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Quantumness beyond entanglement: The case of symmetric states
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Nowadays, it is accepted that truly quantum correlations can exist even in the absence of entanglement. For
the case of symmetric states, a physically trivial unitary transformation can alter a state from entangled to
separable, and vice versa. We propose to certify the presence of quantumness via an average of a state’s bipartite
entanglement properties over all physically relevant modal decompositions. We investigate extremal states for
such a measure: SU(2)-coherent states possess the least quantumness, whereas the opposite extreme is inhabited
by states with maximally spread Majorana constellations.
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I. INTRODUCTION

Entanglement is commonly understood as the inability to
describe the state of a compound system in terms of the states
of its constituent parts [1]. As it stands, this concept may also
be applied to different (classical) degrees of freedom of a
physical system [2–4]. However, the possibility of perform-
ing separate measurements on two subsystems, which is a
key aspect of entanglement, does not hold for these classical
counterparts. Truly quantum entanglement exceeds our under-
standing of classical correlations [5–7] and can be ascribed
to the intricacies of the measurement process in the quantum
domain [8,9]. This is the main motivation that fueled the
search for a complete characterization of correlations present
in a state [10–20].

It is a repeated mantra that entanglement is a fragile, yet
crucial resource for performing useful quantum tasks. How-
ever, a few obiter dicta are in order here. First, the presence of
entanglement does not guarantee the quantumness of a state:
in polarization optics, the canonical coherent states, agreed
upon to be the most classical states, may be highly entangled
from the naive viewpoint of entanglement between polariza-
tion modes [21,22]. Second, the presence of quantumness
does not necessarily require entanglement: there exist sepa-
rable states that nevertheless exhibit traits unparalleled in the
classical world [23]. Third, significantly entangled states need
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not be fragile: for example, spin-squeezed states are highly
entangled, yet particularly robust [24,25].

Photonic systems constitute a particularly versatile plat-
form to implement quantum protocols. But, as optical fields
can be decomposed in a variety of fundamental modes (i.e., as
it is straightforward to change the partitioning of the Hilbert
space into modes), the encoding of quantum information in
photons is not unique. Actually, a mode transformation can
alter a state from being entangled to being separable, and
vice versa [26].1 One might rightly argue that the physics of
entanglement in this case should not change just by altering
the basis [4], as changing the basis here is akin to producing
entanglement by tilting one’s head: a wave plate can enact this
transformation. In other words, there is more to quantumness
than entanglement: entanglement relies on a preferred de-
composition of Hilbert space, whereas quantumness persists
in all sensible decompositions. In consequence, a bona fide
criterion of quantumness inspired by standard entanglement
measures should assign no preference to any of these modal
decompositions.

An alternative and popular quantification of quantum-
ness is through the negativity of quasiprobability distribu-
tions [27–36]. This, however, is different from entanglement
and is only applicable to physical systems with a particular
set of dynamical variables and thus a particular mathemat-
ical structure. Our investigation is independent from these
quasiprobability distributions and is therefore unconstrained
by continuous variable systems.

1Mode transformations can, in principle, be done with arbitrary
quantum states, but they are particularly simple to implement in
photonic systems.
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In this paper, we analyze the question of entanglement-
inspired quantumness for the relevant case of pure two-mode
symmetric states, which are permutationally invariant. In the
standard Fock basis of the orthogonal modes, they can be
written as a superposition,

|ψ〉 =
2S∑

n=0

ψn |n〉a |2S − n〉b , (1.1)

which shows that they contain exactly 2S excitations. In this
decomposition over modes a and b, which may for exam-
ple correspond to horizontally and vertically polarized states
of light, the state is entangled if and only if more than
a single coefficient ψn is nonzero. However, changing the
modal decomposition through a physically trivial operation
can change the state’s entanglement properties, implying that
entanglement alone is insufficient to fully characterize the
quantumness of these states. In fact, these kinds of physically
trivial operations cannot generate all types of entangled states,
especially not the most useful entangled states, from separable
ones [37]. We rectify this situation by taking advantage of the
symmetric nature of these states to elucidate the entanglement
properties that persist beyond a single modal decomposition.

