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Entanglement is a valuable quantum resource in quantum information processing. In classical communication
over quantum channels, it is known to boost the communication rate drastically. To generalize such a boost
to more general scenarios, we provide computable limits on the communication over optical multiple-access
channels (MACs) for both the entanglement-assisted and unassisted communication. For the unassisted case, we
generalize the coherent-state achievable rate region and outer bound known for the thermal-loss case [B. J. Yen
and J. H. Shapiro, Phys. Rev. A 72, 062312 (2005)] to general bosonic Gaussian MACs. For the assisted case,
we generalize the two-mode squeezed vacuum rate region and the outer bound for the thermal-loss case [H. Shi
et al., npj Quantum Inf. 7, 74 (2021)] to general bosonic MACs. In terms of the total communication rate of
all senders, we prove additivity for general MACs, generalizing the two-sender version in M.-H. Hsieh et al.,
IEEE Trans. Inf. Theory 54, 3078 (2008). Furthermore, for optical communication modeled as phase-insensitive
bosonic Gaussian MACs, we prove that the optimal total rate is achieved by Gaussian entanglement and therefore
can be efficiently evaluated. The computable limits confirm entanglement’s boosts in optical multiple-access
communications. Finally, we formulate an entanglement-assisted version of minimum entropy conjecture, which
leads to the additivity of the capacity region of phase-insensitive bosonic Gaussian MACs if it is true.
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I. INTRODUCTION

Modern communication systems often transmit infor-
mation via optical channels, such as fibers or free-space
links. With the development of quantum source genera-
tion and detection, quantum effects, such as the uncertainty
principle, squeezing, and entanglement, become relevant in
characterizing the capacity of optical channels. For example,
entanglement can sometimes lead to the superadditivity phe-
nomena [1–6], where the communication capacity is increased
due to entanglement between inputs among multiple channel
uses. While an increased capacity is beneficial in practice,
the evaluation of channel capacities becomes challenging as
it requires an optimization of the joint input over an arbitrary
number of channel uses. For this reason, it took great efforts
[7] to solve the classical capacity of optical communication
since first conjectured [8].

Entanglement can also be preshared as assistance to boost
the communication rates, as theoretically proposed [9,10]
and experimentally demonstrated [11]. Moreover, unlimited
entanglement assistance (EA) in each channel use rules out
the need to entangle inputs among different channel uses in
the capacity evaluation of a single-sender and single-receiver
channel, their entanglement-assisted (EA)1 classical capacity
is additive, avoiding the superadditivity conundrum [12]. Uti-
lizing Gaussian extremality [13,14] upon the additivity, for
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1We use “EA” for both “entanglement assistance” and “entangle-

ment assisted.”

optical communication links modeled as bosonic Gaussian
channels (BGCs), one can analytically solve the EA classical
capacity and prove rigorous advantages over the unassisted
case.

The development of an optical network further complicates
the story, as multiple senders and receivers in a network
can communicate simultaneously, for example, over broad-
cast channels and multiple-access channels (MACs). In this
case, the communication limit is characterized by a tradeoff
capacity region among multiple users. The classical capacity
region of a general broadcast channel is still an open prob-
lem with or without EA [15,16], except for special cases
[15,17–19]. For bosonic optical broadcast channels, although
the capacity formula is known in the pure-loss case [18,19],
the classical capacity region is still subject to the multimode
“entropy photon number inequality” conjecture [20–23]; for
phase-insensitive bosonic Gaussian MACs (BGMACs) that
model optical networks, the classical capacity formula with
and without EA are known [24–28], but their evaluation is still
an open question as the additivity of them is unknown [28,29].
Indeed, unlike the single-sender and single-receiver cases, the
problem of additivity is complicated by the tradeoff between
the different senders.

In this paper, we provide computable limits for opti-
cal multiple-access communication over BGMACs with and
without EA. For the unassisted case, we obtain general appli-
cable outer bounds for the capacity region. For the EA case,
despite the entire capacity region being still elusive, we show
that the total communication rate is maximized by Gaussian
entanglement and can therefore be efficiently evaluated. We
prove so via extending the additivity of total rate known
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FIG. 1. Schematic of (a) a general multiple-access channel
and (b) entanglement-assisted communication through quantum
multiple-access channel. See also Fig. 2 in Ref. [28].

for the two-sender case [27] to the general case. While the
sum rate provides an outer bound of the EA capacity region,
the Gaussian optimality in total rate inspires us to examine
the Gaussian-state capacity region of a class of interference
BGMACs, which is practically relevant and includes all BG-
MACs considered in the literature [28–31]. With two or three
senders, we numerically find that two-mode squeezed-vacuum
(TMSV) states to be the optimal Gaussian entanglement.
Comparing with the rate limits of the unassisted case, we
identify a large advantage in the noisy and lossy limit. We
also extend the above results to interference BGMACs with
memory effects [32,33]. Finally, we propose an EA version
of minimum entropy conjecture, which leads to the additivity
of the capacity region of phase-insensitive bosonic Gaussian
MACs if it is true.

II. BOSONIC GAUSSIAN MULTIPLE-ACCESS CHANNELS

As shown in Fig. 1(a), to communicate via a quantum
MAC, the s � 1 senders encode the messages on quantum
systems A1, . . . , As and send them to a common receiver;
a quantum MAC is described by a completely positive and
trace-preserving map NA→B, where we denote the quantum
systems of the s senders together as a composite system A =
⊗s

k=1Ak and the output as B. To facilitate our analyses, we
introduce the Stinespring unitary dilation of the MAC acting
jointly on the environment system E ′ and the input A. The
common receiver measures the quantum system B to decode
all messages. The decoding suffers from not only the envi-
ronment noise but also the interference between the multiple
senders. As illustrated in Fig. 1(b), an EA MAC communi-
cation protocol incorporates an EA system A′

k preshared to
the receiver for each sender k to improve the communication
rate, so that the state in each pair AkA′

k is pure. Similar to the
composite system A, we denote A′ = ⊗s

k=1A′
k as the composite

system of the EA ancilla. Note that the single sender (s = 1)
case of a MAC reduces to a point-to-point quantum channel.

In optical communication, the relevant channels of interest
are phase-insensitive BGCs, where the channel unitary dila-
tion and the environment state are Gaussian [34]. Formally,
phase insensitivity invokes a symmetry about the phase ro-
tation unitary R̂(θ ) ≡ exp(−iθ â†â) with θ ∈ [0, 2π ), acting
on a mode with the annihilation operator â. For a phase-
insensitive BGMAC, a phase rotation R̂(θ ) on the output mode
can be equivalently implemented on the input by properly
choosing a phase rotation R̂k (θk ) on each input Ak , where

θk = (−1)δk θ with δk ∈ {0, 1}, namely,

NA→B[R̂(θ)ρ̂AR̂†(θ)] = R̂(θ )NA→B(ρ̂A)R̂†(θ ), (1)

where the overall phase rotation R̂(θ) = ⊗s
k=1R̂k (θk ). When

the symmetries across different users are homogeneous, δk’s
are equal, we call the BGMAC global covariant (δk = 0) or
global contravariant (δk = 1).

For the single-sender case of s = 1, the BGMAC reduces
to a point-to-point BGC represented by the Bogoliubov trans-
forms on input mode âA as

âB = w((1 − δ)âA + δâ†
A) + ξ̂ , (2)

where δ = 0, 1 indicates that the channel is covariant or con-
travariant and the noise term ξ̂ combines two vacuum modes
[35,36]

ξ̂ = u1âE ′,1 + u2â†
E ′,2. (3)

The mean photon number of the noise term is 〈ξ̂ †ξ̂ 〉 = u2
2,

where we have chosen u1, u2 to be real due to the phase degree
of freedom of vacuum modes. The canonical commutation re-
lation [âB, â†

B] = 1 requires that (1 − 2δ)|w|2 + (u2
1 − u2

2) =
1. On vacuum inputs, the channel NA→B produces a thermal
state with the mean photon number NB ≡ u2

2 + |w|2δ, which
corresponds to “dark photon counts.” For a bona fide BGC,
NB � max{−1 + |w|2(1 − δ), |w|2δ}, where the channel is
quantum limited when the equality holds.

The phase-insensitive point-to-point BGCs contain four
classes [7]. The covariant family consists of three classes:
the thermal-loss channels L|w|2,NB with transmissivity |w|2 <

1; the additive white-Gaussian noise (AWGN) channels ENB

when |w| = 1; and the amplifier channels A|w|2,NB with gain
|w|2 > 1. The contravariant family includes the conjugate
amplifiers Ã|w|2+1,NB with gain |w|2 + 1. The NB factor in
the superscript denotes the mean dark photon counts of the
channel.

Similar to the single-sender case, we can describe the
multisender (s � 2) phase-insensitive BGMAC via the Bogo-
liobov transform

âB =
[

s∑
k=1

wk
(
(1 − δk )âAk + δkâ†

Ak

)]+ ξ̂ , (4)

where the weights {wk}’s are in general complex. It is natural
to define the weight vector w = [w1,w2, . . . ,ws]T , with its
norm |w| = √∑s

k=1 |wk|2. The noise term ξ̂ can still be re-
duced to the linear combination of two vacuum environment
modes as in Eq. (3) (see Appendix B).

The canonical commutation relation [âB, â†
B] = 1 requires

that [
∑s

k=1(1 − 2δk )|wk|2] + (u2
1 − u2

2) = 1. Similar to the
single-sender case, on vacuum inputs, the MAC NA→B

produces a thermal state with the mean photon number
NB ≡ u2

2 +∑s
k=1 |wk|2δk . Also, a bona fide BGMAC re-

quires NB � max{−1 +∑s
k=1 |wk|2(1 − δk ),

∑s
k=1 |wk|2δk}.

One can prove (see Appendix E) that global covariant or
contravariant BGMACs can always be constructed via inter-
fering the users’ input on a beam splitter and then passing the
mixed mode through a phase-insensitive point-to-point BGC.
We will address this interference BGMAC in Sec. V A.

In a BGMAC, as the Hilbert space of the quantum system
is infinite dimensional, an arbitrary number of photons can
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occupy a specific mode due to the bosonic nature of light. To
model a realistic communication scenario, we will consider an
energy constraint on the mean photon number (brightness) of
each sender’s signal mode〈

â†
Ak

âAk

〉
� NS,k, 1 � k � s. (5)

In the above, we have focused on the BGMACs where a single
party in the communication protocol has access to a single
bosonic mode per channel use. We address the multimode
generalization in Appendix A.

III. COMMUNICATION OVER A MAC

The performance of the s-sender multiple-access commu-
nication is described by a vector of rates (R1, . . . , Rs), where
Rk is the reliable communication rate between the kth sender
and the receiver. A rate vector (R1, R2, . . . , Rs) is said to be
achievable if the (average) error rate of decoding is suppressed
arbitrarily small when the code word length is sufficiently
large (for a formal definition, see Refs. [25,27,28]). These
rates in general have nontrivial tradeoffs with each other, thus
their collection forms a nontrivial region in the s-dimensional
vector space. The collection of all achievable rate vectors
is called the capacity region. In this section, we review the
capacity region over a general MAC, with and without entan-
glement as the assistance.

A. Unassisted communications

To establish a multiple-access communication link to trans-
mit classical messages, the kth sender independently sends
quantum states according to a random variable xk generated
from a distribution pXk (xk ). Denote the classical register as
Xk , the overall classical-quantum state describing the channel
is

�̂ =
∑

x1,...,xs

(⊗s
k=1 pXk (xk )|xk〉〈xk|Xk

)⊗ β̂
x1...xs
B , (6)

where β̂x is the received state conditioned on the code word
x. Reference [25] has derived the unassisted capacity region
of an arbitrary quantum MAC to be the convex closure of all
non-negative rate tuples (R1, R2, . . . , Rs) satisfying∑

k∈J

Rk � I (X [J]; B|X [Jc])�̂, ∀ J ⊆ {1, 2, . . . , s} (7)

for some input distribution
∏s

k=1 pXk (xk ), where X [J] =
⊗k∈JXk . Here J is the set of senders of interest, Jc

is the complementary set U\J , and U ≡ {1, 2, . . . , s} is
the universal set. Given a tripartite quantum system XY Z
in state α̂, the quantum conditional mutual information
between quantum systems X and Z conditioned on Y
is defined as I (X ; Z|Y )α̂ = S(XY )α̂ + S(Y Z )α̂ − S(XY Z )α̂ −
S(Y )α̂, where S(X )α̂ = S(α̂X ) = −tr(α̂X log2 α̂X ) is the von
Neumann entropy.

Rate regions under specific input setups of an unassisted
BGMAC have been investigated in Ref. [29] for an interfer-
ence MAC with additive white Gaussian noises (AWGNs).
Despite that an exact solution of the capacity region is still
elusive, Ref. [29] has made a substantial progress by the com-
bination of a coherent-state rate region and an outer-bound

region. In Sec. IV, we will extend the results for an arbitrary
phase-insensitive BGMAC.

B. Entanglement-assisted communications

The EA communication scenario is depicted in Fig. 1(b).
We consider the entanglement to be pairwise between each
sender and the receiver such that the overall quantum state
φ̂AA′ = ⊗s

k=1φ̂AkA′
k

is in a product form. For convenience, we
also define a quantum state after the channel but without the
encoding,

ρ̂BA′ = [NA→B ⊗ I](φ̂AA′ ). (8)

We can also consider the unitary dilation UN of the channel
and write out the overall pure state output

ρ̂EBA′ = UN ⊗ IA′ [φ̂AA′ ⊗ |0〉〈0|E ′ ]. (9)

Here, |0〉 can be any pure state. In the case of phase-insensitive
BGMACs, it is a multimode vacuum state. We will frequently
utilize the purity in our analyses.

