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One- and two-qubit gate infidelities due to motional errors in trapped ions and electrons
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In this work, we derive analytic formulas that determine the effect of error mechanisms on one- and two-qubit
gates in trapped ions and electrons. First, we analyze and derive expressions for the effect of driving field
inhomogeneities on one-qubit gate fidelities. Second, we derive expressions for two-qubit gate errors, including
static motional frequency shifts, trap anharmonicities, field inhomogeneities, heating, and motional dephasing.
We show that, for small errors, each of our expressions for infidelity converges to its respective numerical
simulation; this shows that our formulas are sufficient for determining error budgets for high-fidelity gates,
obviating numerical simulations in future projects. All of the derivations are general to any internal qubit state,
and any mixed state of the ion crystal’s motion that is diagonal in the Fock state basis. Our treatment of static
motional frequency shifts, trap anharmonicities, heating, and motional dephasing apply to both laser-based and
laser-free gates, while our treatment of field inhomogeneities applies to laser-free systems.
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I. INTRODUCTION

The highest-fidelity quantum computing gates are, at
present, performed with trapped ions [1–3]. This, in com-
bination with long coherence times, inherent uniformity,
and all-to-all connectivity, is why trapped ions are one of
the most promising quantum computing platforms to date
[4–10]. The most common method for performing high-
fidelity gates is to couple the internal states of the ions using
lasers. While laser-based gates have many advantages, strong
spin-motion coupling, for example, they suffer from photon
scattering and phase noise. Furthermore, the lasers necessary
for high-fidelity gates are expensive and difficult to calibrate.
Laser-free gates, however, offer a promising alternative to this
paradigm, where laser fields are replaced with microwaves
that directly couple internal states of the ions [1,10–17]. First,
the use of microwave fields eliminates photon scattering. Sec-
ond, the phase and amplitude of microwave fields are easier
to control, thereby reducing decoherence due to noisy driving
fields, which is often a limiting factor in laser-based gates.
However, the relatively slow gate times of microwave gates
(compared with laser-based gates) exaggerate the effects of
motional decoherence. Trapped electrons, albeit significantly
less explored than ions, are another promising qubit plat-
form and will likely have gate operations similar to those
in laser-free trapped ion setups [18–20]. Due to their light
mass, we expect trapped electrons will operate on much faster
timescales relative to laser-free trapped ion experiments. Un-
fortunately, because sideband cooling is not possible, trapped
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electrons will have to operate at much higher temperatures
than trapped ions, and, therefore, are likely to be sensitive to
motional decoherence as well.

High-fidelity gates are critical for fault-tolerant quantum
computation, which requires infidelities ranging from 10−2

to 10−4 [21], making it important to quantify sources of in-
fidelity. While many error sources are general to trapped ion
(and would be trapped electron) experiments, their effect on
gate fidelity is typically calculated numerically; this leads to
duplicate computational effort between research groups. Fur-
thermore, it is difficult to determine how gate fidelities scale
with various experimental parameters (such as temperature)
when working only with numerical simulations. In this work,
we aim to ameliorate these issues by deriving analytic formu-
las for likely sources of motional decoherence in trapped ions
and electrons. The formulas we derive make no assumptions
about the initial qubit state of the ion and assume only that
the motion is in an incoherent mixed state, diagonal in the
Fock state basis. We also assume that the qubit frequency is
very different from the motional frequency of all relevant mo-
tional modes. We then compare every formula to its respective
numerical simulation, showing that the two calculations con-
verge in the high-fidelity limit for each source of infidelity. In
short, this work aims to expedite the formulation of error bud-
gets in future experiments, providing analytic formulas where
numerical simulations were needed. Moreover, the derivations
provide insight into each error mechanism and show how they
scale with relevant experimental parameters. In this work, we
focus on static motional frequency shifts, heating, trap anhar-
monicities, and motional dephasing, which are major sources
of infidelity in all trapped ion two-qubit gates. We also explore
the effects of field inhomogeneities on one- and two-qubit gate
fidelities, which are specific to laser-free systems.
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The paper is organized as follows: We first describe the
theoretical techniques that we use to derive our analytic ex-
pressions for infidelity. We then derive errors in single-qubit
gates from field inhomogeneities. We then derive errors for
two-qubit gates, including static shifts, trap anharmonici-
ties, field inhomogeneities, motional dephasing, and motional
heating.

II. THEORY

For the calculations we present in this work, we focus on
one- or two-qubit gates in trapped ions and trapped electrons,
studying systems with one or two qubits coupled to one or
two phonon modes. We represent the qubit subspace as |ψ (t )〉,
and the motion of the crystal as phonon Fock states |n〉. The
density matrix of the initial state is assumed to be ρ̂(0) =
|ψ (0)〉 〈ψ (0)| ⊗ ρ̂n(0), where ρ̂n(0) is the density matrix of
the phonon subspace:

ρ̂n(0) ≡
∑

n

Pn |n〉 〈n| , (1)

diagonal in the Fock state basis. Here, Pn is the probability
that the phonon subspace begins in the |n〉 state. For every
calculation below, we determine the fidelity by applying the
system’s time-propagator to a pure state wave function initial-
ized to |ψ (0)〉 |n〉, which gives Fn, which can then be averaged
over Pn to obtain F ; this is mathematically equivalent to
solving the master equation for an incoherent mixed state,
diagonal in the Fock state basis, and tracing over the motional
degree of freedom to determine the fidelity F . For each calcu-
lation, we leave our final answer in terms of the infidelity for
a state with an initial phonon number In, which allows one to
straightforwardly determine the ensemble-averaged infidelity
I, as discussed below.

For each of the calculations, we consider a gate Hamilto-
nian Ĥg; when Ĥg acts on a system for a gate time tg, it results
in an “ideal” time propagator for the gate that we represent
with Ûg(t ). We note that, unless it leads to ambiguities, we
drop the time arguments of operators from here on. Under
realistic conditions, the actual Hamiltonian will deviate from
Ĥg, producing a value of F that is less than one. In this paper,
we only consider high-fidelity gates (F ≈ 1), meaning that we
can take each individual error source to be small and assume
that their resultant infidelities (I ≡ 1 − F) will be additive. If
we represent each source of error with Ĥe, this makes the total
Hamiltonian

Ĥt = Ĥg + Ĥe, (2)

which results in a time propagator for the system acting under
Ĥt , which we represent as Ût . The fidelity Fn for a system
with initial phonon number n being acted on by Ût is given by

Fn =
∑

n′
|〈ψ (0)|〈n′|Û †

g Ût |ψ (0)〉|n〉|2, (3)

where Ûg|ψ (0)〉 is the ideal target state.
In this work, we isolate the small deviations of Ût from Ûg

by factoring the total time propagator such that

Ût = ÛgÛe. (4)

If this factorization is straightforward, we can immediately
rewrite Eq. (3) as

Fn =
∑

n′
|〈ψ (0)|〈n′|Ûe|ψ (0)〉|n〉|2. (5)

We can, subsequently, Taylor expand Ûe, and determine the
leading-order correction to Fn due to Ĥe. When it is not
straightforward to factor Ût , we transform into the inter-
action picture with respect to Ĥg, then use second-order
time-dependent perturbation theory to approximate Ûe. Simi-
lar techniques have been used before [22,23] and date back to
work on nuclear magnetic resonance [24,25]. The interaction-
picture Hamiltonian is given by

ĤI (t ) = Û †
g (t )Ĥt (t )Ûg(t ) + ih̄ ˙̂U †

g (t )Ûg(t ). (6)

Upon doing this, we can determine the time-propagator for a
system acting under a small ĤI for a time tg by using second-
order time-dependent perturbation theory:

ÛI � Î − i

h̄

∫ tg

0
dt ′ĤI (t ′) − 1

h̄2

∫ tg

0

∫ t ′

0
dt ′dt ′′ĤI (t ′)ĤI (t ′′).