Our treatment is equally applicable to the entanglement
between two halves of a Bose-Einstein condensate (BEC)
after it is split [38–41]. In general, the amount of entanglement
present depends on the axis along which the BEC is split, so
we provide a measure that does not prioritize any splitting
axis.

The existence of a symmetry simplifies the mathematical
description and makes the states experimentally interesting,
largely because symmetrically manipulating the system gen-
erally requires fewer resources than addressing individual
constituents. In particular, symmetric states are relevant to
many experimental situations, such as spin squeezing [42].
These states are also numerically tractable, in that the size of
their Hilbert spaces grows only linearly with S, as opposed
to exponentially. For these reasons, there have been numerous
attempts to characterize the entanglement properties of sym-
metric (i.e., bosonlike) states [43–52].

A considerable amount of work has since been done using
a multipartite description of symmetric states. In this scenario,
the Hilbert space of the systems is considered as a tensor
product of 2S single-qubit Hilbert spaces. In such a partition-
ing, changing the modal decomposition as above amounts to
a series of local operations and thus does not affect the overall
entanglement properties [53–55]. This has consequently led
to entanglement measures defined from the perspective of
multipartite entanglement [56–58].

Still, it seems natural to address the entanglement proper-
ties of states such as Eq. (1.1) from a bipartite perspective
to properly describe the quantumness found in, e.g., ar-
bitrary spin-S systems. In addition, we should have a
mode-independent quantification of the total quantumness
present in such a system, as measured by a proper measure
of entanglement. Here, we tackle this problem by averaging
a bipartite entanglement measure over all modal decompo-
sitions to provide a covariant notion of quantumness. This
rectifies the apparent equivalence between the bipartite en-
tanglement properties of SU(2)-coherent states with ψ0 = 1

and other spin projection eigenstates with ψn = 1 for some
n �= 0, 2S, giving a measure of quantumness that tracks the
entanglement that persists through all physically equivalent
modal decompositions.

Averaging entanglement over the unitary invariant measure
on the space of pure states has been discussed before [59–61].
However, our measure, being SU(2) covariant, appears as a
sum of multipole moments of a state, which allows us to
connect quantumness to its geometrical properties. Exploiting
the Majorana representation [62,63], the problem appears to
be closely related to distributing points over the surface of
the Bloch (or Poincaré) sphere. We recall that the question
of distributing points uniformly over a sphere has not only
inspired mathematical research [64,65], but it has been at-
tracting the attention of physicists working in a variety of
fields [66–78]. We find that the most quantum states have
these points maximally spread, whereas the most classical
states are the SU(2)-coherent states, which are represented
by the most concentrated configuration: just a single point.
This satisfies all of the desiderata for a bipartite entangle-
ment measure that respects the SU(2) nature of symmetric
states and should prove useful to the many applications in
which the quantumness of spin-S states is tied to their ad-
vantages in quantum metrology and quantum information
protocols.

II. SU(2)-COVARIANT MEASURE OF BIPARTITE
ENTANGLEMENT

To assess the amount of entanglement present in a pure
state (1.1), we shall use the linear entropy of the reduced
density matrices �i (i ∈ {a, b}),

E (|ψ〉) = 1 − Tr
(
�2

i

)
, (2.1)

where �a = Trb(�) (analogously for �b) and � = |ψ〉〈ψ | is
the density matrix of the total system. In terms of the Schmidt
coefficients ψn, the linear entropy is given by [63]

E (|ψ〉) = 1 −
2S∑

n=0

|ψn|4, (2.2)

where E = 0 implies a separable state and E = 2S
2S+1 a fully

entangled one, where the former has a single nonzero Schmidt
coefficient and the latter, like Bell states, has 2S + 1 Schmidt
coefficients with equal magnitude [79]. Since the linear en-
tropy is an entanglement monotone for bipartite pure states,
it fully characterizes the entanglement present in this case.
Changing the mode decomposition changes the Schmidt co-
efficients of a state, thereby changing the linear entropy E .