The EA capacity region of an s-sender MAC is conjectured
in Ref. [27] and proven in Ref. [28]. Formally, the capacity
region is given by the regularized union

CE(N ) =
∞⋃

n=1

1

n
C (1)

E (N⊗n), (10)

where the overline indicates taking the closure, the “one-shot”
capacity region C (1)

E (N ) is the convex hull of the union of
“one-shot, one-encoding” regions

C (1)
E (N ) = Conv

⎡
⎣⋃

φ̂

C̃E(N , φ̂)

⎤
⎦. (11)

The “one-shot, one-encoding” rate region C̃E(N , φ̂) for the 2s
-partite pure product state φ̂AA′ = ⊗s

k=1φ̂AkA′
k

over AA′, is the
set of rates (R1, . . . , Rs) satisfying the following 2s inequali-
ties:∑

k∈J

Rk � I (A′[J]; B|A′[Jc])ρ̂ ≡ C̃E,J (N , φ̂), ∀J (12)

where A′[J] = ⊗k∈JA′
k denotes a composite system of a subset

J of the s senders and the conditional quantum mutual infor-
mation is evaluated over the output state

ρ̂BA′ = NA→B ⊗ IA′ (φ̂AA′ ). (13)

The independence of the coding among all s senders ensures
the independence among A′

1, . . . , A′
s, and thereby a convenient

relation

I (A′[J]; B|A′[Jc])ρ̂

= I (A′[J]; BA′[Jc])ρ̂ − I (A′[J]; A′[Jc])ρ̂

= I (A′[J]; BA′[Jc])ρ̂ , (14)

which will simplify the analyses in Sec. IV.
In Ref. [28], the rate region of the common entanglement

source TMSV has been evaluated for a thermal-loss MAC,
which provides an achievable rate region. However, the exact
capacity is unknown due to the difficulty brought by (a) the
regularization in Eq. (10), which requires the entangled input
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over an arbitrary number of channel uses; (b) the union over
all states in Eq. (11), which in general live in the infinite-
dimensional Hilbert space and are energy constrained; (c)
the 2s exponentially large number of inequalities in (12) that
describe the boundary.

For later convenience, we further characterize the one-shot
one-state capacity region as a polymatroid [37], as a gen-
eralization of the similar conclusion in the classical MAC
theory [38], by proving that each boundary reaches an in-
formation quantity defined by Eq. (12) (see Appendix C).
Denote the boundaries indexed by the concerned sender block
J as γ (J ) ≡ C̃E,J (N , φ̂) given N , φ̂, where C̃E,J is defined by
Eq. (12). Then we have the following proposition.

Proposition 1. γ is a β-function, such that
(1) γ (∅) = 0,
(2) γ (J1) � γ (J2) for J1 ⊆ J2 (monotonicity),
(3) γ (J1 ∪ J2) + γ (J1 ∩ J2) � γ (J1) + γ (J2) (submodu-

larity).
In matroid theory, a set of vector (R1, R2, . . . , Rs) defined

by 0 �∑k∈J Rk � γ (J ), ∀ J , e.g., the one-shot one-state ca-
pacity region here, is a polymatroid [37].

For a specific sender block J of interest, we define the one-
shot capacity of the partial communication rate

C(1)
E,J (N ) = max

φ̂

C̃E,J (N , φ̂) (15)

and the ultimate capacity

CE,J (N ) = lim
n→∞

1

n
C(1)

E,J (N⊗n), (16)

where C̃E,J (N , φ̂) is defined in Eq. (12). Due to the sub-
modularity, the 2s boundaries of the polymatroid (despite the
degenerate one with J = ∅) are simultaneously achieved given
an encoding φ̂. Thus, the capacities of the partial rates are
achievable individually, whereas together they form an outer
bound for the capacity region which is unattainable when the
2s optima cannot be achieved simultaneously by one state.
Concretely, the 2s capacities determine a substantial part of
the capacity region boundary with 2s − 1 edges (J = ∅ is
degenerate), which is in general cut discontinuous (see Fig. 2
for an illustration of two sender case). Note that in degenerate
cases some edges can reduce to points. Our main theorems fo-
cus on the total rate within the universal set U ≡ {1, 2, . . . , s},
where Eq. (16) reduces to

CE,U (N ) = lim
n→∞

1

n
max

φ̂

C̃E,U (N , φ̂)

= lim
n→∞

1

n
max

φ̂

I (A′; B)ρ̂ , (17)

after combined with Eq. (12). Although the total-rate capacity
has the same form of quantum mutual information, similar to
the case of single sender and single receiver in Ref. [9], the
encoding is different as the s senders operate independently
and cannot be simply reduced to a single sender.

IV. MAIN RESULTS

In this section, we propose computable limits for both the
unassisted and the EA communication protocols. For the unas-
sisted protocols, we solve the coherent-state capacity region

FIG. 2. Schematic sketch of the capacities {CE,J |J ⊆ {1, 2}}
(dashed) of the partial rates and the capacity region C(N ) (solid) for
an s = 2 MAC N . CE,{1} (blue dashed) and CE,{2} (red dashed) are the
capacities of partial rate for each sender, while CE,{1,2} (green dashed)
is the capacity of the total rate. These dashed lines form an outer
bound of the actual capacity region C(N ) (solid black), where each
dashed outer bound is achieved at least for one point by the rate re-
gion (dotted-dashed) of a specific state. The gaps between the dashed
outer bound and the actual capacity region C(N ) (solid black) arise
from the fact that the capacities of partial rates cannot be achieved
simultaneously in general. Ultimately, the capacity region covers all
rate regions after the convex-hull construction in the definition.

for general phase-insensitive BGMACs and an outer bound
for a fairly general class of noisy phase-insensitive BGMACs
[see Eqs. (20) and (21)]. For the EA protocols, we prove
for the total rate that the EA classical capacity of a general
quantum MAC is additive, and that the ultimate capacity of a
phase-insensitive BGMAC is achieved by an s-partite product
of TMSV states, which immediately leads to a capacity the-
orem for BGCs when s = 1. Similar to the unassisted case,
an outer bound for the EA case is derived. For a multimode
phase-insensitive BGMAC, we find that a general Gaussian
state to be sufficient to achieve the optimum total rate.

A sketch of the proofs of the main results can be
found in Appendix D, while more details are presented in
Appendixes F–N.

A. Limits of unassisted communications

The coherent-state region constrains the input state to be an
ensemble of coherent states, which is widely used to model
laser-communication scenarios. The input state conditioned
on code words x1, . . . , xs is a product coherent state

σ̂ x1...xs = ⊗s
k=1|xk〉〈xk|Ak . (18)

For communication over a general phase-insensitive BGMAC
defined by Eq. (4), given the coefficients w, the thermal dark
count noise NB, and the signal brightness per sender {NS,k}s

k=1,
the optimal input distribution that maximizes Eq. (7) is
the circularly symmetric Gaussian distribution pXk (xk ) ∝
exp −|xk|2/NS,k, 1 � k � s, over complex displacement xk .
Therefore, the coherent-state capacity region can be obtained
as the region inside the boundaries

∑
k∈J

Rk � Ccoh,J ≡ g

(∑
k∈J

|wk|2NS,k +NB

)
− g(NB), (19)
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where J ⊆ {1, 2, . . . , s} is an arbitrary sender set and the func-
tion g(x) = (x + 1) ln(x + 1) − x ln(x) is the von Neumann
entropy of a thermal state with mean photon number x, which
also equals the Holevo information of a Gaussian distributed
coherent-state ensemble [39] of mean photon number x.

Meanwhile, we can obtain an outer-bound region via indi-
vidual upper bounds per sender and an upper bound for the
total rate (see Appendix E). We solve the outer bounds for
channels satisfying either one of the following conditions:

(a) NB � max{|w|2 − 1, 0} +
s∑

k=1

|wk|2δk; (20)

(b) NB � |w|2 +
s∑

k=1

|wk|2(1 − δk ). (21)

The former fits better a BGMAC with more covariant compo-
nents such that

∑s
k=1 |wk|2(1 − 2δk ) � 0, otherwise the latter

would provide a tighter bound.
In the noisy scenario (a), the individual bound of the kth

sender is evaluated as if NS,k photons from the kth sender
alone travel through a covariant (δk = 0) or contravariant
(δk = 1) BGC which amplifies (or attenuates) the signal mode
by |w|2 with dark photon count

Nk
B = NB + |w|2δk −

s∑
=1

|w|2δ. (22)

In this case, each individual rate Rk satisfies an upper bound

Rk � g
(|w|2NS,k + Nk

B

)− g
(
Nk

B

)
. (23)

The bound on the total rate is evaluated as if∑s
k=1 |wk|2/|w|2(NS,k + δk ) photons from all the s senders

travel through a covariant BGC of gain or loss |w|2 with the
dark photon count NB −∑s

k=1 |wk|2δk . For the total rate of
all s senders, by the bottleneck inequality (data processing
inequality) we have the upper bound

s∑
k=1

Rk � g

(
s∑

k=1

|wk|2NS,k + NB

)
− g

(
NB −

s∑
k=1

|wk|2δk

)
.

(24)
When the BGMAC is global covariant, coherent-state encod-
ing achieves the optimal unassisted total rate, as Eq. (19)
coincides with the upper bound in Eq. (24).

In scenario (b), following a similar derivation but switching
the choices of the BGCs, we have the outer bound in this case

Rk � g
(|w|2NS,k + Nk,c

B

)− g
(
Nk,c

B

)
, (25)

s∑
k=1

Rk � g

(
s∑

k=1

|wk|2NS,k + NB

)

− g

(
NB−

s∑
k=1

|wk|2(1 − δk )

)
, (26)

where the dark photon counts per sender in this case are

Nk,c
B ≡ NB + |w|2(1 − δk ) −

s∑
=1

|w|2(1 − δ). (27)

It is noteworthy that an arbitrary global covariant or con-
travariant BGMAC always satisfies one of the noise condi-
tions (a) or (b), therefore, the corresponding outer bounds (23)
and (24) or (25) and (26) can always be applied, as will be
discussed in Sec. V A. The special case of our results with
|w| = 1, δk = 0 agrees with that solved in Ref. [29].

B. Limits of EA communications

We prove the additivity of the total rate of EA communica-
tion over a general MAC as a generalization of the two-sender
version in Ref. [27].

Theorem 1 (Additivity of the total rate). The EA classical
capacity of the total communication rate over an s-sender
MAC N is additive,

CE,U (N ) = C(1)
E,U (N ). (28)

The proof of Theorem 1 relies on the additivity of quan-
tum mutual information in Eq. (17). However, for the partial
information rates CE,J �=U (N ), we note that a proof of the addi-
tivity is still elusive, due to the emergence of the EA systems
A′[Jc] in Eq. (12) when Jc is nonempty. In this case, A′[Jc] is
unfortunately indivisible into one subsystem per channel use
when senders in Jc apply joint coding among channel uses.
Nevertheless, it is noteworthy that a conditional additivity
for partial rate of J holds under the constraint that senders
in Jc apply independent coding among channel uses. This
reveals an intriguing phenomenon that entangling A[J] among
channel uses does not improve the communication rate when
A[Jc] is uncorrelated, which will help our proof of Proposition
2 at the end of Sec. V A.

Using the additivity, we solve the ultimate capacity for
the total rate of EA communication over a phase-insensitive
BGMAC as summarized below.

Theorem 2 (Total rate of BGMACs). The EA classical ca-
pacity of total rate CE,U (N ) over a phase-insensitive s-sender
BGMAC N , under the energy constraint {NS,k}s

k=1, is additive
and achieved by an s-partite TMSV state, i.e.,

CE,U (N ) = C̃E,U
(
N ,⊗s

k=1 |ζ 〉AkA′
k

(NS,k )
)
. (29)

Here a TMSV between two modes D, D′, with a mean photon
number NS per mode, is given by the wave function

ζ̂DD′ (NS) ∝
∞∑

nk=0

(1 + 1/NS)−n/2 |n〉D |n〉D′ , (30)

where |n〉 is the Fock state defined by â†â |n〉 = n |n〉. Note
that Theorem 2 also applies to general point-to-point phase-
insensitive BGCs, leading to the following corollary.

Corollary 1 (Capacity of BGCs). The EA capacity of a
single-mode point-to-point phase-insensitive bosonic Gaus-
sian channel is achieved by a TMSV state. For a BGC
described by Eq. (2), the EA capacity CE(δ, NS, |w|2, NB) is
specified as the following: For the covariant BGCs (δ = 0),

CE(0, NS, |w|2, NB) = g(NS) + g(N ′
S) − g(A+) − g(A−),

(31)
where A± = [D − 1 ± (N ′

S − NS)]/2, N ′
S = |w|2NS + NB,

and D = √(NS + N ′
S + 1)2 − 4|w|2NS(NS + 1); for the
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contravariant BGCs (δ = 1),

CE(1, NS, |w|2, NB) = g(NS) + g(N ′
S) − g(Ac

+) − g(Ac
−),

(32)
where Ac

± = (±Dc + N ′
S + NS)/2, N ′

S = |w|2NS + NB, and
Dc = √(N ′

S − NS)2 + 4|w|2NS(NS + 1).
This result not only generalizes the capacity of the co-

variant case in Ref. [13], but also provides a start point for
obtaining the outer bound below.

Indeed, the derivation of the outer bound in the unassisted
case also applies to the EA case. For channels satisfying
condition (a) of Eq. (20),

Rk � CE
(
δk, NS,k, |w|2, Nk

B

)
, (33)

s∑
k=1

Rk

� CE

(
0,

s∑
k=1

|wk|2
|w|2 (NS,k + δk ), |w|2, NB −

s∑
k=1

|wk|2δk

)
;

(34)

and for channels satisfying condition (b) of Eq. (21),

Rk � CE
(
δk, NS,k, |w|2, Nk,c

B

)
, (35)

s∑
k=1

Rk

�CE

(
1,

s∑
k=1

|wk|2
|w|2 (NS,k+δk ), |w|2, NB−

s∑
k=1

|wk|2(1−δk )

)
.

(36)

Here the dark photon counts Nk
B, Nk,c

B are defined in Eqs. (22)
and (27). Similarly, our results are complete for all global co-
variant or global contravariant cases, interference BGMACs,
as we will detail in Sec. V A.

Finally, we generalize our results to the multimode case,
where each sender and receiver can send multiple modes to
the BGMAC. (See Appendix A for a detailed definition.)

