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Effect of quantum error correction on detection-induced coherent errors
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We study the performance of quantum error correction codes (QECCs) under the detection-induced coherent
error due to the imperfectness of practical implementations of stabilizer measurements, after running a quantum
circuit. Considering the most promising surface code, we find that the detection-induced coherent error will result
in undetected error terms, which will accumulate and evolve into logical errors. However, we show that such
errors will be alleviated by increasing the code size, akin to eliminating other types of errors discussed previously.
We also find that with detection-induced coherent errors, the exact surface code becomes an approximate QECC.
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I. INTRODUCTION

The advent of programmable quantum computers [1–6] us-
ing noisy intermediate-scale quantum (NISQ) [7] processors
has recently shown strong evidence of quantum supremacy or
quantum advantage [1,5,8]. Those quantum hardware achieve-
ments along with the software development [9] pave the
way for the potential fault-tolerant universal quantum com-
putation. It is believed that the next milestone will be the
experimental demonstrations of fault-tolerant quantum error
corrections (QEC) [10–12], and some important progress
[13–16] have been reported recently.

In the past 20 years, people have invented many quantum
error correction codes (QECCs), such as the nine-qubit Shor
code [10], the seven-qubit Steane code [11], and the most
promising surface code [17–19]. A remarkable result of QEC
is the threshold theorem, which states that if the physical error
rate is below a critical value, QECCs can suppress the logical
error rate to an arbitrarily low level [20–23]. The threshold
theorem is proved based on stochastic error models [18,19,24–
27], and the effectiveness of QECCs is also confirmed later
from discussions of the correlated noise model [28–34] and
the coherent error model [35–40], assuming perfect syn-
drome measurements. However, due to the imperfectness of
experimental implementations of quantum gates, syndrome
measurements can not be perfect and this will also has some
influences on QECCs. Previously, people have partially con-
sidered the faulty measurement problem, and treat it using the
stochastic error model. In this case, one can repeat several
rounds of syndrome measurements, roughly of order d times
(where d is the code size of the surface code) [18,41], to
ensure fault tolerance.

Here, we focus on another type of stabilizer measure-
ment error, dubbed as detection-induced coherent error. For
a measurement of a stabilizer U , one can implement it using
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a controlled-U circuit, see Fig. 1(a). However, the practical
implementations may not be accurate, and the actual opera-
tion generally measures another operator V ≡ U − δU , where
δU is the deviation from the ideal one. Note that for the
ion trap quantum computing architecture, in order to combat
such coherent errors during stabilizer measurements, Ref. [42]
introduces an extra technique, which works efficiently for
the same magnitude of errors in implementations of each
stabilizer. Since the connectivity of other quantum computing
architectures are not as good as the trapped ion architecture,
and coherent errors in each stabilizer can not perfectly be of
the same order of magnitude, in reality, such coherent errors
will always exist. Thus, here comes a natural question: with
the existence of δU , can the final state after the QEC proce-
dure be used for quantum computation, or in other words, can
the computation using this state reach the accuracy we want?

In this paper, through the most promising surface code
[see Fig. 1(b)], we show that the detection-induced coherent
error coming from stabilizer measurements of QECCs will
result in accumulated logical errors, but those errors can be
alleviated by QECCs themselves without extra techniques.
Our discussions of the surface code are mainly concentrated
on the superconducting qubit architecture [1,5]. In addition,
we also find that under the detection-induced coherent error,
the exact surface code becomes an approximate QECC, thus
our results imply that some approximate QECCs may also be
possible for fault-tolerant quantum computation.

II. PRELIMINARY DETECTION-INDUCED
COHERENT ERRORS

Initially, the state of data qubits is supposed to be the eigen-
state of all stabilizers with eigenvalue +1, denoted as |ψ〉.
After implementing the quantum circuit shown in Fig. 1(a),
we have

|0〉|ψ〉 → |�1〉 ≡ 1
2 |0〉(|ψ〉 + V1|ψ〉) + 1

2 |1〉(|ψ〉 − V1|ψ〉),
(1)
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FIG. 1. Illustrations of the controlled-U circuit and the sur-
face code. (a) The controlled-U circuit for measuring operator U .
(b) The d = 3 surface code with XL = X1X2X3 and ZL = Z1Z6Z11

being logical operators. i(i = 1, . . . , 13) stands for data qubits, while
a1, a2, a6, a7, a11, a12 are ancillas for plaquette operators (Z⊗4)
and a3, a4, a5, a8, a9, a10 are ancillas for site operators (X ⊗4).
(c) and (d) Circuits for measuring Z⊗4 and X ⊗4 stabilizers of the
surface code, respectively. di and a stand for data qubits and ancillary
qubits, respectively.

where V1 = U1 − δU1 is the first stabilizer operator to be mea-
sured. Note that if there is no deviation, i.e., V1 = U1, we have
|�1〉 = |0〉|ψ〉, as expected. For simplicity, we suppose that V1

is still unitary, but not Hermitian. Since now |ψ〉 − V1|ψ〉 �= 0,
after measuring the ancillary qubit, one can get −1 with prob-
ability p(|1−〉) = 1/2 Re〈ψ |δU1|ψ〉, and +1 with probability
p(|1+〉) = 1 − p(|1−〉), where |1±〉 ∝ |ψ〉 ± V1|ψ〉), up to
a normalized factor. We would like to know what will re-
sult from δU in consecutive measurements, thus we consider
another stabilizer measurement. Practically, it will become
V2 ≡ U2 − δU2. Suppose after the measurement of U1, the
state of data qubits collapses to |1+〉 (it is more likely for data
qubits to collapse into this state), then the V2 measurement
will lead to

|0〉|1+〉 → 1
2 |0〉(|1+〉 + V2|1+〉) + 1

2 |1〉(|1+〉 − V2|1+〉).
(2)

Letting |2±〉 ∝ |1+〉 ± V2|1+〉, up to a normalized factor.
Considering the fidelity F (|n±〉) = |〈ψ |n±〉|, we have

�F 2 = [F (|1+〉)]2 − [F (|2+〉)]2 ∼ 2a(a + 1)

(a − 2)(5a − 4)
> 0

(3)
for small a, where we have assumed that Re〈ψ |δU1|ψ〉 =
Re〈ψ |δU2|ψ〉 = a for the same status of U1 and U2. This fact
shows that after two controlled-V gates, the state becomes less
accurate, even though syndromes show no error. Thus, one
can conclude that with the proceeding of syndrome measure-
ments, the state will become less and less accurate. We now
have a concrete discussion using the surface code.

