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The randomness expansion capabilities of semi-device-independent (SDI) prepare and measure protocols are
analyzed under the sole assumption that the Hilbert state dimension is known. It is explicitly proved that the
maximum certifiable entropy that can be obtained through this set of protocols is − log2[ 1

2 (1 + 1√
3

)] and the same
is independent of the dimension witnesses used to certify the protocol. The minimum number of preparation
and measurement settings required to achieve this entropy is also proven. An SDI protocol that generates the
maximum output entropy with the least amount of input setting is provided. An analytical relationship between
the entropy generated and the witness value is obtained. It is also established that certifiable entropy can be
generated as soon as the dimension witness crosses the classical bound, making the protocol noise-robust and
useful in practical applications.
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I. INTRODUCTION

Randomness plays an important role in simulation
algorithms [1–3], cryptography [4–6], fundamental sci-
ences [7–9], and much research has been devoted to the
generation of random numbers [10]. Deterministic algorithms
can at best create “pseudorandom numbers” that mimic the
statistics of “true” random numbers [11]. One needs access
to unpredictable physical processes in order to generate truly
random numbers [10,12]. Quantum theory provides well-
defined theoretical models which are inherently probabilistic
and serve us with good entropy sources to extract random-
ness [13]. Generating randomness from quantum systems is a
matured field [14]. There are now even commercially avail-
able quantum random-number generators (QRNGs) [15–17].
These devices are based on methods that are only applicable
to their specific experimental setup and corresponding entropy
estimates of the output randomness depend on a number of
assumptions. Ultimately, these devices require a level of trust
in the manufacturer which is not ideal for a number of rea-
sons [10].

For the above-mentioned reasons, it is highly advantageous
to have a setup that provides certifiable entropy while making
minimal assumptions about its working. Device-independent
QRNGs (DI-QRNGs) [18,19] provide a solution to this prob-
lem. By consuming input randomness and using nonlocality
of quantum theory it can, theoretically, certify the output
randomness without characterizing the inner workings of the
setup. There has also been numerous experimental demon-
strations of this approach [20–23]. However, protocols for
DI-QRNG suffer from practical issues which make them hard
to implement outside of a laboratory setup compared to one-
way protocols commonly used in commercial devices.
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A more practical approach to random-number generation
is provided by the so-called semi-device-independent QRNGs
(SDI-QRNGs) [24–29]. Unlike DI-QRNG, complete knowl-
edge of a part of the setup used for random-number generation
is allowed in SDI-QRNGs. Even though this incurs a weaker
form of security compared to the device-independent counter-
part, it is much more practical. Realistically, there might be
parts of the device that are more error prone than others. The
SDI approach lets you design protocols that can still generate
certifiable randomness while leaving such parts uncharacter-
ized [30–33]. These protocols are also easier to implement
since nonlocal sources are not required and is thus more con-
sumer friendly. Hence the entropy generation capabilities of
the SDI protocols are of particular interest to cryptographers
and others who use random numbers for various practical
purposes.

In this paper, we derive a general upper bound on the
amount of entropy generated by a class of SDI protocols.
Specifically, we consider prepare and measure protocols of
two-dimensional systems and two-outcome measurements.
Even though various protocols belonging to this class have
been studied previously [24,25], their analysis has been re-
stricted to some particular dimension witnesses which are
used to distinguish quantum processes from classical pro-
cesses. Our results, however, are independent of dimensional
witnesses. We prove that the maximum amount of entropy
which could be generated by any protocol of this class is equal
to − log2[ 1

2 (1 + 1√
3

)]. The 3 → 1 quantum random access
code (QRAC) was shown to certify the same amount of en-
tropy and it was conjectured to be the maximum among n → 1
QRAC protocols [25]. The results we obtain confirm this and
also prove that 3 → 1 QRAC generates maximal randomness
among general SDI protocols with binary outcome measure-
ments. Moreover, the minimum number of preparation and
measurement settings to certify the maximum amount of en-
tropy is also proven. We give an explicit example of a unique
protocol that matches these bounds, proving them to be tight.
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FIG. 1. We consider the prepare and measure scenario of two-
dimensional systems ρx . The protocol features two black boxes A
and B, for preparation and measurement, respectively. A has X input
settings and B has Y input settings. Based on the input, A will output
a state ρx and B will output b ∈ {0, 1} based on its input and the state
sent by A.