(7)

Transforming out of the interaction picture, this gives

|ψ (tg)〉 = ÛgÛe|ψ (0)〉, (8)

where we have replaced ÛI with Ûe because the two operators
are synonymous in this frame. We have now factorized Ût =
ÛgÛe, at which point Eq. (5) applies, and we can determine the
leading-order correction to Fn by using the expansion given
by Eq. (7).

For all of the calculations below, we first calculate the
infidelity of a gate for an initial phonon number In ≡ 1 − Fn.
Each value of I ′

ns dependence on the initial qubit state is
written in terms of the variance of an operator Â that acts on
the qubit subspace:

λ2
Â ≡ 〈Â2〉 − 〈Â〉2

, (9)

such that Â ∈ {σ̂α, Ŝα, Ŝ2
α}, where σ̂α is a Pauli spin operator

with eigenstates pointing in the α direction on the Bloch
sphere, and Ŝα = σ̂α,1 + σ̂σ,2 is a collective spin operator act-
ing on qubits 1 and 2. Physically, λ2

Â
encapsulates the degree

to which the qubit is initialized to an eigenstate of the gate
Hamiltonian, meaning that there is less infidelity when an
operation affects the qubit(s) less. We use each equation for
In to determine an ensemble average over an initial mixed
state by summing over the probability distribution Pn via

I =
∑

n

PnIn, (10)

resulting in the replacement nk with its average over Pnnk for
each equation. Thus, all of the equations derived below are
general to any initial qubit state and ensemble average of Fock
states. Finally, we note that we are here discussing the value
of I associated with a single gate implementation; if the error
mechanisms discussed in this work significantly change the
motional state, and the motion is not sympathetically cooled
between gate operations, our formulas could become less ac-
curate in some cases.
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TABLE I. Summary of infidelities for single-qubit gates. See text for variable definitions.

Single-qubit gate errors

Error name Equation Infidelity

First-order inhomogeneity Eq. (20) I1a = 2�′2
a

ω2
a

(2n̄a + 1)λ2
σ̂α

Second-order inhomogeneity Eq. (24) I1a2 = �′′2
a t2

g (4n2
a + 4n̄a + 1)λ2

σ̂α

Cross-Kerr coupling Eq. (30) I1ab = 2�′′2
ab

ω2
ab

(2n̄an̄b + n̄a + n̄b)λ2
σ̂α

III. SINGLE-QUBIT GATE ERRORS

For the ideal case, we represent a single-qubit gate Hamil-
tonian with

Ĥ1g = h̄�1gσ̂α. (11)

This Hamiltonian is in the rotating frame with respect to
the qubit frequency, and we have made the rotating wave
approximation with respect to terms oscillating near the qubit
frequency. Here, �1g is the Rabi frequency of the microwave
field oscillating in the n̂α direction, and σ̂α = (n̂α · 
σ ) is a
single-qubit Pauli operator, with eigenvectors that point in
the ±α direction on the Bloch sphere. We also assume that
the qubit frequency deviates significantly from the motional
frequency. After a gate time tg, the time propagator for Ĥ1g is

Û1g = e−i�1gtgσ̂α , (12)

which (by definition) would give F = 1 in the absence of an
error term. In this section, we consider the infidelity of gates
generated by Eq. (11) in the presence of inhomogeneities in
the microwave field, all equations are reported in Table I.

Driving-field inhomogeneity

Inhomogeneities of the driving field do not constitute a
significant part of the error budget of the highest-fidelity
single-qubit laser-free gates in trapped ions [10]. Due to
their light mass, though, trapped electrons typically have a
relatively large spatial extent compared with ions. The prob-
lem is exacerbated by the absence of laser cooling methods,
likely leading to substantially higher motional temperatures.
This could render inhomogeneities a significant part of the
trapped electron single-qubit error budget. Here, we pro-
vide analytical and numerical quantification of the infidelity
due to these errors. We represent the error Hamiltonian for
driving-field inhomogeneities in the presence of two-phonon
modes as

H̃1e = h̄
{
ωaâ†â + ωbb̂†b̂ + σ̂α[�′

a(â† + â) + �′
b(b̂† + b̂)

+ �′′
a (â† + â)2 + �′′

b (b̂† + b̂)2

+ �′′
ab(â† + â)(b̂† + b̂)]}, (13)

where the tilde indicates that we are in the laboratory
frame with respect to the motion, ωa (ωb) is the motional
frequency of the a (b) mode, �′

a ≡ √
h̄/2mωa∂�1g/∂ x̂a

(�′
b ≡ √

h̄/2mωb∂�1g/∂ x̂b) is the Rabi frequency of
the first-derivative of the driving field projected on
along the a (b) mode, �′′

a ≡ (h̄/4mωa)∂2�1g/∂ x̂2
a

(�′′
b ≡ (h̄/4mωb)∂2�1g/∂ x̂2

b) is the Rabi frequency of the

second-derivative of the driving field along the a (b) mode,
and �′′

ab ≡ (h̄/2m
√

ωaωb)∂2�1g/∂ x̂a∂ x̂b is the cross-Kerr
coupling Rabi frequency between modes a and b; here, each
partial derivative is evaluated at the qubit’s location. Moving
into the rotating frame with respect to each mode’s frequency,
and dropping the second-order terms that oscillate near
2ωa (2ωb) and ωa + ωb, we get

Ĥ1e � h̄σ̂α[�′
a(â†eiωat + âe−iωat ) + �′

b(b̂†eiωbt + b̂e−iωbt )

+ �′′
a (2â†â + 1) + �′′

b (2b̂†b̂ + 1)

+ �′′
ab(â†b̂eiωabt + âb̂†e−iωabt )], (14)

where ωab ≡ ωa − ωb. Note that the above equation comprises
what are effectively three different error types: ∝�′

a (∝�′
b)

terms that arise from the first-derivative of the driving field’s
projection along the a (b) mode, ∝�′′

a (∝�′′
b) terms that arise

from the projection of the second-derivative of the driving
field on the a (b) mode, and ∝�′′

ab cross-Kerr terms.

1. First-order inhomogeneity

In this section, we consider the infidelity I1a of a single-
qubit gate in the presence of a nonzero projection of the field
gradient onto mode a, noting that the calculation for mode b
is identical. This is given by the Hamiltonian:

Ĥa
1e = h̄�′

aσ̂α (â†eiωat + âe−iωat ). (15)

The total Hamiltonian for the system is then

Ĥa
1t = Ĥ1g + Ĥa

1e. (16)

In this situation, Ĥa
1e creates a residual spin-dependent dis-

placement at tg, decohering the system.
Because Ĥ1g and Ĥa

1e commute at all times, we can imme-
diately factor their time-propagator:

Û a
1t = Û1gÛ

a
1e, (17)

allowing us to apply Eq. (5) to calculate the infidelity of a
state initialized to phonon mode na for this error source I1a

na
.

