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Transmission of classical information over a quantum state-dependent channel is considered, when the encoder
can measure channel side information (CSI) and is required to mask information on the quantum channel state
from the decoder. In this quantum setting, it is essential to conceal the CSI measurement as well. A regularized
formula is derived for the masking equivocation region, and a full characterization is established for a class of
measurement channels.
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I. INTRODUCTION

Security and privacy are critical aspects in modern com-
munication systems [1–4]. In Wyner’s wiretap setting [5], the
sender transmits a sequence X n over a memoryless broadcast
channel pY,Z|X , such that the output sequence Y n is decoded
by the legitimate receiver, while Zn is received by a malicious
eavesdropper. Confidentiality requires that the eavesdropper
cannot obtain information on the transmitted message from
the sequence Zn. On the other hand, Merhav and Shamai [6]
introduced a communication system with the privacy require-
ment of masking.

In the classical masking setting, the sender transmits a se-
quence X n over a memoryless state-dependent channel pY |X,S ,
where the state sequence Sn has a fixed memoryless distribu-
tion and is not affected by the transmission. The transmitter
of X n is informed of Sn and is required to send information
to the receiver while limiting the amount of information that
the receiver can learn about Sn. Intuitively, as the transmitter
uses the side information in order to increase the transmission
rate, more information on the channel state may be revealed.
Hence, there is a tradeoff between high transmission rate and
low leakage of information [6]. The masking setting can also
be viewed as communication with an untrusted party, where
Alice wishes to send Bob a limited amount of information,
while keeping the information source hidden [7–11]. It is ex-
pected that protocols that can solve communication tasks even
under untrusted hardware platforms or untrusted software im-
plementations will play an important role in the development
of future communication systems [12,13]. Related settings
and extensions are also considered in [14–21].

Quantum information technology is rapidly evolving in
both practice and theory [22]. Communication through quan-
tum channels can be separated into different categories. In
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particular, in quantum information theory and Shannon the-
ory, the following models of communication over quantum
channels are considered in the literature: (1) transmission
of classical information without assistance, (2) subspace
transmission without assistance, and (3) communication with
entanglement assistance.

For classical communication without assistance, model 1,
the Holevo-Schumacher-Westmo- reland (HSW) theorem pro-
vides a regularized (“multiletter”) formula for the capacity of
a quantum channel [23,24]. Although calculation of such a
formula is intractable in general, it provides computable lower
bounds, and there are special cases where the capacity can
be computed exactly [25,26]. The reason for this difficulty is
that the Holevo information is not necessarily additive [26]. A
similar difficulty occurs in model 2, treating the transmission
of quantum information [27].

Model 3 above is a scenario where Alice and Bob have ac-
cess to entanglement resources that are shared a priori, before
communication takes place. While entanglement can be used
to produce shared randomness, it is a much more powerful
aid [28]. E.g., using superdense coding, entanglement assis-
tance doubles the transmission rate of classical messages over
a noiseless qubit channel. The entanglement-assisted capacity
of a noisy quantum channel was fully characterized by Ben-
nett et al. [29] in terms of the quantum mutual information.
Entanglement resources are thus instrumental for the analysis
of quantum communication systems, providing a computable
upper bound for unassisted communication as well.

Boche, Cai, and Nötzel [30] addressed classical-quantum
channels with channel side information (CSI) at the encoder.
The capacity was determined given causal CSI, and a regu-
larized formula was provided given noncausal CSI [30]. The
first author [31,32] extended the results to a quantum-input
quantum-output channel with random parameters, and further
considered communication over quantum channels with pa-
rameter estimation at the receiver, given either strictly causal,
causal, or noncausal CSI at the encoder, and without CSI
as well. Warsi and Coon [33] used an information-spectrum
approach to derive multiletter bounds for a similar setting
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with rate-limited CSI. The entanglement-assisted capacity
of a quantum channel with noncausal CSI was determined
by Dupuis in [34] (see also [35]), and with causal CSI
in [36,37]. Luo and Devetak [38] considered channel sim-
ulation with source side information (SSI) at the decoder,
and also solved the quantum generalization of the Wyner-Ziv
problem [39]. Quantum data compression with SSI is also
studied in [40–45].

Considering secure communication over the quantum wire-
tap channel, Devetak [27] and Cai et al. [46] established
a regularized characterization of the secrecy capacity with-
out assistance. Related models appear in [47–52] as well.
Boche et al. [53,54] studied the quantum wiretap channel with
an active jammer. The capacity-equivocation region, char-
acterizing the tradeoff between secret key consumption and
private classical communication, was established in [47,49].
The quantum Gel’fand-Pinsker wiretap channel is considered
in [52] and other related scenarios can be found in [55–57].
Furthermore, network settings with confidential messages
were recently considered in [58–60], respectively.

In quantum channel state masking, analogously to the clas-
sical model [6], the channel state system C stores undesired
quantum information which leaks to the receiver. This can
model a leakage of private network information to the end
user. Alternatively, Cn may represent a separate transmission
to another receiver (Charlie), in a product state, out of our
control, and which is not intended to our receiver (Bob), and
is therefore to be concealed from him. Thus, the goal of
the transmitter (Alice) is to mask this undesired information
as much as possible on the one hand, and to transmit reli-
able information on the other. Masking can also be viewed
as a building block for cryptographic problems of oblivious
transfer of information and secure computation by untrusting
parties. In a recent paper by the authors [61], we considered a
quantum state-dependent channel, when the encoder has CSI
and is required to mask information on the quantum channel
state from the decoder. We have established a full charac-
terization for the entanglement-assisted masking region with
maximally correlated channel state systems, and a regularized
formula for the quantum masking region without assistance.
That is, we addressed model 2 and model 3 for quantum
channel state masking in [61].

In this paper, we consider model 1 of a quantum state-
dependent channel NEA→B, when the encoder has CSI and is
required to mask information on the quantum channel state
from the decoder. We derive a regularized formula for the
classical masking region and establish full characterization for
a class of measurement channels. Here, however, the com-
munication task is to send classical information, while there
are no entanglement resources available to Alice and Bob.
Specifically, the channel state systems are in an entangled
state |φE0EC〉⊗n. Alice wishes to send a classical message m.
To this end, she measures the CSI systems En

0 and obtains
an outcome V . Based on the measurement outcome, Alice
encodes the quantum state of the channel input systems An in
such a manner that limits the leakage rate of Bob’s informa-
tion on Cn from Bn, while the systems En

0 and Cn are entangled
with the channel state systems En (see Fig. 1).