III. DETECTION-INDUCED COHERENT ERRORS FOR
SURFACE CODES

A. Introduction to surface codes

The surface code is an example of the stabilizer codes
[23], and due to its locality and the high threshold [18,19],
it is believed to be one of the most promising quantum error
correction codes for the fault-tolerant quantum computation.
We briefly review the idea of the surface code [17–19] in this
section.

As shown in Fig. 1(b), the surface code is implemented
on a two-dimensional (2D) array of physical qubits. Those
physical qubits can be classified into two classes: data qubits
(1, . . . , 13) residing on those round rectangular edges in
Fig. 1(b) and ancillary qubits (a1, . . . , a12) residing on centers
of vertices and plaquettes in Fig. 1(b). Data qubits are used
to encoded quantum states, while ancillary qubits are used
to detect the information, known as the error syndrome, of
errors occurring on the encoded quantum state. For surface
codes, we use two types of stabilizers to detect errors: X
stabilizers (X ⊗4) for detecting Z errors and Z stabilizers (Z⊗4)
for detecting X errors. X stabilizers appear as vertices on the
2D array, such as X2X4X7X5 and X1X6X4 in Fig. 1(b). If one
X error appears in data qubit 7, X2X4X7X5 and X7X9X12X10

will detect it. This information is stored in ancillary qubits a4

and a9 through changing the states of a4 and a9 from |0〉 to
|1〉. Z stabilizers appear as plaquettes on the 2D array, such
as Z4Z6Z9Z7 and Z1Z4Z2. Information of X errors from im-
plementing Z stabilizers is encoded on those ancillary qubits
residing on the center of each plaquette. Due to the appear-
ances of those stabilizers on the 2D array, in the following,
we will call X stabilizers and Z stabilizers as site operators
and plaquette operators, respectively.

After implementing all stabilizers to detect errors, one
should measure those ancillary qubits to obtain the error syn-
drome, and then use the encoding algorithms, such as the
minimum-weight perfect-matching algorithm [19], to decode
the error syndrome. The error chain can be fixed after de-
coding. To realize the error correction procedure, one just
needs to act on this error chain back on the quantum state.
There will be two types of errors that can not be detected: the
logical X error and the logical Z error. Note that these two
logical errors are nothing but logical X and Z operators for
the surface code, see XL and ZL in Fig. 1(b). The reason that
these logical errors can not be detected is because XL and ZL

commute with all stabilizers. Note that error chains differing
up to some stabilizers are equivalent and can be regarded as
the same error. For a complete and thorough introduction to
surface codes, we refer interested readers to Ref. [19].

B. Imperfect controlled-NOT and modified
stabilizer measurements

From the discussion in Sec. III A, we know that for a
surface code, in order to detect errors, we need to im-
plement two type of stabilizer operators, Z⊗4 and X ⊗4.
Experimentally, each stabilizer can be realized through four
controlled-NOT (CNOT) gates [see Figs. 1(c) and 1(d)], which
can be constructed from two single-qubit Hadamard gates
and a two-qubit controlled-Z gate denoted as �ct (“c” and
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“t” are abbreviations for controlled and target qubits, respec-
tively), that is CNOTct = Ht �ct Ht . This strategy is widely
used in superconducting quantum computation [43]. The
controlled-Z gate can be realized through two-body inter-
actions, which produce a time evolution operator U (t ) =
diag (1, 1, 1, exp(−iJt/h̄)); and when Jt0/h̄ = π , U (t ) re-
duces to the ideal controlled-Z gate �ct [43]. However, the
fluctuation of the interaction constant J (or the time inter-
val) will produce an imperfect controlled-Z gate and then
an imperfect CNOT gate. The actual evolution operator can
be written as U ′(t0) = �κ

ct�ct , where κ = δJ/J is the imper-
fect rate and δJ is the fluctuation of J . We assume that the
fluctuation is constant (see Appendix A for its connection
with the experimentally measurable quantity). We assume the
single-qubit gate is much better than the two-qubit gate [1]
and the imperfectness of CNOT gates only results from the
imperfect controlled-Z gate, that is, CNOT′ = Ht �κ

ct�ct Ht .
Note that the imperfect controlled-Z gate was also considered
in Refs. [44,45] for different motivations.

Using the above error model, we can derive the modified
measurement operators of stabilizers. We assume the surface
code is prepared in |�〉, where ancillary qubits are all in |0〉.
Then, the measurements of plaquette operators [see Fig. 1(c)]
can be expressed as

CNOT′
d4a CNOT′

d3a CNOT′
d2a CNOT′

d1a |�〉
= (

Ha �κ
d4a�

κ
d3a�

κ
d2a�

κ
d1a Ha

)
× CNOTd4a CNOTd3a CNOTd2a CNOTd1a |�〉, (4)

which means the imperfect CNOT introduces an extra term
for measuring a plaquette operator. Keeping terms up to the
first order of κ , the extra term yields

Ha �κ
d4a�

κ
d3a�

κ
d2a�

κ
d1a Ha

∼
[
(1 − iπκ )I⊗4 + iπκ

4

(
Zd1 + Zd2 + Zd3 + Zd4

)]
Ia

−
[
(0 − iπκ )I⊗4 + iπκ

4

(
Zd1 + Zd2 + Zd3 + Zd4

)]
Xa,

(5)

which shows that for plaquette operator measurements, im-
perfect CNOT gates will introduce coherent Z errors for data
qubits, as well as the coherent bit-flip error for the ancillary
qubit. As one will see in later parts, these detection-induced
coherent errors will result in undetected errors, which will
accumulate into logical errors after a couple rounds of syn-
drome measurements. Similarly, for site operators, the extra
term yields

Ha CNOT′
ad4

CNOT′
ad3

CNOT′
ad2

CNOT′
ad1

Ha |�〉

∼
{

Ia

[
(1 − iπκ )I⊗4 + iπκ

4

(
Xd1 + Xd2 + Xd3 + Xd4

)]

− Xa

[
−iπκI⊗4 + iπκ

4

(
Xd1 + Xd2 + Xd3 + Xd4

)]}

× Ha CNOTad4 CNOTad3 CNOTad2 CNOTad1 Ha |�〉.
(6)

Thus, for site operator measurements, imperfect CNOT gates
will introduce coherent X errors for data qubits.