Furthermore, we derive an analytical relationship between the
witness values and the entropy generated with this protocol.

The rest of the paper is organized as follows. In Sec. II, we
briefly describe the SDI model and state some definitions that
we use in the subsequent sections. Section III contains results
on the limits of output/input randomness. We report an explicit
protocol matching these limits and its subsequent analysis in
Sec. IV. In Sec. V, we present a brief discussion along with
some relevant open questions for further research.

II. SEMI-DEVICE-INDEPENDENT MODEL

We first illustrate the general structure of the SDI-QRNG
protocol that we have considered here. It involves two black
boxes shielded from the outside world (see Fig. 1). One of
the devices (boxes) is used for state preparation while the
other one is used for the measurement. The preparation black
box A has X settings, and the measurement black box B has
Y settings: X ,Y � 2. Depending on the randomly chosen
setting among X , A outputs a quantum system ρx, x ∈ [X ]
(we use [N] to denote a set of cardinality N), which will
then be sent to the second black box B for measurement. We
assume that the state ρx ∈ C2 is a two-dimensional system.
The measurement device takes ρx as input and measures it in
one of the randomly chosen settings Y and outputs b ∈ {0, 1}.
This forms one round of the prepare and measure protocol. We
can repeat this procedure multiple times to get a probability
distribution given by

p(b|x, y) = Tr
(
ρxMb

y

)
, (1)

where Mb
y is the measurement operator acting on ρx with input

parameter y ∈ [Y] and output b.
In order to identify whether the probability distributions

truly have a quantum origin or not, dimension witnesses of
the form

W ≡
∑
x,y

wx,yEx,y (2)

are usually used, where wx,y are real coefficients and

Ex,y = P(b = 0|x, y).

Under such dimension witnesses, an SDI protocol does not
demand any restriction on preshared classical correlations

between the preparation and measurement devices [34]. Al-
though we do assume that they do not share any quantum
correlations. If we denote by Wc and WQ the classical and
quantum upper bounds of the witness value using two-
dimensional systems, whenever

Wc < W � WQ, (3)

we can be certain that the protocol has no classical descrip-
tion [24,34]. Hence the output b of B is truly probabilistic in
nature and can be used to extract randomness [35,36].

The entropy in the output b can be quantified by the fol-
lowing min-entropy function [37]

H∞(B|X ,Y ) = − log2

[
max
b,x,y

p(b|x, y)
]
. (4)

This entropy is considered to be “certifiable” if the cor-
responding probability distribution satisfies the constraint
Eq. (3).

Since our witnesses defined by Eq. (2) are linear in prob-
abilities, we just need to consider pure states for our analysis
as any arbitrary mixed state can be written as a convex com-
bination of pure states [34]. It has also been proven that
positive-operator valued measures (POVMs) can be depicted
as a convex combinations of projective measurements in the
case of two-measurement outcomes [38,39]. Furthermore, it
is known that projective measurements on two-dimensional
systems can be represented as antipodal unit vectors on
the Bloch sphere. In general, the basis elements can be
expressed as

M0
y = 1

2 (I + �ty · σ ), M1
y = 1

2 (I − �ty · σ ), (5)

where �ty is a unit vector on the Bloch sphere and σ =
(σx, σy, σz ), the Pauli matrices. For preparations, it is enough
to consider pure states represented using unit vectors �sx as

ρx = 1
2 (I + �sx · σ ). (6)

Under this representation, the probability distribution
p(b|x, y) can be expressed as

p(b|x, y) = Tr
(
ρxMb

y

) = 1
2 (1 + �sx · �ty). (7)

We may now proceed to prove some general results related
to the capabilities of SDI-QRNGs using the definitions and
notations introduced in this section.

III. RESULTS: BOUNDS ON CERTIFIABLE ENTROPY

Theorem 1. A prepare and measure protocol of two-
dimensional systems and two-outcome measurements can
generate at most − log2[ 1

2 (1 + 1√
3

)] bits of certifiable entropy.
Proof. Maximizing the entropy in Eq. (4) amounts to min-

imizing the quantity maxb,x,y p(b|x, y) over all prepare and
measure protocols. We shall achieve this by first defining
a lower bound for the quantity to be minimized and then
deriving the lowest possible value for the lower bound.