The quantum model involves three channel state systems,
En, En

0 , and Cn, as opposed to the classical case [6] of a single

En
0

V

Cn

1
nI(Bn; CnV )ρ ≤ L

|φE0EC〉⊗n En

N DBn m̂

T

m An

F

FIG. 1. Coding for a quantum state-dependent channel NEA→B

given side information at the encoder and masking from the decoder.
The quantum systems of Alice and Bob are marked in red and blue,
respectively. The channel state systems En and Cn are marked in
brown. Alice wishes to send a classical message m to Bob. She
has access to side-information systems En

0 , which are entangled
with the channel state systems En. Alice performs a measurement
T , and obtains a measurement outcome V . Then, she applies an
encoding map F : (m,V ) → ρAn , and transmits the system An over
the channel. Bob receives the channel output system Bn, and applies
the decoding measurement D : ρBn → m̂ to obtain an estimate m̂ for
Alice’s message, as a measurement outcome. A leakage rate L is
achieved if 1

n I (Bn;CnV )ρ � L.

random parameter. The system En
0 can be thought of as part

of the environment of both our transmitter and the source of
Cn, possibly entangled if they had previous interaction, while
En belongs to the channel’s environment. The interpretation
given in [34], for the entanglement between En

0 and En, is that
Alice shares entanglement with the channel itself. Another
distinction from the classical case is that the measurement can
cause a collapse of the wave function, hence correlations can
be lost. Thereby, it is essential to conceal the CSI observa-
tion as well. In the present model, the leakage requirement
involves both the masked system Cn and the measurement
outcome V . Those subtleties do not exist in the classical
problem.

Compared to our previous work [61], we now address a
more fundamental problem in the following sense. In model 1,
we consider a classical task, i.e., the transmission of classical
bits, that is performed using a quantum apparatus. The tech-
niques in the analysis are significantly different as well. The
proof in [61] is based on the decoupling approach [62], using a
code that decouples both Bob’s environment and the channel
state systems from the input reference. Here, the analysis is
based on the quantum packing lemma [63], using type-class
projectors and the classical binning technique, along with
nontrivial arguments to establish the leakage requirement.

II. DEFINITIONS AND RELATED WORK

A. Notation, states, and information measures

We use the following notation conventions. Calligraphic
letters X ,Y,Z, etc., are used for finite sets. Lowercase let-
ters x, y, z, etc., represent constants and values of classical
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random variables, and uppercase letters X,Y, Z, etc., repre-
sent classical random variables. The distribution of a random
variable X is specified by a probability mass function pX (x)
over a finite set X . We use x j = (x1, x2, . . . , x j ) to denote a
sequence of letters from X . A random sequence X n and its
distribution pX n (xn) are defined accordingly.

The state of a quantum system A is given by a density
operator ρ on the Hilbert space HA. The state is said to be
pure if ρ = |ψ〉〈ψ |, for some vector |ψ〉 ∈ HA, where 〈ψ | is
the Hermitian conjugate of |ψ〉. A measurement of a quantum
system is any set of operators {� j} that forms a positive
operator-valued measure (POVM), i.e., the operators are pos-
itive semidefinite and

∑
j � j = 1, where 1 is the identity

operator. According to the Born rule, if the system is in state
ρ, then the probability of the measurement outcome j is given
by pA( j) = Tr(� jρ).

Define the quantum entropy of the density operator ρ as

H (ρ) � −Tr[ρ log2(ρ)]. (1)

We may also consider the state of a pair of systems A and B
on the tensor product HA ⊗ HB of the corresponding Hilbert
spaces. Given a bipartite state ρAB, define the quantum mutual
information as

I (A; B)ρ = H (ρA) + H (ρB) − H (ρAB). (2)

Furthermore, the conditional quantum entropy and mutual
information are defined by H (A|B)ρ = H (ρAB) − H (ρB)
and I (A; B|C)ρ = H (A|C)ρ + H (B|C)ρ − H (A, B|C)ρ ,
respectively.

A pure bipartite state is called entangled if it cannot be ex-
pressed as the tensor product of two states in HA and HB. The
maximally entangled state between two systems of dimen-
sion D is defined by |�AB〉 = 1√

D

∑D−1
j=0 | j〉A ⊗ | j〉B, where

{| j〉A}D−1
j=0 and {| j〉B}D−1

j=0 are respective orthonormal bases.
Note that I (A; B)|�〉〈�| = 2 × log2(D) and I (A〉B)|�〉〈�| =

log2(D).

B. Quantum channel

A quantum channel maps a quantum state at the sender
system to a quantum state at the receiver system. Here, we
consider a channel with two inputs, where one of the inputs,
which is referred to as the channel state, is not controlled
by the encoder. Formally, a quantum state-dependent channel
(NEA→B, |φEE0C〉) is defined by a linear, completely positive,
trace-preserving map NEA→B and a quantum state |φEE0C〉.
This model can be interpreted as if the channel is entangled
with the systems E , E0, and C.

We assume that both the channel state systems and the
quantum channel have a product form. That is, the joint
state of the systems En = (E1, . . . , En), En

0 = (E0,1, . . . , E0,n)
and Cn = (C1, . . . ,Cn) is |φEE0C〉⊗n, and if the systems An =
(A′

1, . . . , A′
n) are sent through n channel uses, then the input

state ρEnAn undergoes the tensor product mapping NEnAn→Bn ≡
N⊗n

EA→B. Given CSI, the transmitter can measure the systems
En

0 , which are entangled with the channel state systems En.
We will further consider a secrecy requirement that limits the
information that the receiver can obtain on Cn. The sender and
the receiver are often referred to as Alice and Bob.

Remark 1. Our results apply to the case where E , E0, and
C are in a mixed state as well. Specifically, given a mixed
state ϕEE0C , there exists a purification |φGEE0C〉, such that the
reduced density operator for this purification is ϕEE0C . Hence,
we can redefine the channel as follows. First, replace the
channel state system E by Ẽ = (G, E ), and then consider the
quantum state-dependent channel ÑẼA→B, where

ÑGEA→B(ρGEA) = NEA→B[TrG(ρGEA)]. (3)

We will also consider the quantum-classical special case.
Definition 1. A measurement channel (or, quantum-

classical channel) MA→Y has the following form,

MA→Y (ρA) =
∑
y∈Y

Tr(�yρA)|y〉〈y|, (4)

for some POVM {�y} and orthonormal vectors {|y〉}. In order
to distinguish it from the general channel, we denote the state-
dependent measurement channel by (MEA→Y , |φ〉).

One may also consider the special case where the chan-
nel state is fully described by a classical random parameter,
i.e., E ≡ E0 ≡ C ≡ S where S ∼ q(s) is a classical random
variable. In this case, the channel can be viewed as a ran-
dom selection from a collection of channels {N (s)

A→B}s∈S . This
family of quantum state-dependent channels is of particular
interest as it captures the notion of channel uncertainty. For
the so-called random-parameter quantum channel, the avail-
ability of CSI at the encoder simply means that Alice knows
the value of S. We give simple examples below.