IV. EFFECT OF MODIFIED STABILIZER
MEASUREMENTS AND ITS ALLEVIATION

Now we discuss the effect of those modified stabilizer
measurements for quantum computation. Suppose the initial
state is prepared perfectly in the logical code space, and then
experiences error E . We further apply stabilizer measurements
to detect errors. Here, we analyze effects of the detection-
induced coherent error using the two-round strategy [44,46]:
first measuring plaquette (site) operators and followed by
measuring site (plaquette) operators. Assume that the plaque-
tte measurement is applied first, and direct calculations yield
(see Appendix B for details)

G1
Z (CNOT′)E |�〉 = D1(Z )G1

Z (CNOT)E |�〉
= EZ [D1(Z )EXA(EX )]|�〉, (7)

where G1
Z (CNOT′) denotes measurements of all plaquette op-

erators in the first round based on imperfect CNOT gates,
EX is the X error acting on data qubits, operators acting
on ancillary qubits and containing the information of EX is
denoted by A(EX ), and D1(Z ) is the total deviation from ideal
plaquette measurements caused by imperfect CNOT gates in
the first round. After the plaquette measurement, one should
measure ancillary qubits so as to get the syndrome for X
errors. We use

∑
j D1

i j (Z ) to denote the term that survives after
measurements of ancillary qubits, where i stands for the ith in-
dependent ancilla configuration in D1(Z ), and the summation
(over j) contains all coherent terms that share the same ancilla
configuration. Thus, after the ancilla measurement, we have

G1
Z (CNOT′)E |�〉 →

[
EZ

∑
j

D1
i j (Z )

]
EXA(EX )|�〉. (8)

EZ
∑

j D1
i j (Z ) contains Z errors that need to be detected in the

next round of site operator measurements, which leads to the
following expression:

G2
X (CNOT′)

[
EZ

∑
j

D1
i j (Z )

]
EXA(EX )|�〉

= D2(X )[EZA(EZ )]

[∑
j

D1
i j (Z )A

(
D1

i j (Z )
)]

× [EXA(EX )]|�〉. (9)

Since each D1
i j (Z ) is an independent operator, each A(D1

i j (Z ))
is also independent, which uniquely reflects the Z-error con-
figuration in D1

i j (Z ). After implementing this round of site
operator measurements, we also need to measure ancillary
qubits of site operators. Since D2(X ) also contains several an-
cilla configurations, D2(X )

∑
j D1

i j (Z )A(D1
i j (Z )) will result

in some different Z errors sharing the same ancilla config-
uration, and this means the error correction can not exactly
correct errors, and even introduces more errors. Therefore, the
final state will be a coherent state with some correct terms and
some incorrect terms. Those incorrect terms get worse due
to the error correction procedure and will accumulate errors.
Here, we suppose that all ancilla measurements are error free,
and also ignore long error chains, which are roughly longer
than one-half of the code size. By doing so, error E can be
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perfectly corrected, and we can concentrate on effects of the
detection-induced coherent error just as there was no error E .
In order to have a quick and clear interpretation of this effect,
we repeatedly execute the quantum error correction cycles
(including error detections and error corrections). Then, we
use Mathematica based on the package QUANTUM [47] to
simulate detection, decoding and error-correction procedures
for the d = 3 surface code according to the previous discus-
sion (see Appendix B for details), we find undetected error
terms accumulate errors and evolve to logical operators with
a certain probability after several QEC cycles. For simplicity,
we again keep terms up to the first order of imperfect rate
κ . Similar analyses can be applied to other code sizes and a
quantum circuit with logical operations.

Calculating the probability of undetected error terms,
which evolve to logical errors, is very hard for arbitrary code
sizes, thus we can not exactly measure the performance of the
surface code. Fortunately, we can obtain the worst-case per-
formance. Note that the total deviation D(Z ) contains several
different configurations of operators acting on data qubits and
ancillary qubits, such as the error-free configuration I⊗(n+nz

a )

with n being the number of data qubits and nz
a being the

number of ancillary qubits for plaquette operator measure-
ments, and other configurations represent Z errors on data
qubits and X errors on ancillary qubits induced by imperfect
CNOT gates. For those configurations containing I⊗nz

a , there
are n + 1 possibilities, where one possibility corresponds to
I⊗(n+nz

a ) and n possibilities correspond to I⊗(n−1+nz
a ) ⊗ Zi with

i being the qubit acted by Z . The structure of D(X ) is similar
with D(Z ). In order to simplify the analysis, we consider
a worst-case scenario: only the case, where each round of
ancilla measurements projects ancillary qubits into the state
acted by I⊗na , does not experience accumulated logical errors.
For other cases (projecting to other ancilla configurations), we
assume that the data qubits will finally experience accumu-
lated logical errors (not all cases in reality).

According to the structure of D, we find the probability of
projecting ancillary qubits into the state acted on by I⊗na in
kth round stabilizer measurements, under the condition that
the (k − 1)th round of ancilla measurements projects ancilla
into the state acted on by I⊗na , is (see Appendix C for details)

Pk|k−1(I⊗na ) =Nk

[
1 + k2(2d2 − 3d + 1)2

4
π2κ2

+ 4d2 − 7d + 2

8
π2κ2

]
, (10)

where P1|0 ≡ P1, Nk is the normalized factor, and k � 1 is the
round count of stabilizer measurements (for the first plaquette
round, k = 1, and for the first site round, k = 2, etc.). Combin-
ing with those cases that are not I⊗na configurations, we can
derive the normalized factor (see Appendix C for the explicit
expression). After 2m rounds of syndrome measurements, the
probability of the case, where each round of ancilla measure-
ments projects ancilla into the state acted on by I⊗na , is

P1→2m(I⊗na ) = P1(I⊗na )P2|1(I⊗na ) . . . P2m|2m−1(I⊗na ). (11)

FIG. 2. Log-log plot of the infidelity r changing with the code
size d . The infidelity is defined as r = 1 − Fmin, where Fmin is the
minimum fidelity. In this case, we take m = 3.

