
PHYSICAL REVIEW A 105, 022602 (2022)

Magic state distillation from entangled states
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Magic can be distributed nonlocally in many-body entangled states, such as the low energy states of condensed
matter systems. Using the Bravyi-Kitaev magic state distillation protocol, we find that nonlocal magic is
distillable and can improve the distillation outcome. We analyze a few explicit examples and show that spin
squeezing can be used to convert nondistillable states into distillable ones. Our analysis also suggests that the
conventional product input states assumed by magic distillation protocols are extremely atypical among general
states with distillable magic. It further justifies the need for studying a diverse range of entangled inputs that
yield magic states with high probability.
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I. INTRODUCTION

Fault tolerance is an absolute necessity for leveraging the
full power of quantum computing. It is known that one can-
not implement a universal set of gates transversally using a
single quantum error correction code [1–5]. For many popular
choices of codes, Clifford gates are often transversal while
the non-Clifford gates are not. Therefore, the challenge is to
perform the remaining non-Clifford element, such as a T gate,
fault tolerantly. The difficulty of implementing these T gates
forms a major bottleneck for the development of universal
quantum computation. Various solutions for implementing
non-Clifford gates have been proposed [6–14].

One such proposal is to prepare so-called “magic states”
and perform T gates through measurement-based quantum
computation schemes [6,15–17] using only fault-tolerant Clif-
ford operations. To this end, magic state distillation (MSD)
protocols have been developed in order to convert product
states with large overlap with the magic states into the magic
states of a particular form; for the seminal work in this area,
please see [6,7]. However, these magic states can be costly to
prepare with arbitrarily high accuracy. Such is the prevalent
assumption behind the program of Clifford+T circuit decom-
positions and related compilation schemes [18–22]. Because
of the inefficiencies in distilling these magic states, the ability
to develop a “magic state factory” that is capable of effectively
generating such states in large quantities would be a great
advance to the scalability of quantum computation. For an
alternate approach to fault tolerant computation using code
switching, see [23–28].

The conventional setup for magic state distillation takes
a number of noisy ancillae, which are often represented as
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product of identical single qubit mixed states, and projects
them onto the code subspace of a carefully chosen quantum
error correction code. One then decodes using a fault-tolerant
Clifford circuit and obtains a number of magic states that
have higher fidelity provided the inputs are above a distillation
threshold. A great number of procedures and variants have
been devised to various degrees of efficacy [6,7,29–33].

While the product of identical mixed states is a natural in-
put state, its form is rather restrictive considering the vast pool
of many-body quantum states that occur naturally in phys-
ical systems that can function as magic reservoirs [34–38].
In particular, recent progress in quantum many-body magic
indicates that magic, like entanglement, can take on vari-
ous forms in such states. Indeed, while some of the magic
is found locally, not unlike the conventional input states in
magic distillation protocols, a large portion remains in the
correlations and is distributed nonlocally in entangled states.
Therefore, it is natural to ask whether such “nonlocal” magic
from these systems can be (a) distilled and (b) used to improve
the outcome of distillations. More generally, it is beneficial,
not only theoretically but also practically, to understand how
MSD performs on a much wider class of inputs, where magic
is not concentrated strictly locally on each ancilla.

In this work, we take a step in characterizing how more
generic input states, such as entangled states, can alter the
outcomes of distillation. In particular, we answer both of the
above questions in the affirmative: it is possible to distill
magic that is distributed nonlocally, as opposed to locally in
the traditional input states. Nonlocal magic (NLM) can also
improve the success probabilities of the distillation protocol.
A wider range of input states can thus help reduce the overall
cost for generating a much needed quantum resource. From
a practical perspective, we show that well-known procedures
used in spin squeezing that generate entanglement and non-
local magic can render undistillable magic states distillable.
More concretely, we conduct our explicit analysis using the
Bravyi-Kitaev (BK) magic distillation protocol [6] and study
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how it performs over different forms of entangled five-qubit
states.

We will review some basic aspects of magic states and their
distillation in Sec. II. Then in Sec. III we construct different
entangled states with varying magic distributions and perform
the Bravyi-Kitaev protocol for T state distillation using these
as input states. We show that, although the conventional form
of input states explicitly have only single qubit magic, states
with purely nonlocal magic such that individual qubit reduced
density matrices look nonmagical can remain fully distillable.
We then consider both conceptually simple and practically
relevant examples where nonlocal magic and entanglement
improve distillation outcome. This is made particularly appar-
ent with the example of spin squeezing, where nondistillable
states are rendered distillable with a slight addition of non-
local magic and entanglement. Then in Sec. IV we further
analyze the properties that make certain states more distillable
from the point of view of the quantum error correction code
in question. By analyzing random distillable states, we con-
clude that the conventional MSD inputs are extremely atypical
whereas typical distillable states have high entanglement and
zero local magic. We then provide some intuitions for the pat-
terns behind the distribution of the distillable states. Finally, in
Sec. V, we summarize our findings, speculations, and future
directions.

II. BACKGROUND

A. Magic

Stabilizer states are generated by Clifford operations acting
on the all zeros state. They have a wide range of applica-
tions in quantum information, condensed matter physics, and
quantum gravity [39–41]. However, it is well known that they
are not dense in the Hilbert space, and thus the Clifford op-
erations, which can be implemented transversally for certain
encoding schemes, are not sufficient for universal quantum
computation. In fact, the Gottesman-Knill theorem [42] gives
us a constructive way to efficiently simulate Clifford circuits
purely classically.

However, they can be supplemented with a non-Clifford
gate using measurement based protocols that only involves
Clifford operations [6,7] and noisy ancilla states, thus ren-
dering the computation universal. These procedures require
distilling “nonstabilizerness”, or magic, into a usable form.
Therefore, magic, being a resource [43] in such fault-tolerant
computation schemes, aims to quantify the degree to which
states fail to be captured by stabilizer states. There are many
magic measures. For example, the most straightforward defi-
nition is the minimum distance between a state of interest ρ

and the set of stabilizer states,

D(ρ) = min
σ∈STAB

||ρ − σ ||, (2.1)

where STAB denotes the set of stabilizer states. However,
this measure is difficult to compute practically. A number of
computable measures have also been proposed [43–46].

In this work, we will use one such measure designed for
qubit systems called the robustness of magic (ROM) [44],

defined for an arbitrary density matrix ρ,

R(ρ) = min

{
|x|1 : ρ =

∑
i

xisi, xi ∈ R

}
, (2.2)

where the si correspond to density operators of stabilizer
states. Note that the coefficients can be negative, allowing us
to express arbitrary states in this way. This quantity is lower
bounded by 1 in order to have a normalized density matrix.
If ρ is a stabilizer state, then there will simply be a single
nonzero coefficient.