Theorem 3 (Multimode BGMACs). The energy-
constrained EA classical capacity of total rate CE,U (N )
over a phase-insensitive s-sender BGMAC N is additive and
achieved by a zero-mean Gaussian state, i.e.,

CE,U (N ) = max
φ̂G

C̃E,U (N , φ̂G), (37)

where the maximization is taken over all zero-mean Gaussian
states φ̂G satisfying the energy constraints.

V. EXAMPLE: INTERFERENCE BGMACS
AND MEMORY BGMACS

So far we have derived the rate limits for both the unas-
sisted and the EA communications over a phase-insensitive
BGMAC. In this section, we evaluate the limits for interfer-
ence BGMACs, and furthermore for its multimode version
where memory effects are involved. We show that the product
TMSV, with the proper additional passive linear operations
accounting for any memory effects, achieves the total rate ca-
pacity. Compared with the coherent-state capacity region, the

FIG. 3. Schematic of interference bosonic Gaussian multiple-
access channels. � is a single-mode BGC.

TMSV demonstrates a logarithmic EA advantage ∼ln(1/NS)
in the overall signal brightness NS =∑s

k=1 NS,k , even when
the memory effect is present.

A. Interference BGMAC

Although our main theorems apply to general phase-
insensitive BGMACs, in the numerical evaluation we will
focus on the interference BGMACs as shown in Fig. 3. For
these channels, the input modes first interfere through a beam-
splitter array then the mixed mode travels through a BGC. One
can in general prove that as long as the BGMAC in Eq. (4) is
global covariant or contravariant (δk’s are equal), it reduces to
an interference BGMAC (see Appendix E). Therefore, inter-
ference BGMACs form a fairly general class of BGMACs.
Indeed, interference BGMACs are relevant in applications,
and all of the BGMACs considered in the literature are in
this class [28–31]. Formally, the interference BGMAC N is
a concatenation

N = � ◦ B (38)

of an s-input–one-output beam splitter B and a single-mode
BGC �. Upon the input modes âA1 . . . âAs from the s senders,
the MAC N first combines the modes through the beam split-
ter B to produce a mixture mode

âAmix =
s∑

k=1

wk

|w| âAk , (39)

while all other ports of the beam-splitter array are discarded.
Then the mixture mode goes through the single-mode BGC
�. For convenience, we introduce the power interference
ratios {ηk = |wk|2/|w|2}s

k=1 that sum to unity. Interference
BGMACs can be classified into four fundamental classes,
depending on the four classes of the BGC � involved, as
introduced in Sec. II.

For all the four classes of �, we can respectively obtain
the coherent-state capacity region and the outer bounds for the
unassisted case. Via the general result of Eq. (19), we have the
coherent-state capacity region defined by

Ccoh,J =g

[∑
k∈J

|w|2ηkNS,k + NB

]
− g(NB), (40)

for any J ⊆ {1, . . . ,U }. Similarly, from Eqs. (23) and
(24) for the covariant interference BGMACs and Eqs. (25)
and (26) for the contravariant case, we have the outer
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FIG. 4. The logarithmic entanglement enhancement against sig-
nal brightness NS in the total communication rate of an interference
BGMAC N defined in Eq. (38), over the unassisted coherent-state
capacity Ccoh,U (19) (choosing J = U ≡ {1, . . . , s}) which achieves
the outer bound (24). Colored from blue to red for � being
the thermal-loss channel, the AWGN channel, the amplifier chan-
nel, and the conjugate amplifier channel. (a) 2-sender case (s =
2): signal brightness NS,1 = 0.9NS, NS,2 = 0.1NS, interference ratio
η1 = 0.9, η2 = 0.1. (b) 3-sender case (s = 3): NS,1 = NS/2, NS,2 =
NS/3, NS,3 = NS/6, η1 = 1

2 , η2 = 1
3 , η3 = 1

6 . The gain and loss of
the BGC component � are |w|2 = 0.1, 1, 1.1, 0.1 with thermal noise
NB = 0.1 + max{(|w|2 − 1)(1 − δ), 0} = 0.1, 0.1, 0.2, 0.1 for the
four cases, respectively.

bound

Rk � g[|w|2NS,k + NB] − g(NB), 1 � k � s (41)

s∑
k=1

Rk � g

(
s∑

k=1

ηk|w|2NS,k +NB

)
−g(NB). (42)

The formulas for the two cases coincide in the form, owing to
our definition using w and NB that differs from Ref. [7]. The
above agree with the results in Ref. [28] for the δ = 0 case.
The outer-bound region is a computation-friendly benchmark.
Any EA protocol surpassing the outer-bound region possesses
a provable advantage over all unassisted protocols.

Similar to the unassisted case, we can also obtain the outer
bound for the EA case from Eqs. (33) and (34) for the covari-
ant cases, and Eqs. (35) and (36) for the contravariant case.
Summarizing the results, we have

Rk � CE(δ, NS,k, |w|2, NB), 1 � k � s (43)

s∑
k=1

Rk � CE

(
δ,

s∑
k=1

ηkNS,k, |w|2, NB

)
, (44)

where δ = 0 for the covariant case and δ = 1 for the con-
travariant case. Although this bound is likely loose, it is easy
to calculate since CE is known explicitly in Eqs. (31) and (32).

Aside from the outer bounds, we can evaluate the ulti-
mate capacity (of total rate) from Theorem 2. We consider
interference BGMACs as an example. As shown in Fig. 4,
we see a logarithmic EA advantage in the total communi-
cation rate, similar to the point-to-point communication in a
thermal-loss channel [10]. The EA advantage in (b) is slightly
better than (a) because the brightness of the sender contribut-
ing the majority of communication rate, sender 1, is lower,
which enhances the EA advantage. Surprisingly, the conjugate
amplifier BGMAC yields a much larger advantage than the

FIG. 5. The total communication rate R =∑s
k=1 Rk , normalized

by the coherent-state capacity Ccoh,U , U = {1, . . . , s}, against the
interference ratios of a thermal-loss interference BGMAC for (a) the
2-sender case (s = 2) given the energy budget per sender NS,1 =
9 × 10−4, NS,2 = 10−4; (b) the 3-sender case (s = 3) given the en-
ergy budget per sender NS,1 = 1

2 × 10−3, NS,2 = 1
3 × 10−3, NS,3 =

1
6 × 10−3. The � component in each case is a thermal-loss BGC
with |w|2 = 0.1, NB = 0.1. In (a) the EA bottleneck bound (44) is
also presented for comparison.

others, which suggests more benefits for scenarios involving
a gain medium. This straying diminishes when NB → ∞.
To understand the influence of the beam-splitter ratio on the
total rate, we consider the two-sender and three-sender cases
in Fig. 5. We find that the advantage’s dependence on the
beam-splitter ratio is weak, when the input energy is low.
Therefore, the logarithmic EA advantage is robust for differ-
ent BGMACs.

We also note that a gap emerges between the EA classi-
cal capacity and the bottleneck bound when the interference
structure varies, as shown in Fig. 5(a). Nevertheless, we find
that the gap diminishes at least in the following two scenarios:
(1) the BGMAC approaches a point-to-point BGC with η → 0
or 1; (2) the signal brightness distribution goes to homoge-
neous where the interference structure no longer influences
the total rate. Since the former is described by a neat formula
(42), it works as a fairly efficient benchmark in this regime. In
conclusion, the infinite-fold EA advantage in point-to-point
communication in noisy BGC extends to the multiple-access
communication.

With the total rate understood, now we examine the one-
shot capacity region with Gaussian encoding. Theorem 2
indicates that the capacity of total rate is achieved by a TMSV
state, which is a special case of Gaussian states. In practice,
Gaussian states are especially of interest since they are ac-
cessible with off-the-shelf devices. We evaluate the union of
the rates over zero-mean Gaussian input states φ̂AA′ . Due to
the unitary degree of freedom in the EA A′ that purifies the
input system A, the only Gaussian state we need to consider
is a product of squeezed TMSV states up to single-mode
squeezing

|φ(r, θ)〉AA′ = ⊗s
k=1ŜAk (rk, θk ) |ζ (N ′

S,k )〉
AkA′

k
, (45)

where the squeezing operator Ŝ(r, θ ) = R̂(θ )Ŝ(r) is a concate-
nation of a single-mode squeezing operation with strength
r and a phase rotation of angle θ . Mathematically, Ŝ(r) =
exp[r(â2 − â†2)/2], with â being the annihilation operation of
the mode they act on.
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FIG. 6. Optimization of the Gaussian-state rate regions of
2-sender interference BGMACs with � being a thermal-loss
channel. (a) Bright illumination NS,1 = 1, NS,2 = 2, interference
ratio η1 = 1

3 , η2 = 2
3 , |w|2 = 0.1, NB = 0.1; (b) weak illumina-

tion NS,1 = 10−3, NS,2 = 2 × 10−3, interference ratio η1 = 1
3 , η2 =

2
3 , |w|2 = 0.1, NB = 0.1. Colored from blue to red at the
1st, 5th, 20th, and 50th progress steps of the numerical optimiza-
tion. Insets: The evolution trend of |r| = √r2

1 + r2
2 versus the

progress step for different points on the boundary. See Appendix I
for the evaluation method.

Given the input in Eq. (45), the energy constraint of Eq. (5)
requires

N ′
S,k = 4NS,ke2rk + 2e2rk − e4rk − 1

2(e4rk + 1)
. (46)

The overall state φ̂(r, θ) is parametrized by two length-s vec-
tors θ = [θ1, . . . , θs]T and r = [r1, . . . , rs]T . Therefore, the
one-shot Gaussian-state capacity region is given by the union

C (1)
E,G(N ) =

⋃
r,θ

C̃E(N , φ̂(r, θ)). (47)

Due to the phase symmetry (1), the total number of param-
eters in the union is reduced to 2s − 1. This union can be
numerically solved easily when s is not too large. Now we
proceed to numerical solving the Gaussian capacity region of
the 2-sender case for the convenience of visualization.

For a thermal-loss MAC, Fig. 6 shows the evolution of the
union region at the 1st, 5th, 20th, and 50th steps in the opti-
mization over (r, θ) (see Appendix I for details). We see that
the union region approaches the TMSV region (black solid)
as the numerical optimization proceeds. Indeed, the insets
show that (r, θ) converges to |r| = 0 during the optimization,
where θ becomes irrelevant. Despite that the total rate of
the TMSV region achieves the ultimate capacity, considering
the individual rates, there is an appreciable gap between the
TMSV region and the EA outer bound (black dashed), which
implies further improvement surpassing the TMSV region is
possible. More details for the four classes including also the
amplifier MAC, the conjugate amplifier MAC, and the AWGN
MAC are shown in Appendix M.

Above all, our numerical optimization shows that the
TMSV state is the optimal Gaussian input in all the examined
cases. Therefore, we conjecture that the optimal Gaussian
input φ̂ of phase-insensitive BGMAC is an s-partite TMSV
state, i.e., C (1)

E,G(N ) = C̃E(N ,⊗s
k=1 |ζ (NS,k )〉AkA′

k
). Below we

FIG. 7. (a) The kth use of the causal memory thermal-loss
channel; (b) overall representation of the N-fold causal memory
thermal-loss channel, where the memory is inaccessible for the two
communicating parties. The photon statistics at output mode b̂(k) only
depends on the input modes â(k′ ) with k′ � k due to the causality.

provide a proposition supporting the conjecture (see Ap-
pendix J for a detailed proof).

Proposition 2. For a phase-insensitive BGMAC N , con-
sider the s-partite TMSV state φ̂AA′ = ⊗s

k=1 |ζ (NS,k )〉AkA′
k
,

then C̃E,J (N , φ̂AA′ ) in Eq. (12) cannot be improved by squeez-
ing any group of modes within A[J].

To prove that r = 0 is the optimum in Eq. (47), this propo-
sition is one step away from the exact proof: it is still unclear
whether squeezing modes in both A[J] and A[Jc] at the same
time improves the rate or not.

B. Memory interference BGMAC

In this section, we further address memory effects in
interference BGMACs. To begin with, we review memory
effects in BGCs. The model of memoryless BGCs assumes
that the input modes from different channel uses suffer from
independent noises, for example, when the pulses are well
separated in a temporal sequence. In this case, for N channel
uses the noise environment E can be decomposed into inde-
pendent and identically distributed local environment modes
E (1), E (2), . . . , E (N ), which are associated with annihilation
operators ê(1), ê(2), . . . , ê(N ). However, as the clock rate of
communication increases, the signal pulses become dense in
time and memory effects can result from unexpected overlaps
between the input modes or interference due to the finite
relaxation time of the local environment modes. For succes-
sive uses of the channel, the environment mode of a specific
channel use can be correlated with input modes from previous
channel uses. Such causal memory effect has been formulated
in Refs. [32,33].

For a bosonic point-to-point thermal-loss channel, the
causal memory effect can be modeled via successively con-
necting all of the environment modes {ê(k)}N

k=1 with a memory
mode m̂ [33]. As shown in Fig. 7, an N-fold causal thermal-
loss memory channel �[N] fulfills a product of identical
unitary transforms Û1, Û2, . . . , ÛN with Ûk being the interac-
tion between the kth input mode, the environment mode ê(k),
and the memory mode m̂(k). Explicitly, we have

�[N](ρ̂) = Û [N](ρ̂ ⊗ σ̂E )Û
†
[N], (48)
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where ρ̂ is the channel input state and Û [N] = ÛNÛN−1 . . . Û1.
Here σ̂E is the environment state of the memory mode m̂
and all the local environment modes {ê(k)}N

k=1. Concretely, the
evolution Ûk of the kth memory mode and input mode â(k)

is modeled by two beam splitters as shown in Fig. 7(a). The
first beam splitter couples the noise ê(k) and the memory m̂(k)

with transmissivity ε, while the second beam splitter couples
the signal â(k) and the memory m̂ with transmissivity γ . The
overall Bogoliubov transform is

m̂(k+1) = √
εγ m̂(k) +

√
1 − γ â(k) +

√
γ (1 − ε) ê(k),

b̂(k) = −
√

ε(1 − γ ) m̂(k)+√
γ â(k) −

√
(1 − ε)(1 − γ ) ê(k),

(49)

where {b̂(k)}N
k=1 are the output modes of the thermal-loss

memory channel �[N]. The overall map of the N-fold causal
memory BGC is fulfilled by iterating the Bogoliubov trans-
form such as Eq. (49) for N times. Assuming the sender has
no access to the memory mode, we initialize it the same as the
environment noise modes.