For the worst case, the fidelity of the final state satisfies (see
Appendix C for details)

F � P1→2m(I⊗na )|〈�|� f1〉|
= P1→2m(I⊗na )|α|, (12)

where |� f1〉 is the final state without logical errors, and α is
the amplitude of the correct state in |� f1〉 with

|α| =
√

1 + m2(2d2 − 3d + 1)2π2κ2

1 + m2(2d2 − 3d + 1)2π2κ2 + 4d2−7d+2
8 π2κ2

.

(13)

In Eq. (12), we can focus on the minimum fidelity Fmin =
P1→2m(I⊗na )|α|, which characterizes the share of correct terms
in the final state, to measure the performance of the surface
code under detection-induced coherent errors.

We plot the infidelity r = 1 − Fmin as a function of the
code size d , at different imperfect rate κs, shown in Fig. 2.
We can find that the infidelity in the worst case decreases
with the increasing of the code size d and decays in the form
of power-law functions in the large code size regime. Thus,
the detection-induced coherent error can be alleviated by in-
creasing d (see Appendix C for discussions). We also find that
with the increasing of κ (still in the small κ regime to ensure
the small parameter expansion), the decay behavior saturates
to r ∼ 100.47d−2.1 (the top straight line in Fig. 2). In Fig. 2,
we take m = 3. For larger ms, P1→2m(I⊗na ) will be smaller
and r will be larger. However, since for large ks, Pk|k−1(I⊗na )
will approach to 1, and then there will be less differences
between large-m cases and small-m cases (see Appendix C
for details). One may notice that for small code sizes, there is
a bending behavior in the r ∼ d curve, indicating that in the
error model under considerations, some larger-size codes have
worse performance than smaller-size codes. Additionally, one
may also notice large values of the infidelity of such errors.
However, we emphasize that since we just focus on the worst
case, negative results can not be used to judge QECCs. On
the contrary, positiveness shown here again indicates the cor-
responding effectiveness of QECCs.
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V. CONNECTION WITH APPROXIMATE QECCs

Before we discuss the connection between surface codes
under the DICE and approximate QECCs, we provide a brief
introduction to the Knill-Laflamme condition for the approx-
imate QECCs, which have attracted many interests [48–52].
For details, we refer to Ref. [49,52].

Briefly speaking, approximate QECCs are QECCs that can
not correct errors perfectly. Rigorously speaking, a QECC
is called an approximate QECC, if it satisfies the Knill-
Laflamme condition [52]:

〈ψi|O|ψ j〉 = COδi j + εi j (O), (14)

where {|ψ1〉, . . . , |ψ2k 〉} are code words that span the code
space C, and O = E†

a Eb with {Ea} being the operation ele-
ments of correctable local error channels E . Note that the
Kill-Laflamme condition for the approximate QECCs has an
extra term εi j (O) comparing with that of the exact QECCs.
Intuitively, this tail implies that even local error operators can
result in logical errors. If we let i �= j, we have 〈ψi|O|ψ j〉 =
εi j (O) �= 0, and this tells us that the transition probability
(transit through local operator O) from one logical state
|ψi〉 to another logical state |ψ j〉 is not zero. Note that in
previous works, stabilizer measurements are assumed to be
perfect, thus the encoding process using stabilizer operators
is also perfect. Then, in those cases, correctable errors can
be perfectly corrected, and different logical states can not be
converted through local operators. Therefore, those cases are
within the category of exact QECCs. However, as we will see
in the following, if stabilizer measurements are assumed to be
imperfect due to the experimental limitation, situations will
change, and approximate QECCs will come out naturally.

We now return to our focus: surface codes. The logical “0”
state of the surface code can be written as [17,53]

|0̄〉 =
∏

s

1√
2

(1 + A(s))|0〉⊗n, (15)

where A(s) stands for site operator X ⊗4 and the logical “1”
state can be derived from |1̄〉 = XL|0̄〉. For preparing |0̄〉, we
just need to implement one round of site operator measure-
ments, then select an arbitrary open chain whose boundary
consists of positions of all ancillary qubits with outcome −1
and apply Z to each link of this chain [18]. Previously, we
assumed that the initial state can be prepared perfectly in the
code space, but with the detection-induced coherent error,
the initial state can not be perfect anymore. For example,
practically, the logical “0” state and the logical “1” state will
be dressed by D(X ). Ancilla measurements will be more prob-
able to project ancillary qubits into the state acted on by I⊗na

coming from D(X ). Thus, the logical states in reality will be
more likely to be |0̄′〉 = Y (X )|0̄〉 and |1̄′〉 = Y (X )|1̄〉, where
for the d = 3 surface code and keeping terms up to the first
order of κ ,

Y (X ) ∝ (1 − 5iπκ )I⊗13

+ iπκ

4
(X1 + X2 + X3 + X11 + X12 + X13)

+ iπκ

2
(X4 + X5 + X6 + X7 + X8 + X9 + X10),

(16)

where we omit the normalization factor. For a general d , Y (X )
has the same structure. Note that for the d = 3 surface code,
the correctable error E can be constructed from the oper-
ation elements Ea = {I, X1 . . . , X13, Z1 . . . , Z13,Y1, . . . ,Y13}.
Therefore, taking O = X2 as an example, we have 〈1̄′|X2|0̄′〉 ∝
〈1̄|Y†(X )X2Y (X )|0̄〉 = (1/8)π2κ2 �= 0. Note that the d = 3
surface code [[13, 1, 3]] is an exact QECC, satisfying Kill-
Laflamme condition 〈φi|O|φ j〉 = COδi j with {|φi〉} forming
the code space of a QECC and E being the correctable lo-
cal errors [54]. However, above discussions show that due
to the detection-induced coherent error, 〈φ′

i |O|φ′
j〉 �= 0 for

i �= j, which means the Knill-Laflamme condition becomes
〈φ′

i |O|φ′
j〉 = COδi j + εi j (O). One finds that this is the Knill-

Laflamme condition for approximate QECCs, Eq. (14). For
the d = 3 surface code case, the exact structure of εi j (O)
can be found in Appendix D. Note that for a general d , the
structure of εi j (O) has the same form with modifications of
values, and the derivation is also similar with that of the d = 3
case.