As ROM is unity for all stabilizer states, here we use ln(R),
which we call LROM, to avoid the offset for stabilizer states
and for similarities with definitions like mana [43]. However,
unlike mana, which is additive for product of magic states,
LROM is, in general, subadditive:

R(ρ1 ⊗ ρ2) � R(ρ1)R(ρ2)

⇒ ln[R(ρ1 ⊗ ρ2)] � lnR(ρ1) + lnR(ρ2). (2.3)

To distinguish local from nonlocal magic, we will com-
pute magic for different subsystems in a single state. If, for
instance,

lnR(ρ12) > lnR(ρ1) + lnR(ρ2), (2.4)

we will then conclude that there is magic stored nonlocally
in the joint system ρ12 which is not found in each of the
individual subsystems.

B. Bravyi-Kitaev magic distillation

Here we review the Bravyi-Kitaev (BK) MSD protocol for
distilling a particular magic state, the T state. Like in the
original work, we assume that stabilizer operations are easy.
Therefore, T -type magic can be supplied by any state which
obtained by a stabilizer operation acting on a specific T state,
which we call |T0〉. Those familiar with the Bravyi-Kitaev pro-
tocol can mostly skim this section, though we will establish
some notation that will be used later in future sections.

The |T0〉 state is the following qubit state:

|T0〉 = cos(θT )|0〉 + eiπ/4 sin(θT )|1〉, (2.5)

where

θT = 1
2 cos−1

(
1√
3

)
.

It can also be advantageous to write |T0〉 in terms of its density
matrix.

|T0〉〈T0| = 1
2

(
I + 1√

3
(X + Y + Z )

)
. (2.6)

where X , Y , and Z are the single-qubit Pauli matrices. The
density matrix makes manifest that one can also describe the
state by its polarization vector �r = 1√

3
(1, 1, 1) on the Bloch

sphere. Similarly, one can write the |T1〉 state as

|T1〉〈T1| = 1
2

(
I − 1√

3
(X + Y + Z )

)
. (2.7)

From the polarization vector, one can see that |T0〉 points
in the direction normal to one of the triangular faces of the
stabilizer octahedron. By the symmetries of the stabilizer oc-
tahedron, there are eight states which serve the same magical
purpose, all related by single-qubit Clifford operations. Thus
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FIG. 1. The output fidelity (solid blue) as a function of input
fidelity after a single round of Bravyi-Kitaev magic distillation. For
reference, the dashed gray line indicates the identity channel εin =
εout. The crossover point is ε∗ ≈ 0.173. If the input states are not
sufficiently close to a T state, then they will limit to the maximally
mixed state.

successful T distillation occurs whenever any of the eight
states are produced, of which |T0〉 and |T1〉 are two. Likewise,
a T state may refer to any of these states, and we define the T
fidelity to be the maximum fidelity of a state with any of the
T states,

FT (ρ) = max
U∈C(2)

{F (ρ,U |T0〉〈T0|U †)}. (2.8)

Here we use C (2) to denote the Clifford group over a single
qubit.

The Bravyi-Kitaev protocol for T -state distillation involves
a recursive subroutine based on the [[5,1,3]] code [47] whose
stabilizer group is

S = 〈XZZXI, IXZZX, XIXZZ, ZXIXZ〉. (2.9)

It distills T states because the code admits a transversal im-
plementation of the Clifford gate B = exp(iπ/4)SH for which
|T 〉 is an eigenstate. As usual, S, H are the single qubit π/2-
phase gate and the Hadamard gate respectively.

Given five copies of an approximate T state of the form

ρin = (1 − ε)|T0〉〈T0| + ε|T1〉〈T1|, (2.10)

the MSD protocol involves measuring the generators of S and
post-selecting the trivial syndrome, effectively projecting the
input state onto the code subspace. If a nontrivial syndrome
is measured, the state is simply discarded and the protocol
is restarted. The decoding circuit is then applied to return a
single qubit state, which iteratively approaches a pure T state,
provided the fidelity of ρin with any T state is sufficiently
high.1 For every iteration of this procedure, one obtains noisy

1Equivalently, it is the same to first apply the decoding circuit then
measure the disentangled syndrome qubits separately [48].

FIG. 2. (a) Magic distribution of the phase-GHZ state with phase
φ = π/4. For PGHZ, all subsystems have the same form of reduced
density matrix. (b) Magic of various subsystems for the four-qubit
GHZ-T state as a function of α2.

ancilla with a different fidelity. We plot the input and output
fidelities as a result of this procedure in Fig. 1.

It is worth noting that the input state, which is a tensor
product of one qubit states, is certainly not in the code sub-
space. Because there is only a single logical qubit, one can
decompose the projected state in the basis of the encoded
magic states |T L

0 〉 and |T L
1 〉. The crux of the analysis lies in

showing that, for sufficiently small ε, the T fidelity increases.
If for any ε < ε∗ such that the protocol always increases the
T fidelity of the input state, then 1 − ε∗ is known as the
distillation threshold.

When it comes to the efficiency of the procedure in creating
magic states, there are two factors that determine the resource
estimate. Assuming there is a target T fidelity, one can use the
curve in Fig. 1 to estimate how many rounds of distillation
are required starting from an initial pool of noisy ancilla. The
second quantity of practical importance is the success proba-
bility for measuring trivial syndrome. By success probability
we mean the probability of measuring the trivial syndrome
corresponding to a single iteration of the distillation, as op-
posed to producing an approximate T state with the desired
final fidelity after multiple rounds.

For input states of the form (2.10), the success probability
depends on ε as well. As seen in Fig. 3, this is upper bounded
by 1/6, meaning every round of distillation in expectation
requires at least 30 approximately magical qubits. Since it is
assumed that all five input qubits are the same, one actually
needs access to an exponential number of noisy ancilla due to
the recursive nature of the protocol.

The utility of T states was also discussed in the same paper
by Bravyi and Kitaev. They showed explicitly how to enact

022602-3



NING BAO, CHUNJUN CAO, AND VINCENT PAUL SU PHYSICAL REVIEW A 105, 022602 (2022)

FIG. 3. With our choice of simple entangled states, we apply the BK protocol and measure the magic fidelity of the resulting qubit in (a).
For comparison, we also compute it for the product states considered in the original work. Notably, the output fidelity is above threshold across
a wide range of α2 ∼ 1 − ε. The output of this round can then be recursively iterated. The dashed green line shows the distillable threshold
for states of the form (2.10). For the other states, they reach a pure T state except for a few specific values of α. This more lenient threshold is
not a contradiction since the output density matrix of this round is not of the same form. In (b), we show the probability to measure the trivial
syndrome. To actually produce a T state, one needs the procedure to both converge to a T state and measure the trivial syndrome.

a non-Clifford gate with access to T states and only Clifford
operations. The fact that the same state was the fixed point
of the distillation procedure and enables Clifford operations
to enact universal quantum computation was the reason for
calling these states “magic states.”