With the thermal-loss memory channel, we are ready to
define the N-fold causal memory interference BGMAC N [N]

as a concatenation of N uses of beam splitters and an N-
fold causal memory thermal-loss channel �[N], Analogous to
Eq. (38), we have

N [N] = �[N] ◦ B⊗N . (50)

Here the N output mixture modes {â(n)
mix}N

n=1 of B⊗N are for-
warded to �[N] as the N input modes. From Eq. (50), we can
identify the memory interference BGMAC as a multimode
BGMAC defined in Appendix A.

Now we solve the ultimate total rate capacity of the causal
memory interference BGMAC. The memory channel �[N]

admits a decomposition �[N] = U (⊗N
d=1�d )V , where U and

V are passive linear optics unitaries over the input modes
and the output modes, respectively [33]. Here �d is a BGC.
Therefore, we have

N [N] = [U(⊗N
d=1�d

)
V
] ◦ B⊗N (51)

= U
[⊗N

d=1Nd
](⊗s

k=1 Vk
)
, (52)

where we defined BGMACs Nd = �d ◦ B and Vk is a unitary
acting on each sender k. The second step following from
commuting the passive linear optics unitary V with the beam
splitters B, as detailed in Appendix K. Now, because the pas-
sive linear optics unitary Vk conserves energy and unitaries on
each individual sender or only on the receiver do not change
the capacity, we have the EA total rate

CE,U (N [N] ) = CE,U
(⊗N

d=1 Nd
) =

N∑
d=1

CE,U (Nd ), (53)

where the last step is due to subadditivity (Lemma 2 of Ap-
pendix F). Note here each capacity CE,U (Nd ) has the input
energy constraint {NS,k,d}s

k=1 for all s senders individually,
which complies with the initial energy constraint {NS,k}s

k=1 for
the s senders on BGMAC N [N]. Namely,

∑N
d=1 NS,k,d � NS,k

for any 1 � k � s. As the senders can choose an arbitrary
distribution of the energy to each channel Nd , the overall

FIG. 8. (a) The ultimate EA capacity (red solid) and the EA
bottleneck bound (black dashed) of total rate

∑s
k=1 Rk versus sig-

nal brightness NS in a threefold causal memory BGMAC N [3] in
the form of Eq. (50). Normalized by the coherent-state capacity∑3

d=1 Ccoh,U (Nd ), U = {1, . . . , s}, where {Nd}3
d=1 are the unraveled

BGMACs. For the memory BGC component �[N], the attenuations
are ε = 1

2 for the noise-memory coupling with thermal noise NB =
0.1, and γ = 1

2 for the signal-memory coupling. (b) The ultimate EA
capacity (blue solid) and the coherent-state capacity (black solid)
of total rate versus the attenuation parameter ε of noise-memory
coupling. Dots: 2-sender case (s = 2), total signal brightness bud-
get per sender NS,1 = 0.9NS, NS,2 = 0.1NS, interference ratio η1 =
0.9, η2 = 0.1; triangles: 3-sender case, NS,1 = NS/2, NS,2 = NS/3,
NS,3 = NS/6, η1 = 1

2 , η2 = 1/3, η3 = 1
6 .

EA capacity of the total rate CE,U (N [N] ) is given by an op-
timization over the energy constraints. The optimization can
be evaluated efficiently, as each capacity CE,U (Nd ) is solved
by Theorem 2, given the energy constraint {NS,k,d}s

k=1.
Now, we evaluate the ultimate capacity of total rate over

a memory thermal-loss BGMAC N [3] for both 2-sender
and 3-sender cases as examples. In Fig. 8(a), we plot the
the ultimate capacity of total rate, numerically optimized
over {NS,k}s

k=1, against NS. Meanwhile, we also optimize the
coherent-state capacity

∑3
d=1 Ccoh,U (Nd ) defined by Eq. (21)

as the classical benchmark, and the EA bottleneck bound∑3
d=1 CE(

∑s
k=1 ηkNS,k, �d ) using Eq. (31) for comparison.

As shown in Fig. 8(a), we see that the logarithmic EA advan-
tage still holds. In these cases, the outer bounds simulate the
ultimate EA capacity well. Similar to the memoryless case,
there emerges a gap when the interference structure varies.
We note that numerically solving the whole capacity region
is hard, as the additivity of the partial rates within sender set
J �= U is unknown. To understand the influence of memory
effects, we also vary the parameter ε that characterizes the
strength of the memory effect in Fig. 8(b). We see that the
total rate increases with a stronger memory effect for both the
EA case and without EA. Indeed, encodings that adapt to the
memory effect will benefit the communication rate.

VI. CONCLUSION AND DISCUSSION

We have presented three main results regarding the total
EA communication rate over MACs. First, we show that it
is additive for all MACs; second, we provide the formula
of the ultimate EA capacity in a BGMAC; third, we show

022429-9



HAOWEI SHI AND QUNTAO ZHUANG PHYSICAL REVIEW A 105, 022429 (2022)

that the optimal input state of phase-insensitive BGMACs
under energy constraint being a zero-mean Gaussian state.
Specifically, for phase-insensitive BGMACs, the optimum EA
input state is an s-partite TMSV state. Meanwhile, we have
generalized the outer bounds of unassisted interference chan-
nel [29] to general unassisted phase-insensitive BGMACs.
Equipped with our formula, numerical results show that the
one-shot Gaussian-state capacity region has been sufficient to
outperform the outer bounds of the unassisted protocols.

The additivity of the whole capacity region of phase-
insensitive BGMACs is still an open question. In order to
prove additivity, one possible approach is to first show that
the capacity of the partial rate in each possible J is additive,
then prove that all the partial rate capacities are simultane-
ously achieved by the same state on the boundaries of the
capacity region. As we have shown, the total rate is additive
and achieved by a product of TMSV, the optimal state for
partial rate capacities is likely to be TMSV if the region
additivity is true; on the other hand, it is also possible that
superadditivity can be constructed to disprove additivity of
the capacity region. By analogy with the minimum output
entropy conjecture [40], we propose the following conjecture
to facilitate the future study of the additivity problem, which
immediately leads to the optimality of TMSV and thereby
the additivity of the ultimate capacity region in a thermal-loss
interference BGMACs (see Appendix N for details).

Conjecture 1 (EA minimum entropy conjecture). Let â be
an ns-dimensional vector of annihilation operators acting on
the composite input system A = ⊗n

=1(⊗s
k=1A()

k ) and ξ̂ be
the vector of noise operators (not necessarily canonical) from
the environment system E = ⊗n

=1E (). The input satisfies the
energy constraint in Eq. (5) on average per channel use. Define
a reference system A′ = ⊗n

=1A′() that purifies each ⊗n
=1A()

k .
The joint density operator is in a product state φ̂AA′ ⊗ σ̂E ,
where σ̂E = ⊗n

=1σ̂
()
E with each σ̂

()
E being a thermal state

given a known average photon number. At the receiver side,
define an n-dimensional vector of annihilation operators ĉ
for the output system B = ⊗n

=1B() from n channel uses
of Eq. (38) as ĉ()

B = (
∑s

k=1 wkâ()
Ak

) + ξ̂
()
E , 1 �  � n, while

the reference system is unchanged. Denote the joint den-
sity operator of output as ρ̂BA′ . Given the energy constraint,
the conjecture states that choosing φ̂AA′ to be the n-mode
TMSV state minimizes the conditional von Neumann entropy
S(A′[J]|BA′[Jc])ρ̂ for any J ⊆ {1, 2, . . . , s}, where A′[J] =
⊗n

=1(⊗k∈JA()
k ).

The proof or disproof of this conjecture will be an impor-
tant future direction to understand the role of entanglement in
network communication.
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APPENDIX A: MULTIMODE GENERALIZATION

Compared to the single-mode case of Eq. (4), a multimode
BGMAC allows the output B to contain N modes {âB,d}N

d=1

and each input system Ak to contain Nk modes {âAk ,nk }Nk
nk=1.

Each output mode is given by the input-output relation

âB,d =
[

s∑
k=1

Nk∑
nk=1

wd,h((1 − δd,h)âAk ,nk+δd,hâ†
Ak ,nk

)

]
+ξ̂d (A1)

for 1 � d � N , where h(1, nk ) = nk and h(k, nk ) ≡∑k−1
j=1 Nj + nk for k � 2 is a way to index all modes from 1

to
∑s

k=1 Nk . Here the kth sender has access to an Nk-mode
system Ak; the receiver has access to an N-mode system B; the
N noise modes {ξ̂d}N

d=1 are mutually independent. It is worth
pointing out that when N = 1 and each sender has the same
type of symmetry among the modes (δh(k,nk ) = δk for any
1 � nk � Nk , δk = 1 for all contravariant, and δk = 0 for all
covariant), the channel reduces to a single-mode case subject
to Eq. (4) by combining the Nk modes into one effective
mode.

Similar to the single-mode case, we apply a constraint on
the total mean photon number of the signal modes per sender

Nk∑
nk=1

〈
â†

Ak ,nk
âAk ,nk

〉 = NS,k, 1 � k � s. (A2)

Below we address the capacity region of the multimode BG-
MAC. As Theorem 1 still applies, we are able to derive
Theorem 3 and reduce the total rate evaluation to Gaus-
sian input states. Due to the multimode nature, a complete
characterization of the Gaussian states involves multimode
Gaussian unitary operations, which allow the correlations over
the modes within each sender. Similar to Proposition 2, we can
prove the following (see Appendix L).

Proposition 3. For a phase-insensitive multimode memory
BGMAC N with Nk modes input from the kth sender, con-
sider the s-partite TMSV

φ̂AA′ = ⊗s
k=1

[⊗Nk
nk=1

∣∣ζ (Nnk
S,k

)〉]
AkA′

k
, (A3)

that satisfies the energy constraint
∑Nk

nk=1 Nnk
S,k = NS,k . The

information quantities in Eq. (12) cannot be improved by any
of the following: 1. product of single-mode squeezing on a
group of modes within A[J]; or 2. phase-sensitive multimode
Gaussian unitary on modes within any specific sender.

The proposition above constrains the optimum state up to
an extra freedom on the correlations between modes within
each sender. In the case of a memory interference channel, as
we show in Sec. V B, the TMSV is indeed optimal for the total
rate, up to passive transforms within each sender.

For a single-sender BGC, similar to Corollary 1, Proposi-
tion 3 yields a necessary condition for the optimum state.

Corollary 2. The optimum input state of point-to-point
multimode phase-insensitive BGC is the purification of an
s-partite correlated thermal state

φ̂AA′ = ⊗s
k=1�Ak→AkA′

k
[ρAk ], (A4)
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where � is an arbitrary purification of the Nk-mode correlated
thermal state ρAk .

APPENDIX B: REDUCTION OF THE NOISE MODE

In general, for an s-mode input channel, the noise system
consists of 2s vacuum environment modes {âE ′,k}2s

k=1 [35,36].
In a phase-insensitive BGMAC described by Eq. (4), the noise
mode ξ̂ can always be written in the linear combination of the
2s modes

ξ̂ =
2s∑

k=1

uk ((1 − δE ′,k )âE ′,k + δE ′,kâ†
E ′,k ), (B1)

where similarly the constants δE ′,k ∈ {0, 1}. Because the 2s
modes are identically vacuum, it can be further simplified to

ξ̂ = |u1|â′
E ′,1 + |u2|â′†

E ′,2 (B2)

with

â′
E ′,1 =

s∑
k=1

(1 − δE ′,k )uk

|u1| âE ′,k,

â′†
E ′,2 =

s∑
k=1

δE ′,kuk

|u2| â†
E ′,k, (B3)

where |u1| =
√∑s

k=1(1 − δE ′,k )u2
k , |u2| =

√∑s
k=1 δE ′,ku2

k .

We see that |u1|2 + |u2|2 =∑s
k=1 u2

k .

APPENDIX C: PROOF OF PROPOSITION 1

In this proof we evaluate the entropic quantities on the
channel output ρ̂BA′ = NA→B ⊗ IA′ (φ̂AA′ ) by default.

Property 1 is trivial by definition.
Property 2 (monotonicity): Consider J1 ⊆ J2 and K = J2 −

J1, then

γ (J2) = I
(
A[J1]A[K]; B|A[Jc

2

])
= S
(
A[J1]|A[Jc

2

])+ S
(
A[K]|A[Jc

2

])+ S
(
B|A[Jc

2

])− S
(
A[J1]A[K]B|A[Jc

2

])
= I
(
A[K]; B|A[Jc

2

])+ S
(
A[K]B|A[Jc

2

])+ S
(
A[J1]|A[Jc

2

])− S
(
A[J1]A[K]B|A[Jc

2

])
= I
(
A[K]; B|A[Jc

2

])+ I
(
A[J1]; B|A[K]A

[
Jc

2

])
� I (A[J1]; B|A[K]A[Jc

2 ]) = γ (J1) (C1)

in the second equality we have used the mutual independence
between {Ak}s

k=1.
Property 3 (submodularity): Define K = J1

⋃
J2, L =

J1
⋂

J2. Then,

γ (K ) + γ (L) = I (A[K]; B|A[Kc]) + I (A[L]; B|A[Lc])

= S(A[K]|A[Kc]) + S(A[L]|A[Lc])

− S(A[K]|BA[Kc]) − S(A[L]|BA[Lc]).
(C2)

Note that

S(A[K]|A[Kc]) + S(A[L]|A[Lc])

= S
(
A[J1]|A[Jc

1

])+ S
(
A[J2]|A[Jc

2

])
(C3)

and

S(A[K]|BA[Kc])

= S(AB) − S(BA[Kc])

= S(AB) − S
(
BA
[
Jc

1

])+ S
(
BA
[
Jc

1

])− S
(
BA
[
Kc
])

= S
(
A[J1]|BA

[
Jc

1

])+ S(A[J2 − J1]|BA[Kc])

� S
(
A[J1]|BA

[
Jc

1

])+ S
(
A[J2 − J1]|BA

[
Jc

2

])
, (C4)

where we have used Jc
1 = (J2 − J1)

⋃
Kc in the last equality

and Kc ⊆ Jc
2 in the inequality. We also utilized

S(A[L]|BA[Lc])

= S(AB) − S
(
BA
[
Jc

2

])+ S
(
BA
[
Jc

2

])− S
(
BA
[
Lc
])

= S
(
A[J2]|BA

[
Jc

2

])− S
(
A[J2 − J1]|BA

[
Jc

2

])
(C5)

because Lc = (J2 − J1)
⋃

Jc
2 . Substituting into Eq. (C2), we

obtain

γ (K ) + γ (L) � γ (J1) + γ (J2). (C6)

APPENDIX D: PROOF SKETCH OF MAIN RESULTS

Below we provide the backbone of the proofs of the main
results and theorems. More detailed proofs are presented in
Appendixes E, F, G, and H.