Consider the quantity

plb = max
x

1

Y
∑

y

max
b

p(b|x, y),

where the average is taken over all the measurement settings.
Since the mean over a set is lower than the maximum of a set,
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plb forms a lower bound to maxb,x,y p(b|x, y). We may now
derive an expression for plb.

Let us represent the measurement basis for Y measurement
settings as

TY = {{�t1,−�t1}, {�t2,−�t2}, . . . , {�tY ,−�tY}}.
Each of these measurement bases can be represented by a
diameter of the Bloch sphere with the basis elements as its
endpoints. For example, the basis {�t1,−�t1} represents a diam-
eter with �t1 and −�t1 as its endpoints. It is trivial to see that
given any two nonperpendicular diameters of a sphere in R3

the smallest angle between them would be less than or equal
to π/2. To further illustrate our point, let us consider the bases
{�ti,−�ti} and {�t j,−�t j}. If the angle between the vectors �ti and
−�t j is greater than π/2, then the angle between �ti and �t j will
definitely be less than π/2, for any i, j ∈ [Y].

Keeping the above arguments in mind, consider a partic-
ular case, Y = 2, with measurement bases as {�t1,−�t1} and
{�t2,−�t2}. If we consider the angle between �t1 and �t2 to be
less than or equal to π/2, then the state ρx with �sx = �t1+�t2

|�t1+�t2|
maximizes 1

Y
∑

y maxb p(b|x, y), yielding plb. It is easy to see
that plb is minimum when �t1 and �t2 are perpendicular to each
other.

For now, let us assume that 0 � θi, j � π/2, where θi, j is
the angle between the measurement vectors �ti and �t j for i, j ∈
[Y]. This is in general not true for Y � 3. but we will give an
argument at the end of the proof as to why this assumption is
valid enough to find out the minimum value of plb.

Given this setup, consider ρx with �sx = �t1+�t2+···+�tY
|�t1+�t1+···+�tY | . Note

that given the choice of measurement vectors {�t1, �t2, . . . , �tY},
this state maximizes 1

Y
∑

y maxb p(b|x, y) since it lies
along the average direction of the measurement vectors.
Simplification yields

plb = 1

2

(
1 + |�t1 + �t2 + · · · + �tY |

Y

)
. (8)

We can represent Eq. (8) as

plb = 1

2

(
1 +

√
Y + 2(cos θ1,2 + · · · + cos θY−1,Y )

Y

)
. (9)

Lemma 1. For Y unit vectors that lie in an octant of a sphere
in R3, the minimum of the sum of cosines of the angles formed
between them is equal to 3

2μ(μ − 1) + rμ, where Y = 3μ +
r for positive integers μ and r ∈ {0, 1, 2}.

Proof. Consider Y vectors {�t1, . . . , �tY}. The sum to be
minimized is

cos θ1,2 + cos θ1,3 + · · · + cos θY−1,Y .

We can rewrite it as

(cos θ1,2 + cos θ1,3 + · · · + cos θ1,Y ) + · · · + cos θY−1,Y .

The terms in the parentheses are equal to

�t1 · (�t2 + · · · + �tY ).

Since every vector lies in the same octant, the dot product is
minimized when �t1 is along one of the axes. We can repeat the
same process for every other vector until all of them line up

with one of the three axes. We have three scenarios based on
the value of r ∈ {0, 1, 2}.

(1) Y = 3μ: It is trivial to see that the sum is minimum
when the vectors are equally distributed among the axes—
μ vectors along each axis. The sum of cosines is equal to
3 μC2. The symbol “nCk” is the coefficient of the term xk in
the polynomial expansion of the (1 + x)n. It is given by the
formula

nCk = n(n − 1) · · · (n − k + 1)

k(k − 1) · · · 1
,

where 0 � k � n.

(2) Y = 3μ + 1: An additional vector along any one of the
axes, say x axis. The sum becomes 2 μC2 + μ+1C2.