III. MAGIC DISTILLATION BEYOND PRODUCT STATES

In this section, we investigate whether existing MSD pro-
cedure can distill magic from nonproduct states. Indeed, the
conventional input for such protocols ρ⊗n

in is a product state.
Magic is localized to each bit and there is clearly no magic
hidden in the quantum correlations. However, one might ask
whether other forms of multiqubit magic states can also be
used to distill desired magic states as long as certain condi-
tions are satisfied. In particular, can the distillation procedure
distill magic from states where the state has entanglement
or correlation such that magic is nonlocally distributed, i.e.,
magic of any single qubit is small whereas that of a larger
subsystem is nontrivial? For example, such states can exist in
the ground state of quantum many-body systems [34,35]. To
this aim, we construct a few informative examples below each
with distinct but carefully designed magic distributions and
answer the above question in the affirmative by testing them
using the BK protocol. For all of the distillation procedures
below, we only use the entangled states as inputs for the first
iteration. The ensuing iterations work under the conventional
assumptions where multiple tensor copies of the outputs from
earlier iterations are used.

A. Phase-GHZ and GHZ-T states

We begin with a few structurally simple states to build in-
tuition. Consider Greenberger-Horne-Zeilinger (GHZ) states
in the computational basis with a phase:

|PGHZ(α)〉n = α|0〉⊗n + eiφβ|1〉⊗n. (3.1)

For instance, one can choose α ∈ [0, 1], which sets the relative
weighting of the superposition. By normalization, we choose
β = √

1 − α2 ∈ R. For extreme values of α/β, this becomes
arbitrarily close to a simple product state, allowing us to
“tune” the presence of magic. The specific magic distribution
is shown in Fig. 2(a).

This state provides a sharp contrast with the conventional
input states of MSD: no proper subsystem is magical as they
are all density matrices diagonal in the computational basis.
However, the overall state clearly is magical because one can
turn this state into the product of |0〉’s and a single qubit magic
state α|0〉 + eiφβ|1〉 by applying a series of Clifford gates.

This state is distillable using BK (Fig. 3) for most values
of α because the output is above the distillation threshold
(dashed line). Although BK is suboptimal for distilling magic
from such kind of states, it clearly demonstrates that nonlocal
magic remains distillable using existing protocols.

Other than the conventional product input states which
have magic strictly localized to each qubit and the phase-
GHZ state above where magic is strictly global, one can also
construct states that have magic at different scales. Consider a
state that takes the following form on n qubits:2

|GHZ-T (α)〉n = α|T0〉⊗n + eiφβ|T1〉⊗n. (3.2)

Such a state is chosen precisely because it is a combination of
the noisy ancilla input and the phase-GHZ state above. While
each one-qubit reduced density matrix mimics the conven-
tional noisy ancilla input that shows up in the protocol (e.g.,
ε = β2), the overall state is also similar to the phase-GHZ
state where there is additional magic globally. Thus, for α or β

small, magic is locally distributed. However, for other choices

2While we do not use the degree of freedom of the relative phase in
this work, it is one that’s available to us and others for future work.
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FIG. 4. Multiple iterations of the BK protocol for simple input
states. Over a wide range, our choice of toy entangled states are
distillable. Original product input states are limited to the tail ends
where α2 < ε∗ or α2 > 1 − ε∗.

of α, β the state can pick up a nontrivial contribution from
nonlocal magic in the n-qubit GHZ state. One can see that
magic [Fig. 2(b)] on small subsystems of one or two qubits has
a distribution similar to that of the conventional input states.
However, as we go to larger subsystems, there is also more
nonlocal magic which adds to the total global magic available
in the state.

Magic in such states are mostly distillable. See Fig. 3(a) for
the resulting magic fidelity after a single round and Fig. 4. for
the result after multiple iterations. However, the dips in the
distillability plot now no longer coincide with the locations
where there is less total magic, which was the case for phase-
GHZ states.

We can ask whether how global magic helps with distil-
lation in these examples. Other than the clear improvement
in distillability in the region where β2 = ε ∈ [ε∗, 1 − ε∗],
where the conventional input actually leads to lower magic
fidelity, there is also improvement in the form of success
probability. Since the BK protocol relies on measurement of
the trivial syndrome, one must factor in the probability this
occurs. In Fig. 3(b), we show that GHZ-T states improve this
probability. Indeed, the GHZ-T state, which has single-qubit
states identical to conventional noisy ancilla input but nonzero
nonlocal magic, retains a relatively high success probability
for all values of α, which is distinct from the product state
counterpart.

B. Squeezed spin states from noisy ancillae

The above examples are conceptually clean and easy to
understand, but may be hard to prepare in the laboratory.
For entangled input states that are slightly more realistic,
we consider initially states that are product stabilizer states
that suffer from single-qubit coherent noise. We then perform
a global entangling unitary usually used in spin squeezing
procedures [49] on such states and examine how it improves
distillation outcome. Spin squeezed states have been imple-
mented in atomic cavities going back a couple of decades,
primarily with application to quantum metrology and detect-
ing quantum entanglement [50–55].

The initial ancilla states before squeezing are spins that
are parallel to, say, the x axis, but have small misalignments
across the spins. More explicitly,

|ψini〉 =
5⊗

i=1

|θi〉, |θi〉 = cos θi|0〉 + sin θi|1〉, (3.3)

where the orientation of each spin θi can fluctuate to simulate
inhomogeneity of the initial spin alignment. This is modeled
by choosing each θi ∈ [θ̄i − θmax, θ̄i + θmax] randomly from a
uniform distribution. We take the means θ̄i to be equal for all
i. For example, θ̄i = π/4 creates a product state that is ap-
proximately | + + + ++〉 but with small misalignment across
the spins. Despite the small amount of local magic introduced
to |ψini〉 through the spin misalignments, such states remain
mostly undistillable, especially for θmax small.

To define the unitary squeezing process, consider a total
spin-5/2 system consisting of five qubits. It is known that a
pure product state of qubits is not a squeezed state [49,55],
and squeezing introduces entanglement among the qubits. For
example,

| + + + ++〉 = 25/2
5∑

k=0

√(
5

k

)∣∣∣∣S = 5

2
, Sz = 5

2
− k

〉
(3.4)

Squeezing can then be performed by considering some unitary
rotation on the S = 5/2 submanifold. The initial spin mis-
alignments sometimes introduce components that are outside
the S = 5/2 submanifold, and the unitary mapping over the
five qubits leaves these components unchanged. We can use
the one-axis twisting method [49] with unitary U (t ) to gener-
ate a number of squeezed states |ψfi〉:

U (t ) = exp
[ − itS2

z

] ⊕ I, |ψfi(t )〉 = U (t )|ψini〉. (3.5)

Note that although U (t ) is not a Clifford unitary, there is also
no need for it to be fault-tolerant or extremely precise, as a
range of different t’s can all yield similar outcomes.