We begin with the unassisted case in Sec. IV A. To solve an
outer-bound region, we unravel the general phase-insensitive
BGMAC defined in Eq. (4) into s individual point-to-point
BGCs for the noisy case of NB � |w|2 − 1 +∑s

k=1 |wk|2δk

(see Appendix E). Then, by applying a super-receiver that
has access to all the s outputs, we also obtain an outer-bound
region that allows arbitrary input states.

Next, we address the major part of the results of the EA
case in Sec. IV B. To prepare our analyses, we recast the
conditional quantum information in Eq. (12) into a functional
IJ with respect to the reduced state of the signal system A

IJ (N , {φ̂Ai}s
i=1) ≡ I (A′[J]; B|A′[Jc])ρ̂ . (D1)

Here the output state ρ̂ = NA→B ⊗ IA′[�A→AA′ (⊗s
i=1φ̂Ai )] is

expressed by the reduced state of the input via a purification
process, where we denote �X→XX ′ (ζ̂X ) as the purification of
system X in state ζ̂ , defined in the joint system XX ′. Similarly,
for the total rate of Eq. (17) within the universal set U , we have

IU (N , {φ̂Ai}s
i=1) ≡ I (A′; B)ρ̂ . (D2)
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(1)

′

1

(1)

′

1
′

(2)

2

(2) 2
′

1

2

…

…

FIG. 9. The input-output relation of the parallel use of two s-
sender MACs N1,N2, for the derivation of subadditivity of the total
rate with J = {1, 2, . . . , s}. A(1) and A(2) are the composite input
systems of N1 and N2, respectively, each containing s independent
subsystems. Here we use superscripts (1) and (2) to distinguish from
the subscripts k1 and k2 that label the sender indices as in A(1)

k1
, A(2)

k2
.

The subadditivity is derived by proving I (R; Q′
1Q′

2) � I (RQ2; Q′
1) +

I (RQ1; Q′
2). Here the quantum system of interest Q′

1Q′
2 is B(1)B(2). Q1

and Q2 are the channel inputs for the output systems Q′
1 and Q′

2. The
reference system A′, denoted as R, purifies Q1 and Q2.

The above functional forms will facilitate us to prove the
results.

To prove the additivity in Theorem 1, we further modify
the functional form of Eq. (D1). For each channel use, the
conditional quantum information can be reduced to quantum
mutual information via

IJ (N , {φ̂Ai}s
i=1) = I (A′[J]; B|A′[Jc])ρ̂

= I (A′[J]; BA′[Jc])ρ̂

= I (R′; Q′)ρ̂ . (D3)

The second equality is due to the independence condition of
Eq. (14); in the last equality, we reorganize the systems: define
the input quantum system of interest Q = AA′[Jc], which is
purified by a reference system R = A′[J]; after the channel
�Q→Q′ ≡ NA→B ⊗ IA′[Jc], the quantum system becomes Q′ =
BA′[Jc], while the reference R′ = R is unchanged.

Now we examine the parallel use of two arbitrary MACs,
as depicted in Fig. 9. Considering the tensor product channel
N1 ⊗ N2 as a whole, the total information rate is also in the
standard form of quantum information

IU
(
N1 ⊗ N2,

{
φ̂A(1)

i A(2)
i

}s

i=1

) = I (R′; Q′
1Q′

2)ρ̂ , (D4)

similar to Eq. (D3), where R′ = A′, Q′
 = B(),  ∈ {1, 2}, la-

bels the subsystem associated with the th channel. Assuming
the same reduced state in each channel use, the individual rate
per channel use in a separable strategy

IU
(
N1,

{
φ̂A(1)

i

}s

i=1

) = I (A′B(2); B(1) )ρ̂ = I (R′Q′
2; Q′

1)ρ̂ ,

IU
(
N2,

{
φ̂A(2)

i

}s

i=1

) = I (A′B(1); B(2) )ρ̂ = I (R′Q′
1; Q′

2)ρ̂ . (D5)

The subadditivity of quantum information [9,12]

I (R′; Q′
1Q′

2)ρ̂ � I (R′Q′
2; Q′

1)ρ̂ + I (R′Q′
1; Q′

2)ρ̂ (D6)

immediately yields the additivity of the capacity of total rate.
In the detailed proof, we shall frequently utilize the concavity
and the subadditivity of quantum information with respect to
input system Q, of which a general proof can be found in
Ref. [12].

For partial communication rates within sender sets J �=
{1, 2, . . . , s}, the above proof method fails. This is be-
cause our method requires that the system of interest, e.g.,
B(1)B(2) for the total rate I (A′; B(1)B(2) ), must be divided
into one subsystem per channel use as shown in Fig. 9,
which is not true for the partial rate I (A′[J]; B(1)B(2)A′[Jc])
within sender set J: here the system of interest becomes
B(1)B(2)A′[Jc] with the reference system A′[Jc] indivisible
when A(1)[Jc] and A(2)[Jc] are correlated. For example,
for J = {1}, Jc = {2}, consider a correlation for Jc in two
channel uses ρ̂� ∝ |00〉〈00|A(1)

2 A(2)
2

+ |11〉〈11|A(1)
2 A(2)

2
. By anal-

ogy with the proof above, one may expect a purification
φ̂� = (|0000〉A(1)

2 A(2)
2 A′(1)

2 A′(2)
2

+ |1111〉A(1)
2 A(2)

2 A′(1)
2 A′(2)

2
)/

√
2. Unfor-

tunately, the pairwise reduced states φ̂�

A(1)
2 A′(1)

2

and φ̂�

A(2)
2 A′(2)

2

are

no longer purified. In this case, plugging in R′ = A′
1, Q′

1 =
B(1)A′(1)

2 , Q′
2 = B(2)A′(2)

2 , the right-hand side of the subaddi-
tivity (D6) fails to match the individual IJ ’s for two channel
uses.

Finally, we summarize the proof of Theorem 2. Reference
[14] gives a lemma of extremality of Gaussian states for
any functional that is subject to the subadditivity and the
symmetry under channel-wise Hadamard transform. Consider
the J-set rate functional IJ . The Hadamard transform com-
mutes with the MAC, thus it does not change IJ as a unitary
transform. Combining the subadditivity and the symmetry,
we obtain Gaussian optimality in BGMACs. Therefore, we
only need to optimize over the zero-mean Gaussian states to
achieve the ultimate total rate. Note that any pure Gaussian
state can be generated from a product of TMSV by a Gaussian
unitary. Because the rate depends on merely the compos-
ite signal system A and MAC forbids cooperation between
senders, we can limit the Gaussian unitary to be a product of
Gaussian unitaries, each on a single system Ak . For a BGMAC
where each sender has access to only a single signal mode, the
Gaussian unitary on Ak further reduces to a combination of
single-mode squeezing operations and phase rotations. Later,
we will prove Proposition 2, which indicates that the total rate
cannot be improved by any single-mode squeezing operation
among the modes within J = {1, 2, . . . , s} that includes all the
s senders. Hence, Theorem 2 is proven.

APPENDIX E: PROOF OF THE OUTER BOUNDS

Following Eq. (2), we define the channel �δ,w,σ 2

A→B via the
Bogoliubov transform on input mode âA as

âB = w((1 − δ)âA + δâ†
A) + ξ̂ , (E1)

where δ = 0, 1. On vacuum inputs, the channel �δ,w,σ 2

A→B pro-
duces a thermal state with the mean photon number σ 2, which
corresponds to “dark photon counts.” For a bona fide BGC,
σ 2 � max{(|w|2 − 1)(1 − δ), |w|2δ}.
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FIG. 10. The unraveled version of an arbitrary phase-insensitive
s-sender BGMAC. The original MAC maps s inputs A1, A2, . . . , As

to a single output B, while here it is unraveled to an interference
BGMAC after conjugate amplifiers (solid arrows). The individual
bounds are evaluated by the super-receiver that has access to all the
s outputs of the extended MAC, including the dashed arrows. The
bound over the total rate is evaluated between the bottleneck right
after the beam-splitter array and the final output B.

As shown in Fig. 10, we attempt to decompose the BG-
MAC defined in Eq. (4) as

NA→B = �δ,|w|2,σ 2 ◦ B∗
A∗→B ◦ (⊗s

k=1 ÃAk→A∗
k
[δ′

k]
)
, (E2)

where we denote the conditional phase conjugator as

ÃAk→A∗
k
[δ′

k] : â∗
k ≡ (1 − δ′

k )ak + δ′
k (â†

k +
√

2v̂k ), 1 � k � s.
(E3)

For the equality of Eq. (E2) to hold, we require

δk = δ′
k + δ mod 2, (E4)

NB = σ 2 +
s∑

k=1

|wk|2δ′
k . (E5)

For �δ,|w|2,σ 2
to be physical, we require

σ 2 � max{(|w|2 − 1)(1 − δ), |w|2δ}. (E6)

With Eq. (E2), we construct a super-receiver that has access
to all the s outputs of the beam splitter B�, and we denote the
s-input–s-output beam splitter as BA∗ below. In this case, the
s outputs travel through the s-product channel (�δ,|w|2,σ 2

)⊗s,
which commutes with the beam splitter since they act on or-
thogonal subspaces. Therefore, the receiver can fully reverse
the effect of B� by applying an inverse mapping B∗−1 to the
overall channel output

B∗−1
A∗ ◦ (�δ,|w|2,σ 2

)⊗s ◦ B∗
A∗ ◦ (⊗s

k=1 ÃAk→A∗
k
[δ′

k]
)

= ⊗s
k=1

[
�δ,|w|2,σ 2 ◦ ÃAk→A∗

k
[δ′

k]
]
. (E7)

Since the unitary channel B∗−1 does not affect the entropic
quantities, the super-receiver above provides an outer bound
for the information rates. For the kth sender, we have the the
rate Rk upper bounded by the point-to-point unassisted clas-
sical capacity of channel �δ,|w|2,σ 2 ◦ ÃAk→A∗

k
[δ′

k] under input
energy NS,k , namely,

Rk � C
(
NS,k, �

δ,|w|2,σ 2 ◦ Ã[δ′
k]
)
, 1 � k � s. (E8)

Applying the minimal entropy result [41,42], we obtain the
bounds for individual rates as

Rk � g[|w|2(NS,k + δ′
k ) + σ 2] − g(σ 2 + |w|2δ′

k ), (E9)

where g(x) = (x + 1) ln(x + 1) − x ln(x).

Next, we give an upper bound for the total rate of all s
senders. According to the bottleneck inequality (data process-
ing inequality), the total rate of s senders through N is upper
bounded by the classical capacity of channel �δ,|w|2,σ 2

under
the input energy constraint

∑s
k=1 ηk (NS,k + δ′

k ), viz.,

s∑
k=1

Rk � C

(
s∑

k=1

ηk (NS,k + δ′
k ), �δ,|w|2,σ 2

)

= g

(
s∑

k=1

|wk|2(NS,k + δ′
k ) + σ 2

)
− g(σ 2). (E10)

To obtain the tightest bound, we minimize the right-hand sides
of Eqs. (E10) and (E9) over δ′

k and δ subject to constraints
of Eqs. (E4), (E5), and (E6). For the global covariant case
δk = 0, we choose δ = δ′

k = 0, such that σ 2 = NB � |w|2 −
1 is always satisfied; for the global contravariant case δk =
1, we choose δ = 1 and δ′

k = 0, such that σ 2 = NB � |w|2 is
always satisfied.

The outer bounds of Eqs. (23) and (24) are obtained
by choosing δ′

k = δk and δ = 0, such that σ 2 = NB −∑s
k=1 |wk|2δk . In this case, a physical �δ,|w|2,σ 2

requires

NB � max{(|w|2 − 1), 0} +
s∑

k=1

|wk|2δk. (E11)

Meanwhile, the outer bounds of Eqs. (25) and (26) are eval-
uated under δ′

k = 1 − δk and δ = 1, such that σ 2 = NB −∑s
k=1 |wk|2(1 − δk ). In this case we need

NB � |w|2 +
s∑

k=1

|wk|2(1 − δk ). (E12)

Indeed, by the unraveling in Eq. (E2), we have demon-
strated the following lemma.

Lemma 1. A global covariant BGMAC with δk = 0 (or
a global contravariant BGMAC with δk = 1) can always be
reduced into a covariant interference BGMAC (or a con-
travariant BGMAC).

For interference BGMACs defined by Eq. (38), by plug-
ging in wk = √

ηk (τ − δ), where δ = 0 and 1 for the covariant
case and the contravariant case, respectively, one immediately
obtains Eqs. (41) and (42).