We calculate Û a
1e using the Magnus expansion [26] for Ĥa

1e. Up
to a phase, this is described by a spin-dependent displacement
operator:

Û a
1e = exp

(
− i

h̄

∫ tg

0
dt ′Ĥa

1e(t ′)
)

= exp

[
− 2i�′

a

ωa
σ̂α sin

(
ωatg

2

)

× (â†eiωatg/2 + âe−iωatg/2)

]
, (18)
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FIG. 1. Comparison between the one-qubit gate infidelities due to field inhomogeneities given by numerical simulations (dashed lines)
and the analytic predictions (solid lines) given in the text. Each graph shows the gate infidelity, normalized by the phonon dependence of the
infidelity predicted by the analytic formulas, Ĩn versus the relative size of the error term compared with the gate Rabi frequency �1g. Each gate
is implemented for a time tg = π/2�1g. For each error source, we compare for two initial states: |ψ (0)〉 = |↓〉 (analytic: upper black solid,
numeric: upper blue), and |ψ (0)〉 = √

3/4|↓〉 + √
1/4|↑〉 (analytic: lower gray solid, numerical: lower red). (a) Ĩ1a

na
= I1a

na
/(2na + 1) versus

the first-order field inhomogeneity �a/�1g, where ωa = 10�1g. This is shown for initial phonon numbers of na = 0 (dotted), na = 100 (dashed
dotted), and na = 200 (dashed). (b) Ĩ1a2

na
= I1a2

na
/(2na + 1)2 versus the strength of the second-order field inhomogeneity �a2/�1g, for na = 0

(dotted), na = 100, and na = 200. (c) Ĩ1ab
na,nb

= I1ab
na,nb

/(2nanb + na + nb) versus cross-Kerr coupling strength �ab/�1g when ωab = 10�1g.

which we can plug into Eq. (5). Since we assume Û a
1e ∼ Î ,

we can subsequently insert its Taylor series and keep only the
quadratic contributions to the fidelity F1a

na
. This expression for

F1a
na

, keeping terms up to ∝(�′
a/ωa)2, is

F1a
na

� 1 − 4�′2
a

ω2
a

sin2

(
ωatg

2

)
(2na + 1)λ2

σ̂α
, (19)

where we have simplified this expression by substituting the
t = 0 variance of the σ̂α operator: 1 − 〈ψ (0)|σ̂ |ψ (0)〉2 =
〈σ̂ 2

α 〉 − 〈σ̂α〉2 ≡ λ2
σ̂α

. We can further simplify our expression
by taking the time-average of sin2(ωatg/2) � 1/2. We note
here that, if an experiment has sufficient control over tg, this
step is not necessary and the error can be eliminated by setting
ωatg to be an integer multiple of 2π . This gives an equation for
the infidelity of a gate acting on a state beginning with na

phonons:

I1a
na

� 2�′2
a

ω2
a

(2na + 1)λ2
σ̂α

. (20)

In Fig. 1(a), we compare Eq. (20) to the direct numerical
integration of Eq. (16), varying |ψ (0)〉 and na, and showing
that they converge when |�′

a/ωa| � 1.

2. Second-order inhomogeneity

If the second-derivative of the driving field has a nonzero
projection onto phonon mode a, noting again that the calcula-
tion is identical for mode b, the Hamiltonian for a single-qubit
gate is

Ĥ1t = Ĥ1g + Ĥa2

1e

= h̄�gσ̂α + h̄�′′
aσ̂α (2â†â + 1). (21)

Here, Ĥ1g and Ĥa2

1e commute at all times, so we may factor
Û a2

1t = Û a2

1e Û1g, allowing us to apply Eq. (5), where

Û a2

1e = exp(−i�′′
atgσ̂α (2â†â + 1)). (22)

Assuming that |�′′
atg| � 1, we only keep terms up to

∝(�′′
atg)2. The result is

F1a2

na
� 1 − �′′2

a t2
g (2na + 1)2λ2

σ̂α
, (23)

giving an equation for the infidelity of a gate acting on a state
that begins with na phonons:

I1a2

na
� �′′2

a t2
g (2na + 1)2λ2

σ̂α
, (24)

where we have, again, simplified our expression by substitut-
ing in the t = 0 expression for the variance of the σ̂α operator.
In Fig. 1(b), we compare Eq. (24) to the direct numerical
simulation of Eq. (21), showing that they converge when
|�′′

atg| � 1.

3. Cross-Kerr coupling

If the mixed, second-order partial derivative of the driving
field has a nonzero projection over modes a and b, the single-
qubit gate is described by

Ĥab
1t = Ĥ1g + Ĥab

1e

= h̄�1gσ̂α + h̄�′′
abσ̂α (â†b̂eiωabt + âb̂†e−iωabt ), (25)

where Ĥab
1e takes the form of a spin-dependent beam-splitter

interaction. While Ĥab
1e still commutes with Ĥ1g at all times,

allowing us to factor Û ab
1t as Û ab

1e Û1g, the second-order term in
the Magnus expansion in Û1e

ab′
s contribution to the dynamics

is no longer merely a global phase. Thus, keeping terms up to
second-order in Û ab

1e gives

Û ab
1e � exp

{
− i

h̄

∫ tg

0
dt ′Hab

1e (t ′)

− 1

2h̄2

∫ tg

0

∫ t ′

0
dt ′dt ′′[Ĥab

1e (t ′), Ĥab
1e (t ′′)

]}

= exp{−iσ̂α (χ â†b̂ + χ∗âb̂†) − iβ(â†â − b̂†b̂)}, (26)

where we have defined

χ ≡ 2�′′
ab

ωab
sin

(
ωabtg

2

)
eiωabtg/2,

β ≡ �′′2
ab

ωab

(
tg − sin(ωabtg)

ωab

)
, (27)
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up to a phase. Since Ĥab
1e couples two modes, when applying

Eq. (5) we must consider both when calculating the fidelity:

F1ab
na,nb

=
∑
n′

a,n
′
b

∣∣〈ψ (0)
∣∣〈n′

a

∣∣〈n′
b

∣∣Û ab
1e

∣∣ψ (0)
〉∣∣na

〉∣∣nb
〉|2. (28)

Applying this equation and, again, keeping only the leading-
order contribution to the fidelity F̂ ab

na,nb
, we get

F1ab
na,nb

� 1 − 4�′′2
ab

ω2
ab

sin2

(
ωabtg

2

)
(2nanb + na + nb)λ2

σ̂α
,

(29)

which we can simplify by substituting in the variance of the
σ̂α operator, and the time-average of the sinusoidal oscillation
sin2(ωabtg/2) � 1/2. This gives

I1ab
na,nb

� 2�′′2
ab

ω2
ab

(2nanb + na + nb)λ2
σ̂α

. (30)

In Fig. 1(c), we compare this result to the direct numerical
integration of Eq. (25), showing that the two calculations
converge when |�′′

ab/ωab| � 1.

IV. TWO-QUBIT GATE ERRORS

We represent the idealized two-qubit gate Hamiltonian:

H̃2g = h̄ω0

2
Ŝz + h̄ωaâ†â + 2h̄�2g f (t )Ŝα (â† + â), (31)

where, again, the tilde indicates that we are working in the
laboratory frame, Ŝα ≡ σ̂α,1 + σ̂α,2 is a multiqubit Pauli spin
operator with eigenvectors pointing in the α direction, �2g is
the two-qubit gate Rabi frequency, and f (t ) is a sinusoidal
function representing the temporal dependence of the gra-
dient field, which is either f (t ) ≡ cos([ωa − ]t ) if α ≡ z,
or f (t ) ≡ cos([ω0 − ωa + ]t ) + cos([ω0 + ωa − ]t ) if α

is in the xy plane; in both bases,  acts as the detuning of
the gate. Transforming into the rotating frame with respect
to the qubit and motion, as well as making the rotating wave
approximation, gives

Ĥ2g = h̄�2gŜα (â†eit + âe−it ), (32)

the form of which can be generated using lasers [27–29]
and with microwaves [1,11–14,30–32]. We will begin with
Eq. (32) for all of the following sections except Sec. IV C.