For small t , the action of U (t ) introduces a small amount
of mostly nonlocal magic and entanglement to the initial state.
See Fig. 5(b) for results when 〈θi〉 = π/4. Surprisingly, the
previously undistillable initial states are now mostly distill-
able by applying U (t ) [Fig. 5(a)]. Here cost is defined as the
average number of copies of the same state needed to distill
a single copy of the T state with a reasonably high fidelity
[FT (ρ) � 0.97 for the plots]. If the resulting output does not
exceed the prescribed fidelity cutoff after 15 iterations, we
deem the state undistillable and it is assigned cost −1 to
differentiate from the rest of the samples. Heuristically, we
can also see spin squeezing as reducing what is otherwise an
infinite distillation cost to a finite number as none of the initial
input states were distillable.

This is another clear demonstration that entangled states
generated in a more practical laboratory setting [50–53] can
help enhance the outcome of magic state distillation. While
this is encouraging, squeezing does not always improve distil-
lation outcomes. This is particularly visible when the input
states are already T states with relatively high fidelity be-
cause they act like a source of correlated noise. We further
discuss the role played by spin squeezing in Appendix B. We
wish to point out that it is difficult to directly compare the
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FIG. 5. (a) Figure of distillability of states with (t = 0) vs with-
out (t = 0) squeezing (θmax = 0.05). States without squeezing (blue)
are undistillable and are assigned cost −1. (b) Single-site entangle-
ment and magic of various subsystems of squeezed (colored disks)
vs unsqueezed states (colored squares) with θ̄i = π/4.

cost of a procedure with spin squeezing with the cost from
conventional distillation procedures. This is because their in-
puts are in totally different regimes: the cost in the original
BK protocol is computed assuming product of noisy ancilla
states above distillation threshold, whereas the advantage of
spin squeezing is to take states that are below the distilla-
tion threshold, e.g., very close to stabilizer states, and make
them distillable. For this reason, the starting point for the
procedures is hard to standardize between the two approaches.
Taking a step back, we would like to emphasize that the
lesson learned from spin squeezing is that a totally different
class of states, even without magic, from the original noisy
ancilla proposed can be made distillable. For those interested
in making magic factories, it broadens the horizon of possible
inputs and encourages us to look for other experimentally
viable entangled states.

IV. UNDERSTANDING DISTILLABILITY

In this section, we examine the underlying [[5,1,3]] code
that powers the BK distillation procedure to understand prop-
erties of states that contain distillable magic. In doing so, we
present a few key observations. First, using elementary ideas
from quantum error correction, we can deduce the form of

nonlocal magic content for the ideal input state. We then in-
vestigate these intuitions by generating random BK-distillable
states whose success probability is lower bounded by that of
product input states. Studying their entanglement and magic
distribution properties tells us that the typical product ansatz
is highly fine-tuned. Second, we can explain explicitly why
the total magic in a state does not correlate with the distillable
magic for this protocol. We expect the lessons here to gener-
alize appropriately for any magic distillation procedure which
relies on a quantum error correcting code.

As mentioned previously, the Bravyi-Kitaev distillation
procedure (decoding followed by post-selecting the trivial
syndrome) can be represented as a linear map M : Hin →
Hout, where Hin,Hout are 32- and 2-dimensional Hilbert
spaces, respectively. Then for each normalized fvei-qubit in-
put |ψin〉 ∈ Hin, we can obtain a single-qubit output |ψout〉 ∈
Hout such that

λ|ψout〉 = M|ψin〉. (4.1)

As a portion of |ψin〉 may not lie in the code subspace, the
probability of success |λ|2, i.e., measuring a trivial syndrome,
satisfies 0 � |λ| � 1. It is clear that states with more overlap
with the code subspace have higher success probability.

Working in the basis of the code subspace, any input state
with unit success probability can be written as

|ψin〉 = a
∣∣T L

0

〉 + b
∣∣T L

1

〉
, (4.2)

where the size of a will determine the output state fidelity.
This works because the perfect code encodes a single qubit.

It is immediately clear that states close to the encoded
T states will have both high success probability and good
T fidelity. Furthermore, because the code corrects two qubit
erasure errors, any encoded information must be found in
three or more qubit subsystems. Therefore, for states with high
success rate, i.e., large overlap with the code subspace, the
amount of magic found in 3 or more qubit subsystems should
positively correlate with the output fidelity. On the other hand,
such states will have very little magic in one or two qubit
subsystems.

However, when a state does not overlap significantly with
the code subspace, namely |λ| small, the connection between
the amount of magic, its distribution, and output fidelity is no
longer clear.

To get an idea of a typical distillable state, we generate ran-
dom states uniformly in the space of states where their output
fidelity is above the BK distillation threshold and |λ| > 0.16
is reasonably large. As a reference, the success probability for
product input states close to T states is ∼0.167 (see Fig. 3).

We see that the typical distillable states are not only entan-
gled, but also have nonlocal magic (Fig. 6). As we see, any
subsystem is close to being maximally mixed while magic
localized to any single qubit is virtually nonexistent. This
is in sharp contrast with the conventional input states which
have neither. Therefore, this observation indicates that having
many-body quantum states beyond the typical product input
states can improve the magic distillation outcomes.

However, unlike the conventional input states, there is no
obvious correlation between the total amount of magic or en-
tanglement a state has and the distillation outcome. In fact, if
anything, too much magic can negatively impact distillability
in terms of the success probability. We can try to understand
this observation from two limits.
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FIG. 6. (a) Distribution of von Neumann entropies for single-
and two-qubit subsystems. (b) LROM distribution in the random
BK-distillable states.

In the limit where the state is perturbatively close the an
encoded T state, then having a state whose magic or en-
tanglement pattern that deviates from the state that has the
single best distillable outcome will obviously result in a worse
distillation outcome. The maximum amount of magic for a
state in the code subspace is upper bounded by that of a single
T state (LROM ∼ 0.55). If the input state has more magic
than this, then it is necessarily out of the code subspace thus
resulting in a lower success probability (Fig. 7). If, on the
other hand, the total magic is less than the upper bound, then it
can have a large overlap with the code subspace. In that case,
the success probability is close to 1, but its output fidelity must
suffer for being farther from the encoded T state. There is a
direct correlation between the amount of magic and output
fidelity. This can be seen in Fig. 8, but is less pronounced in
Fig. 7. Interestingly, it is also difficult to find a distillable state
that has less total magic than that of a T state but also small
overlap with the code subspace. This is likely related to the
fact that (Haar) random states are magical [38].3

3Interestingly, LROM of a larger subsystem has such a smaller
variance compared to that of a smaller system. This is also quali-

FIG. 7. LROM5 of random states (blue) against output fidelity
and success probability. The red circle denotes the location of the
encoded T state.