Finally, we note that the above unraveling also applies to
the EA communication. In the EA communication protocol,
the super-receiver for the individual rates and the bottleneck
after the beam-splitter array for the total rate can be con-
structed following the same procedure in the derivation of
Eqs. (E8) and (E10), giving

Rk � CE(NS,k, �
δ,|w|2,σ 2 ◦ Ã[δ′

k]), 1 � k � s (E13)

and
s∑

k=1

Rk � CE

(
s∑

k=1

ηk (NS,k + δ′
k ), �δ,|w|2,σ 2

)
. (E14)

Note that �δ,|w|2,σ 2 ◦ Ã[δ′
k] and �δ,|w|2,σ 2

are both covariant
BGCs (δ = 0) or contravariant BGCs (δ = 1), the outer bound
above can be easily evaluated using Eq. (31) for δ = 0 or
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Eq. (32) for δ = 1. For the global covariant case δk = 0, we
choose δ = δ′

k = 0, such that σ 2 = NB � |w|2 − 1 is always
satisfied. For the global contravariant case δk = 1, we choose
δ = 1 and δ′

k = 0, such that σ 2 = NB � |w|2 is always satis-
fied. By plugging in wk = √

ηk (τ − δ), where δ = 0 and 1 for
the covariant case and the contravariant case, respectively, one
immediately obtains Eqs. (43) and (44) and their contravariant
generalizations.

APPENDIX F: PROOF OF THEOREM 1

We first prove the subadditivity using the definition with IU
in Eq. (D2). The subadditivity of IU is stated as follows.

Lemma 2. For any two parallel channel uses acting on A1

and A2, the subadditivity follows:

IU
(
N1 ⊗ N2,

{
φ̂A(1)

i A(2)
i

}s

i=1

)
� IU

(
N1,

{
φ̂A(1)

i

}s

i=1

)+ IU
(
N2,

{
φ̂A(2)

i

}s

i=1

)
. (F1)

We defer the proof to Appendix H 1. The subadditivity of the
EA classical capacity of total rate follows:

CE,U (N ) = 1

n
max
φ̂,n

IU
(
N⊗n,

{
φ̂⊗n

=1A()
i

}s

i=1

)

� 1

n

n∑
=1

max
φ̂,n

IU
(
N ,
{
φ̂A()

i

}s

i=1

)

= 1

n
nC(1)

E,U (N )

= C(1)
E,U (N ). (F2)

On the other hand, the superadditivity of CE,U is trivial since
nC(1)

E,U (N ) is immediately achieved by n-fold repetitive opti-

mum encoding of C(1)
E,U (N ) for N⊗n.

Combining the subadditivity and the superadditivity, we
obtain the additivity

CE,U (N ) = C(1)
E,U (N ). (F3)

For later convenience, we generalize the subadditivity to
IJ conditioned on an extra independence constraint as follows
(see Appendix H 2 for a proof).

Lemma 3. For any two parallel channel uses acting on A1

and A2, the additivity follows:

IJ
(
N1 ⊗ N2,

{
φ̂A(1)

i A(2)
i

}s

i=1

)
� IJ

(
N1,

{
φ̂A(1)

i

}s

i=1

)+ IJ
(
N2,

{
φ̂A(2)

i

}s

i=1

)
, (F4)

under the constraint that the inputs of senders in Jc for two
channels A(1)[Jc] and A(2)[Jc] are mutually independent.

APPENDIX G: PROOF OF THEOREM 3

The proof relies on the Gaussian extremality theorem [14]
and the subadditivity of quantum mutual information IU . Note
that IU only depends on φ̂A, we only need to prove that the
optimal reduced state in A is Gaussian, then its purification
φ̂AA′ is immediately Gaussian. We first prove that Eq. (17) is
optimized by a Gaussian state.

Revealed in Lemma 1 of Ref. [14], the quantum central
limit theorem states that, given any state ρ̂ and a Gaussian

state ρ̂G with the same first- and second-order moments, the
lemma states

f (ρ̂) � f (ρ̂G) (G1)

for a subadditive continuous s-mode functional f : H⊗s → R
which is invariant under local unitary acting on the n-copy
state f [U⊗s(ρ̂⊗n)] = f (ρ̂⊗n). Specifically, U fulfills an n × n
Hadamard transform H⊗m acting on the canonical operators
in the Heisenberg picture per mode j ∈ {1, 2, . . . , s} as

q̂(k)
j →

n∑
l=1

H⊗m
kl√
n

q̂(l )
j , p̂(k)

j →
n∑

l=1

H⊗m
kl√
n

p̂(l )
j , (G2)

where H is the 2 × 2 Hadamard matrix n = 2m. This lemma
indicates that the optimum of any functional f can be achieved
by Gaussian states when the argument ρ̂ is constrained by a
condition with respect to the covariance matrix.

The subadditivity of IU has been proven in our Lemma 2.
In Sec. H we will prove the invariance of IU , with respect to
the argument ⊗s

k=1φ̂Ak , under the Hadamard transform as the
following lemma.

Lemma 4. Any entropic functional, which is a linear com-
bination of von Neumann entropies of the argument, is
invariant under an n × n Hadamard transform H⊗ log2 n defined
by Eq. (G2).

Thus, we have Eq. (G1) for functional IU with respect to
⊗s

k=1φ̂Ak , and it leads to the Gaussian maximality of IU .
Lemma 5. For any state φ̂, the Gaussian state φ̂G with the

same mean and covariance matrix of φ̂ provides a larger value,

IU
(
N ,
{
φ̂Ak

}s

k=1

)
� IU

(
N ,
{
φ̂G

Ak

}s

k=1

)
, (G3)

while satisfying the energy constraints.
Therefore, for any state φ̂,

C̃E,U (N , φ̂) � C̃E,U (N , φ̂G), (G4)

we can always restrict

CE,U (N ) = C(1)
E,U (N ) = max

φ̂G
C̃E,U (N , φ̂G), (G5)

with some Gaussian state φ̂G satisfying the same energy con-
straints

∑
nk

〈â†
Ak ,nk

âAk ,nk 〉 � NS,k .
Now we consider the mean of the Gaussian state. Because

IU can be written as a linear combination of entropy, which
is only a function of the covariance matrix, the mean does not
change C̃E,U (N , φ̂G). Since a nonzero mean always consumes
energy, the optimum is achieved by zero-mean Gaussian
states.

APPENDIX H: PROOFS OF LEMMAS FOR
THEOREMS 1 AND 3

1. Proof of Lemma 2

We first prove the subadditivity of quantum information
Eq. (D6):

I (R; Q′
1Q′

2) � I (RQ2; Q′
1) + I (RQ1; Q′

2) (H1)

for the output state in Fig. 11 with J = {1, 2, . . . , s}, Jc =
∅. We include the environment systems E1 and E2 to ex-
tend the channel to a joint unitary. Note that Q′

1Q′
2RE1E2
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FIG. 11. The input-output relation of the parallel uses of
two s-sender MACs N1,N2 assuming A′[Jc] separable, for the
derivation of the subadditivity within A[J] as I (R; Q′

1Q′
2) �

I (RQ2; Q′
1) + I (RQ1; Q′

2). Here the quantum system of interest Q′
1Q′

2

is B(1)A′(1)[Jc]B(2)A′(2)[Jc]. Q1, Q2 are the input systems for the two
uses of channel N ⊗ IA[Jc] and the output systems Q′

1, Q′
2. The

channels N1,N2 are extended to unitaries ÛN1 , ÛN2 including envi-
ronment modes E1, E2. The reference system R purifies Q′

1E1Q′
2E2.

is pure,

I (R; Q′
1Q′

2) = S(Q′
1Q′

2) + S(Q′
1Q′

2|E1E2),

I (RQ2; Q′
1) = S(Q′

1) + S(Q′
1|E1),

I (RQ1; Q′
2) = S(Q′

2) + S(Q′
2|E2). (H2)

Now we prove the subadditivity of conditional entropy

S(Q′
1Q′

2|E1E2)

= S(Q′
1|E1E2) + S(Q′

2|E1E2) − I (Q′
1; Q′

2|E1E2)

� S(Q′
1|E1E2) + S(Q′

2|E1E2)

= S(Q′
1|E1) − S(Q′

1; E2|E1) + S(Q′
2|E2) − S(Q′

2; E1|E2)

� S(Q′
1|E1) + S(Q′

2|E2). (H3)

Combining together with the subadditivity of von Neumann
entropy, Eq. (D6) is proven.

For the total rate J = U ≡ {1, 2, . . . , s}. Plugging in R =
A′, Q1 = B1, Q2 = B2, we have

IU (φ̂A1A2 ) = I (A′
1A′

2; B1B2) � I (A′
1A′

2; B1) + I (A′
1A′

2; B2)

= IU (φ̂A1 ) + IU (φ̂A2 ). (H4)

Now we have the subadditivity of functional IU (φ̂A).
We note that this proof does not specify the dimensions of

the systems {A(1)
k }s

k=1, {A(2)
k }s

k=1, thus, it extends to the case
where each A(1)

k and A(2)
k contains multiple modes.

2. Proof of Lemma 3

We adopt the same setup in the proof of Lemma 2. Con-
sider the overall output state.

For the partial rates J �= U , we define A′ that purifies
the input A(1)A(2). Let R = A′, Q′

1 = B(1), Q′
2 = B(2). By

this definition the overall systems Q1Q′
2E2R, Q′

1E1Q2R, and
Q′

1Q′
2R are pure. In general, R is likely inseparable, then the

procedure proving the subadditivity of total rate above gives
no conclusion. Nevertheless, the partial subadditivity holds
that the correlation between A(1)[J], A(2)[J] does not improve
IJ when A(1)[Jc], A(2)[Jc] are independent. This is because
A′[Jc] is separable in this case as A′[Jc] = A′(1)[Jc]A′(2)[Jc],
then we can let Q1 = A(1)A′(1)[Jc], Q2 = A(2)A′(2)[Jc], R =
A′[J] as shown in Fig. 11. Explicitly, conditioned on that
A[Jc]’s are independent over different channel uses, we obtain
the subadditivity in A[J]:

IJ
(
N1 ⊗ N2,

{
φ̂A(1)

i A(2)
i

}s

i=1

)
= I (A′[J]; B(1)B(2)A′(1)[Jc]A′(2)[Jc] )

= I (R; Q′
1Q′

2) � I (RQ2; Q′
1) + I (RQ1; Q′

2)

= I (RB(2)A′(2)[Jc]; B(1)A′(1)[Jc])

+ I (RB(1)A′(1)[Jc]; B(2)A′(2)[Jc])

= IJ
(
N1,

{
φ̂A(1)

i

}s

i=1

)+ IJ
(
N2,

{
φ̂A(2)

i

}s

i=1

)
. (H5)

We note that this proof does not specify the dimensions of
the systems {A(1)

k }s
k=1, {A(2)

k }s
k=1, thus, it extends to the case

where each A(1)
k and A(2)

k contains multiple modes.

3. Proof of Lemma 4

First we examine the single-mode BGMAC. The n-copy
BGMAC N⊗n forms an identity transform over the inputs of
the n parallel channel uses per sender j, which commutes with
U⊗s up to a contraction U⊗s → U . Explicitly, given the linear
form Eq. (4) of N , we have

N⊗n ◦ U⊗s : â(k)
B =

[
s∑

j=1

w j

n∑
l=1

H⊗m
kl√
n

(
(1 − δ j )â

(l )
Aj

+ δ j â
(l )†
Aj

)]+ξ̂ (k),

U ◦ N⊗n : â(k)
B =

n∑
l=1

H⊗m
kl√
n

[
s∑

j=1

w j
(
(1 − δ j )â

(l )
Aj

+ δ j â
(l )†
Aj

)+ ξ̂ (l )

]
. (H6)
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Thus, N⊗n ◦ U⊗s = U ◦ N⊗n since the noises {ξ̂ ()}n
=1 are independent and identically distributed. Therefore, any entropic

functional is symmetric under U⊗s since unitary transform on the output state does not change the von Neumann entropies.
For an N-fold memory BGMAC, the structure within N does not overturn the commutation relation

N⊗n ◦ (⊗s
k=1 U⊗nk

)
: â(k)

B,d =
⎡
⎣ s∑

j=1

Nj∑
n j=1

wd,n j

n∑
l=1

H⊗m
kl√
n

((
1 − δd,n j

)
â(l )

Aj ,n j
+δd,n j â

(l )†
Aj ,n j

)⎤⎦+ ξ̂
(k)
d ,

U⊗N ◦ N⊗n : â(k)
B,d =

n∑
l=1

H⊗m
kl√
n

⎡
⎣ s∑

j=1

Nj∑
n j=1

wd,n j

((
1 − δd,n j

)
â(l )

Aj ,n j
+ δd,n j â

(l )†
Aj ,n j

)+ ξ̂
(l )
d

⎤
⎦ (H7)

for 1 � d � N . Note that given d the noise terms ξ̂
(l )
d are

independent and identically distributed over channel uses 1 �
l � n, we have N⊗n ◦ (⊗s

k=1U⊗nk ) = U⊗N ◦ N⊗n.
Combining with Lemma 2, the proof above for the single-

mode BGMAC straightforwardly extends to the multimode
memory BGMAC.

APPENDIX I: NUMERICAL METHOD OF EVALUATING
THE UNION REGION

Here we introduce our method to evaluate the union of
Gaussian-state rate region of two-sender EA-BGMACs. To
illustrate the union, we optimize the achievable rate tuples
along n � 1 rays starting from (R1, R2) = (0, 0) by fixing
R2/R1 = c ∈ {c1, c2, . . . , cn}. Concretely, for each c we nu-
merically maximize the norm |R| = √

1 + c2R1 of rate tuples
satisfying Eq. (12) over Gaussian states φ̂(r, θ). When n →
∞, the convex hull of the optimal rate tuples and (0,0) exactly
generates the capacity region; when n is small, the resolution
of the convex hull falls insufficient at the corners of the capac-
ity region. In Fig. 13 we choose c heterogeneously such that

the polar angle of data points ϕ = arctan( R2/Ccoh
2

R1/Ccoh
1

) is uniformly
distributed in [0, π/2), with n = 20.