We analyze the unitary evolution of Eq. (32) under the
influence each section’s error term, giving a total Hamiltonian
Ĥ2t . We continue to assume each error’s contribution to the
final infidelity will be additive. We analyze the unitary evo-
lution using the Magnus expansion [26], keeping terms up to
second-order:

Û2t = exp

(
− i

h̄

∫ t

0
dt ′Ĥ2t (t

′)

− 1

2h̄2

∫ t

0

∫ t ′

0
dt ′dt ′′[Ĥ2t (t

′), Ĥ2t (t
′′)]

)
. (33)

For geometric phase gates, the first term in the Magnus ex-
pansion represents a spin-dependent displacement operator,
making a circular trajectory in phase space. Ideally, this term

will disappear after each of N “loops” in phase space, occur-
ring every integer multiple of t = 2π/. Because the spin and
motion are entangled during a loop, any decoherence of the
motion will affect the spin, and, ultimately, the fidelity of the
gate. For an ideal gate, after a time tg = 2πN/, this gives

Û2g = eiφŜ2
α , (34)

where, in this work, we set the phase φ = 2πN�2
2g/

2 =
π/8, to give a maximally entangled Bell state when operating
on |ψ (0)〉 = |↓↓〉. This may be turned into an N-loop gate by
setting tg → N1/2tg and  → N1/2. Finally, we note that we
will frequently use the fact that Ŝ2(k+1)

α = 4kŜ2
α and Ŝ2k+1

α =
4kŜα , where k ∈ N. All equations derived in this section are
reported in Table II.

A. Static motional frequency shifts

During a two-qubit gate, if the frequency of the motional
mode is shifted from its idealized value the phase-space tra-
jectory is distorted, giving an error. In this section, we show
that the effects of this error mechanism may be separated into
two physical sources: residual spin-motion entanglement from
the phase-space trajectory, and the area encompassed in phase
space deviating from its idealized value. These two effects
require different techniques to ameliorate their deleterious
effects on the gate fidelity.

The total gate Hamiltonian including a static motional fre-
quency shift is

Ĥ2t = Ĥ2g + Ĥ δ
2e

= h̄�2gŜα (âe−it + â†eit ) + h̄δâ†â, (35)

where δ � �2g is the frequency shift. Unlike the error mecha-
nisms we have explored thus far, [Ĥ2g, Ĥ δ

2e] �= 0, meaning we
cannot directly factor Û δ

2t . To put Û δ
2t in a form that enables

factorization, we transform the above equation into the rotat-
ing frame with respect to Ĥ δ

2e, which gives

Ĥ2g,I = h̄�2gŜα (âe−i[+δ]t + â†ei[+δ]t ). (36)

We are now in a frame rotating at  + δ, noting that this
will have no effect on I2δ

na
. Plugging this into Eq. (33), and

dropping terms higher-order than ∝δ2, we can factorize Û δ
2t =

Û2gÛ δ
2e, up to a global (na dependent) phase, where

Û δ
2e � exp

(
− i�2gδtg


Ŝα[â + â†] − 2i�2

2gδtg

2
Ŝ2

α

)
. (37)

The first term in this equation is a displacement operator,
representing the error from residual spin-motion entangle-
ment, whereas the second term represents the erroneous area
encompassed in phase space, producing an incorrect geo-
metric phase. Due to the fact that  ∝ N1/2 and tg ∝ N1/2

for an N-loop gate, we can see that increasing N reduces
the error due to the incorrect geometric phase but does not
affect the error due to residual spin-motion entanglement.
Because of this, more sophisticated pulse sequences such
as Walsh modulations [33] (see Appendix) or polychromatic
gates [16,23,32,34] are needed. We note that, in the Appendix,
we derive the value of I2δ

na
for gates undergoing such Walsh

modulations. We can plug Eq. (37) into Eq. (5) to obtain I2δ
na
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TABLE II. Summary of infidelities for N-loop two-qubit gates. See text for variable definitions.

Two-qubit gate errors

Error name Equation Infidelity

Static motional shift Eq. (38) I2δ = π2δ2

64�2
2g

[(2n̄a + 1)λ2
Ŝα

+ λ2
Ŝ2
α
/4N]

Trap anharmonicity Eq. (43) I2ε = 9π2ε2

16�2
2g

{λ2
Ŝα

[4(2n3
a + 3n2

a + 3na + 1) + 6
N (2n2

a + 2n̄a + 1) + 9
4N2 (2n̄a + 1)]

+λ2
Ŝ2
α
[ 3

8N (11n2
a + 11n̄a + 3) + 3

4N2 (2n̄a + 1) + 9
64N3 ]}

Field inhomogeneities Eq. (47) I2�′′
2g = 9π2�′′2

2g

16�2
2g

{λ2
Ŝ2
α
[4n2

a + 4n̄a + 1 + 3
2N (2n̄a + 1) + 9

16N2 ] + 4
N λ2

Ŝα
(2n̄a + 1)}

Heating Eq. (65) I2 ˙̄na = π ˙̄n
8�2gN1/2 λ2

Ŝα

Motional dephasing Eq. (72) I2η = πη

16�2gN1/2 [(2n̄a + 1)λ2
Ŝα

+ 3
16N λ2

Ŝ2
α
]

up to ∝(δ/�2g)2:

I2δ
na

� π2δ2

64�2
2g

[
(2na + 1)λ2

Ŝα
+ λ2

Ŝ2
α

/4N
]
, (38)

where we have encapsulated the dependence of I2δ
na

on the
initial qubit state with the variances of Ŝα and Ŝ2

α . In Fig. 2(a),
we compare Eq. (38) to the direct numerical integration of
Eq. (35), showing they converge when |δ/�2g| � 1.

B. Trap anharmonicity

We now examine the contribution of anharmonicities in the
trapping potential to the two-qubit gate infidelity. Considering
that third-order anharmonicities only contain terms that oscil-
late near ωa, we make the rotating wave approximation and
take the leading-order trap anharmonicity to be a quartic ∝x̂4

addition to Ĥ2g. Representing Ĥ2t in terms of ladder operators,
and in the rotating frame with respect to ωa, gives:

Ĥ2t = h̄�2gŜα (â†eit + âe−it )

+ h̄ε(â†eiωat + âe−iωat )4. (39)

Upon making the rotating wave approximation and dropping
a global phase, this can be reduced to give

Ĥ2t � h̄�2gŜα (â†eit + âe−it ) + 6h̄ε[â†â + (â†â)2].

= Ĥ2g + Ĥ ε
2e. (40)

We here transform into the interaction picture with respect to
Ĥ2g, using Û2g described by Eq. (33), which gives

Ĥ ε
2I = 6h̄ε{(â† + Ŝαγ ∗)(â + Ŝαγ )

+ [(â† + Ŝαγ ∗)(â + Ŝαγ )]2}, (41)

where

γ ≡ �2g


(1 − eit ). (42)

After this transformation, the time propagator for an ideal
gate is Û ε

2I = Î . Since we assume that infidelities are small,
Û ε

2I ∼ Î , which we can evaluate using Eq. (7). Before evaluat-
ing Eq. (7) we transform out of the interaction picture, giving
a factored Û ε

2t = Û2gÛ ε
2I , and then apply Eq. (5). Here, we only

wish to extract the leading-order (∝[ε/�2g]2) contribution
to the infidelity. This means that, in evaluating the fidelity,
we can neglect imaginary, and off-diagonal, terms from the
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FIG. 2. Comparison of infidelities Ina for an initial phonon number na versus error size between the analytic formulas (solid lines) described
in this work and their corresponding numerical simulations (dashed lines). This is shown for initial states: |ψ (0)〉 = |↓↓〉 [(a)–(d) middle (e),
(f) top blue], |ψ (0)〉 = √

1/3|↓↓〉 + √
2/3|↑↑〉 [(a)–(d) top (e), (f) middle red], and |ψ (0)〉 = √

1/3|↓↓〉 − √
2/3|↑↑〉 (bottom green). The

(a), (b) left column is for a static motional frequency shift δ, the (c), (d) middle column is for trap anharmonicities εa, and the (e), (f) right
column is for inhomogeneities of the gradient field �′′