Transforming the modes is represented by a unitary trans-
formation R ∈ SU(2). This can be written in the form

R(θ, φ) = exp

[
θ

2

(
eiφab† − e−iφa†b

)]
, (2.3)

where a and b are the bosonic operators responsible
for annihilating excitations in modes a and b, respec-
tively. For example, the separable [SU(2)-coherent] state
|2S〉a |0〉b can be transformed by an SU(2) rotation into
|2S〉a+b |0〉a−b = R( π

2 , 0) |2S〉a |0〉b, where the new modes
are annihilated by linear combinations of the original
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bosonic operators a ± b. This rotated state can be expressed
in the original mode decomposition as |2S〉a+b |0〉a−b =
2−2S

∑2S
n=0

√(2S
n

) |n〉a |2S − n〉b; the state is separable in one
basis and highly entangled in the other.

To make an SU(2)-covariant measure that treats states such
as |2S〉a |0〉b and |2S〉a+b |0〉a−b on the same footing, we aver-
age E over all of the relevant partitions of Hilbert space. Using
the normalized Haar measure [80] dR for SU(2), our averaged
entanglement measure reads

Ē (|ψ〉) =
∫

dR E (R |ψ〉). (2.4)

In the language of polarization, this is equivalent to averaging
the entanglement found after passing through a random wave
plate, thus giving no privilege to a particular basis, such as
horizontal and vertical or diagonal and antidiagonal, for ana-
lyzing the entanglement.

The action of R on the coefficients ψn is not straightfor-
ward, so we instead evaluate this quantity by resorting to a
parametrization of symmetric states that is better suited to
describing SU(2) transformations. To this end, we start by
expressing the density matrix � as

� =
2S∑

K=0

K∑
q=−K

�Kq TKq, (2.5)

where the irreducible tensors (also called polarization opera-
tors) associated with spin S are given by [81,82]

TKq =
√

2K + 1

2S + 1

S∑
m,m′=−S

CSm′
Sm,Kq |S, m′〉〈S, m|, (2.6)

with CSm
S1m1,S2m2

denoting the Clebsch-Gordan coefficients [83]
that couple a spin S1 and a spin S2 to a total spin S and
vanish unless the usual angular momentum coupling rules are
satisfied: 0 � K � 2S and −K � q � K . These are (2S + 1)2

operators that constitute a basis of the space of linear operators
acting on the Hilbert space and the correspondence between
spin eigenstates and two-mode bosonic states is given by
|S, m〉 = |S + m〉a |S − m〉b. The expansion coefficients

�Kq = Tr(� T †
Kq ) (2.7)

are called the state multipoles and contain the complete in-
formation about the state sorted in the appropriate way: they
are the K th-order moments of the generators. Normaliza-
tion dictates that �00 = 1/

√
2S + 1, and Hermiticity implies

�∗
Kq = (−1)q�K−q.

Due to their very same definition, the multipoles inherit the
proper transformation under SU(2); that is, if the state expe-
riences the unitary transformation �̃ = R � R†, the multipoles
transform as

�̃Kq =
K∑

q′=−K

DK∗
q′q(R) �Kq′ , (2.8)

where DK
q′q(R) are the Wigner D-matrices [83].

The linear entropy of the transformed state can be com-
puted via the reduced density matrix

�̃a =
∑
Kq

√
2K + 1

2S + 1
�̃Kq

S∑
m=−S

CSm
Sm,Kq |S + m〉a a〈S + m|.

(2.9)

Then, using the orthogonality of the Clebsch-Gordan coeffi-
cients, the trace of the square of �̃a yields

E (R |ψ〉) = 1 −
∑
K,K ′

�̃K0�̃
∗
K ′0δKK ′ . (2.10)

We can then average over the rotations using properties of the
D-matrices. To this end, we note that∫

dR �̃K0�̃
∗
K ′0 =

∑
q,q′

�Kq�
∗
K ′q′

∫
dR DK∗

q0 DK ′
q′0

= δKK ′

2K + 1

K∑
q=−K

|�Kq|2. (2.11)

The averaged entanglement thus becomes

Ē (|ψ〉) = 1 −
2S∑

K=0

1

2K + 1

K∑
q=−K

|�Kq|2. (2.12)

As the multipoles are directly accessible in the labora-
tory [84,85], Ē allows for an experimental certification of
quantumness [86]. Furthermore, Ē involves all the moments,
so it improves previous measures relying solely on the vari-
ances [87,88].