In pursuit of the optimal input state, we evaluate the set of
functions

FJ (r, θ) = I (A′[J]; B|A′[Jc])φ̂(r,θ), ∀ J (I1)

and solve their maxima over the parameters r and θ. Here the
input φ̂(r, θ) is given by Eq. (45). Note that the ranges of r are
finite. From Eq. (46), the condition for a bona fide state with
N ′

S,k � 0 is

−r�
k � rk � r�

k , 1 � k � s (I2)

where

r�
k = 1

2 ln(1 + 2NS,k + 2
√

NS,k (1 + NS,k )). (I3)

Although it seems straightforward that each user consumes
all available energy NS,k to optimize the capacity of total
rate, we provide a proof for it as below. Define the total-rate
capacity

ĨU (NS) = max
φ̂∈HNS

IU (N , φ̂), (I4)

where NS = [NS,1, . . . , NS,s]T , HNS consists of all possible
states with energy constraint 〈â†

Ak
aAk 〉 � NS,k . Indeed, the

monotonicity of ĨU (NS) with respect to the consumed energies

{NS,k}s
k=1 can be obtained from the concavity of ĨU , as shown

in the proposition below.
Proposition 4. The EA capacity of total rate of BGMAC

monotonically increases with the energy consumption of each
user.

Proof. First, we prove the concavity of ĨU with respect to
the energy consumption of each user., i.e., for any N2

S − N1
S =

[0, . . . , δNS,k, . . . , 0]T , 1 � k � s,

ĨU
(
N1

S

)+ ĨU
(
N2

S

)
� 2ĨU

[(
N1

S + N2
S

)
/2
]
. (I5)

Define an alternative form of IJ that allows entanglement
among senders within A[J] or A[Jc],

fJ (N , φ̂A[J], φ̂A[Jc] ) ≡ I (A′[J]; BA′[Jc])ρ̂ f , (I6)

where ρ̂ f = NA→B ⊗ IA′[�A→AA′ (φ̂A[J] ⊗ φ̂A[Jc] )]. From
Lemma 8, we have the concavity of fU with respect to each
φ̂Ak , 1 � k � s. For any N2

S − N1
S = [0, . . . , δNS,k, . . . , 0]T ,

1 � k � s, consider the average state ˆ̄φA = (φ̂1
A + φ̂2

A)/2 over
the optimum states under different energy constraints

φ̂1
A = argmaxφ̂A∈HN1

S

IU (N , φ̂A),

φ̂2
A = argmaxφ̂A∈HN2

S

IU (N , φ̂A), (I7)

the concavity gives

IU
(
N , φ̂1

A

)+ IU
(
N , φ̂2

A

)
= fU

(
N , φ̂1

A

)+ fU
(
N , φ̂2

A

)
� 2 fU (N , ˆ̄φA). (I8)

The average state ˆ̄φA is under the energy constraint NS =
(N1

S + N2
S)/2. Note that φ̂1

A and φ̂2
A are s-partite product states

and they only differ in one subsystem Ak , therefore, the aver-
age state ˆ̄φA is in an s-partite product state. Then fU (N , ˆ̄φA)
reduces to IU (N , ˆ̄φA) and therefore we arrive the concavity
with respect to the energy

ĨU
(
N1

S

)+ ĨU
(
N2

S

)
= IU

(
N , φ̂1

A

)+ IU
(
N , φ̂2

A

)
� 2IU (N , ˆ̄φA) � 2ĨU

[(
N1

S + N2
S

)
/2
]
. (I9)

The concavity indicates that ĨU has at most one local
maximum along each NS,k, 1 � k � s. Combined with the
fact that lim|NS|→∞ ĨU (NS) = ∞, it requires the maxima to
locate at the unphysical infinity |NS| → ∞, thus, we obtain
the proposition. �
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APPENDIX J: PROOF OF PROPOSITION 2

In this Appendix, we will again utilize the function fJ

defined in Eq. (I6). This is not a physical information rate for
MAC, but it reduces to IJ when φ̂A[J] ⊗ φ̂A[Jc] is in a product
state among the s senders.

Similar to Lemma 3, fJ is subadditive under the condition
that A[Jc]’s are independent among the channel uses.

Lemma 6. For any two parallel channel uses acting on A1

and A2, the conditional additivity holds for fJ ,

fJ (N , φ̂A(1)[J]A(2)[J], φ̂A(1)[Jc]A(2)[Jc] )

� fJ (N , φ̂A(1)[J], φ̂A(1)[Jc] ) + fJ (N , φ̂A(2)[J], φ̂A(2)[Jc] ), (J1)

under the constraint that the inputs of senders in Jc for n chan-
nels A(1)[Jc], A(2)[Jc], . . . , A(n)[Jc] are mutually independent.

Proof. The same technique in Eq. (H5) can be utilized to
give

fJ (N , φ̂A(1)[J]A(2)[J], φ̂A(1)[Jc]A(2)[Jc] )

= I (A′[J]; B(1)B(2)A′(1)[Jc]A′(2)[Jc])ρ f

� I (A′[J]B(2)A′(2)[Jc]; B(1)A′(1)[Jc])ρ f

+ I (A′[J]B(1)A′(1)[Jc]; B(2)A′(2)[Jc])ρ f

= fJ (N , φ̂A(1)[J], φ̂A(1)[Jc] ) + fJ (N , φ̂A(2)[J], φ̂A(2)[Jc] ). (J2)

It leads to the subadditivity of functional fJ , conditioned on
that A[Jc]’s are independent over different channel uses. �

From the subadditivity in Lemma 6, we obtain the follow-
ing.

Lemma 7. Given the energy constraint 〈â†
Ak

âAk 〉 � NS,k and
a fixed Gaussian state in system A[Jc], the optimum of fJ is
achieved by a Gaussian state in system A[J]:

fJ (N , φ̂A[J], φ̂A[Jc] ) � fJ
(
N , φ̂G

A[J], φ̂
G
A[Jc]

)
. (J3)

Proof. The proof is similar to Lemma 5. Here we
prove the Gaussian optimality for functional f (φ̂A[J] ) =
fJ (N , φ̂A[J], φ̂

0) given a fixed Gaussian state φ̂0 in A[Jc]. For
n parallel channel uses, we need to prove that f is invariant
under the Hadamard transform H⊗m defined in Eq. (G2) with
m = log2 n, acting on the two input systems A(1)[J], A(2)[J].
Similarly, we have

N⊗n ◦ U⊗s :

â(k)
B =
∑
j∈J

w j

(
(1 − δ j )

n∑
l=1

H⊗m
kl√
n

â(l )
Aj

+δ j

n∑
l=1

H⊗m
kl√
n

â(l )†
Aj

)

+
∑
j∈Jc

w j
(
(1 − δ j )â

(k)
Aj

+δ j â
(k)†
Aj

)+ · · ·,

U ◦ N⊗n :

â(k)
B =

n∑
l=1

H⊗m
kl√
n

∑
j∈J

w j
(
(1 − δ j )â

(l )
Aj

+ δ j â
(l )†
Aj

)

+
n∑

l=1

H⊗m
kl√
n

∑
j∈Jc

w j
(
(1 − δ j )â

(l )
Aj

+ δ j â
(l )†
Aj

)+ · · · . (J4)

Now, consider j ∈ Jc. Note that {â()
Aj

}n
=1 are identical

Gaussian states φ̂0. Define 4 × 4 Hadamard transform H =

H ⊕ H = H ⊗ I acting on the covariance matrix. Assuming
the covariance matrix of the jth sender is ⊕n

=1V
()

Aj
, we have

the covariance matrix of â′(k)
Aj

=∑n
l=1

H⊗m
kl√
n

â(l )
Aj

:

V ′ = H⊗m/2

√
n

(⊕n
=1V

()
Aj

)(H⊗m/2

√
n

)T

= ⊕n
=1V

()
Aj

(J5)

since

HVA
j
HT = 2V ()

Aj
. (J6)

Meanwhile, the displacement does not affect the von Neu-

mann entropy of a Gaussian state. Thus,
∑n

l=1
H⊗m

kl√
n

â(l )
Aj

= â(k)
Aj

.
Hence, we have the commutation

N⊗n ◦ U⊗s = N⊗n ◦ U⊗s. (J7)

�
Explicitly, the energy constraint can be written with respect

to the CM as

TrVAk = constant, 1 � k � s. (J8)

We prove the concavity of fJ as follows.
Lemma 8. fJ (N , φ̂A[J], φ̂A[Jc] ) is concave individually in

A[J], A[Jc], namely,

fJ
(
N , φ̂1

A[J], φ̂A[Jc]
)+ fJ (N , φ̂2

A[J], φ̂A[Jc] )

� 2 fJ (N , φ̂A[J], φ̂A[Jc] ),

fJ
(
N , φ̂A[J], φ̂

1
A[Jc]

)+ fJ (N , φ̂A[J], φ̂
2
A[Jc] )

� 2 fJ (N , φ̂A[J], φ̂A[Jc] ). (J9)

This also implies that fJ (N , φ̂A[J], φ̂A[Jc] ) is concave indi-
vidually in each input Ak .

Proof. To begin with, we prove the concavity in A[J].
Consider two inputs

φ̂
A = φ̂

A[J] ⊗ φ̂A[Jc],  = 1, 2 (J10)

which are purified with the assistance of A′. We hope to show

that the average state φ̂A = (φ̂1
A[J] + φ̂2

A[J] )/2 ⊗ φ̂A[Jc] gives a
better rate. To purify the average state, we add an extra qubit
R to A′. The overall input state

|�A→AA′R(φ̂A)〉 = 1√
2

2∑
=1

|φ̂〉 |〉R . (J11)

Denote the corresponding output as

ˆ̄ρBA′R = NA→B ⊗ IA′R(�̂A→AA′R(φ̂A)). (J12)

We can consider the data processing of measuring R, leading
to the quantum-classical state

ρ̂BA′R = 1

2

[
2∑

=1

|〉〈|R ⊗ ρ̂
BA′

]
, (J13)

where the output states for each input

ρ̂
BA′ = NA→B ⊗ IA′ (φ̂). (J14)
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This measurement will not increase the mutual information
from data-processing inequality. Since RA′[J] purifies A[J],
we have

fJ (N , φ̂A[J], φ̂A[Jc] ) = I (A′[J]R; BA′[Jc]) ˆ̄ρ (J15)

� I (A′[J]R; BA′[Jc])ρ̂ (J16)

� I (A′[J]; BA′[Jc]|R)ρ̂ (J17)

= 1

2

2∑
=1

I (A′[J]; BA′[Jc])ρ̂ , (J18)

where (J16) follows from data processing inequality; Eq. (J17)
follows from

I (A′[J]R; BA′[Jc])ρ̂

= S(A′[J]R)ρ̂ + S(BA′[Jc])ρ̂ − S(BA′R)ρ̂ (J19)

= S(A′[J]|R)ρ̂ + S(BA′[Jc])ρ̂ − S(BA′|R)ρ̂ (J20)

� S(A′[J]|R)ρ̂ + S(BA′[Jc]|R)ρ̂ − S(BA′|R)ρ̂ (J21)

= I (A′[J]; BA′[Jc]|R)ρ̂ , (J22)

where in (J21) we utilized concavity of entropy; (J18) follows
from the quantum classical state (J13). The equality of (J21)
holds if and only if

ρ̂1
BA′[Jc] = ρ̂2

BA′[Jc], (J23)

which requires the EA BA′[Jc] to be in the same state. Note
that [

fJ
(
N , φ̂1

A[J], φ̂A[Jc]
)+ fJ

(
N , φ̂2

A[J], φ̂A[Jc]
)]

/2

= 1

2

2∑
=1

I (A′[J]; BA′[Jc])ρ̂ , (J24)

we have proven the concavity

fJ (N , φ̂A[J], φ̂A[Jc] )

�
[

fJ
(
N , φ1

A[J], φA[Jc]
)+ fJ

(
N , φ2

A[J], φA[Jc]
)]

/2. (J25)

The equality holds requiring a necessary condition that the
BA′[Jc] is in the same state for the two inputs.

The same proof works for the concavity in A[Jc]. Now,
RA′[Jc] purifies A[Jc]:

I (A′[J]; BA′[Jc]R) ˆ̄ρ � I (A′[J]; BA′[Jc]R)ρ̂ (J26)

= I (A′[J]; BA′[Jc]|R)ρ̂ (J27)

= 1

2

2∑
=1

I (A′[J]; BA′[Jc])ρ̂ . (J28)

(J27) holds because R is independent with A′[J].
Therefore, we have proven the concavity in A[J] and A[Jc]

individually. �
Recall the phase-insensitive condition in Eq. (1) of the

main paper. We denote the channel corresponding to the phase
rotation as Rs

θ (ρ̂A) = R̂(θ)ρ̂AR̂†(θ), with θk = (−1)δk θ . Sim-
ilarly, on the output side we denote the channel as Rθ . The
symmetry of the channel in Eq. (1) can be equivalently written
as

R−θ ◦ N ◦ Rs
θ = N . (J29)

First, we prove for the squeezing on A[J]. Consider a bunch
of single-mode squeezing operations ⊗k∈JSAk , with squeezing
parameter rk at the phase angle θk , on modes in system A[J]
of the product thermal state φ̂A, which produces

φ̂′
A = [⊗k∈JSAk (rk, θk )] ⊗ IA[Jc](φ̂). (J30)

For consistency we define rk = 0 for k ∈ Jc. The mean photon
number of the kth mode of the thermal state is constrained by
〈â†â〉 = cosh(2rk )NS,k + sinh2(rk ). The functional of interest
IJ (N , φ̂A) only depends on the reduced state φ̂′

A, which is a
product of |J| single-mode squeezed thermal states and |Jc|
single-mode thermal states.