(3) Y = 3μ + 2: Consider the sum of vectors

�t1 + · · · + �t3μ+1.

Since they have an arrangement dictated by the previous case,
the vector �t3μ+2 should end up at the y or z axis. The sum
becomes μC2 + 2 μ+1C2.

Putting it all together, we have the sum as

(3 − r) μC2 + r μ+1C2.

Simplifying it we obtain
3
2μ(μ − 1) + rμ. �

Since our measurement vectors {�t1, �t2, . . . , �tY} are at most
π/2 away from each other, we can consider them to lie in the
same octant. Applying Lemma 1, Eq. (9) becomes

plb = 1

2

(
1 +

√
Y + 3μ(μ − 1) + 2rμ

Y

)
. (10)

Substituting Y = 3μ + r we obtain

plb = 1

2

(
1 +

√
3μ2 + r(2μ + 1)

3μ + r

)
. (11)

Thus, for r = 0, we have

plb = 1

2

(
1 +

√
3μ2

3μ

)
= 1

2

(
1 + 1√

3

)
. (12)

For r ∈ {1, 2}, plb > 1
2 (1 + 1√

3
) and plb → 1

2 (1 + 1√
3

) as
μ → ∞. Thus, in general,

plb �
1

2

(
1 + 1√

3

)
. �

Note that our assumption that 0 � θi, j � π/2 for i, j ∈
[Y] is valid enough since the minimum value for plb is
obtained when the measurement vectors are along the three-
dimensional (3D) axes. This implies that by induction, using
Y = 2 as the initial step and the freedom to relabel any mea-
surement basis, we can take any Y measurement vectors to lie
in the same octant.

Theorem 2. A prepare and measure protocol of two-
dimensional systems needs at least four preparation settings
and three measurement settings to generate the maximum
amount of entropy.

Proof. From Theorem 1, the maximum entropy is generated
when Y = 3μ. For μ = 1, we have the minimum number of
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measurement settings, Y = 3. We will now try to minimize
the number of preparation settings when Y = 3.

As for the number of preparation settings X , note that it
cannot be two since the states will be perfectly distinguish-
able; there is no entropy in the output. When X = 3 and
Y = 3, a general dimension witness defined by Eq. (2) can
be expressed as

W = w1,1E1,1 + w1,2E1,2 + w1,3E1,3 + w2,1E2,1 + w2,2E2,2

+ w2,3E2,3 + w3,1E3,1 + w3,2E3,2 + w3,3E3,3. (13)

From Theorem 1, maximum entropy generation needs at
least three measurement settings. Since maximization is over
the entire probability distribution, this holds for every prepa-
ration setting. Hence, none of the coefficients wx,y can be 0 for
a witness which achieves the maximum entropy. For example,
suppose w3,3 is 0. This implies that the state ρ3 depends only
on the measurement bases M1 and M2; ρ3 lies in the plane
defined by M1 and M2. Subsequently, for a given witness
value, maxb,x,y p(b|x, y) � 1

2 (1 + 1√
2

) > 1
2 (1 + 1√

3
).

Now that we have established that all coefficients in
Eq. (13) are nonzero, we can model it as an QRAC-like pro-
tocol where preparation states correspond to 3-bit strings and
measurement settings determine which bit to guess. Positive
coefficients are mapped to bit 0 and negative coefficients to
bit 1. For example, consider

R3,3 ≡ E1,1 + E1,2 + E1,3 + E2,1 − E2,2

−E2,3 − E3,1 + E3,2 − E3,3. (14)

Based on our construction, R3,3 can be defined as the
average success probability of an QRAC protocol where
preparation states are represented as x ∈ {000, 011, 101} and
measurement settings dictate which one of the three bits to
guess.

For any such task we can construct a protocol based on the
2 → 1 QRAC (cf. Fig. 2) whose average probability would be
greater than 1

2 (1 + 1√
3

), implying the entropy generated will

be lesser than − log2[ 1
2 (1 + 1√

3
)] [since maxb,x,y p(b|x, y) �∑

x,y p(b = xy|x, y): x represents any of the 3-bit strings and
xy denotes the yth bit of that string].