2g. The (a), (c), (e) first row is for ion crystals that begin in the ground state of the phonon
mode n = 0, and the (b), (d), (f) second row is for ion crystals that begin with a phonon mode such that n = 50. Note that, for every figure, the
values of In predicted by the numeric and analytic results converge for high-fidelity gates.
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FIG. 3. Comparison between infidelities for a given initial phonon number In between numerical simulations (dashed lines) and the analytic
formulas (solid lines) for motional heating and dephasing, as described in this work, versus the bath coupling rate. This is shown for initial
states: |ψ (0)〉 = |↓↓〉 (middle blue), |ψ (0)〉 = √

1/3|↓↓〉 + √
2/3|↑↑〉 (top red), and |ψ (0)〉 = √

1/3|↓↓〉 − √
2/3|↑↑〉 (bottom green). The

(a), (b) left column is for motional heating ˙̄n and the (c), (d) right column is for motional dephasing η. The first row is for ion crystals that
begin in the ground state of the phonon mode n = 0, and the (b), (d), (f) second row is for ion crystals that begin with a phonon mode where
n = 50. Note that, for every figure, the values of In predicted by the numeric and analytic results converge for high-fidelity gates.

second-order integral, simplifying the evaluation. Doing this,
and then plugging Eq. (7) into Eq. (5) gives an infidelity of

I2ε
na

� 9π2ε2

16�2
2g

{
λ2

Ŝα

[
4
(
2n3

a + 3n2
a + 3na + 1

)

+ 6

N

(
2n2

a + 2na + 1
) + 9

4N2
(2na + 1)

]

+ λ2
Ŝ2

α

[
3

8N

(
11n2

a + 11na + 3
)

+ 3

4N2
(2na + 1) + 9

64N3

]}
, (43)

where we have, again, encapsulated the dependence on the
initial spin with the variances λŜα,Ŝ2

α
. Figure 3(b) compares

Eq. (43) to the direct numerical integration of Eq. (40) for
various initial states of the qubits and motion, showing the
two calculations converge when |ε/�2g| � 1.

C. Field inhomogeneities

Another error occurs if the gradient field that generates
spin-motion coupling for the two-qubit gate changes signif-
icantly over the spatial extent of the qubits’ motion. In this
section, we consider a gradient with nonzero first and second
derivatives. We begin by transforming Eq. (31) into the rotat-
ing frame with respect to the qubit and motional frequencies
and eliminating terms that oscillate ∝ω0. This gives

Ĥ2t = 2h̄ cos([ωa − ]t )Ŝα

[
�2g + �′

2g(â†eiωat + âe−iωat )

+ �′′
2g(â†eiωat + âe−iωat )2][â†eiωat + âe−iωat ], (44)

where �′
2g ≡ (h̄/2mωa)1/2∂�2g/∂ x̂a, and �′′

2g ≡
(h̄/4mωa)∂2�2g/∂ x̂2

a . In our treatment, we assume that the
first-order ∝�′

2g term is negligible relative to the second-order
∝�′′

2g term because the former contains only terms that rotate
∝ωa and the latter contains terms that rotate ∝. This makes
the relative contribution of the ∝�′

2g terms to the �′′
2g terms

≈(�′
2g/�′′

2gωa)2; since the value of (/ωa)2 will be very
small for both trapped ions and trapped electrons, �′

2g would

need to be several orders of magnitude larger than �′′
2g

to significantly contribute. Furthermore, because traps are
typically designed so that the ions are located near where
�2g is at a maximum, they tend to minimize �′

2g by default.
Neglecting the first-order inhomogeneity and dropping all
terms that oscillate ∝ωa gives

Ĥ2t = Ĥ2g + 3h̄�′′
2gŜα (â†ââ†eit + ââ†âe−it ). (45)

To calculate the fidelity, we again transform into the interac-
tion picture with respect to the ideal gate Hamiltonian Ĥ2g.
Transforming into the interaction picture using Û2g gives

Ĥ
�′′

2g

2I = 3h̄�′′
2gŜα (â† + Ŝαγ ∗)(â + Ŝαγ )

× (â† + Ŝαγ ∗)eit + c.c. (46)

After this transformation, we can apply Eq. (7), which results

in a factorized Û
�′′

2g

2t = Û2gÛ
�′′

2g

2I upon transforming out of the
interaction picture. We can subsequently apply Eq. (5) and
keep only the (∝ �′′

2g/�2g)2 contributions to the gate fidelity:

I2�′′
2g

na = 9π2�′′2
2g

16�2
2g

{
λ2

Ŝ2
α

[
4n2

a + 4na + 1 + 3

2N
(2na + 1)

+ 9

16N2

]
+ 4

N
λ2

Ŝα
(2na + 1)

}
, (47)

giving the infidelity of a two-qubit gate initialized to the
motional state na, as well as an initial qubit state with vari-
ances λ2

Ŝα
and λ2

Ŝ2
α

. In Fig. 2(c), we compare Eq. (47) to the

direct numerical integration of Eq. (45), showing for various
initial states of the qubits and motion that the two calculations
converge when |�′′

2g/�2g| � 1.

D. Infidelities from Markovian bath

There is a temporal window during a geometric phase
gate where the qubits are entangled to their motion. During
this window, the fidelity of the gate is sensitive to extraneous
fields that couple to the motion. In this section, we focus
on fields that have very low coherence times relative to
tg, namely, those causing heating and motional dephasing
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(see Table II). In this work, we eschew the application of
the Lindblad equation, typically used to model these two
decoherence mechanisms [35]. We model our “coupling to a
bath” by first calculating the fidelity of a two-qubit gate in the
presence of an error of the form

Ĥ2ω ∝ cos(ωt )M̂, (48)

where M̂ is an operator describing bath coupling.
Subsequently, we average over the normalized power spectral
density Sω of each ω:

F =
∫ ∞

0
dωSωFω, (49)

where Fw is the fidelity of a gate undergoing the Ĥ2ω

perturbation.
We first show that, upon invoking the Markovian ap-

proximation, this prescription is equivalent to the Lindblad
formalism. We take |ψω(t )〉 to be a wave function undergoing
Ĥ2t . We wish to calculate |ψω(t + δt )〉, then, upon averaging
over Sω, show that ρ̂(t ) ≡ ∫ ∞

0 dωSωρ̂ω follows the Lindblad
formalism, where ρ̂ω ≡ |ψω(t )〉〈ψω(t )|. Assuming 1/δt is sig-
nificantly larger than any Rabi frequency in Ĥ2t ≡ Ĥ2g + Ĥ2ω,
we can use second-order time-dependent perturbation theory
to calculate |ψω(t )〉:
|ψω(t + δt )〉 � |ψω(t )〉 − i

h̄

∫ t+δt

t
dt ′Ĥ2t (t

′)|ψω(t )〉

− 1

h̄2

∫ t+δt

t

∫ t ′

t
dt ′dt ′′Ĥ2t (t

′)Ĥ2t (t
′′)|ψω(t )〉.

(50)

We now calculate ρ̂ω(t + δt ) = |ψω(t + δt )〉〈ψω(t + δt )|,
while keeping only terms that are linear in δt and dropping
every term that averages to zero upon integrating over Sω, i.e.,
terms that are proportional to Ĥ2ω, Ĥ2gĤ2ω, or Ĥ2ωĤ2g. We
also replace ρ̂ω(t ) → ρ̂(t ), equivalent to making the Marko-
vian approximation. This gives

˙̂ρ(t ) � − i

h̄
[Ĥ2g(t ), ρ̂(t )] + 1

h̄2δt

×
∫ ∞

0

∫ t+δt

t

∫ t+δt

t
dωdt ′dt ′′SωĤ2ω(t ′)ρ̂(t )Ĥ2ω(t ′′)

− 1

h̄2δt

∫ ∞

0

∫ t+δt

t

∫ t ′

t
dωdt ′dt ′′Sω

× [Ĥ2ω(t ′)Ĥ2ω(t ′′)ρ̂(t ) + ρ̂(t )Ĥ2ω(t ′′)Ĥ2ω(t ′)], (51)

taking the form of the Lindblad master equation. Note that in
the final line of the equation, we have made the substitution
˙̂ρ(t ) � [ρ̂(t + δt ) − ρ̂(t )]/δt . In the Appendix, we show that
evaluating the integrals gives the standard form of the master
equation for both heating and motional dephasing.