In the limit where a state has small overlap with the code
subspace (|λ| � 0.4), the previous arguments no longer apply.
Instead, there is no clear correlation between output fidelity,
success probability, and the amount of magic.

One can also compute the average cost of distilling magic
from these typical states. Again, there is no obvious corre-
lation between the total magic of a state and the total cost
for generating a magic state with desired T fidelity FT (ρ) >

0.999.
However, there are states with magic lower than that of

a typical state that have slightly lower cost, as shown in the
thin narrow bands stretching to the left of the cluster (Fig. 9).
These are precisely the states that have higher success prob-
abilities which are closer to the encoded T states. Curiously,
these states concentrate on the ridges but are not found any-
where in between, unlike the typical states that contain more
magic.

tatively consistent with results from Haar random states [38] where
the variance of magic scales roughly as ∼e−L where L is the number
of sites.

FIG. 8. LROM3 of random states (blue) against output fidelity
and success probability. The red circle denotes the location of the
encoded T state. On the plane |λ| = 1, there is clear correlation
between LROM and output fidelity.
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FIG. 9. Plotting LROM4 and cost for random states (blue) and
conventional inputs (red). Cost is set to −1 if the state does not
exceed the prescribed fidelity FT (ρ ) > 0.999 within 15 iterations of
the protocol.

V. DISCUSSION

In this work, we have examined how entanglement and
nonlocal magic can impact the outcome of magic state dis-
tillation. Using the BK protocol on five qubits, we establish
that nonlocal magic is indeed distillable. Furthermore, nu-
merical experiments indicate that nonlocal magic in these
entangled states can also “assist” the usual magic distilla-
tion process by lowering the cost of overall distillation. This
is outlined conceptually by studying the GHZ-T and GHZ
phase states. More practically, we have also constructed a
spin-squeezing-assisted procedure for noisy ancilla states. It is
shown that certain squeezing operations indeed render nondis-
tillable states distillable, which may be more relevant in an
experimental setting.

Although the overall impact of many-body magic is still
largely unclear in the context of distillation, we build up some
generalizable intuition using the five-qubit code and argue
that, for the existing distillation protocols based on quantum
error correction codes, a typical distillable state should be
entangled.

Because of the common assumptions behind magic state
distillation, one might have suspected that entanglement
generally introduces a source of correlated noise, thereby
reducing the output fidelity and success rate of magic distil-
lations. However, this expectation is likely a streetlight effect
of only searching perturbatively near the conventional product
input states. While it is a valid expectation in certain cases
(e.g., Fig. 13), it is abundantly clear that, by analyzing the
entanglement structure and magic distribution of the encoded
T state, a typical distillable state is anything but a product state
with local magic.

One might also suspect that a larger amount of total magic
would generally lead to better distillation outcomes. This is
somewhat suggestive from Figs. 2(a) and 4 for phase-GHZ
states. However, this correlation is only manifest when the
input lies predominantly in the code subspace. Analysis in
Sec. IV indicates that this intuition has limited applicability
when the overlap between the input and the code subspace
is small. There it is unclear what properties would positively
correlate with distillability.

Since our work suggests that entangled states may assist
magic distillations, it opens up a number of directions in
the area of many-body magic [34–36,38]. Thus far we have
only focused on examples and numerical analysis; however, a
more systematic approach is needed to understand many-body
magic distillability that is not protocol specific. Generally, we
want to understand the features in the distillation protocol
and those of the many-body states that will lead to better
distillation outcomes. In particular, it opens up the question
of what a “typical” distillable magic state should look like
if one looks beyond product of identical states. It is also
unclear whether existing protocols are optimal for distilling
many-body magic, as the input states are drastically different.
For example, while it is well known that bound magic states
exist [56] assuming identical inputs, it is not clear to what
extent the same conclusion applies when one also considers
more general input states. We would also like to understand
what kind of protocols are near optimal in distilling magic
from condensed matter systems such as the low energy states
of a spin chain where magic is abundant.

It is possible that holographic quantum error correction
codes may also be useful in this regard for distilling multi-
scale nonlocal magic from conformal field theories (CFTs)
due to its multiscale, self-similar structure. It was pointed
out recently [57] that holographic codes with good comple-
mentary recovery properties have difficulties implementing
transversal non-Clifford gates. Nevertheless, it is still entirely
possible to construct holographic codes in general that do
have transversal T gates. For instance, this can be done by
using codes with transversal non-Clifford gates [2,58] such as
the [[15,1,3]] Calderbank-Shor-Steane (CSS) code [59,60] as
the base tensor, which supports a transversal logical T̄ gate.
Using the general methodology outlined in [61] (and more
comprehensively in [62]) for building tensor networks on
two-dimensional hyperbolic space with regular tessellations,
one can produce a holographic code constructed using the
{15, q � 4} tiling. This results in an [[n, k]] CSS code that
admits a transversal T̄ ⊗k gate.4 The same methodology also
applies to more general [[2n−1, 1, 3]] punctured Reed-Muller
codes [63] in a {2n−1, q � 4} tessellation. The resulting sta-
bilizer code would again admit a transversal non-Clifford
gate. It should also be noted that transversal non-Clifford
gates are not always necessary for distillation. Indeed, the
five-qubit code does not admit a transversal T gate; how-
ever, the transversal B gate enables distillation of T states. A
holographic code that serves a similar purpose is the [[n, k]]
stabilizer code known as the HaPPY pentagon code [41].
There the logical B̄⊗k is transversal and a protocol similar to
BK may be sufficient for T state distillation.
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APPENDIX A: DISTILLABILITY OF VARIOUS
PHASE-GHZ AND GHZ-T STATES

In this Appendix we examine the distillability of states
similar to those presented in Sec. III A, the phase-GHZ and
GHZ-T states. As a reminder, these were n-qubit states that
took the following form:

|PGHZ(α)〉n = α|0〉⊗n + eiφβ|1〉⊗n,

|GHZ-T (α)〉n = α|T0〉⊗n + eiφβ|T1〉⊗n. (A1)

Because the Bravyi-Kitaev protocol takes as input a five-qubit
state, it was a natural choice to pick n = 5. Not only does
this make each of the reduced density matrices the same,
but the input state is symmetric between the five qubits.
Here, we now consider a more broad construction where
we make a five-qubit state out of a combination of smaller
|PGHZ〉n(|GHZ-T 〉n) states. This may lead to easier experi-
mental implementation if it is much easier to generate, say,
|PGHZ〉2 and |PGHZ〉3 than |PGHZ〉5. On the theoretical side,
it is interesting to ask whether the presence of more magic
yields better distillation outcomes. This is because |PGHZ〉n

has the same magic regardless of n, so |PGHZ〉2|PGHZ〉3

would have twice as much global magic as |PGHZ〉5 for the
same α.