The protocol is represented using Fig. 2. A 3-bit string can
be written as x where x ∈ {00x3, 01x3, 10x3, 11x3} and x3 is
the third bit (which could be different for different strings).
The task is then straightforward: Encode the strings on any
three of the four possible states using 2 → 1 QRAC, where
the encoding can be represented as

Encoding

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

00 → 1
2

(
I + 1√

2
σx + 1√

2
σy

)
,

01 → 1
2

(
I + 1√

2
σx − 1√

2
σy

)
,

10 → 1
2

(
I − 1√

2
σx + 1√

2
σy

)
,

11 → 1
2

(
I − 1√

2
σx − 1√

2
σy

)
.

Decode the first two bits using the measurement bases given
by

My ≡ {
1
2 (I + �ty · σ ), 1

2 (I − �ty · σ )
}

FIG. 2. Bloch sphere diagram of a SDI protocol with three prepa-
ration setting and three measurement settings. The arrows denote the
“up” direction of the measurement basis and the black dots indicate
the encoded states for a particular choice of setting or equivalently,
a string of bits. The three strings are to be encoded in any of the
four vertices. The encoded states of this protocol form a subset of
the encoded states in the 2 → 1 QRAC, which forms a square on
the equatorial plane of the Bloch sphere, denoted in this figure using
dotted lines.

and their corresponding Bloch vectors

Decoding

{
x1 → �ti ≡ (1, 0, 0),

x2 → �ti ≡ (0, 1, 0).

Decode the third bit using

x3 → �t3 ≡ 1√
2

(1, 1, 0).

Given the choice of measurement bases and prepared states
the average probability is found to be at least

6
[

1
2

(
1 + 1√

2

)] + 2

9
≈ 0.791 25.

Hence for such a protocol we have an average probability
greater than ∼0.791 25 which is greater than 1

2 (1 + 1√
3

) ≈
0.788 67. �

IV. A SPECIFIC PROTOCOL

An explicit protocol to achieve H∞ = − log2[ 1
2 (1+ 1√

3
)] ≈

0.342 49 using four preparation settings and three measure-
ment settings is given here. It corresponds to a QRAC-like
protocol in which the preparation party A encodes one of
the strings x ∈ {000, 011, 101, 110} to a single qubit and the
measurement party B attempts to decode xy ∈ {x1, x2, x3} by
suitable measurements (cf. Fig. 3). Using arguments similar to
those used for proving Theorem 2, this protocol can be proven
to be unique up to some relabeling of the measurement bases.
A suitable dimension witness is provided by

R4,3 ≡ E000,1 + E000,2 + E000,3 + E011,1

− E011,2 − E011,3 − E101,1 + E101,2

− E101,3 − E110,1 − E110,2 + E110,3, (15)
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FIG. 3. Bloch sphere diagram of a SDI protocol with four prepa-
ration settings and three measurement settings. The measurement
bases are mutually unbiased, similar to the 3 → 1 QRAC protocol.
The arrows denote the “up” direction of the measurement basis and
the black dots indicate the encoded states for a particular choice of
string/setting. The encoded states form a tetrahedron inside the Bloch
sphere. They also form a subset of the encoded states in the 3 → 1
QRAC, which forms a cube, denoted in this figure using dotted lines.

and whenever

3 < R4,3 � 2
√

3, (16)

the protocol has no classical description. Equation (16) was
derived from the results provided in Ref. [40]. They have
treated the protocol as a generalized version of the 2 → 1
QRAC protocol where B attempts to decode, in addition to the
bits encoded by A, the parity of the bits as well. The average
success probability of this particular protocol has previously
found applications in the SDI security of quantum key distri-
bution (QKD) protocols [41]. The corresponding dimension

witness has also been applied previously in the self-testing of
POVMs [42,43] and in the reduction of symmetric dimension
witnesses [44]. In order to achieve the maximal quantum value
2
√

3, we may encode the bits using the states given by

Encoding

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

000 
→ 1
2

(
I + 1√

3
σx + 1√

3
σy + 1√

3
σz

)
,

011 
→ 1
2

(
I + 1√

3
σx − 1√

3
σy − 1√

3
σz

)
,

101 
→ 1
2

(
I − 1√

3
σx + 1√

3
σy − 1√

3
σz

)
,

110 
→ 1
2

(
I − 1√

3
σx − 1√

3
σy + 1√

3
σz

)
,

and decode the bits using the measurement bases given by

My ≡ {
1
2 (I + �ty · σ ), 1

2 (I − �ty · σ )
}

with the corresponding Bloch vectors

Decoding

⎧⎪⎨
⎪⎩

x1 → �t1 ≡ (1, 0, 0),

x2 → �t2 ≡ (0, 1, 0),

x3 → �t3 ≡ (0, 0, 1).