1. Heating

When an ion crystal is close to a surface, moving charges
within the surface create extraneous electric fields that deco-
here the motion of the crystal [36]. We assume that these fields
are homogeneous over the extent of the qubits’ motion and
model Ĥgh

2ω as

Ĥgh
2ω(t ) = h̄F cos(ωt )x̂a

= 2h̄gh cos(ωt )(â† + â), (52)

where F is the projection of the electric force onto the desig-
nated mode of motion, x̂a is the position operator, and gh ≡
1
2 F

√
h̄/2mωa. Writing this in the interaction picture with re-

spect to the frequency of the motional mode ωa, and making
the rotating wave approximation, we get

Ĥgh′
2ω (t ) � h̄gh(â†ei(ωa−ω)t + âe−i(ωa−ω)t ). (53)

We analyze the effect of Ĥgh′
2ω on Fna,ω by transforming Ĥ2t =

Ĥ2g + Ĥgh′
2ω into the interaction picture with respect to Ĥgh′

2ω .
We do this using the transformation

Ûω = exp(γω(t )â† − γ ∗
ω (t )â), (54)

giving a displacement operator that transforms the system into
a frame that follows the changes to the “classical” position
and momentum induced by the electric field [37–39], up to a
phase, where

γω(t ) = gh

ω − ωa
(ei(ωa−ω)t − 1), (55)

which makes

Ĥgh
2t = Ĥ2g + Ĥgh

2e

= h̄�2gŜα (â†eit + âe−it )

+ h̄�2gŜα (γ ∗
ωeit + γωe−it ). (56)

This equation shows that heating can be represented as a ∝Ŝα

shift of the qubit in this frame. This is because the electric
field displaces the charged particles along the spin-dependent
gradient that is driving the gate, shifting the spin coupling
strength. As we show, this correspondence results in an in-
fidelity that does not depend on the initial state of the motion
and is, therefore, independent of temperature. Noting that
Ĥ2g and Ĥgh

2e commute at all times, we can factor the time
propagator for the whole system Û2t = Û2gÛ

gh
2e , where

Û gh
2e = exp

(
− i�2gŜα

∫ tg

0
dt ′[γ ∗

ω (t ′)eit ′ + γω(t ′)e−it ′
]

)
.

(57)

Since we assume small errors, we can Taylor expand Û gh
2e , and

apply Eq. (5), which, to leading order, gives

Fgh
na,ω

= 1 − ξω(tg)λ2
Ŝα

, (58)

where

ξω(tg) ≡ �2
2g

∫ tg

0

∫ tg

0
dt ′dt ′′[γ ∗

ω (t ′)eit ′ + γω(t ′)e−it ′
]

× [γ ∗
ω (t ′′)eit ′′ + γω(t ′′)e−it ′′

]. (59)

We can now apply Eq. (49) and average over Sω:

Fgd
na

= 1 − λ2
Ŝα

∫ ∞

0
dωSωξω(tg), (60)

leaving a final integral over ω to determine the fidelity:

ξ (tg) ≡ �2
2g

∫ ∞

0

∫ tg

0

∫ tg

0
dωdt ′dt ′′Sω[γ ∗

ω (t ′)eit ′

+ γω(t ′)e−it ′
] × [γ ∗

ω (t ′′)eit ′′ + γω(t ′′)e−it ′′
].
(61)
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Keeping only terms that do not average to zero upon integrat-
ing over time (since tg = 2πN/):

ξ (tg) =
∫ ∞

0

∫ tg

0

∫ tg

0
dωdt ′dt ′′ 4g2

hSω�2
2g

(ω − ωa)2
cos(ω′t ′) cos(ω′t ′′)

=
∫ ∞

0

∫ tg

0

∫ tg

−tg

dωdt ′dt ′′ 2g2
hSω�2

2g

(ω − ωa)2
cos(ω′t ′) cos(ω′t ′′),

(62)

where ω′ ≡ ωa − ω − . We now make two approximations:
extending the limits of the first integral from [tg,−tg] to
[−∞,∞], and setting Sωa− � Sωa . After this, the above in-
tegrals may be straightforwardly integrated, giving

ξ (tg) = 4πg2
hSωa�

2
2gtg

2
, (63)

resulting in a final infidelity of

I2gh
na

= π2g2
hSωa

8�2gN1/2
λ2

Ŝα
. (64)

We substitute the heating rate ˙̄n = πg2
hSωa (see Appendix),

giving a final form of

I ˙̄na
na

=
π ˙̄nλ2

Ŝα

8�2gN1/2
. (65)

Since I ˙̄na
na

is independent of na, as expected, averaging over
Pna simply gives I ˙̄na

na
= I ˙̄na . In Fig. 3(a), we compare Eq. (65)

to the direct integration of the heating master equation (see
Appendix) for various initial states of the qubits and motion,
showing that the two converge when ˙̄n/�2g � 1.

2. Motional dephasing

In Sec. IV A, we derived the infidelity of a gate due to a
static shift in motional frequency. In this section, we derive
the effects of nonstatic shifts in the limit of vanishingly small
coherence times. We begin by adding an error term:

Ĥgd
2ω(t ) = h̄gd cos(ωt )â†â, (66)

which adds a sinusoidally oscillating frequency shift to the
motional mode, giving Ĥ2t = Ĥ2g + Ĥgd

2ω for the total system
Hamiltonian. In this section, we first transform Ĥ2t into the
interaction picture with respect to Ĥ2g, which gives

Ĥgd
2I = h̄gd cos(ωt )(â† + Ŝαγ ∗)(â + Ŝαγ ), (67)

where γ is here defined by Eq. (42). We now determine Û gd
2I

using Eq. (7), leaving the integrals unevaluated for now. Since
this results in a factored Û gd

2t = Û2gÛ
gd
2I , we can apply Eq. (5).

Dropping all terms higher order than ∝g2
d gives

Fgd
na,ω

= 1 − 2g2
d

∫ tg

0

∫ t ′

0
dt ′dt ′′ cos(ωt ′) cos(ωt ′′)

{
n2

a

+ 〈
Ŝ2

α

〉[
na(|γ (t ′)|2 + |γ (t ′′)|2) + naγ (t ′)γ ∗(t ′′)

+ (na + 1)γ ∗(t ′)γ (t ′′)
] + 〈

Ŝ4
α

〉|γ (t ′)|2|γ (t ′′)|2}

+ g2
d

∫ tg

0

∫ tg

0
dt ′dt ′′ cos(ωt ′) cos(ωt ′′)

{
n2

a

+ 〈
Ŝ2

α

〉
na[|γ (t ′)|2 + |γ (t ′′)|2]

+ 〈Ŝα〉2
[naγ

∗(t ′)γ (t ′′) + (na + 1)γ (t ′)γ ∗(t ′′)]

+ 〈
Ŝ2

α

〉2|γ (t ′)|2|γ (t ′′)|2}. (68)

We can plug this equation into Eq. (49) to obtain Fgd
na . Upon

doing this, we are left with a sum of triple integrals, each of
which is proportional to