Example 1. The random-parameter depolarizing channel is
defined as follows (see Example 3 of [32]). Let NSA→B be a
quantum state-dependent channel that depends on a classical
random parameter S ∈ {0, 1, 2, 3}, hence E0 ≡ E ≡ C ≡ S.
As pointed out above, such a random-parameter quantum
channel can be viewed as a random selection from a set of
channels, {N (s)}s=0,1,2,3.. Let

N (0)(ρ) = ρ, (5)

N (1)(ρ) = XρX, (6)

N (2)(ρ) = Y ρY, (7)

N (3)(ρ) = ZρZ (8)

with the following parameter distribution:

q(0) = 1 − 3ε

4
, q(1) = q(2) = q(3) = ε

4
(9)

where ε ∈ (0, 1] is a given constant and X , Y , and Z are the
qubit Pauli operators. In other words, the parameter Si chooses
a Pauli operator that is applied to the ith input system. We
note that without CSI, the average channel is the same as the
standard depolarizing channel, i.e.,

N A→B(ρ) ≡
∑

s

q(s)N (s)(ρ)

=
(

1 − 3ε

4

)
ρ + ε

4
(XρX + Y ρY + ZρZ )

= (1 − ε)ρ + επ (10)
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where π = 1
2 is the maximally mixed state (see Sec. 4.7.4

of [64]). Without CSI, the capacity can be significantly lower
than 1. In particular, for ε = 1, the capacity without CSI is
zero and Alice cannot send any information to Bob.

Knowing the parameter s, Alice can revert the operation
of the channel by applying the corresponding Pauli operator.
That is, Alice applies N (s) locally in her encoding operation,
and then sends the input state N (s)(ρ) through the channel.
Hence, Bob receives N (s)[N (s)(ρ)] = ρ. In this manner, we
effectively have a noiseless channel. Furthermore, the channel
output has no correlation with the channel state S. Thereby,
Alice can send one information bit per transmission without
leakage.

Example 2. Consider a random-parameter qubit chan-
nel that depends on a classical random parameter S ∼
Bernoulli(ε), such that

N (0)(ρ) = ρ, (11)

N (1)(ρ) = |ψ〉〈ψ | (12)

where |ψ〉 is a given state in the same qubit space. We will
return to this example in the sequel and show that if Alice uses
the CSI in order to increase the transmission rate, then there
may be leakage of information on Sn to Bob (see Example 3).

C. Coding

We define a privacy masking code to transmit classical
information over a quantum channel. With noncausal CSI,
Alice can measure the systems En

0 , which are entangled with
the channel state systems CnEn. We refer to En

0 as the CSI
systems.

Definition 2. A (2nR, n) classical masking code with CSI
at the encoder consists of the following: A message set [1 :
2nR], assuming that 2nR is an integer; an encoding POVM,
T ≡ {T v

En
0
}, on the CSI system En

0 ; an encoding map F :

(m, v) �→ ρAn ; and a decoding POVM D ≡ {Dm̂
Bn}.

The communication scheme is depicted in Fig. 1. The
sender Alice has the systems En

0 and An, and the receiver
Bob has the systems Bn. Alice chooses a classical message
m ∈ [1 : 2nR] uniformly at random, and wishes to send it to
Bob. To this end, she measures the CSI systems En

0 , which
are entangled with the channel state systems, using the mea-
surement set T , and obtains a measurement outcome v. Then,
Alice encodes the classical message m using the measurement
outcome, and prepares the input state ρm,v

An = F (m, v). The
average postmeasurement input state is

ρ̄m
CnEnVAn =

∑
v

TrEn
0

(
T v

En
0
φ⊗n

CEE0

) ⊗ |v〉〈v| ⊗ ρm,v
An (13)

where V is a classical register that stores the CSI-
measurement outcome.

Alice transmits the systems An over n channel uses of
NEA→B. Hence, the average output state is

ρm
CnV Bn = NEnAn→Bn

(
ρ̄m

CnV EnAn

)
. (14)

Bob receives the channel output and applies the decoding
measurement D to the output systems Bn, such that the mea-
surement outcome m̂ is an estimate of the original message m.

The average probability of error is

P(n)
e (T ,F ,D) = 1 − 1

2nR

2nR∑
m=1

Tr
(
Dm

Bnρ
m
Bn

)
(15)

where ρm
Bn = TrCnV (ρm

CnV Bn ). The masking leakage rate of the
code (T ,F ,D) is defined as


(n)(T ,F ,D) � 1

n
I (CnV ; Bn)ρ (16)

where the mutual information is computed with respect to
the average states, corresponding to a uniformly distributed
message and the random outcome V of the CSI measure-
ment at the encoder. A (2nR, n, ε, L) masking code satisfies
P(n)

e (T ,F ,D) � ε and 
(n)(T ,F ,D) � L. A rate-leakage
pair (R, L), where R, L � 0, is called achievable if for every
ε, δ > 0 and sufficiently large n, there exists a (2nR, n, ε, L +
δ) masking code.

The classical masking region RCL(N ) of the quantum
state-dependent channel NEA→B is defined as the set of
achievable pairs (R, L) with CSI at the encoder. Alterna-
tively, one may fix the leakage rate and consider the optimal
transmission rate. The classical capacity-leakage function
CCl(N , L) is defined as the supremum of achievable rates
R for a given leakage L. Note that CCl(N ,∞) reduces to
the standard definition of the classical capacity of a quantum
channel, without a masking requirement.

Remark 2. Observe that if L � 2 log2 |HB|, then the
masking requirement trivially holds because I (CnV ; Bn)ρ �
2H (Bn)ρ � 2n log2 |HB|. That is, if L � 2 log2 |HB|, then
CCl(N , L) = CCl(N ,∞).

D. Related work

We briefly review known results for the case where there
is no masking requirement. First, consider a quantum channel
which is not affected by a channel state, i.e., NEA→B(ρEA) =
PA→B[TrE (ρEA)]. Define

χ (P ) � max
pX (x),|φx

A〉
I (X ; B)ρ (17)

with ρXB ≡ ∑
x∈X pX (x)|x〉〈x| ⊗ P (|φx

A〉〈φx
A|) and |X | �

|HA|2. The objective functional I (X ; B)ρ is referred to
as the Holevo information with respect to the ensemble
{pX (x), E (|φx

A〉〈φx
A|)} and the channel PA→B, while the for-

mula χ (P ) itself is sometimes referred to as the Holevo
information of the channel [64]. Next, we cite the HSW the-
orem, which provides a regularized capacity formula for a
quantum channel that does not depend on a state.