It is easy to check that considering larger code sizes,
some local errors still satisfies the exact Knill-Laflamme
condition, if we just keep terms up to the first order of
κ . However, the detection-induced coherent error can also
introduce higher-order terms, thus in general surface codes
become approximate QECCs. In order to justify the whole
QEC procedure, we need to include QEC cycles (as shown
in the previous section) along with the initial encoding step.
Since this encoding step just needs one round of site op-
erator measurements, our former discussions can be applied
immediately and imply that the residual errors of approximate
QECCs can be alleviated. Previous studies show that allowing
negligible errors existing in the recovery procedure can lead
to better QECCs [31,48,55], thus together with our result, one
can anticipate that there may be good approximate QECCs
suitable for fault-tolerant quantum computation.

VI. SUMMARY AND DISCUSSION

Based on the surface code, we show that the detection-
induced coherent error will result in accumulated logical
errors after running a quantum circuit, and this impact can be
alleviated by increasing the code size. Effects of the detection-
induced coherent error may be more serious for a nontrivial
quantum circuit beyond QEC-only circuits, and we leave it
to further investigations. We also show that the actual logical
states are imperfect under the detection-induced coherent er-
ror, and then the exact surface code becomes an approximate
QECC. Therefore, our results imply that some approximate
QECCs may also be possible for fault-tolerant quantum com-
putation.
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APPENDIX A: CONNECTION BETWEEN IMPERFECT
RATE AND MINIMUM GATE FIDELITY

As mentioned in the main text, the imperfect CNOT gate
can be modeled by CNOT = Ht �κ

ct�ct Ht . Since the imper-
fect rate κ is a theoretical quantity and can not be directly
measured experimentally, we need to connect it with an ex-
perimentally measurable quantity, and then we can know the
performance of a CNOT gate with a specific imperfect rate.
Here we show the connection between the imperfect rate and

the minimum gate fidelity, defined as [23]

FG(U, E ) ≡ min
|ψ〉

F (U |ψ〉, E (|ψ〉〈ψ |)), (A1)

where U stands for the operation of an ideal quantum gate,
ε stands for the quantum channel representing an imperfect
quantum gate, F is the fidelity between two quantum states,
and the minimization is over all possible two-qubit states.
Here we rewrite the ideal CNOT as U and the imperfect
CNOT as U ′, then the minimum gate fidelity is

FG(U,U ′) = min
|ψ〉

F (U |ψ〉,U ′|ψ〉)

= min
|ψ〉

Tr
√

(U |ψ〉〈ψ |U †)1/2(U ′|ψ〉〈ψ |U ′†)(U |ψ〉〈ψ |U †)1/2

= min
|ψ〉

|〈ψ |UU ′|ψ〉|

= min
|ψ〉

|a + be−iπκ |

= min
|ψ〉

⎛
⎝a

√
1 + 2

b

a
cos (πκ ) +

(
b

a

)2
⎞
⎠

= 1

2

√
2 + 2 cos (πκ ), (A2)

where

a = 3
4 + 1

4 [(|α|2 + |β|2 − |γ |2 − |κ|2〉) + (2γ ∗κ + 2γ κ∗)],

b = 1
4 − 1

4 [(|α|2 + |β|2 − |γ |2 − |κ|2〉) + (2γ ∗κ + 2γ κ∗)].
(A3)

We have let |ψ〉 = α|0〉c|0〉t + β|0〉c|1〉t + γ |1〉c|0〉t +
κ|1〉c|1〉t with α, β, γ and γ being complex numbers,
and the minimum is obtained when (|α|2 + |β|2 − |γ |2 −
|κ|2〉) + (2γ ∗κ + 2γ κ∗) = −1. For this minimum condition,
α = β = γ = 0, κ = 1 and α = β = κ = 0, γ = 1 are
possible configurations, and the corresponding states are
|ψ〉 = |1〉c|0〉t and |ψ〉 = |1〉c|1〉t . Since they are both direct
product states, they can be easily prepared experimentally
(if we measure the minimum gate fidelity of imperfect
controlled-Z gate, the state satisfying the minimum condition
is a coherent state, which will be difficult for the experimental
preparation), and then one can measure the minimum
gate fidelity instead of the average gate fidelity through
randomized benchmarking. According to Eq. (A2), one
can know that if κ = 0.01, 0.02, 0.05, 0.1, and 0.4 (values
shown in Fig. 2 in the main text), then the minimum gate
fidelity will be 0.99988,0.99951,0.9969,0.9877, and 0.809,
respectively.