We consider two primary variations. The first is where we
make a five-qubit state out of tensor products of PGHZ states⊗

i |PGHZ〉ki such that
∑

i ki = 5. We plot the distillation
outcomes in Fig. 10 and make a few observation. The first
is that adding more total magic does not seem to enhance the
ability to distill. This lines up with the expectations laid out in
Sec. IV. Interestingly, all of these states remained distillable
for generic α.

The second variation allows for some of the qubits to be
in the |0〉 state in the computational basis, a consideration
for experimental setups where the |0〉 state is effectively just
resetting a clean qubit. Clearly, these qubits do not add to the
available magic. The results are displayed in Fig. 11. With
the exception of phase-GHZ states with even numbers, these
states also have a wide range of distillability.

FIG. 10. Distillability of composite |PGHZ〉k and |GHZ-T 〉k

states, where α is taken to uniform across individual components.
We plot the magic fidelity of the qubit upon a successful distillation
round with darker curves corresponding to later rounds. The darkest
line is the resulting T fidelity after 10 rounds. Because |PGHZ〉k

and |GHZ-T 〉k contain the same amount of magic for all values of
k, composite five-qubit states with more individual states have more
total magic in the system. We find that the presence of more total
magic does not generally enhance distillability for the BK protocol.
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FIG. 11. Distillability of composite |PGHZ〉k and |GHZ-T 〉k

states, with some qubits in the |0〉 state. A notable finding is that
one can get similar distillability without having to entangle the full
five-qubit state.

APPENDIX B: MORE ON SPIN SQUEEZING
AND DISTILLATION

Although a global entangling unitary like the one defined in
Sec. III B can improve the distillation outcome, this improve-
ment will depend on a number of factors and is not universal.
Here we analyze how different initial states modified the same
squeezing unitary U (t ) may impact the distillation outcome.
Then we examine the effect of a different squeezing unitary
V (t ). We find that improved distillation is unlikely to be
connected to squeezing and overall amount of entanglement.
However, its success may be related to the nonlocal magic
injected during the squeezing process.

First of all, squeezing alone is not the key to improving the
distillation outcome; clearly a state needs to contain enough
magic to be distillable at all. Although squeezing in general
can add magic to a stabilizer state, a slight squeezing of

FIG. 12. BK distillation cost applied to states after one-axis
twisting |00000〉 initial states with random misalignment. Here
θmax = 0.05.

an initial state without spin misalignment does not improve
distillation outcome. Furthermore, states that are unsqueezed
under the same unitary U (t ) [Eq. (3.5)] also see improvement
in distillation. For example, distillation outcome is just as
good, if not better, for initial states where θ̄i = 0 (Fig. 12).
However U (t ) does not squeeze |00000〉, which is approxi-
mately the initial state we have.

The same global unitary action U (t ) also need not improve
distillation for other types of initial states. Sometimes it acts
as coherent noise to the system, which impedes distillation.
For example, consider the scenario where the individual qubit
input states are sufficiently close to |T 〉 such that βi = θT =
arccos(1/

√
3)/2, φ = π/4,∣∣τ i

0

〉 = cos(βi )|0〉 + exp(iφ) sin(βi )|1〉, (B1)∣∣τ i
1

〉 = − sin(βi )|0〉 + exp(iφ) cos(βi )|1〉, (B2)

and the initial state is given by

ρini =
⊗

i

(
pi

∣∣τ i
0〉

〈
τ i

0

∣∣ + (1 − pi )
∣∣τ i

1

〉〈
τ i

1

∣∣). (B3)

As usual, βi is drawn uniformly random for an interval [βi −
βmax, βi + βmax]. The probability pi is also drawn uniformly
for an interval [pi − pmax, pi + pmax]. These are precisely the
target magic T states when pmax, βmax = 0. Then squeezing
now acts as a source of noise that renders distillation less
efficient (Fig. 13).

On the other hand, if the initial state is close to | + + +
++〉 or |00000〉 but mixed, then the improvement in the distil-
lation cost also quickly diminishes in these examples as a one
increases pmax. For instance, consider states of the form (B3)
but with φ = 0, β̄i = π/4; the distillation cost is shown in
Fig. 14 where the number of undistillable states can increase
sharply even when the purity is still relatively high.

Now let us briefly examine the same process but with
a different global unitary applied to the θ̄i = π/4 initial
state (3.3). Consider a different squeezing procedure using
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FIG. 13. (a) Squeezing the tensor product of five noisy T states
via one-axis twisting. (b) Squeezing the tensor product of give noisy
T states via two-axis countertwisting. Here βmax = 0.05, pmax = 0.1
for both plots. Squeezing increases the overall cost of distillation in
both cases.

two-axis countertwisting [49] with V (t ) = exp(−itH ), where

H = 1

2i
(S2

+ − S2
−), S± = Sx ± iSy. (B4)

FIG. 14. One-axis twisting applied to initial mixed states that are
close to a product stabilizer state. θmax = 0.05 and pmax = 0.02.

FIG. 15. LROM and single site entanglement of the state with
(colored disks) and without squeezing (colored squares).

Then squeezing produces a similar level entanglement as the
previous one-axis twisting procedure for similar values of t . It
also increases the total magic in the state. However, no visible
enhancement for the distillation can be found (Fig. 15).

The lack of improvements here may be attributed to the
amount of nonlocal magic that is added to the system. Note
that a pure state with nonlocal magic is most certainly entan-
gled, but an entangled state need not contain nonlocal magic.
While there is a slight addition to nonlocal magic using the
one-axis twisting unitary, there is virtually no change in the
two-axis countertwisting scheme (Fig. 16). We estimate non-
local magic using

LROM(1 : 2) = ln[R(ρ12)] − {ln[R(ρ1)] + ln[R(ρ2)]},
(B5)

where ρ12 is an arbitrarily chosen two-site subsystem.

FIG. 16. Histogram contrasting two-body nonlocal magic
LROM(1 : 2) after the one-axis twisting and the two-axis
countertwisting options that result in similar levels of entanglement
(S1 ∼ 0.08 and S1 ∼ 0.02 respectively). Slight negativity can be
attributed to the nonadditivity of LROM.