Theorem 1 (see [23,24]). The classical capacity of a quan-
tum channel PA→B that does not depend on a channel state,
without a masking requirement, is given by

CCl(P,∞) = lim
n→∞

1

n
χ (P⊗n). (18)

A single-letter characterization is an open problem for a
general quantum channel. Although calculation of a regular-
ized formula is intractable in general, it provides a computable
lower bound, and there are special cases where the capacity
can be computed exactly [65].
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Next, we move to a quantum state-dependent channel with
CSI at the encoder, in the special case where the state is a clas-
sical random parameter S ∼ q(s). As explained in Sec. II B,
the channel NSA→B can be specified by a collection of chan-
nels {N (s)

A→B}. Define

R(N ,∞) � sup
pX |S (x|s),ϕx

A

[I (X ; B)ρ − I (X ; S)] (19)

where the supremum is over the conditional distributions pX |S
and the collections of input states ϕx

A, such that given S = s,
we have the state ρXB|s ≡ ∑

x∈X pX |S (x|s)|x〉〈x| ⊗ N (s)
A→B(ϕx

A).
Theorem 2 (see [31,32]). The classical capacity of a

random-parameter quantum channel (NSA→B, S ∼ q(s)), with
CSI at the encoder and without a masking requirement, is
given by

CCl(N ,∞) = lim
n→∞

1

n
R(N⊗n,∞). (20)

III. MAIN RESULTS

We state our results on the quantum state-dependent
channel NEA→B with masking. We determine a regularized
characterization of the masking region and capacity-leakage
function, for the transmission of classical information. Define

RCl(N )

=
⋃

�s
E0

, pX |S , ϕx
A

{
(R, L) : 0 � R � I (X ; B)ρ − I (X ; S)

L � I (CS; XB)ρ

}

(21)

where the union is over the POVMs {�s
E0

}, the conditional
distributions pX |S , and the collections of input states ϕx

A, with

ρECSXA =
∑
s∈S

∑
x∈X

pX |S (x|s)TrE0

(
�s

E0
φE0EC

)⊗|s, x〉〈s, x| ⊗ ϕx
A

(22)

and

ρBCSX = NEA→B(ρEACSX ). (23)

Theorem 3.
(1) The classical masking region of a quantum state-

dependent channel (NEA→B, |φEE0C〉) with CSI at the encoder
is given by

RCl(N ) =
∞⋃

n=1

1

n
RCl(N⊗n). (24)

(2) For a measurement channel MEA→Y with a classical
CSI system E0 ≡ S,

RCl(M) =
⋃

pX |S , ϕx
A

{
(R, L) : 0 � R � I (X ;Y ) − I (X ; S)

L � I (CS; XY )ρ

}
.

(25)

The proof of Theorem 3 is given in Appendix C.
Remark 3. In Appendix A, we show that the union can

be exhausted with cardinality |X | � (|HA|2 + 1)|HE |. Hence,
in principle, the region RCl(N ) is computable. Neverthe-
less, for a general quantum channel, we have only obtained
a regularized characterization. As mentioned in Sec. II D, a

single-letter capacity formula is an open problem, even for a
point-to-point quantum channel without a channel state.

Equivalently, we can characterize the capacity-leakage
function. The following corollary is an immediate conse-
quence of Theorem 3.

Corollary 1.
(1) The classical capacity-leakage function of a quantum

state-dependent channel (NEA→B, |φEE0C〉) with CSI at the
encoder is given by

CCl(N , L) = lim
n→∞

1

n
sup

�s
En

0
, pX |S , ϕx

An : I (CnS;XBn )ρ�L

× [I (X ; Bn)ρ − I (X ; S)]. (26)

(2) For a measurement channel MEA→B with a classical
CSI system E0 ≡ S,

CCl(M, L) = sup
pX |S , ϕx

A : I (CS;XY )ρ�L
[I (X ;Y ) − I (X ; S)]. (27)

To illustrate our results, we return to the channels in Ex-
amples 1 and 2. Example 1 is a trivial example where there
is no tradeoff between the transmission rate and the leakage.
Specifically, Alice can transmit 1 bit of information per trans-
mission without leakage. Hence, the capacity-leakage region
of the random-parameter depolarizing channel is given by

CCl(N ) =
{

(R, L) : R � 1
L � 0

}
. (28)

Now, we demonstrate the tradeoff for the channel in
Example 2.

Example 3. Consider a qubit channel NSA→B that de-
pends on a classical random parameter S ∼ Bernoulli(ε),
hence E0 ≡ E ≡ C ≡ S. As pointed out in Sec. II B, such
a random-parameter quantum channel can be viewed as a
random selection from a set of channels, {N (s)}s=0,1.. Let

N (0)(ρ) = ρ, (29)

N (1)(ρ) = |ψ〉〈ψ | (30)

where |ψ〉 is a given state in the same qubit space, as in
Example 2. Here, the parameter Si determines whether the
ith input system is projected onto |ψ〉. This channel has also
been considered in the dual model of parameter estimation
(see Example 4 of [32]). Ignoring the CSI at the encoder,
the average channel N A→B(ρ) = (1 − ε)ρ + ε|ψ〉〈ψ | resem-
bles the quantum erasure channel [66] (see also Sec. 20.4.3
of [64]), except that the “erasure state”of an erasure channel
is orthogonal to the qubit space, while |ψ〉 in the present
example is in the same qubit space. Nonetheless, we note that
if the decoder knows the locations where the state is projected,
then this model is equivalent to the quantum erasure channel.
Without this knowledge at the decoder, it is less obvious.

By Theorem 3, the following rate-leakage region is achiev-
able for the random-parameter channel above:

CCl(N )

⊇
⋃

0�α� 1
2

{
(R, L) : R � (1 − ε)h(α)

L � h[(1 − ε)α] − (1 − ε)h(α)

}

(31)
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where h(x) is the binary entropy function, i.e., h(x) =
−(1 − x) log2(1 − x) − x log2(x) for x ∈ (0, 1), and h(0) =
h(1) = 0. We can see the tradeoff between the communica-
tion rate and the leakage. Clearly, if the encoder constantly
transmits |ψ〉, then there is no leakage, as the output is
|ψ〉 ⊗ · · · ⊗ |ψ〉. Yet, the rate is zero as well. Indeed, for
α = 0, we achieve (R, L) = (0, 0). On the other hand, taking
α = 1

2 , we obtain the maximal rate R = 1 − ε, which is also
the capacity of the quantum erasure channel. However, the
leakage is L = h[ 1

2 (1 − ε)] − (1 − ε).
To show this, note that the bound on the rate on the right-

hand side of (21) can also be expressed as

R � H (X |S) − H (X |B)ρ
= H (X |S) − H (XB)ρ + H (B)ρ. (32)

Given CSI at the encoder, we can choose an auxiliary X that
depends on the channel parameter S. Let the input ensemble
be the basis {|ψ〉, |ψ⊥〉}, where |ψ⊥〉 is orthogonal with re-
spect to |ψ〉. The input distribution is chosen as follows. Let
V ∼ Bernoulli(α) be statistically independent of S. If S = 0,
set X = V . Otherwise, if S = 1, set X = 0. This results in the
following quantum state:

ρSXB = (1 − ε)|0〉〈0| ⊗ ((1 − α)|0〉〈0| ⊗ |ψ〉〈ψ |
+ α|1〉〈1| ⊗ |ψ⊥〉〈ψ⊥|)
+ ε|1〉〈1| ⊗ |0〉〈0| ⊗ |ψ〉〈ψ |, (33)

ρXB = [(1 − ε)(1 − α) + ε]|0〉〈0| ⊗ |ψ〉〈ψ |
+ (1 − ε)α|1〉〈1| ⊗ |ψ⊥〉〈ψ⊥|. (34)

Hence,

H (XB)ρ = H (B)ρ = h[(1 − ε)α], (35)

H (XB|S)ρ = H (X |S) = (1 − ε)H (V ) + ε × 0

= (1 − ε)h(α), (36)

and

I (S; XB)ρ = H (XB)ρ − H (XB|S)ρ

= h[(1 − ε)α] − (1 − ε)h(α) (37)

IV. SUMMARY AND CONCLUDING REMARKS

We consider communication of classical information over
a quantum state-dependent channel NEA→B, when the encoder
can measure CSI and is required to mask information on the
quantum channel state from the decoder. Specifically, the
channel state systems are in an entangled state |φE0EC〉⊗n (see
Fig. 1). Alice wishes to send a classical message m. To this
end, she measures the CSI systems En

0 and obtains an outcome
V . Based on the measurement outcome, Alice encodes the
quantum state of the channel input systems An in such a
manner that limits the leakage rate of Bob’s information on
Cn from Bn.

In quantum channel state masking, analogously to the clas-
sical model [6], the channel state system Cn stores undesired
quantum information which leaks to the receiver. This can
model a leakage of secret network information in the system

to the end user. Alternatively, the state system Cn may repre-
sent another transmission to another receiver, Charlie, which
is not intended to Bob, and is therefore to be concealed from
him. Thus, Alice’s goal is to mask this undesired information
as much as possible on the one hand, and to transmit reliable
information on the other.

In a recent paper by the authors [61], we have consid-
ered a quantum state-dependent channel NEA→B, when the
encoder has CSI and is required to mask information on the
quantum channel state from the decoder. We have established
a full characterization for the entanglement-assisted mask-
ing region with maximally correlated channel state systems,
and a regularized formula for the quantum masking region
without assistance. Here, we have removed the entanglement
assistance, and considered the transmission of classical infor-
mation over the quantum channel.

Masking can also be viewed as a building block for crypto-
graphic problems of oblivious transfer of information, such as
bit commitment or secure computation. Suppose that Alice is
a server that receives a query. She is required to use a quantum
computer in order to compute a difficult task, while also using
a private source En

0 Cn. To this end, Alice uses En
0 to encode

An, including a reference number m (metadata), which could
possibly include the computation query as well. Next, she
performs the computation map N⊗n

EA→B on the systems EnAn,
which are entangled with the private source. The quantum
output system Bn is delivered to the agent Bob, who performs
a measurement to view the metadata m, and then use Bn as
he wishes. The masking requirement is to prevent Bob from
recovering the server’s private source.
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APPENDIX A: CARDINALITY BOUND

Consider the region RCl(N ) as defined in (21). To bound
the alphabet size, we use the Fenchel-Eggleston-Carathéodory
lemma [67] and similar arguments as in [32]. First, observe
that since �s

E0
is a measurement on E0, we can restrict

the dimension of this measurement to |HE0 |, hence |S| �
|HE0 |. Fix pS (s) = Tr(�s

E0
φE0 ), and consider the ensemble

{pX |S (x|s), ϕx
A}. Every quantum state θA has a unique para-

metric representation u(θA) of dimension |HA|2 − 1 (see Ap-
pendix B of [32]). Then, define a map fs : X → R|HA|2+1 by

fs(x) = (
u
(
ϕx

A

)
, −H (B|X = x)ρ

+ H (S|X = x), H (CS|B, X = x)ρ
)
. (A1)
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The map fs can be extended to probability distributions as
follows:

Fs : pX |S (·|s) �→
∑
x∈X

pX |S (x|s) fs(x)

= (
u
(
ρs

A

)
, −H (B|X )ρ + H (S|X ),

H (CS|BX )ρ
)

(A2)

for s ∈ S , where ρs
A = ∑

x pX |S (x|s)ϕx
A. According to the

Fenchel-Eggleston-Carathéodory lemma [67], any point
in the convex closure of a connected compact set within
Rd belongs to the convex hull of d points in the set.
Since the map Fs is linear, it maps the set of distributions
on X to a connected compact set in R|HA|2+1. Thus, for
every s, there exists a conditional probability distribution
pX̄ |S (·|s) on a subset X ⊆ X of size |HA|2 + 1, such that
Fs[pX̄ |S (·|s)] = Fs[pX |S (·|s)]. We deduce that the alphabet
dimension can be restricted to |X | � (|HA|2 + 1)|HE0 |,
while preserving ρSAEC and ρSBC ≡ NEA→B(ρSEAC ),
I (X ; B)ρ − I (X ; S) = H (B)ρ − H (B|X )ρ + H (S|X ) − H (S),
and I (CS; XB)ρ = H (CS)ρ − H (CS|BX )ρ . �

APPENDIX B: INFORMATION THEORETIC TOOLS

To derive our results, we use the quantum version of
the method of types of properties and techniques. The basic
definitions and lemmas are similar to those in [32]. For con-
venience, we present them here as well.

1. Classical types

The type of a classical sequence xn is defined as the empiri-
cal distribution P̂xn (a) = N (a|xn)/n for a ∈ X , where N (a|xn)
is the number of occurrences of the symbol a in the sequence
xn. Denote the set of all types over X by Pn(X ). For a pair
of sequences xn and yn, we give similar definitions in terms
of the joint type P̂xn,yn (a, b) = N (a, b|xn, yn)/n for a ∈ X ,
b ∈ Y , where N (a, b|xn, yn) is the number of occurrences
of the symbol pair (a, b) in the sequence (xi, yi )n

i=1. Given
a sequence yn ∈ Yn, we further define the conditional type
P̂xn|yn (a|b) = N (a, b|xn, yn)/N (b|yn).

Given a probability distribution pX ∈ P (X ), define the δ-
typical set as

Aδ (pX ) ≡ {xn ∈ X n : |P̂xn (a) − pX (a)|�δ if pX (a) > 0

P̂xn (a) = 0 if pX (a) = 0, ∀ a ∈ X }. (B1)

The covering lemma is a powerful tool in classical infor-
mation theory [68].

Lemma 4 (classical covering lemma, see [68] and Lemma
3.3 of [69]). Let X n ∼ ∏n

i=1 pX (xi ), δ > 0, and let Zn(m),
m ∈ [1 : 2nR] be independent random sequences distributed
according to

∏n
i=1 pZ (zi). Suppose that the sequence X n is

pairwise independent of the sequences Zn(m), m ∈ [1 : 2nR].
Then,

Pr((Zn(m), X n) /∈ Aδ (pZ,X ) for all m ∈ [1 : 2nR])

� exp(−2n(R−I (Z;X )−εn (δ) ) (B2)

where εn(δ) tends to zero as n → ∞ and δ → 0.