APPENDIX B: NOTES ON THE SIMULATION OF d = 3
SURFACE CODE

As mentioned in the main text, we use the two-round
strategy to implement the simulation. We first do the plaquette
measurement, whose operation can be expressed as

G1
Z (CNOT′)E |�〉 = D1(Z )G1

Z (CNOT)E |�〉
= D1(Z )G1

Z (CNOT)EZEX |�〉
= EZD1(Z )

[
G1

Z (CNOT)EXG1
Z (CNOT)

]
× G1

Z (CNOT)|�〉
= EZ [D1(Z )EXA(EX )]|�〉, (B1)

in the second equality, we split E into Z errors and X errors,
and in the forth equality, we have used the fact that |�〉 is
a perfect state in the code space and is invariant under the
action of ideal stabilizers. A(EX ) results from the error prop-
agation nature of CNOT gates, which will propagate X errors
from data qubits to ancillary qubits. Attributed to this fea-
ture, one can figure out errors in data qubits from syndromes
shown in ancillary qubits. D1(Z ) is the total deviation from
ideal plaquette measurements caused by imperfect CNOT
gates in the first round, and can be represented as D1(Z ) =∑

i

∑
j D1

i j (Z ), where i stands for the ith independent ancilla
configuration, and j stands for jth term that shares the same
ancilla configuration. The expression of D1(Z ), which is the
product of deviations of all plaquette stabilizers [Eq. (5) in the
main text], reads as

D1(Z ) = [
(1 − 5iπκ )I⊗13 + 1

4 iπκ (Z1 + Z3 + Z6 + Z8 + Z11 + Z13) + 1
2 iπκ (Z2 + Z4 + Z5 + Z7 + Z9 + Z10 + Z12)

]
I⊗6

a

+ 1
4 iπκ (3I⊗13 + Z1 + Z2 + Z4)Xa1 + 1

4 iπκ (3I⊗13 + Z2 + Z3 + Z5)Xa2
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+ 1
4 iπκ (3I⊗13 + Z9 + Z11 + Z12)Xa11 + 1

4 iπκ (3I⊗13 + Z10 + Z12 + Z13)Xa12

+ 1
4 iπκ (4I⊗13 + Z4 + Z6 + Z7 + Z9)Xa6 + 1

4 iπκ (4I⊗13 + Z5 + Z7 + Z8 + Z10)Xa7, (B2)

where a1, a2, a6, a7, a11, and a12 stand for the ancillary qubits [as shown in Fig. 1(b) of the main text] used for implementing
plaquette operator measurements, i(i = 1, . . . , 13) stands for data qubits, and we have kept terms up to the first order of κ , and
used the fact that for the three-operator stabilizers, such as Zd1 Zd2 Zd3 , the deviation [Eq. (5) in the main text] reads as

Ha �κ
d3a�

κ
d2a�

κ
d1a Ha ∼

[(
1 − 3iπκ

4

)
I⊗4 + iπκ

4

(
Zd1 + Zd2 + Zd3

)]
Ia +

[
3iπκ

4
I⊗4 − iπκ

4

(
Zd1 + Zd2 + Zd3

)]
Xa, (B3)

similar for site operators.
For a particular ancilla configuration, say Xa6,

∑
j D1

i j (Z ) reads as

∑
j

D1
i j (Z ) = 1

4
iπκ (4I⊗13 + Z4 + Z6 + Z7 + Z9)Xa6, (B4)

where I⊗13, Z4, Z6, Z7, and Z9 are five different error configurations sharing the same ancilla configuration, which resulted
from the imperfect implementation of Z4Z6Z7Z9 stabilizer. After measuring the ancillary qubits, only one ancilla configuration
survives. Thus, we have

G1
Z (CNOT′)E |�〉 →

[
EZ

∑
j

D1
i j (Z )

]
EXA(EX )|�〉. (B5)

For the next site operator measurements, by similar analysis, we have

G2
X (CNOT′)

[
EZ

∑
j

D1
i j (Z )

]
EXA(EX )|�〉 = D2(X )[EZA(EZ )]

[∑
j

D1
i j (Z )A

(
D1

i j (Z )
)]

[EXA(EX )]|�〉. (B6)

After measuring site operators, we also need to mea-
sure the ancillary qubits to get the syndrome. Since
there are also several ancilla configurations in D2(X ),
D2(X )

∑
j D1

i j (Z )A(D1
i j (Z )) will result in some different Z-

error configurations sharing the same ancilla configuration,
such as 1/4iπκ (3I⊗13 + X3 + Z3 + X5 + X8)Xa5, where a5 is
the ancilla for site operators used to detect Z errors, and
X3, X5, and X8 errors are introduced from the imperfect im-
plementation of X3X5X8 stabilizer. If we correct Z errors
according to the syndrome, then we will apply Z3 to the state
of data qubits, and then what we will get is not a corrected
state (without Z errors), but a state acted by (3Z3 + Y3 +
I⊗13 + Z3X5 + Z3X8), which is a state with more Z errors.
Above analyses are based on keeping terms up to the first
order of κ; and for higher-order terms, we have the same
picture. Similar analysis show that with the proceeding of
detection-correction processes, those incorrect terms will get
worse and accumulate more errors, and will evolve into logi-
cal errors.

APPENDIX C: NOTES ON THE WORST-CASE ANALYSIS

Since there are too many possibilities, it is unlikely to
calculate the probability of undetected error terms evolving
to logical errors. Therefore, we can not exactly measure the
performance of the surface code in such errors. Thus, we turn
to the discussion of the worst case. We consider the worst
case: Only for the case that each round of ancilla measure-
ments projects ancillary qubits into the state acted on by I⊗na ,
there will be a chance with no accumulated logical errors.
For other cases (projecting to other ancilla configurations),

we assume that final data qubits will always experience ac-
cumulated logical errors (not all cases in reality). Thus, for
measuring the performance of the surface code under the
detection-induced coherent error, we just need the probability
of projecting ancillary qubits into the state acted on by I⊗na

in each round of stabilizer measurements—Pk|k−1(I⊗na ). We
now explain how to derive Pk|k−1(I⊗na ).

From the configuration of the surface code, we know that
for one specific round of stabilizer measurements, there are

(i) four data qubits, each of which only belongs to one
three-operator stabilizer;

(ii) 2 × (d − 2) data qubits, each of which only belongs to
one four-operator stabilizers;

(iii) 2 × (d − 2) data qubits, each of which is shared by
two three-operator stabilizers;

(iv) 2 × (d − 1) data qubits, each of which is shared by
one three-operator stabilizer and one four-operator stabilizer;

(v) (d − 2)2 + (d − 3)(d − 1) data qubits, each of which
is shared by two four-operator stabilizers.