Note that a general two-dimensional witness for four
preparation settings and three measurement settings may not
be able to produce the maximum amount of randomness.
For example, consider the well-known dimension witness
I4 [34,45], defined as

I4 ≡ E1,1 + E1,2 + E1,3 + E2,1 + E2,2 − E2,3

+ E3,1 − E3,2 − E4,1.

Since the choice of the fourth state solely depends on the
first measurement basis, one can always take E4,1 to be 0.
This implies that p(b = 1|4, 1) = 1; no entropy is generated
in this case. The choice of dimension witness is special in that
regard and warrants further analysis. We will now derive an
analytical bound on the min-entropy based on the value of the
dimension witness. The analysis and methods used is similar
to what have been done in Refs. [46,47].

Using Eqs. (5) and (6), Eq. (15) can be written as

R4,3 ≡ E000,1 + E000,2 + E000,3 + E011,1 − E011,2 − E011,3 − E101,1 + E101,2 − E101,3 − E110,1 − E110,2 + E110,3

= Tr
[
ρ000

(
M0

1 + M0
2 + M0

3

)] + Tr
[
ρ011

(
M0

1 − M0
2 − M0

3

)]
+ Tr

[
ρ101

(−M0
1 + M0

2 − M0
3

)] + Tr
[
ρ110

(−M0
1 − M0

2 + M0
3

)]
= 1

2 [�s000 · (�t1 + �t2 + �t3) + �s011 · (�t1 − �t2 − �t3) + �s101 · (−�t1 + �t2 − �t3) + �s110 · (−�t1 − �t2 + �t3)]

� 1
2 (|�t1 + �t2 + �t3| + |�t1 − �t2 − �t3| + |�t1 − �t2 + �t3| + |�t1 + �t2 − �t3|)

� 1
2 (

√
3 + 2[cos (θ1,2) + cos (θ1,3) + cos (θ2,3)] + √

3 + 2[cos (θ1,2) − cos (θ1,3) + cos (θ2,3)]

+√
3 + 2[cos (θ1,2) + cos (θ1,3) − cos (θ2,3)] + √

3 + 2[cos (θ1,2) − cos (θ1,3) − cos (θ2,3)]), (17)

where the first inequality follows from |�sx| < 1. Using Eq. (9) we can write plb for our example as

plb = 1

2

(
1 +

√
3 + 2[cos (θ1,2) + cos (θ1,3) + cos (θ2,3)]

3

)
. (18)
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FIG. 4. Relationship between dimension witness value and upper
bound on the entropy created by the protocol discussed in Sec. IV.

In order to obtain a bounded value of R4,3 as a function of
plb we will use the extreme value problem of a multivariable
function. Changing variables as

P = [3(2plb − 1)]2 − 3

2
, a = cos θ1,3, b = cos θ2,3,

and applying it to Eq. (17), we obtain

R4,3 � max
{(q,r)}

{
1
2 (

√
3 + 2P +

√
3 + 2(2q − P )

+
√

3 + 2(2r − P ) +
√

3 + 2[P − (2q + 2r)])
}
,

(19)

where (q, r) is one of the real roots of equation set with
variables (a, b) given by

1

2

(
2√

2(2a − P ) + 3
− 2√

2(P − 2a − 2b) + 3

)
= 0,

1

2

(
2√

2(2b − P ) + 3
− 2√

2(P − 2b − 2a) + 3

)
= 0. (20)

The equation set provided above is obtained by taking the
derivatives of Eq. (17) with respect to a and b. It turns out
that the solutions of Eq. (20) should satisfy the condition

a = b = P/3 ⇒ cos θ1,2 = cos θ1,3 = cos θ2,3. (21)

Since plb is defined as maxx
1
Y

∑
y maxb p(b|x, y), by

Eq. (21) all the terms in the summation are equal. This
means that when R4,3 is maximized, plb is equivalent to
maxb,x,y p(b|x, y). Hence the maximization will yield a tight
upper bound on the randomness generated by this protocol.
Also, Eq. (21) reduces our problem to a single variable one.