022602-11



NING BAO, CHUNJUN CAO, AND VINCENT PAUL SU PHYSICAL REVIEW A 105, 022602 (2022)

[1] B. Eastin and E. Knill, Restrictions on Transversal Encoded
Quantum Gate Sets, Phys. Rev. Lett. 102, 110502 (2009).

[2] B. Zeng, A. Cross, and I. L. Chuang, Transversality versus uni-
versality for additive quantum codes, IEEE Trans. Inf. Theory
57, 6272 (2011).

[3] S. Bravyi and R. König, Classification of Topologically Pro-
tected Gates for Local Stabilizer Codes, Phys. Rev. Lett. 110,
170503 (2013).

[4] F. Pastawski and B. Yoshida, Fault-tolerant logical gates in
quantum error-correcting codes, Phys. Rev. A 91, 012305
(2015).

[5] T. Jochym-O’Connor, A. Kubica, and T. J. Yoder, Disjointness
of Stabilizer Codes and Limitations on Fault-Tolerant Logical
Gates, Phys. Rev. X 8, 021047 (2018).

[6] S. Bravyi and A. Kitaev, Universal quantum computation with
ideal Clifford gates and noisy ancillas, Phys. Rev. A 71,
022316 (2005).

[7] E. Knill, Fault-tolerant postselected quantum computation:
Schemes, arXiv:quant-ph.0402171.

[8] A. Paetznick and B. W. Reichardt, Universal Fault-Tolerant
Quantum Computation with Only Transversal Gates and Error
Correction, Phys. Rev. Lett. 111, 090505 (2013).

[9] T. J. Yoder, Universal fault-tolerant quantum computation with
Bacon-Shor codes, arXiv:1705.01686.

[10] T. J. Yoder, R. Takagi, and I. L. Chuang, Universal Fault-
Tolerant Gates on Concatenated Stabilizer Codes, Phys. Rev.
X 6, 031039 (2016).

[11] T. Jochym-O’Connor and S. D. Bartlett, Stacked codes: Uni-
versal fault-tolerant quantum computation in a two-dimensional
layout, Phys. Rev. A 93, 022323 (2016).

[12] S. Bravyi and A. Cross, Doubled color codes,
arXiv:1509.03239.

[13] C. Jones, P. Brooks, and J. Harrington, Gauge color codes in
two dimensions, Phys. Rev. A 93, 052332 (2016).

[14] B. J. Brown, A fault-tolerant non-Clifford gate for the surface
code in two dimensions, Sci. Adv. 6, eaay4929 (2020).

[15] D. Gottesman and I. L. Chuang, Demonstrating the viability of
universal quantum computation using teleportation and single-
qubit operations, Nature (London) 402, 390 (1999).

[16] M. A. Nielsen, Quantum computation by measurement and
quantum memory, Phys. Lett. A 308, 96 (2003).

[17] D. W. Leung, Two-qubit projective measurements are universal
for quantum computation, arXiv:quant-ph/0111122.

[18] D. Gosset, V. Kliuchnikov, M. Mosca, and V. Russo, Quantum
Inf. Comput. 14, 1261 (2018).

[19] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, A meet-
in-the-middle algorithm for fast synthesis of depth-optimal
quantum circuits, IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 32, 818 (2013).

[20] Y. Nam, N. J. Ross, Yuan Su, A. M. Childs, and D. Maslov, Au-
tomated optimization of large quantum circuits with continuous
parameters, npj Quantum Inf. 4, 23 (2018).

[21] L. Heyfron and E. T. Campbell, An Efficient Quantum Com-
piler that reduces T count, Quantum Sci. Technol. 4, 015004
(2018).

[22] Q. Wang, Ming Li, C. Monroe, and Y. Nam, Resource-
optimized fermionic local-Hamiltonian simulation on
quantum computer for quantum chemistry, Quantum 5, 509
(2021).

[23] H. Bombín, Gauge color codes: Optimal transversal gates and
gauge fixing in topological stabilizer codes, New J. Phys. 17,
083002 (2015).

[24] A. Kubica and M. E. Beverland, Universal transversal gates
with color codes: A simplified approach, Phys. Rev. A 91,
032330 (2015).

[25] M. E. Beverland, A. Kubica, and K. M. Svore, Cost of univer-
sality: A comparative study of the overhead of state distillation
and code switching with color codes, PRX Quantum 2, 020341
(2021).

[26] A. Kubica, B. Yoshida, and F. Pastawski, Unfolding the color
code, New J. Phys. 17, 083026 (2015).

[27] H. Bombin, Transversal gates and error propagation in 3d topo-
logical codes, arXiv:1810.09575.

[28] H. Bombin, 2d quantum computation with 3d topological codes,
arXiv:1810.09571.

[29] A. M. Meier, B. Eastin, and E. Knill, Quantum Inf. Comput. 13,
195 (2013).

[30] S. Bravyi and J. Haah, Magic-state distillation with low over-
head, Phys. Rev. A 86, 052329 (2012).

[31] C. Jones, Low-overhead constructions for the fault-tolerant
Toffoli gate, Phys. Rev. A 87, 022328 (2013).

[32] C. Jones, Multilevel distillation of magic states for quantum
computing, Phys. Rev. A 87, 042305 (2013).

[33] J. Haah, M. B. Hastings, D. Poulin, and D. Wecker, Magic state
distillation with low space overhead and optimal asymptotic
input count, Quantum 1, 31 (2017).

[34] S. Sarkar, C. Mukhopadhyay, and A. Bayat, Characterization
of an operational quantum resource in a critical many-body
system, New J. Phys. 22, 083077 (2020).

[35] C. D. White, ChunJun Cao, and B. Swingle, Confor-
mal field theories are magical, Phys. Rev. B 103, 075145
(2021).

[36] Z.-W. Liu and A. Winter, Many-body quantum magic,
arXiv:2010.13817.

[37] T. D. Ellison, K. Kato, Z.-W. Liu, and T. H. Hsieh, Symmetry-
protected sign problem and magic in quantum phases of matter,
Quantum 5, 612 (2021).

[38] C. D. White and J. H. Wilson, Mana in Haar-random states,
arXiv:2011.13937.

[39] D. Gottesman, The Heisenberg representation of quantum
computers, Group22: Proceedings of the XXII International
Colloquium on Group Theoretical Methods in Physics, edited
by S. P. Corney, R. Delbourgo, and P. D. Jarvis (International
Press, MA, Cambridge, 1999), pp. 32–43.

[40] A. Yu. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. (NY) 303, 2 (2003).

[41] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, Holo-
graphic quantum error-correcting codes: Toy models for the
bulk/boundary correspondence, J. High Energy Phys. 06 (2015)
149.