Let X n ∼ ∏n
i=1 pX (xi ) be an information source sequence,

encoded by an index m at compression rate R. Based on the
covering lemma above, as long as the compression rate is
higher than I (Z; X ), a set of random codewords, Zn(m) ∼∏n

i=1 pZ (zi), contains with high probability at least one se-
quence that is jointly typical with the source sequence.

Though originally stated in the context of lossy source
coding, the classical covering lemma is useful in a variety of
scenarios [69], including communication with CSI [32]. In our
analysis in the sequel, we will have a measurement sequence
Sn playing the role of the “source sequence.”

2. Quantum typical subspaces

Moving to the quantum method of types, suppose that
the state of a system is generated from an ensemble
{pX (x), |x〉}x∈X ; hence, the average density operator is

ρ =
∑
x∈X

pX (x)|x〉〈x|. (B3)

Consider the subspace spanned by the vectors |xn〉, for xn ∈
Aδ (pX ). The projector onto the subspace is defined as

�δ (ρ) ≡
∑

xn∈Aδ (pX )

|xn〉〈xn|. (B4)

Based on [70] and Theorem 12.5 of [71], for every ε, δ > 0
and sufficiently large n, the δ-typical projector satisfies

Tr[�δ (ρ)ρ⊗n] �1 − ε, (B5)

2−n[H (ρ)+cδ]�δ (ρ) � �δ (ρ) ρ⊗n �δ (ρ) � 2−n[H (ρ)−cδ],

(B6)

Tr[�δ (ρ)] �2n(H (ρ)+cδ) (B7)

where c > 0 is a constant.
We will also need the conditional δ-typical subspace. Con-

sider a state

σ =
∑
x∈Y

pX (x)ρx
B (B8)

with

ρx
B =

∑
y∈Y

pY |X (y|x)|ψx,y〉〈ψx,y|. (B9)

Given a fixed sequence xn ∈ X n, divide the index set [1 : n]
into the subsets In(a) = {i : xi = a}, a ∈ X , and define the
conditional δ-typical subspace S δ (σB|xn) as the span of the
vectors |ψxn,yn〉 = ⊗n

i=1|ψxi,yi〉 such that

yIn(a) ∈ A(|In(a)|)
δ (pY |X=a), for a ∈ X . (B10)

The projector onto the conditional δ-typical subspace is de-
fined as

�δ (σB|xn) ≡
∑

|ψxn ,yn 〉∈S δ (σB|xn )

|ψxn,yn〉〈ψxn,yn |. (B11)

Based on [70] and Sec. 15.2.4 of [64], for every ε′, δ > 0 and
sufficiently large n,

Tr
[
�δ (σB|xn)ρxn

Bn

]
�1 − ε′, (B12)
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2−n[H (B|X ′ )σ +c′δ]�δ (σB|xn) � �δ (σB|xn) ρxn

Bn �δ (σB|xn)

� 2−n[H (B|X ′ )σ −c′δ], (B13)

Tr[�δ (σB|xn)] �2n[H (B|X ′ )σ +c′δ] (B14)

where c′ > 0 is a constant, ρxn

Bn = ⊗n
i=1 ρ

xi
Bi

, and the classical
random variable X ′ is distributed according to the type of xn.
Furthermore, if xn ∈ Aδ (pX ), then

Tr
[
�δ (σB)ρxn

Bn

]
�1 − ε′ (B15)

(see Property 15.2.7 of [64]).

3. Quantum packing lemma

To prove achievability for the HSW theorem (see Theo-
rem 1), one may invoke the quantum packing lemma [63,64].
Suppose that Alice employs a codebook that consists of 2nR

codewords xn(m), m ∈ [1 : 2nR], by which she chooses a quan-
tum state from an ensemble {ρxn}xn∈X n . The proof is based on
random codebook generation, where the codewords are drawn
at random according to an input distribution pX (x). To recover
the transmitted message, Bob may perform the square-root
measurement [23,24] using a code projector � and codeword
projectors �xn , xn ∈ X n, which project onto subspaces of the
Hilbert space HBn .

The lemma below is a simplified, less general, version of
the quantum packing lemma by Hsieh, Devetak, and Win-
ter [63].

Lemma 5 (quantum packing lemma, see Lemma 2 of [63]).
Let

ρ =
∑
x∈X

pX (x)ρx (B16)

where {pX (x), ρx}x∈X is a given ensemble. Furthermore, sup-
pose that there is a code projector � and codeword projectors
�xn , xn ∈ Aδ (pX ), that satisfy for every α > 0 and sufficiently
large n

Tr(�ρxn ) � 1 − α, (B17)

Tr(�xnρxn ) � 1 − α, (B18)

Tr(�xn ) � 2nd , (B19)

�ρ⊗n� � 2−n(D−α)� (B20)

for some 0 < d < D with ρxn ≡ ⊗n
i=1 ρxi . Then, there exist

codewords xn(m), m ∈ [1 : 2nR], and a POVM {�m}m∈[1:2nR]
such that

Tr(�mρxn(m) ) � 1 − 2−n[D−d−R−εn (α)] (B21)

for all m ∈ [1 : 2nR], where εn(α) tends to zero as n → ∞ and
α → 0.

In our analysis, where there is CSI at the encoder, we apply
the packing lemma such that the quantum ensemble encodes
both the message m and a compressed representation of the
parameter sequence sn.

APPENDIX C: PROOF OF THEOREM 3

Consider a quantum state-dependent channel NEA→B with
CSI at the encoder.

1. Part 1

a. Direct part

We show that for every ζ0, ε0, δ0 > 0, there exists
a (2n(R−ζ0 ), n, ε0, L + δ0) code for NEA→B, provided that
(R, L) ∈ RCl(N ). To prove achievability, we extend the clas-
sical binning technique and apply the quantum packing lemma
and classical covering lemma.

The code construction, encoding, and decoding procedures
are described below.

i. Classical codebook construction. Let δ > 0, and let R̃ >

R be chosen later. We construct 2nR subcodebooks at random.
For every message m ∈ [1 : 2nR], select 2n(R̃−R) independent
sequences xn(k) at random, each according to

∏n
i=1 pX (xi ).

Then, we have the following subcodebooks:

B(m) = {xn(k) : k ∈ [(m − 1)2n(R̃−R) + 1 : m2n(R̃−R)]}
(C1)

for m ∈ [1 : 2nR].
ii. Encoding and decoding. To send a message m, Alice

performs the following.
(1) Measure the CSI systems E0,i using the POVM �s

E0
,

for i ∈ [1 : n]. Since the CSI systems are in a product state,
the measurement outcome is an independent and identically
distributed sequence ≈q(s), where q(s) = Tr(�s

E0
σE0 ).