For the case of pure states that we are dealing with, we ex-
pand in the angular-momentum basis as |ψ〉 = ∑

m ψm |S, m〉,
so (2.12) takes the form

Ē (|ψ〉) = 1 − 1

2S + 1

2S∑
K=0

K∑
q=−K

∣∣∣∣∣
S∑

m,m′=−S

CSm′
Sm,Kqψm′ψ∗

m

∣∣∣∣∣
2

,

(2.13)
which is the quantumness measure that we advocate.

III. EXTREMAL STATES

The averaged linear entropy (2.13) can be regarded as a
nonlinear functional of the density matrix. The higher the
value of Ē , the greater the value of the average entanglement.
Some pure states give the maximal value of E for a given par-
tition, but no pure state achieves E = 2S

2S+1 for all partitions.
Maximally mixed states, in contrast, give the maximum value
of Ē , but linear entropy is only an entanglement measure for
pure states. For this reason, we will restrict our investigation to
pure states, using a geometrical picture that relates each state
to a set of 2S + 1 points on the surface of a sphere.

We first try to ascertain states that minimize Ē . In Ref. [89],
it was claimed that the cumulative multipolar distribution

AM ≡
M∑

K=0

K∑
q=−K

|�Kq|2 (3.1)
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FIG. 1. Density plots of the SU(2) Q functions for the most quantum states, which extremize the bipartite entanglement averaged over all
modal decompositions, for the cases S = 2, 3, 7/2, 4, 6, and 12 [from left to right; blue (dark disks) indicates the zero values and red (dark
polygons) the maximal ones]. On top, we sketch the corresponding Majorana constellation for each state.

is maximal for SU(2)-coherent states for all M � S. These
states are defined as [90]

|θ, φ〉 = 1

(1 + |α|2)S
exp(αS+) |S,−S〉 , (3.2)

where S± = Sx ± iSy are the ladder operators for SU(2) and
the complex number α corresponds to the stereographic
projection of the point (θ, φ) on the sphere; viz., α =
tan(θ/2)e−iφ . The monotonicity of the coefficients 1/(K + 1)
immediately implies that the SU(2)-coherent states minimize
Ē , with a value of Ēcoh determined by

1 − Ēcoh = 1

4S + 1

2S∑
m=0

(
2S

m

)2(4S

2m

)−1

=
√

π	(2S + 1)

2	(2S + 3/2)
.

(3.3)
This accords with many other quantumness indicators agree-
ing that SU(2)-coherent states, which correspond to a single
point on the surface of the sphere, are the least quantum [21].
Other seemingly separable states with a single nonzero coeffi-
cient ψn have larger values of Ē , as can be computed explicitly
from Eq. (2.13) to yield

1 − Ē = 1

2S + 1

2S∑
K=0

(
CSm

Sm,K0

)2
. (3.4)

This sum grows as |m| approaches S in the same way that
the overlap between a vector of length S pointing at an angle
ϕ = arcsin(m/S) from the horizontal added to a vector of
length K pointing along the horizontal remains closest to
the former vector when ϕ points toward the north or south
pole. The average entanglement for a state |S, m〉 thus grows
monotonically with S − |m|, demonstrating that this form of
quantumness lifts the degeneracy between states |S, m〉 and
SU(2)-coherent states |S, S〉 that is otherwise present when
only their entanglement properties are evaluated.

Next, we concentrate on maximizing Ē . If we write the
set of unknown normalized state amplitudes in Eq. (2.13) as
ψm = am + ibm (am, bm ∈ R), we find that the maxima cor-
responds to a (quartic) polynomial program [91] that can be
solved by standard methods. We provide a complete list of the
numerical solutions for ψm found for different values of S up
to 15 in Ref. [92].

Although the coefficients ψm completely characterize |ψ〉,
they do not provide a lucid picture of the state. To this end,
we will use the concept of Majorana representation [62,63],
which maps every (2S + 1)-dimensional pure state |ψ〉 into
the polynomial

ψ (θ, φ) = 〈θ, φ|ψ〉 ∝
S∑

m=−S

√
(2S)!

(S − m)!(S + m)!
ψm αS+m.