ζ =
∫ ∞

0

∫ tg

0

∫ ts

0
dωdt ′dt ′′ Sω

2
{cos[ω(t ′′ + t ′)]

+ cos[ω(t ′′ − t ′)]}, (69)

where ts ∈ {tg, t ′}. To evaluate Eq. (69), we perform the fol-
lowing manipulations:

ζ =
∫ ∞

−∞

∫ tg

0

∫ ts

0
dωdt ′dt ′′ Sω

4
{cos[ω(t ′′ + t ′)]

+ cos[ω(t ′′ − t ′)]} � S0

4

∫ ∞

−∞

∫ tg

0

∫ ts

0
dωdt ′dt ′′

× {cos[ω(t ′′ + t ′)] + cos[ω(t ′′ − t ′)]}

= πS0

2

∫ tg

0

∫ ts

0
dt ′dt ′′[δ(t ′′ + t ′) + δ(t ′′ − t ′)], (70)

where, in the second line, we assumed a white noise bath of
ω and pulled Sω � S0 outside of the integral. We can now
straightforwardly evaluate the integrals in Eq. (68), which
gives

Fgd
na

� 1 − πg2
d S0

(
�2

2gtg

2

)[
(2na + 1)λ2

Ŝα
+ 3�2

2g

2
λ2

Ŝ2
α

]
,

(71)

where plugging in tg = 2πN/ and  = 4�2gN1/2 gives a
final infidelity of

Igd
na

= πη

16�2gN1/2

[
(2na + 1)λ2

Ŝα
+ 3

16N
λ2

Ŝ2
α

]
, (72)

where η ≡ πg2
d S0/2 (see Appendix). Note that η = 2/τ ,

where τ corresponds to the decay time of the coherence
between two neighboring Fock states. In Fig. 3(b), we com-
pare Eq. (72) to the direct numerical integration of the
motional dephasing master equation (see Appendix), showing
the two calculations converge when η/�2g � 1 for various
initial states of the qubits and motion.

V. CONCLUSION

In this work, we derived formulas describing how several
motional error sources in trapped ions and trapped electrons
affect the fidelity of one- and two-qubit gates. The effect
of these error sources on infidelities are typically calculated
numerically when determining an individual experiment’s er-
ror budget. Therefore, this work serves to both expedite the
creation of error budgets and provide physicists with a deeper
understanding of how these gate infidelities depend on the
parameters of their experiments: temperature, initial qubit
state, the number of loops traversed in phase space, and so
on. Finally, we compare all our analytic derivations to their
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respective numerical simulations, showing that they converge
for high-fidelity gates.
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APPENDIX

1. Static qubit frequency shifts

If the qubit frequency is erroneously shifted from its
desired value during the course of a one-qubit gate, the Hamil-
tonian is given by

Ĥ1t = Ĥ1g + Ĥq
1e

= h̄�1gσ̂x + h̄δσ̂z, (A1)

where we have assumed that the gate operation is polarized in
the x̂ direction. Equation (A1) acts as a rotation about the n̂
axis, where

n̂ ≡ �1gx̂ + δẑ√
�2

1g + δ2
(A2)

at an angular frequency

�′
1g ≡

√
�2

1g + δ2. (A3)

This gives a time evolution operator

Ût (t ) = e−i�′
1gt (n̂·
σ )

= Î cos
(
�′

1gt
) − i(n̂ · 
σ ) sin(�′

1gt ). (A4)

This is the exact solution for the time evolution of Eq. (A1)
[40]. In this work, however, we concerned with calculating
the infidelity I1q due to small values of δ. We therefore relate
Ût to Û1g by expanding �′

1g and n̂ about the point δ = 0, which
gives

�′
1g � �1g + δ2

2�1g
,

n̂ �
(

1 − δ2

2�2
1g

)
x̂ +

(
δ

�1g

)
ẑ. (A5)

After expanding these two variables, we can also expand the
sinusoidal functions that appear in Eq. (A4):

cos(�′
1gt ) � cos(�1gt ) −

(
δ2t

2�1g

)
sin(�1gt ),

sin(�′
1gt ) � sin(�1gt ) +

(
δ2t

2�1g

)
cos(�1gt ). (A6)

Plugging these expansions into Eq. (A4) gives

Û1g

[
1− i

(
δ2t

2�1g

)
σ̂x

]
+i sin(�1gt )

[(
δ2

2�2
1g

)
σ̂x−

(
δ

�1g

)
σ̂z

]
.

(A7)

We can then plug this equation into Eq. (3), which gives

F =
∣∣∣∣〈ψ (0)|

[
1−i

(
δ2t

2�1g

)
σ̂x

]
+i sin(�1gt )Û †

1g

[(
δ2

2�2
1g

)
σ̂x

−
(

δ

�1g

)
σ̂z

]
|ψ (0)〉

∣∣∣∣
2

. (A8)

Only keeping terms up to O([δ/�1g]2), we get

F � 1 −
(

δ

�1g

)2

{sin2(�1gt )

− [cos(�1gt ) sin(�1gt )〈σ̂z〉 + sin2(�1gt )〈σ̂y〉]2}. (A9)

If we assume that |ψ (0)〉 = |0〉, i.e., 〈σz〉 = −1 and 〈σy〉 = 0,
this gives an infidelity of

I1q �
(

δ2

�2
1g

)
sin4(�1gt ). (A10)

If we average |ψ (0)〉 over the Bloch sphere, this gives

I1q �
(

2δ2

3�2
1g

)
sin2(�1gt ). (A11)

2. Static motional frequency shifts with Walsh sequences

In Sec. IV A, we showed that a geometric phase gate
traversing a single loop in phase-space produces an error
operator of:

Û δ,0
2e ≡ exp

(
− i�2gδtl


Ŝα (â + â†) − 2i�2

2gδtl

2
Ŝ2

α

)
, (A12)

where we have replaced the gate time tg in Eq. (37) with
a single loop time tl = 2π/. The error described by Û δ,0

2e
comprises a spin-dependent (∝Ŝα) displacement operator, rep-
resenting the residual spin-motion entanglement, and a ∝Ŝ2

α

operator, representing the error in the geometric phase. Ref-
erence [33] showed that administering π pulses such that
Ĥ → −Ĥ can suppress the former of these. To see how this
works, we first must understand that the kth-order Walsh
sequence W (2k − 1, x) is simply two concatenated (k − 1)st-
order Walsh sequences, where Ĥ → −Ĥ for the latter of
the two. If the error operator for the (k − 1)st-order Walsh
function takes the form

Û δ,k−1
2e = exp(−iŜαε(γ â† + γ ∗â)), (A13)

where ε is an arbitrary constant, and

γ (t ) =
∫ t

t0

dt ′ei(+δ)t ′

= ei(+δ)t0

∫ t−t0

0
dt ′ei(+δ)t ′

= eiδt0

∫ t−t0

0
dt ′ei(+δ)t ′

, (A14)
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where, in the third line, we have assumed that that t0 is an
integer multiple of 2π/. If tk−1 is the time it takes a (k −
1)st-order Walsh sequence to complete, γ (t ) for the second of
the two concatenated Walsh sequences is

γ (2tk−1) =
∫ 2tk−1

tk−1

dt ′ei(+δ)t ′

= eiδtk−1

∫ tk−1

0
dt ′ei(+δ)t ′

, (A15)

meaning that γ for the second sequence will be identical to
the first, up to a phase eiδtk−1 . Keeping this in mind, we get

Û δ,k
2e = exp(iŜαε(eiδtk−1γ â† + e−iδtk−1γ ∗â))

× exp(−iŜαε(γ â† + γ ∗â))

� exp(−iŜαε(iδtk−1)(−γ â† + γ ∗â)), (A16)

showing that increasing k by one reduces the argument of
Û δ,k−1

2e by a factor of iδtk−1. A W (1, x) Walsh sequence is a
two loop gate where Ĥ → −Ĥ after the first loop at tk−1 = tl .
This gives

Û δ,1
2e = exp

(
− �2g(iδtl )2


Ŝα (â − â†) − 2i�2

2gδtg

2
Ŝ2

α

)
,

where tg = 2πN/, where N = 2k is the number of loops
in phase space. This process can be repeated for a W (3, x)
sequence, which is just two concatenated W (1, x) sequences,
such that Ĥ → −Ĥ after the first sequence at tk−1 = 2tl :

Û δ,2
2e = exp

(
− �2g(iδtl )3


(1 · 2)Ŝα (â + â†) − 2i�2

2gδtg

2
Ŝ2

α

)
.