Since Dk is the product of the deviation of each stabilizer
measurement, one can get the amplitude of each independent
term in Dk [see Eq. (B2) for D1(Z ) of the d = 3 case].
For example, the amplitude of the configuration I⊗(n+na ) is
1 − k(2d2 − 3d + 1)iπκ/2 with k being the round count of
stabilizer measurements, and the amplitude of the configura-
tion I⊗(n−1+nz

a ) ⊗ Z1 is iπκ/4 (since qubit-1 only belongs to
one three-operator stabilizer, Z errors occurring on it can only
come from the deviation of this stabilizer, and then only one
iπκ/4 factor will contribute to the amplitude). Amplitudes of
other configurations can also be derived from the same strat-
egy. Thus, from those amplitudes, one can get the probability
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of projecting ancillary qubits into the state acted by I⊗na in
kth round stabilizer measurements under the condition that the

(k − 1)th round of ancilla measurements projects ancilla into
the state acted by I⊗na :

Pk|k−1(I⊗na ) = Nk

[
1 + k2(2d2 − 3d + 1)2

4
π2κ2 + 4d2 − 7d + 2

8
π2κ2

]
, (C1)

where

Nk = 1

1 + k2(2d2−3d+1)2

4 π2κ2 + (1 + θ (k − 2)) 4d2−7d+2
8 π2κ2 + 5d2−9d+4

4 π2κ2
(C2)

with θ (x) being the unit step function, and θ (x � 0) = 1
while θ (x < 0) = 0. The θ function comes from the fact that
the first round stabilizer measurements is different from the
subsequent ones, as the first round stabilizer measurements
measures a perfect state. The fourth term in the denominator
of Nk comes from those configurations that ancillary qubits
are not acted by I⊗na . One should note that for calculating the
amplitude, we keep terms up to the first order of κ , and then
we should keep terms up to κ2 for the probability.

For the fidelity of the final state after 2m rounds of stabi-
lizer measurements in the worst case, we know that there will
be three possibilities of logical errors for the surface code, that
is XL, ZL, and XLZL. For a general logical state |ψ〉 = a|0̄〉 +
b|1̄〉, if it experiences logical errors, then the fidelity will be
F = |〈�|EL|�〉| � 0, where EL denotes the logical error. For
example, if |�〉 = |0̄〉 and EL = XL, then F = 0. Since there
will exist three possibilities of logical errors with different
probabilities in the worst case, the fidelity of the final state
satisfies F � P1→2m(I⊗na )|〈�|� f1〉|, where we have used the
fact that the minimum of the fidelity between the original state
and the final state with logical errors is 0, and |� f1〉 is the final
state without logical errors and its probability is P1→2m(I⊗na )
in the worst case. Note that even though each round of ancilla
measurements projects ancillary qubits into the state acted
by I⊗na , data qubits can still suffer from errors [such as
there will be I⊗(n−1+nz

a ) ⊗ Zi in D(Z )]. Thus, |� f1〉 can be
expressed as |� f1〉 = α|�〉 + |� ′〉, where α is the amplitude
of the correct state in |� f1〉 and |� ′〉 is a state with nonlogi-
cal errors. Then, |〈�|� f1〉| = |α + 〈�|� ′〉| = |α|. Therefore,
F � P1→2m(I⊗na )|〈�|� f1〉| = P1→2m(I⊗na )|α|, and

|α| =
√

1 + m2(2d2 − 3d + 1)2π2κ2

1 + m2(2d2 − 3d + 1)2π2κ2 + 4d2−7d+2
8 π2κ2

.

(C3)
As mentioned in the main text, the infidelity r = 1 − Fmin

decays with the increasing of code sizes. If we do not focus
on the worst case, then the final state will be a coherent state
containing correct terms, nonlogical error terms and logical
error terms. Since the actual fidelity of the final state F is
larger than the minimum fidelity Fmin, which is contributed by
the correct terms in the final state, the extra fidelity F − Fmin

must come from the logical error terms (those nonlogical error
terms are orthogonal with the perfect state). If we focus on
the worst case, then the final state will just be a coherent
state containing correct terms and logical error terms (since
|α| → 1, it is almost accurate to say this.). Then, suppose
F = 1 (taking this maximum will facilitate the analysis, and

the corresponding case can be that the initial state is |0̄〉 with
the logical error being ZL), and 1 − Fmin is the contribution
from logical error terms. In the main text, we show that Fmin

will increase by increasing code sizes (r decays), thus the
share of the correct terms in the final state will get higher
with the increasing of code sizes, and then the computation
accuracy will be higher. Thus, we can say that the effect of the
detection-induced coherent error can be alleviated by QECCs.

In Fig. 2 in the main text, we choose m = 3. For larger m,
P1→2m(I⊗na ) will be smaller and r will be larger. However,
since for large k, Pk|k−1(I⊗na ) will approach to 1, and then
there will be less differences between large-m cases and small-
m cases (see Fig. 3). One should note that this does not mean
that the repeating round of stabilizer measurements does not
have any effect. In reality (do not focus on the worst case), it
is more possible to appear logical error terms in the final state
with larger m. Therefore, at a fixed code size, even though the
final state may have a high fidelity in the larger m case, we can
not perceive that the state is in good quality, as the logical error
terms can also contribute to the fidelity. Therefore, the final
computing results may not be reliable, although used states
are in a high fidelity.

APPENDIX D: DERIVATION OF THE EXACT STRUCTURE
OF εi j (O)

In Sec. V of the main text, based on an explicit example,
we show that the surface code under the DICE becomes

FIG. 3. Log-log plot of the infidelity r changing with the code
size d for different m’s. κ is chosen to be 0.4 here. One can find that
the infidelity (for the worst case) is insensitive to m.
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an approximate QECC, which satisfies the modified Knill-
Laflamme condition

〈φ′
i |O|φ′

j〉 = COδi j + εi j (O). (D1)

Since the surface code is a degenerate code, CO = 1 for O = I ,
and CO = 0 for O �= I . We now show the exact structure of
εi j (O).