(3.5)
Up to a global unphysical factor, |ψ〉 is determined by the set
{αi} of the 2S complex zeros of ψ (θ, φ), suitably completed
by points at infinity if the degree of ψ (θ, φ) is less than
2S. A nice geometrical representation of |ψ〉 by 2S points
on the unit sphere (often called the constellation) is obtained
by an inverse stereographic map of {αi}. Two states with the
same constellation are the same, up to a global phase. For
example, the SU(2)-coherent states have all 2S of the “stars”
in their constellation co-located at angular coordinates (θ, φ).
Several decades after its conception, this stellar representa-
tion has recently attracted a great deal of attention in several
fields [66–78].

Intimately related to the Majorana polynomial ψ (θ, φ) is
the SU(2) Q-function, defined as

Q(θ, φ) = |ψ (θ, φ)|2. (3.6)

Obviously, the stars {αi} are also the zeros of Q(θ, φ), so
the Q-function is an attractive way to depict the state to help
appreciate the symmetries of |ψ〉. It is not surprising that it
has gained popularity in modern quantum information [21].

The Q-functions and the corresponding Majorana constel-
lations for a few examples of extremal states are shown in
Fig. 1, with many more given in Ref. [92]. The resulting
constellations have the points symmetrically placed on the
unit sphere, which agrees with other previous notions of quan-
tumness, such as states of maximal Wehrl-Lieb entropy [93].

In special dimensions, the constellations show a remark-
able additional degree of symmetry, some of which are
summarized in Table I. In particular, we get constellations
that coincide with the Platonic solids: they are optimal states
for quantum communication [94] and for fundamental tests
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TABLE I. Symmetries of the constellations associated to the
maximal states for the values of S.

S Group Order Constellation

1 C2 2
3
2 S3 6 triangle
2 S4 24 Platonic
5
2 D12 12 triangle + poles
3 C2 × S4 48 Platonic
7
2 D20 20 pentagon + poles
4 D16 16 twisted cube
5 D16 16 twisted cube + poles
6 C2 × A5 120 Platonic
7 D24 24 twisted hexagon + poles
8 A4 12
12 S4 24

of quantum mechanics [95]. Surprisingly, states whose con-
stellations correspond to a twisted cube have higher average
entanglement than those corresponding to a cube.

The optimal states have amazing features: for values of S
such as 2, 3, 6, 8, and 12, they are maximally unpolarized [89]
and they are optimal to estimate rotations about any axis [96],
all because they have sufficiently isotropic angular momen-
tum properties which are all optimized by symmetric states.
For other values of S, they have highly spread constellations
without having isotropic angular momentum properties; when
S = 11/2 and 13/2, for example, they are not even isotropic
to first order. We again direct the interested reader to the full
list given in Ref. [92].

Other criteria of quantumness have been considered in
this context of symmetric states and maximally spread Ma-
jorana constellations. Among them, the Kings [89] and the
Queens [97] of Quantumness seem to be closely related to
our approach, where the former are states with maximally
isotropic angular momentum properties and the latter are
states that are maximally different from convex combinations
of SU(2)-coherent states. For some dimensions, the optimal
states turn out to be the same, but for others, they are differ-
ent [21], highlighting the rich physics underlying symmetric
states and sphere point picking.

In Fig. 2, we plot the value of the averaged entropy Ē for
the maximal states found numerically as a function of the
dimension S. For comparison, we have also included the cor-
responding values for the minimal states, which correspond
to coherent states. As we can appreciate, Ē approaches the
limit value of unity as S grows. One can easily guess that
Ē ∼ 1 − 1/(2S), which shows that the higher the value of S,
the more quantum the extremal state is.

1 5 10 15

0

0.2

0.4

0.6

0.8

1

FIG. 2. Average entanglement Ē for the states of maximal (upper,
blue bars) and of minimal (lower, yellow bars) average entanglement
as a function of S. The continuous red line on top of the bars
represents the upper limit E = 2S

2S+1 attainable in (2.2).

IV. CONCLUDING REMARKS

In summary, we have comprehensively examined the no-
tion of average entanglement for symmetric states, which is
the physically relevant quantity for these states and is directly
accessible for realistic experiments. We have proven that
SU(2)-coherent states are minimal. Their opposite counter-
parts, maximizing the average entanglement, have interesting
properties. Apart from their indisputable geometrical beauty,
there surely is plenty of room for the application of these
states.
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