Substituting Eq. (21) in Eqs. (17) and (18), we get

R4,3 � 1
2 (3

√
3 − 2a + √

6a + 3),

plb = 1
2

(
1
3

√
6a + 3 + 1

)
. (22)

Solving Eq. (22) we obtain

plb � 1
12

[
R4,3 + 6 +

√
3
(
12 − R2

4,3

)]
. (23)

This forms a min-entropy bound for the particular protocol
as shown in Fig. 4. Since the choice of angles is unique when
R4,3 = 2

√
3, i.e.,

θ1,2 = θ1,3 = θ2,3 = π/2,

it yields the maximum amount of certifiable randomness,
H∞ ≈ 0.342 49. Also note that since plb forms an upper
bound to the average success probability of the protocol,
Eq. (23) implies that certifiable randomness can be generated
as soon as one violates the classical bound on witness. This
is particularly relevant in practical setups, which might not be
able to achieve the maximum possible quantum violation. The
protocol is thus noise robust, and has immediate applications
in practical SDI-QRNG setups.

Since we assume that devices are shielded from the outside
world, the randomness used to choose the input settings in
each round can be used for other purposes. Hence the to-
tal output randomness from each round is more than what
is being used to start the process. In order to increase ran-
domness expansion even further, one can consider using a
fixed subset of the input setting for randomness generation
for most rounds and a randomly chosen input setting for the
rest of the rounds [46,48,49]. If the number of rounds is large
enough, one can use the subset of rounds wherein the input
settings were randomly chosen in order to estimate the witness
value [20].

V. DISCUSSIONS AND OUTLOOK

A tight bound on the entropy generation rate is derived
for SDI prepare and measure protocols for two-dimensional
systems and two-outcome measurements solely from geomet-
rical arguments. The maximum entropy generated from such
a class of protocols is found to be equal to − log2[ 1

2 (1 + 1√
3

)].
Here it will be apt to note the results of a previous work [50]
which suggests an upper bound on the certifiable randomness
from a quantum black box as − log2[min{l, k + 1}], where l
is the number of outputs for a measurement (2 in our case) and
k is the number of preparation settings. For the particular class
of protocols that we are considering, this result forms a trivial
bound of 1 bit of certifiable entropy. Our results are much
more strict in that regard. It was also conjectured in Ref. [25]
that 3 → 1 QRAC generates the maximum amount of ran-
domness among n → 1 QRAC protocols. We have proved
that this is indeed the case. Our results are more general
than QRAC protocols and also independent of any dimension
witness. We have also provided an explicit protocol generat-
ing the maximum amount of entropy while having the least
amount of input settings. The protocol generates as much
entropy as the 3 → 1 QRAC protocol does, however, it re-
quires lesser input settings. Note that even though the protocol
generates maximum entropy when W = WQ, it still remains
an open question if one can extract more randomness than
what is given in Fig. 4 when W < WQ. Since Eq. (23) is tied
to a specific dimension witness, i.e., R4,3, it would be worth-
while to investigate whether the methods by Wang et al. [51]
would be able to extract more randomness when 3 < R4,3 <

2
√

3. Inspired by the device-independent approach used in
Refs. [49,52], they used the full observed statistics to certify
randomness rather than restricting to a particular inequality.

The results reported here open up possibilities for a set of
interesting investigations. An immediate generalization of the
presented work would be to consider the limits on entropy
generation for l-outcome measurements on d-dimensional
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systems, l, d > 2. It would also be interesting to investi-
gate the randomness expansion capabilities of such protocols
with partially free random sources as the input seed [53,54].
Given the advantage of our protocol over the 3 → 1 QRAC
with perfect random sources, it would be interesting to see a
comparison with partially free sources [55]. Another possible
avenue for research would be to consider the randomness
generation ability for multiple users as discussed in Ref. [56].
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