(2) Given a measurement outcome sn, find a se-
quence xn(k) ∈ B(m) such that (sn, xn(k)) ∈ Aδ (pS,X ), where
pS,X (s, u) = q(s)pX |S (u|s). If there is none, select xn(k) arbi-
trarily, and if there is more than one such sequence, choose
the first among them.

(3) Transmit ρm
An = ⊗n

i=1 ϕ
xi (k)
A .

Bob receives the output system Bn, such that

ρm
Bn =

n⊗
i=1

ρ
xi (k)
B , (C2)

and decodes k̂ by applying a POVM {�k}k∈[1:2nR̃], which will
be specified later. He declares his estimate m̂ to be the corre-
sponding subcodebook index, i.e., m̂ such that xn(k̂) ∈ B(m̂).

Analysis of probability of error and leakage. First, we show
that the probability of decoding error tends to zero as n →
∞. By symmetry, we may assume without loss of generality
that Alice sends the message M = 1 using K . Consider the
following events:

E1 ={(Sn, X n(k′)) /∈ Aδ (pS,X ), for all k′ ∈ B(1)}, (C3)

E2 ={K̂ �= K}. (C4)

By the union of events bound, the probability of error is
bounded by

P(n)
e (T ,F ,D) � Pr (E1) + Pr (E2 | E c

1 ) (C5)

where the conditioning on M = 1 is omitted for convenience
of notation. By the classical covering lemma, Lemma 4, the
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first term tends to zero as n → ∞ for

R̃ − R > I (X ; S) + ε1(δ). (C6)

Hence, we choose

R̃ = R + I (X ; S) + 2ε1(δ). (C7)

To bound the second term, we use the quantum packing
lemma. Given E c

1 , we have X n(K ) ∈ Aδ1 (pX ), with δ1 � δ|S|.
Next, observe that

�δ (ρB)ρBn�δ (ρB) �2−n(H (B)ρ−ε2(δ))�δ (ρB), (C8)

Tr
[
�δ (ρB|xn)ρxn

Bn

]
�1 − ε2(δ), (C9)

Tr[�δ (ρB|xn)] �2n(H (B|X )ρ+ε2(δ)), (C10)

Tr
[
�δ (ρB)ρxn

Bn

]
�1 − ε2(δ) (C11)

for xn ∈ Aδ1 (pX ), by (B6), (B12), (B14), and (B15), respec-
tively. Thus, by Lemma 5, there exists a POVM Dk such that
the second error term in (C5) is bounded by Pr(E2 | E c

1 ) �
2−n(I (X ;B)ρ−R̃−ε3(δ)), which tends to zero as n → ∞, if

R̃ < I (X ; B)ρ − ε3(δ). (C12)

Hence, by (C7), the probability of decoding error tends to
zero, provided that the transmission rate is bounded by

R < I (X ; B)ρ − I (X ; S) − ε3(δ) − 2ε2(δ). (C13)

As for the leakage rate, observe that

I (Cn; Bn)ρ � I (Cn; X n(K ), Bn)ρ

= I (Cn; X n(K ))ρ + I (Cn; Bn|X n(K ))ρ. (C14)

Then, the first term is bounded by

I (Cn; X n(K ))ρ � I (Cn; M, X n(K ))ρ
(a)= I (Cn; X n(K )|M )ρ

� H (X n(K )|M )ρ
(b)
� n(R̃ − R)

(c)= n[I (X ; S) + 2ε1(δ)]

� n[I (X ;C, S) + 2ε1(δ)] (C15)

where (a) holds since I (Cn; M )ρ = 0, as there is no correlation
between the classical message M and the channel state system
Cn, (b) follows as X n(K ) belongs to a subcodebook B(M ) of
size 2n(R̃−R), and (c) is due to (C7). Moving to the second term
in the right-hand side of (C14),

I (Cn; Bn|X n(K ))ρ � I (Cn, Sn; Bn|X n(K ))ρ

=H[Bn|X n(K )]ρ−H (Bn|Cn, Sn, X n(K ))ρ.

(C16)

Now, since conditioning does not increase the quantum en-
tropy,

H[Bn|X n(K )]ρ �
n∑

i=1

H[Bi|Xi(K )]ρ = nH (B|X )ρ. (C17)

Furthermore, given X n(K ) = xn and Sn = sn, we have
a product output state ρBnCn ≡ ⊗n

i=1 NEA→B(σ si
EC ⊗ ϕ

xi,si
A ),

where σ s
EC denotes the postmeasurement state, i.e., σ s

EC ≡
TrE0 (�s

E0
φE0EC )/Tr(�s

E0
φE0 ) for s ∈ S . Thus,

H (Bn|Cn, Sn, X n(K ))ρ = nH (B|C, S, X )ρ. (C18)

It follows from (C14)–(C18) that

1

n
I (Bn;Cn) � I (X ;C, S) + 2ε1(δ)

+ H (B|X )ρ − H (B|C, S, X )ρ

= I (C, S; X ) + I (C, S; B|X ) + 2ε1(δ)

= I (C, S; X, B) + 2ε1(δ). (C19)

Thereby, the leakage requirement holds if

I (C, S; X, B) � L − 2ε1(δ). (C20)

To show that rate-leakage pairs in the regularized formula,
1
κ
RCl(N⊗κ ), are achievable as well, one may use the coding

scheme above over the product channel N⊗κ , where κ is
arbitrarily large. This completes the proof of the direct part.

b. Converse part

The proof of the regularized converse part is a straightfor-
ward extension of standard considerations. For completeness,
we give the details below. Suppose that Alice and Bob are
trying to distribute randomness. An upper bound on the rate
at which Alice can distribute randomness to Bob also serves
as an upper bound on the classical communication rate. Then,
suppose that Alice prepares a maximally correlated state

πMM ′ ≡ 1

2nR

2nR∑
m=1

|m〉〈m|M ⊗ |m〉〈m|M ′ (C21)

locally, where M and M ′ are classical message registers. De-
note the joint state at the beginning by

ψMM ′En
0 EnCn = πMM ′ ⊗ φ⊗n

E0EC (C22)

where En are the channel state systems, En
0 are the CSI sys-

tems that are available to Alice, and Cn are the systems that
are masked from Bob (see Fig. 1).