(A17)

This pattern can be repeated to give the error propagator for a
general kth-order Walsh sequence:

Û δ,k
2e = exp

(
− �2g(iδtl )k+12

k(k−1)
2


Ŝα[â + (−1)kâ†]

− 2i�2
2gδtg

2
Ŝ2

α

)
. (A18)

This error operator can be plugged into Eq. (5) and Taylor
expanded to find the leading-order corrections to the gate

infidelity:

Iδ,k
na

= 2k(k−1)
�2

2g(δtl )2(k+1)

2
(2na + 1)λ2

Ŝα
+ 4�4

2gδ
2t2

g

4
λŜ2

α
,

(A19)

which we can simplify by substituting  = 4�2gN1/2, tl =
2π/, tg = 2πN/, and N = 2k . Upon averaging over Pna ,
we obtain the infidelity of a two-qubit gate undergoing a
W (2k − 1, x) Walsh sequence, for an arbitrary initial state of
the qubits’ and mixed-state of the motion:

Iδ,k =
(

πδ

�2g

)2(k+1)

2−(5k+6)(2n̄a + 1)λ2
Ŝα

+ π2δ2

�2
2g

2−(k+8)λ2
Ŝ2

α

.

(A20)
3. Markovian master equations

Equation (51) contains three triple integrals:

ϒi = 1

h̄2δt

∫ ∞

0

∫ t+δt

t

∫ t+δt

t
dωdt ′dt ′′SωĤ2ω(t ′)

× ρ̂(t )Ĥ2ω(t ′′),

ϒii = 1

h̄2δt

∫ ∞

0

∫ t+δt

t

∫ t ′

t
dωdt ′dt ′′Sωρ̂(t )Ĥ2ω(t ′′)Ĥ2ω(t ′),

ϒiii = 1

h̄2δt

∫ ∞

0

∫ t+δ

t

∫ t ′

t
dωdt ′dt ′′SωĤ2ω(t ′)Ĥ2ω(t ′′)ρ̂(t ).

(A21)

Once we determine Ĥ2ω(t ), we can evaluate these integrals
using the similar approximations to that in the text.

a. Heating master equation

We begin with Eq. (53), representing a stray electric field
at frequency ω, taken in the rotating frame with respect to
the frequency of the trap ωa and makes the rotating wave
approximation:

Ĥgh′
2ω (t ) � h̄gh(â†ei(ωa−ω)t + âe−i(ωa−ω)t ). (A22)

Plugging this into ϒi in Eq. (A21) gives

ϒi = g2
h

δt

∫ ∞

0

∫ t+δt

t

∫ t+δt

t
dωdt ′ dt ′′Sω[â†ρ̂(t )â†eiω′(t ′′+t ′ )

+ âρ̂(t )âe−iω′(t ′′+t ′ ) + â†ρ̂(t )âe−iω′(t ′′−t ′ )

+ âρ̂(t )â†eiω′(t ′′−t ′ )], (A23)

where ω′ ≡ ωa − ω. We can evaluate this integral by first replacing Sω with a constant Sωa :

ϒi � g2
hSωa

δt

∫ ∞

0

∫ t+δt

t

∫ t+δt

t
dωdt ′dt ′′[â†ρ̂(t )â†eiω′(t ′′+t ′ ) + âρ̂(t )âe−iω′(t ′′+t ′ ) + â†ρ̂(t )âe−iω′(t ′′−t ′ ) + âρ̂(t )â†eiω′(t ′′−t ′ )]

� g2
hSωa

2δt

∫ ∞

−∞

∫ t+δt

t

∫ t+δt

t
dωdt ′dt ′′[â†ρ̂(t )â†eiω′(t ′′+t ′ ) + âρ̂(t )âe−iω′(t ′′+t ′ ) + â†ρ̂(t )âe−iω′(t ′′−t ′ ) + âρ̂(t )â†eiω′(t ′′−t ′ )]

= πSωa g2
h

δt

∫ t+δt

t

∫ t+δt

t
dt ′dt ′′{δ(t ′′ + t ′)[â†ρ̂(t )â† + âρ̂(t )â] + δ(t ′′ − t ′)[â†ρ̂(t )â + âρ̂(t )â†]}

= πSωa g2
h[â†ρ̂(t )â + âρ̂(t )â†] = ˙̄n[â†ρ̂(t )â + âρ̂(t )â†], (A24)
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where, in the last line, we have introduced the heating rate ˙̄n ≡
πSωa g2

h. Keeping in mind the added factor of 1/2 that comes
from changing the limits of integration from t + δt to t ′ in the
integral over dt ′′, we can follow this prescription to evaluate
ϒii and ϒiii. This gives a final master equation for Markovian
heating of

˙̂ρ(t ) = − i

h̄
[Ĥ2g(t ), ρ̂(t )] + ˙̄n

[
â†ρ̂(t )â + âρ̂(t )â†

− 1

2
(â†â + ââ†)ρ̂(t ) − 1

2
ρ̂(t )(â†â + ââ†)

]
. (A25)

b. Motional dephasing master equation

We begin with Eq. (66), representing fluctuations of the
motional frequency of the trap at frequency ω as

Ĥgd
2ω(t ) = h̄gd cos(ωt )â†â. (A26)

Plugging this into ϒi in Eq. (A21) gives

ϒi = g2
d

δt

∫ ∞

0

∫ t+δt

t

∫ t+δt

t
dωdt ′dt ′′Sω cos(ωt ′)

× cos(ωt ′′)â†âρ̂(t )â†â = g2
d

2δt

∫ ∞

0

∫ t+δt

t

∫ t+δt

t

× dωdt ′dt ′′Sω{cos[ω(t ′′ + t ′)]

+ cos[ω(t ′′ − t ′)]}â†âρ̂(t )â†â. (A27)

We can again make the approximation of replacing the Sω term
with a constant S0 and change the limits of the integral over ω

to obtain

ϒi � g2
d S0

4δt

∫ ∞

−∞

∫ t+δt

t

∫ t+δt

t
dωdt ′dt ′′{cos[ω(t ′′ + t ′)]

+ cos[ω(t ′′ − t ′)]}â†âρ̂(t )â†â

= πg2
d S0

2δt

∫ t+δt

t

∫ t+δt

t
dt ′dt ′′[δ(t ′′ + t ′)

+ δ(t ′′ − t ′)]â†âρ̂(t )â†â = πg2
d S0

2
â†âρ̂(t )â†â

= ηâ†âρ̂(t )â†â, (A28)

where, in the last line, we have introduced the motional de-
phasing rate η ≡ πg2

d S0/2. Again, keeping in mind the limits
of integration over dt ′′, ϒii and ϒiii can be evaluated in the
same manner. This gives a final equation for Markovian mo-
tional dephasing:

˙̂ρ(t ) = − i

h̄
[Ĥ2g(t ), ρ̂(t )]

+ η

[
â†âρ̂(t )â†â − 1

2
(â†â)2ρ̂(t ) − 1

2
ρ̂(t )(â†â)2

]
.

(A29)
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