Note that for the d = 3 surface code, the correctable er-
ror set is {I, X1, . . . , X13, Z1, . . . , Z13,Y1, . . . ,Y13}. Since O =
E†

a Eb,

O ∈ {I, X1, . . . X13, XaXb(a, b = 1, . . . , 13|a �= b), Z1, . . . , Z13, ZaZb(a, b = 1, . . . , 13|a �= b),

XaZb(a, b = 1, . . . , 13), XaYb(a, b = 1, . . . , 13),YaZb(a, b = 1, . . . , 13)}. (D2)

Those Os can be classified into four classes:
(i) O = I;
(ii) the second one is constructed from Os containing Z operators;
(iii) the third one is constructed from Os containing only one X operator;
(iv) the last one is constructed from Os containing two X operators.
To avoid tedious algebraic calculations of 〈φ′

i |O|φ′
j〉, where |φ′

i〉 = |0̄′〉, |1̄′〉, we provide some intuitive analyses. Note
that 〈φ′

i |O|φ′
j〉 ∝ 〈φi|Y†(X )OY (X )|φ j〉, where |φi〉 = |0̄〉, |1̄〉. Thus, for i = j, in order that 〈φi|Y†(X )OY (X )|φi〉 is not zero,

Y†(X )OY (X ) should be proportional to the identity or stabilizers; for i �= j, in order that 〈φi|Y†(X )OY (X )|φ j〉 is not zero,
Y†(X )OY (X ) should be logical operators. Based on those intuitive analyses, 〈φ′

i |O|φ′
j〉 can be calculated very quickly, and we

show the results in the following.
For O = I , we have

〈0̄′|I|0̄′〉 = 〈1̄′|I|1̄′〉 ∝ 〈0̄|Y†(X )IY (X )|0̄〉 = 1, (D3)

and

〈0̄′|I|1̄′〉 = 〈1̄′|I|0̄′〉 ∝ 〈0̄|Y†(X )IY (X )|1̄〉 = 0. (D4)

Therefore, for O = I , we have εi j (O) = 0.
We now consider those Os, which contain Z operator. Simple algebraic calculations lead to

〈0̄′|ZaZb|0̄′〉 ∝ 〈0̄|Y†(X )ZaZbY (X )|0̄〉 = 0, (D5)

〈1̄′|ZaZb|1̄′〉 ∝ 〈0̄|Y†(X )XLZaZbXLY (X )|0̄〉 ∝ 〈0̄|Y†(X )ZaZbY (X )|0̄〉 = 0, (D6)

〈0̄′|ZaZb|1̄′〉 = 〈1̄′|ZaZb|0̄′〉
∝ 〈0̄|Y†(X )ZaZbXLY (X )|0̄〉
= 〈0̄|Y†(X )ZaZbY (X )XL|0̄〉
= 〈0̄|Y†(X )ZaZbY (X )|1̄〉
= 0,

(D7)

〈0̄′|XaZb|0̄′〉 ∝ 〈0̄|Y†(X )XaZbY (X )|0̄〉 = 0, (D8)

〈1̄′|XaZb|1̄′〉 ∝ 〈0̄|Y†(X )XLXaZbXLY (X )|0̄〉 ∝ 〈0̄|Y†(X )XaZbY (X )|0̄〉 = 0, (D9)

and

〈0̄′|XaZb|1̄′〉 = 〈1̄′|XaZb|0̄′〉
∝ 〈0̄|Y†(X )XaZbXLY (X )|0̄〉
= 〈0̄|Y†(X )XaZbY (X )|1̄〉
= 0.

(D10)

Similarly, we have εi j (Za) = 0. Therefore, we find that for those Os containing Z operators, εi j (O) always equals to 0.
According to similar calculations, for the case that O only contains one X operator, we have
(i) i �= j:

εi j (Xa) ∝
⎧⎨
⎩

1
8π2κ2 a = 1, 2, 3, 11, 12, 13
0 a = 4, 5, 9, 10
1
2π2κ2 a = 6, 7, 8

; (D11)
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(ii) i = j:

εi j (Xa) ∝

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−2π2κ2 a = 1, 3, 11, 13

− 19
4 π2κ2 a = 4, 5, 9, 10

− 5
2π2κ2 a = 2, 12

− 9
2π2κ2 a = 6, 8

−5π2κ2 a = 7

. (D12)

And for the case that O contains two X operators, we have
(i) i �= j:

εi j (O = XaXb) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 5
2π2κ2 a, b ∈ {1, 2, 3, 11, 12, 13}

∪(a, b in the same row)

−5π2κ2 a, b ∈ {6, 7, 8}
0 a, b ∈ {1, 2, 3, 6, 7, 8, 11, 12, 13}

∪(a, b not in the same row)

0 a, b ∈ {4, 5, 9, 10}
0 a(b) ∈ {1, 2, 3, 6, 7, 8, 11, 12, 13}

∪b(a) ∈ {4, 5, 9, 10}

; (D13)

(ii) i = j:

εi j (O = XaXb) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8π2κ2 a, b ∈ {1, 2, 3, 11, 12, 13}
1
2π2κ2 a, b ∈ {6, 7, 8}
1
4π2κ2 a(b) ∈ {1, 2, 3, 11, 12, 13}

∪b(a) ∈ {6, 7, 8}
∪(a, b not in the same column)

− 19
4 π2κ2 (a, b) ∈ {(1, 6), (1, 4), (3, 5), (3, 8), (11, 9), (11, 6), (13, 8), (13, 10)}

1
4π2κ2 (a, b) ∈ {(1, 5), (1, 9), (1, 10), (2, 7), (2, 9), (2, 10), (3, 4), (3, 9), (3, 10),

(11, 4), (11, 5), (11, 10), (12, 4), (12, 5), (12, 7), (13, 4), (13, 5), (13, 9)}
3
4π2κ2 a, b ∈ {4, 5, 9, 10}

∪(a, b in the same column)
1
2π2κ2 a, b ∈ {4, 5, 9, 10}

∪(a, b not in the same column)
3
4π2κ2 (a, b) ∈ {(2, 4), (2, 5), (12, 9), (12, 10), (7, 4), (7, 5), (7, 9), (7, 10)}
−2π2κ2 (a, b) ∈ {(6, 4), (6, 9), (8, 5), (8, 10)}
1
2π2κ2 (a, b) ∈ {(6, 5), (6, 10), (8, 4), (8, 9)}

. (D14)
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