Alice performs a measurement TEn
0 →V on the CSI systems

En
0 , and obtains a measurement outcome V . Denote the aver-

age postmeasurement state by

ρMM ′V EnCn ≡ TEn
0 →V (ψMM ′En

0 EnCn ). (C23)

Then, she applies an encoding map FM ′V →AnV to the classi-
cal system M ′ and the measurement outcome V (since V is
classical, it can be copied.) The resulting state is

ρMAnV EnCn ≡ FM ′V →AnV (ρMM ′V EnCn ). (C24)

As the input systems An are sent through the channel, the
output state is

ρMBnCnV ≡ N⊗n
EA→B(ρMEnAnCnV ). (C25)

Bob receives Bn and performs a decoding channel DBn→M̂ ,
producing

ρMM̂CnV ≡ DBn→M̂ (ρMBnCnV ). (C26)
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Consider a sequence of codes (Tn,Fn,Dn) such that

1

2
‖ρMM̂ − πMM ′ ‖1 � εn (C27)

1

n
I (CnV ; Bn)ρ � L + δn (C28)

where εn, δn tend to zero as n → ∞. Based on the Alicki-
Fannes-Winter inequality (see [72] and Theorem 11.10.3
of [64]), (C27) implies

|H (M|M̂ )ρ − H (M|M ′)π | � nε′
n (C29)

where ε′
n → 0 as n → ∞. Since H (πMM ′ ) = H (πM ) =

H (πM ′ ) = nR, we have I (M; M̂ )π = nR. Then, as H (ρM ) =
H (πM ) = nR, we also have I (M; M ′)π − I (M; M̂ )ρ =
H (M|M̂ )ρ − H (M|M ′)π . Thus, (C29) implies

nR = I (M; M̂ )π

� I (M; M̂ )ρ + nε′
n

� I (M; Bn)ρ + nε′
n (C30)

where the last line follows from (C26) and the quantum data
processing inequality (see Theorem 11.5 of [71]). Since the
message has no correlation with the channel state system En

0 ,
we can also write this as

nR � I (M; Bn)ρ − I (M;V )ρ + nε′
n

= I (X n; Bn)ρ − I (M; Sn)ρ + nε′
n (C31)

as we define X n = f (M ) and Sn = g(V ), where f and g are
arbitrary one-to-one maps. This concludes the converse proof
for part 1.

2. Part 2

Now, we consider the special case of a measurement chan-
nel MEA→Y , where the CSI system and the channel output
are classical, i.e., E0 ≡ S ∼ q(s) and B ≡ Y . The direct part
follows from part 1. To prove the converse part, we extend the
methods of Merhav and Shamai [6].

By the classical chain rule,

I (M;Y n) =
n∑

i=1

I (M;Yi|Y i−1)

=
n∑

i=1

I
(
MY i−1Sn

i+1;Yi
) −

n∑
i=1

I
(
Yi; Sn

i+1|MY i−1
)

=
n∑

i=1

I
(
MY i−1Sn

i+1;Yi
) −

n∑
i=1

I
(
Y i−1; Si|MSn

i+1

)
(C32)

where the last line follows from the Csiszár sum identity
(see Sec. 2.3 of [69]). Since Si and (M, Sn

i+1) are statistically
independent, we have I (Y i−1; Si|MSn

i+1) = I (MSn
i+1Y

i−1; Si ).
Therefore, defining

Xi = (
M,Y i−1, Sn

i+1

)
(C33)

we obtain

I (M;Y n)ρ �
n∑

i=1

I (Xi;Yi )ρ −
n∑

i=1

I (Xi; Si )ρ. (C34)

Let J be a classical random variable with a uniform dis-
tribution over {1, . . . , n}, in a product state with the previous
quantum systems, i.e., Cn, En, En

0 , M, M ′, An, and Y n. Then,
by (C30) and (C34),

R − ε′
n � 1

n

n∑
i=1

[I (Xi;Yi )ρ − I (Xi; Si )ρ]

= I (XJ ;YJ |J ) − I (XJ ; SJ |J )

= I (XJ , J;YJ ) − I (J;YJ ) − I (XJ , J; SJ )ρ + I (J; SJ )ρ

� I (XJ , J;YJ )ρ − I (XJ , J; SJ )ρ + I (J; SJ )ρ

= I (XJ , J;YJ )ρ − I (XJ , J; SJ )ρ (C35)

with ρJXJ EJCJ AJ = 1
n

∑n
i=1 |i〉〈i| ⊗ ρXiEiCiAi and ρJXJCJYJ =

MEA→Y (ρJXJCJ EJ AJ ), where the last equality holds since the
sequence Sn is independent and identically distributed Thus,
defining

X ≡ (XJ , J ), S ≡ SJ , E ≡ EJ , C ≡ CJ , A ≡ AJ

(C36)

and Y such that ρYC = MEA→Y (ρEAC ), we obtain the desired
bound on the coding rate:

R − ε′
n � I (X ;Y ) − I (X ; S). (C37)

As for the leakage rate, by (C28),

n(L + δn) � I (CnSn;Y n)ρ

= I (CnSn;Y nM )ρ − I (CnSn; M|Y n)ρ

= I (CnSn;Y nM )ρ − H (M|Y n)ρ + H (M|CnSnY n)ρ.
(C38)

For a classical-quantum state ρXA = ∑
x∈X pX (x)|x〉〈x| ⊗

ρx
A, the conditional entropy of is always non-negative, as

H (X |A)ρ � H (X |A, X ) = 0, since conditioning cannot in-
crease quantum entropy (see Theorem 11.15 of [71]). As the
message M is classical, the last term in the right-hand side
of (C38) is non-negative, i.e.,

H (M|Cn,Y n)ρ � 0. (C39)

Furthermore, by (C30), the second term satisfies

H (M|Y n)ρ = H (M )π − I (M;Y n)ρ � nε′
n. (C40)

Thus, by (C38)–(C40),

n(L + ε′
n + δn) � I (CnSn;Y nM )ρ

=
n∑

i=1

I
(
CiSi;Y nM

∣∣Cn
i+1Sn

i+1

)
ρ

�
n∑

i=1

I
(
CiSi;YiY

i−1M
∣∣Cn

i+1Sn
i+1

)
ρ
. (C41)

Then, since (Ci, Si ) and (Cn
i+1, Sn

i+1) are in a product state, we
have I (CiSi;Cn

i+1Sn
i+1)ρ = 0. Hence,

L + ε′
n + δn � 1

n

n∑
i=1

I
(
CiSi;YiY

i−1MCn
i+1Sn

i+1

)
ρ

� 1

n

n∑
i=1

I
(
CiSi;YiY

i−1MSn
i+1

)
ρ

022442-10



CLASSICAL STATE MASKING OVER A QUANTUM … PHYSICAL REVIEW A 105, 022442 (2022)

= 1

n

n∑
i=1

I (CiSi; XiYi )ρ

= I (CJSJ ; XJYJ |J )ρ

= I (CJSJ ; XJJYJ )ρ

= I (CS; XY )ρ (C42)

where the first equality follows from our definition of Xi

in (C33), the second holds since J is a classical variable
with a uniform distribution over {1, . . . , n}, the third
holds because I (CJSJ ; J )ρ = H (CJSJ )ρ − H (CJSJ |J )ρ =
H (CS)φ − H (CS)φ = 0, and the last equality follows from
the definition of C, S, X , and Y in (C36). This completes the
proof of Theorem 3. �
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