[42] D. Gottesman, Theory of fault-tolerant quantum computation,
Phys. Rev. A 57, 127 (1998).

[43] V. Veitch, S. A. Hamed Mousavian, D. Gottesman, and J.
Emerson, The resource theory of stabilizer quantum computa-
tion, New J. Phys. 16, 013009 (2014).

[44] M. Howard and E. Campbell, Application of a Resource Theory
for Magic States to Fault-Tolerant Quantum Computing, Phys.
Rev. Lett. 118, 090501 (2017).

022602-12

https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1109/TIT.2011.2161917
https://doi.org/10.1103/PhysRevLett.110.170503
https://doi.org/10.1103/PhysRevA.91.012305
https://doi.org/10.1103/PhysRevX.8.021047
https://doi.org/10.1103/PhysRevA.71.022316
http://arxiv.org/abs/arXiv:quant-ph.0402171
https://doi.org/10.1103/PhysRevLett.111.090505
http://arxiv.org/abs/arXiv:1705.01686
https://doi.org/10.1103/PhysRevX.6.031039
https://doi.org/10.1103/PhysRevA.93.022323
http://arxiv.org/abs/arXiv:1509.03239
https://doi.org/10.1103/PhysRevA.93.052332
https://doi.org/10.1126/sciadv.aay4929
https://doi.org/10.1038/46503
https://doi.org/10.1016/S0375-9601(02)01803-0
http://arxiv.org/abs/arXiv:quant-ph/0111122
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1088/2058-9565/aad604
https://doi.org/10.22331/q-2021-07-26-509
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1103/PRXQuantum.2.020341
https://doi.org/10.1088/1367-2630/17/8/083026
http://arxiv.org/abs/arXiv:1810.09575
http://arxiv.org/abs/arXiv:1810.09571
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.1103/PhysRevA.87.022328
https://doi.org/10.1103/PhysRevA.87.042305
https://doi.org/10.22331/q-2017-10-03-31
https://doi.org/10.1088/1367-2630/aba919
https://doi.org/10.1103/PhysRevB.103.075145
http://arxiv.org/abs/arXiv:2010.13817
https://doi.org/10.22331/q-2021-12-28-612
http://arxiv.org/abs/arXiv:2011.13937
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1088/1367-2630/16/1/013009
https://doi.org/10.1103/PhysRevLett.118.090501


MAGIC STATE DISTILLATION FROM ENTANGLED … PHYSICAL REVIEW A 105, 022602 (2022)

[45] X. Wang, M. M. Wilde, and Y. Su, Efficiently Computable
Bounds for Magic State Distillation, Phys. Rev. Lett. 124,
090505 (2020).

[46] M. Beverland, E. Campbell, M. Howard, and V. Kliuchnikov,
Lower bounds on the non-Clifford resources for quantum com-
putations, Quantum Sci. Technol. 5, 035009 (2020).

[47] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Per-
fect Quantum Error Correcting Code, Phys. Rev. Lett. 77, 198
(1996).

[48] D. Gottesman, Stabilizer codes and quantum error correction,
Ph.D. thesis, California Institute of Technology, January 1997,
arXiv:quant-ph/9705052.

[49] M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev. A
47, 5138 (1993).

[50] M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, Squeezing
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tation of Cavity Squeezing of a Collective Atomic Spin, Phys.
Rev. Lett. 104, 073602 (2010).

[52] T. Ono, J. Sabines-Chesterking, H. Cable, J. L O’Brien, and
J. C. F. Matthews, Optical implementation of spin squeezing,
New J. Phys. 19, 053005 (2017).

[53] J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, Spin
Squeezed Atoms: A Macroscopic Entangled Ensemble Created
by Light, Phys. Rev. Lett. 83, 1319 (1999).

[54] R. J. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N.
Behbood, and M. W. Mitchell, Magnetic Sensitivity Beyond the

Projection Noise Limit by Spin Squeezing, Phys. Rev. Lett. 109,
253605 (2012).

[55] G. Tóth, C. Knapp, O. Gühne, and H. J. Briegel, Spin
squeezing and entanglement, Phys. Rev. A 79, 042334
(2009).

[56] E. T. Campbell and D. E. Browne, Bound States for Magic State
Distillation in Fault-Tolerant Quantum Computation, Phys. Rev.
Lett. 104, 030503 (2010).

[57] S. Cree, K. Dolev, V. Calvera, and D. J. Williamson,
Fault-tolerant logical gates in holographic stabilizer
codes are severely restricted, PRX Quantum 2, 030337
(2021).

[58] N. Rengaswamy, R. Calderbank, M. Newman, and H. D. Pfister,
On optimality of CSS codes for transversal T , IEEE J. Selected
Areas Inf. Theory 1, 499 (2020).

[59] E. Knill, R. Laflamme, and W. Zurek, Threshold accuracy for
quantum computation, arXiv:quant-ph/9610011.

[60] J. T. Anderson, G. Duclos-Cianci, and D. Poulin, Fault-Tolerant
Conversion between the Steane and Reed-Muller Quantum
Codes, Phys. Rev. Lett. 113, 080501 (2014).

[61] C. Cao, J. Pollack, and Y. Wang, Hyper-invariant MERA: Ap-
proximate holographic error correction codes with power-law
correlations, Phys. Rev. D 105, 026018 (2022).

[62] C. Cao and B. Lackey, Building quantum error correction codes
from tensor networks, arXiv:2109.08158.

[63] B. Zeng, H. Chung, A. W. Cross, and I. L. Chuang, Local
unitary versus local Clifford equivalence of stabilizer and graph
states, Phys. Rev. A 75, 032325 (2007).

022602-13

https://doi.org/10.1103/PhysRevLett.124.090505
https://doi.org/10.1088/2058-9565/ab8963
https://doi.org/10.1103/PhysRevLett.77.198
http://arxiv.org/abs/arXiv:quant-ph/9705052
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.81.021804
https://doi.org/10.1103/PhysRevLett.104.073602
https://doi.org/10.1088/1367-2630/aa6e39
https://doi.org/10.1103/PhysRevLett.83.1319
https://doi.org/10.1103/PhysRevLett.109.253605
https://doi.org/10.1103/PhysRevA.79.042334
https://doi.org/10.1103/PhysRevLett.104.030503
https://doi.org/10.1103/PRXQuantum.2.030337
https://doi.org/10.1109/JSAIT.2020.3012914
http://arxiv.org/abs/arXiv:quant-ph/9610011
https://doi.org/10.1103/PhysRevLett.113.080501
https://doi.org/10.1103/PhysRevD.105.026018
http://arxiv.org/abs/arXiv:2109.08158
https://doi.org/10.1103/PhysRevA.75.032325

