

2. Two-qubit gate between the register qubits

We explain a way to perform the controlled-Z gate on the
two register qubits R and R′ in the ADQC. First, we implement
EAR on the ancillary qubit (prepared in the state |+〉A) and
the register qubit R and subsequently perform EAR′ on the
ancillary qubit and the other register qubit R′. Second, one
measures the ancillary qubit in the y basis. These operations
are equivalent to the controlled-Z gate, up to local operations.

When we perform several single-qubit gates and two-qubit
gates, the byproduct operators are applied as U
Uideal|0〉,
where U
 denotes the total byproduct operators and Uideal

denotes the unitary operations that we aim to implement.
Again, when one measures observables of Pauli matrices (or a
tensor product of Pauli matrices), one can effectively remove
the byproduct operators from the states by changing the inter-
pretation of the measurement results.

APPENDIX B: VQA FOR NISQ DEVICES

We show a prescription about how to implement the con-
ventional variational algorithms with our notation. We prepare
a parametrized wave function on a quantum circuit |ψ (�θ )〉

with the variational parameters �θ to be optimized by minimiz-
ing a cost function C(�θ ) tailored to a problem. First, with the
quantum circuits of {U (i)

AN}G
i=1, we realize parametrized

wave functions of N qubits {|ψ (i)(�θ [1])〉}G
i=1, where

|ψ (i)(�θ[1])〉 ≡ V (i)
L+1U

(i)
L (θL[1])V (i)

L · · ·U (i)
1 (θ1[1])V (i)

1 |0̄〉
where |0̄〉 ≡ ⊗N

i=1 |0〉 denotes the wave function,
�θ [1] = (θ1[1], . . . , θL[1])T is a vector of the parameters,
and {|ψ (i)(�θ [0])〉}G

i=1 are initial states, and we measure
the state of the wave function with observables of
{Â(i)

1 , Â(i)
2 , · · · , Â(i)

K (i)}G
i=1.

Second, for the sampling, we repeat the first step to
obtain expectation values of {Â(i)

1 , Â(i)
2 , . . . , Â(i)

K (i)}G
i=1 with

{|ψ (i)(�θ[1])〉}G
i=1. Third, based on the expectation values, we

implement a classical algorithm so that we can obtain updated
parameters �θ[2] for the next quantum circuits, where we typi-
cally use a gradient method to make the cost function smaller.
For example, we use �θ [ j + 1] = �θ [ j] − αgradC(�θ[ j]) for the
gradient method.

Finally, we repeat the first, second, and third steps M − 2
times with {U (i)

AN}G
i=1 and �θ[k], where classical computation

based on the results at the kth step provides the updated
parameters of �θ[k + 1] for k = 2, 3, . . . , M − 1. These pro-
cesses provide us with an output of the algorithm.

APPENDIX C: SECURITY PROOF

In this Appendix, we show that even when the server is ad-
versary to perform positive operator-valued measure (POVM)
measurements at his or her own will at any stage of our
protocol in order to know the information of the client, the
server cannot obtain any information about the client’s output
and measurement angles chosen by the client. Our proof is
based on the previous work of Morimae and Fujii [38]. We
assume that the server cannot guess the choice of the client’s
measurement angles from the form of the ansatz. Also, due
to the byproduct operators acting on every qubit, the server
cannot guess the final outputs by directly measuring the output
quantum states obtained from the ansätze. By considering
these, we have to show that our scheme satisfies C1 and C2:

C1: Given all the classical information obtained by the
server during our protocol and the measurement results of any
POVM measurements implemented by the server at any stage
of our protocol, a conditional probability distribution of the
client’s measurement angles is defined. This conditional prob-
ability distribution is equal to its prior probability distribution,
which is a uniform probability distribution among all possible
angles.

C2: Given all the classical information obtained by the
server during our protocol and the measurement results of any
POVM measurements implemented by the server at any stage
of our protocol, a conditional probability distribution of the
final output of the algorithm for the client is. This probabil-
ity distribution is equal to its prior probability distribution,
which is a uniform probability distribution among all possible
outputs.

C1 and C2 mean that the server cannot obtain any informa-
tion of the ansatz parameters and the output for the client by
implementing any POVM measurements.
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Theorem 1. Our scheme satisfies C1.
Proof. No-signaling principle provides the following rela-

tionship between probabilities [38,46],

P(MS = mS|	 = �θ, S = s)

= P(MS = mS|	 = �θ ′, S = s)

for all mS , �θ , �θ ′, and s where 	 denotes the random variable
representing the client’s measurement angles, S denotes the
random variable representing the type of the POVM measure-
ment performed at the server side, MS denotes the random
variable representing the result of the POVM measurement,
mS denotes the result of the POVM measurement, �θ denotes
the variational parameters, �θ ′ denotes another set of the vari-
ational parameters, and s denotes a choice of the POVM
measurement. We assume P(	 = �θ |S = s) = P(	 = �θ ′|S =
s), because we take an average over all possible client’s
choice, which is the same assumption as adopted in Ref. [38].

By using this equality, we show that the operations at the
server side do not affect the probability distribution of the
client’s measurement angles, as follows:

P(	 = �θ |S = s, MS = mS)

= P(MS = mS|	 = �θ, S = s)P(	 = �θ, S = s)

P(S = s, MS = mS)

= P(MS = mS|	 = �θ, S = s)P(	 = �θ |S = s)P(S = s)

P(S = s, MS = mS)

= P(MS = mS|	 = �θ ′, S = s)P(	 = �θ ′|S = s)P(S = s)

P(S = s, MS = mS)

= P(	 = �θ ′|S = s, MS = mS).

Thus, the server cannot obtain any information of the client’s
measurement angles.

Theorem 2. Our scheme satisfies C2.
Proof. No-signaling principle provides the following rela-

tionship between probabilities [38,46],

P(MS = mS|O = o, S = s)

= P(MS = mS|O = o′, S = s)

for all mS , o, o′, and s where O denotes the random vari-
able representing the output of the algorithm for the client,
S denotes the random variable representing the type of the
POVM measurement which the server performs at the server
side, MS denotes the random variable representing the result of
the POVM measurement, mS denotes the result of the POVM
measurement, o denotes the output of the algorithm for the
client that the client obtains, o′ denotes another output, and
s denotes a choice of the POVM measurement. We assume
P(O = o|S = s) = P(O = o′|S = s) because we take an av-
erage over all possible client’s choice, which is the same
assumption as adopted in Ref. [38]. By using this equality,
we show that the operations at the server side do not affect the
probability distribution of the measurement result, as follows:

P(O = o|S = s, MS = mS)

= P(MS = mS|O = o, S = s)P(O = o, S = s)

P(S = s, MS = mS)

= P(MS = mS|O = o, S = s)P(O = o|S = s)P(S = s)

P(S = s, MS = mS)

= P(MS = mS|O = o′, S = s)P(O = o′|S = s)P(S = s)

P(S = s, MS = mS)

= P(O = o′|S = s, MS = mS).

Thus, the server cannot obtain any information of the outputs
of the algorithm for the client.
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