We generate the average state using Rs
θ with θ = 0, π/2,

and the phase rotation does not change A[Jc]:

φ̂
′
A = 1

2 [φ̂′
A + Rs

π/2(φ̂′
A)]

= 1
2 [φ̂′

A[J] + Rs
π/2(φ̂′

A[J] )] ⊗ φ̂′
A[Jc]. (J31)

Here we have utilized the fact that φ̂′
A[Jc] is in a thermal state,

invariant under any phase rotations. For the two states with
θ = 0, π/2, the covariance matrix is

V ′
A(θk, θ ) = ⊕s

k=1V
′rk

Ak
(θk, θ ) (J32)

with

V ′rk
Ak

(θk, θ ) =
(

1
2 e−2rk {2e4rk cos2 (θk ) + cos [2(θ − θk )] + 1}(2NS,k + 1) sin [2(θ − θk )] sinh (2rk )(2NS,k + 1)

sin [2(θ − θk )] sinh (2rk )(2NS,k + 1) e−2rk
[
cos2 (θk ) + e4rk sin2 (θk )

]
(2NS,k + 1)

)
. (J33)

Indeed, the covariance matrix V A of φ̂
′
A is block diagonal, as

an average of two block-diagonal CMs V 0
A , V π/2

A . Explicitly,

the CM of φ̂
′
A[J] is

V A = ⊕s
k=1V

rk

Ak
,

V
rk

Ak
=
(

cosh (2rk )(2NS,k + 1) 0
0 cosh (2rk )(2NS,k + 1)

)
.

(J34)

We see that the squeezing phases θk’s are irrelevant. The phase
rotation Rs

π/2 does not change energy, thus the average state
still suffices the energy constraint

Tr(â†â ˆ̄φ
′
Ak

) = cosh(2rk )NS,k + sinh2(rk ). (J35)

By individual concavity in Lemma 8,

fJ (N , φ̂
′
A[J], φ̂

′
A[Jc] ) � fJ (N , φ̂′

A[J], φ̂
′
A[Jc] )

= IJ (N , {φ̂′
Ai

}s
i=1). (J36)
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Note that the CM of φ̂
′
A is block diagonal among the s senders.

Thus, the Gaussian state associated with the same CM is
an s-partite product state, which turns out to be φ̂TMSV

A , the
reduced state of product TMSV ⊗s

k=1 |ζ (cosh(2rk )NS,k )〉AkA′
k
.

By Gaussian extremality in Lemma 7, we have

fJ (N , φ̂
′
A[J], φ̂

′
A[Jc] ) � fJ

(
N , φ̂TMSV

A[J] , φ̂′
A[Jc]

)
= fJ

(
N , φ̂TMSV

A[J] , φ̂TMSV
A[Jc]

)
. (J37)

Note that φ̂TMSV
A is an s-partite product state

IJ
(
N ,
{
φ̂TMSV

Ai

}s

i=1

) = fJ
(
N , φ̂TMSV

A[J] , φ̂A[Jc]
)
. (J38)

Combining Eqs. (J36), (J37), and (J38), we arrive at

IJ
(
N ,
{
φ̂TMSV

Ai

}s

i=1

)
� IJ

(
N , {φ̂′

Ai
}s

i=1

)
, (J39)

which proves the result.
The same proof works for the squeezing on A[Jc]:

φ̂′
AA′ = [⊗k∈Jc SAk (rk, θk )] ⊗ IA[J](φ̂AA′ ). (J40)

By similar procedure we have

IJ
(
N , {φ̂TMSV

Ai
}s

i=1

) = fJ
(
N , φ̂TMSV

A[J] , φ̂TMSV
A[Jc]

)
� fJ (N , φ̂′

A[J], φ̂
′
A[Jc] )� fJ (N , φ̂′

A[J], φ̂
′
A[Jc] )

= IJ (N , {φ̂′
Ai

}s
i=1). (J41)

APPENDIX K: UNRAVELING THE MEMORY IN
INTERFERENCE MACs

We investigate the memory interference channel, which
consists of N parallel uses of s-input–one-output beam splitter
B and the memory is invoked by an N-input–N-output mem-
ory BGC �[N], as shown in Fig. 12. The general input-output
relation of Eq. (A1), when applied to the memory interference
channel, can be denoted in a matrix form

N [N] : âB = W âA + ξ̂, (K1)

where âA = ⊕s
k=1[âAk ,1, . . . , âAk ,N ]T consists of sN input

modes, âB = [â1
B, . . . , âN

B ]T consists of N output modes, and
similarly ξ̂ denotes all the noise modes; the entries of the
N × N transition matrix W are defined by Wdh = wd,h. The

FIG. 12. Memory unraveling of an N-fold memory interference
MAC N [N] = �[N] ◦ B⊗N , which consists of N uses of s-input–
one-output beam splitters B concatenated with an N-fold memory
BGC �[N]. �[N] can be interpreted by a product of N single-mode
amplifiers ⊗N

d=1Aτd (or lossy channel Lτd for τd � 1), sandwiched
by two beam-splitter arrays fulfilling Bogoliubov transform V
and U †.

overall Bogoliubov transform of N [N] consists of an N × sN
beam-splitter matrix F accounting for B⊗N and an N × N
transition matrix W ′ accounting for �[N] as W = W ′F, where

F =
⎛
⎝

√
η1 0 0 . . .

√
ηs 0 0

0 . . . 0 . . . 0 . . . 0
0 0

√
η1 . . . 0 0

√
ηs

⎞
⎠, (K2)

with the weights ηk normalized as
∑s

k=1 ηk = 1.
It is known that an N-fold memory BGC �[N] can be

unraveled into N single-mode BGCs by the singular-value
decomposition (SVD) [43]

UW ′V † = D, (K3)

where U , V are N × N unitary matrices, D =
diag(

√
τ1, . . . ,

√
τN ). Concretely, the SVD unravels �[N]

into a concatenation of an N-port beam splitter fulfilling
the Bogoliubov transform V , a combination of N different
single-mode BGCs fulfilling the diagonal matrix D, and
finally an N-port beam splitter fulfilling U †, as shown in
Fig. 12. By absorbing V and U into the input and output
modes, one can reduce �[N] to N individual single-mode
BGCs {�d}N

d=1 that implements the diagonal matrix D.
To absorb V into the initial input modes âA, note that F
commutes with V up to an extension of dimension:

V F = FVext, with Vext ≡ ⊕s
k=1V =

⎛
⎝V 0 0

0 . . . 0
0 0 V

⎞
⎠. (K4)

Thus, the overall Bogoliubov transform W turns to U †DFVext.
Formally, defined over the new modes α̂ = VextâA, β̂ = U âB,
the overall channel N [N] reduces to N single-mode interfer-
ence MACs {Nd}N

d=1 mapping α̂ to β̂ individually:

Nd : β̂d =
N∑

d ′=1

sN∑
h=1

Ddd ′Fd ′hα̂h +
N∑

d ′=1

Udd ′ ξ̂d ′ , 1 � d � N.

(K5)
It is easy to check that the modes α̂ and β̂ satisfy the canonical
commutation relation, and that the energy constraint is auto-
matically inherited to the new modes

∑N
nk=1〈α̂†

h(k,nk )α̂h(k,nk )〉 =∑N
nk=1〈â†

Ak ,nk
âAk ,nk 〉.

Finally, we note that {τd}N
d=1 can be alternatively obtained

from the N × N commutation matrix

�dd ′ ≡
[

sN∑
h=1

Fdhα̂h,

sN∑
h=1

Fd ′hα̂
†
h

]
=
∑

j

W ′
d jW

′∗
d ′ j, (K6)

of which the eigenvalues are τ1, τ2, . . . , τN . For the causal
memory thermal-loss channel (49) parametrized by ε and γ ,
when the memory mode is inaccessible for either the sender
or the receiver, there is a neat formula for the commutation
matrix [33]

�kk′ = δkk′ − (1 − γmin{k,k′})
√

εγ
|k−k′ |

, (K7)

where γk ≡ γ + [1 − (εγ )k−1]ε(1 − γ )2/(1 − εγ ).

APPENDIX L: PROOF OF PROPOSITION 3

Any multimode zero-mean Gaussian state can be com-
pletely characterized by its covariance matrix. We prove the
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FIG. 13. Optimization of the Gaussian-state rate regions of 2-sender interference BGMACs using bright illumination. Four classes of
� are presented: (a), (b) Thermal-loss channel, NS,1 = 1, NS,2 = 2, η1 = 1/3, η2 = 2/3, |w|2 = 0.1, NB = 0.1; (c), (d) amplifier channel,
NS,1 = 1, NS,2 = 2, η1 = 1

3 , η2 = 2
3 , |w|2 = 1.1, NB = |w|2 − 1 + 0.1 = 0.2; (e), (f) conjugate amplifier channel, NS,1 = 1, NS,2 = 2, η1 =

1
3 , η2 = 2

3 , |w|2 = 0.1, NB = |w|2 − 1 + 0.1 = 0.2; (g), (h) AWGN channel, NS,1 = 1, NS,2 = 2, η1 = 1
3 , η2 = 2

3 , NB = 0.1. (a), (c), (e),
(g) The evolution trend of the rate region. Colored according to the progress step of the numerical optimization. (b), (d), (f), (h) The evolution

trend of |r| = √r2
1 + r2

2 versus the progress step. Plotted with six typical ϕ’s, ϕ = tan−1(
R2/Ccoh

2
R1/Ccoh

1
). See Appendix I for the evaluation method.

optimality of correlated thermal state by proving that the rates
are never improved by phase-sensitive correlation or single-
mode squeezing.

We are interested in phase-insensitive memory BGMACs,
whose information rate IJ is preserved by the gauge transform
Rs

θ in Eq. (J29). As it can be canceled by applying R−θ on
each of the N output modes in an N-fold BGMAC

R⊗N
−θ ◦ N ◦ Rs

θ = N . (L1)

Phase sensitivity can be characterized by the elements in
the covariance matrix. Without loss of generality, we consider
the Nk-mode covariance matrix for the kth sender, with respect
to the annihilation operators

V =
⎛
⎝ D1 . . . C1,Nk

. . . . . . . . .

C†
1,Nk

. . . DNk

⎞
⎠, (L2)

where the block matrices Di,C j, j′ are the 2 × 2 covariance
matrices of the i mode, and the cross correlation matrix be-

tween the jth and the j′th mode, respectively. With respect
to the gauge transform Rs

θ , each C j, j′ can be divided into
the phase-sensitive correlation cs and the phase-insensitive
correlation ci:

C j, j′ =
(

ci cs

cs∗ c∗
i

)
. (L3)

Now consider an Nk-mode Gaussian state φ̂′
Ak

for the kth
sender, generated from a TMSV by two types of unitaries:
(1) Nk single-mode squeezers SAk (rk, θk ) = ⊗Nk

nk=1Snk
Ak

(rnk
k , θ

nk
k )

if k ∈ J; (2) phase-insensitive multimode Gaussian unitaries.
The overall state is φ̂′

A = ⊗s
k=1φ̂

′
Ak

. Denote the state satisfy-
ing the proposition as φ̂th

A , which is in a correlated thermal
state per sender. Below we prove that the rate of φ̂th

A out-

performs any state φ̂′
A. Denote the average state as ˆ̄φ′

A =∫
dθ/2πRs

θ (φ̂′
A). The phase-transformed state Rs

θ (φ̂′
A) has the

covariance matrix V ′r
A (θ1, . . . , θs, θ ) = ⊕s

k=1V
′rk

Ak
(θk, θ ), with

rk = 0, θk = 0 for k ∈ Jc, each block defined by

V ′rk
Ak

(θk, θ ) =

⎛
⎜⎝Dr1

k
1 (θ1

k , θ ) . . . C1,Nk

. . . . . . . . .

C†
1,Nk

. . . D
r

Nk
k

Nk
(θNk

k , θ )

⎞
⎟⎠, (L4)

where

Dnk

(
θ

nk
k , θ

) =
(

cosh
(
2rnk

k

)
Nnk

S,k + cosh2
(
rnk

k

) −e−2iθ cosh
(
rnk

k

)
sinh

(
rnk

k

)(
2Nnk

S,k + 1
)

−e2iθ cosh
(
rnk

k

)
sinh

(
rnk

k

)(
2Nnk

S,k + 1
)

cosh
(
2rnk

k

)
Nnk

S,k + sinh2
(
rnk

k

)
)

, (L5)
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under the energy constraint
∑

nk
cosh(2rnk

k )Nnk
S,k + sinh2(rnk

k ) = NS,k , and

Cnk ,n′
k
=
(

ci cse−2iθ

c∗
s e2iθ c∗

i

)
, (L6)

with

ci = e−2iθ
nk
k sinh

(
r

n′
k

k

)[
sinh

(
rnk

k

)
ci − cosh

(
rnk

k

)
cs
]+ cosh

(
r

n′
k

k

)[
cosh

(
rnk

k

)
ci − sinh

(
rnk

k

)
cs
]
,

cs = cosh
(
r

n′
k

k

)[
cosh

(
rnk

k

)
cs − sinh

(
rnk

k

)
ci
]− e2iθ0 sinh

(
r

n′
k

k

)[
cosh

(
rnk

k

)
ci − sinh

(
rnk

k

)
cs
]
. (L7)

Thus, the average state has the covariance matrix with

D̄nk

(
θ

nk
k , θ

) =
(

cosh
(
2rnk

k

)
Nnk

S,k + cosh2
(
rnk

k

)
0

0 cosh
(
2rnk

k

)
Nnk

S,k + sinh2
(
rnk

k

)) (L8)

and

C̄nk ,n′
k
=
(

ci 0
0 c∗

i

)
, (L9)

which is equal to the covariance matrix of an nk-partite correlated thermal state φ̂th
Ak

under the same energy constraint.
Note that A[Jc] does not change under the gauge transform Rs

θ . By a similar procedure as Eqs. (J36)–(J38) in Appendix J,
using the gauge symmetry of fJ under Rs

θ , the concavity of fJ gives

IJ
(
N ,
{
φ̂th

Ai

}s

i=1

) = fJ
(
N , φ̂th

A[J], φ̂
th
A[Jc]

)
� fJ (N , φ̂

′
A[J], φ̂

′
A[Jc] ) � fJ (N , φ̂′

A[J], φ̂
′
A[Jc] )

= IJ (N , {φ̂′
Ai

}s
i=1). (L10)

APPENDIX M: SUPPLEMENTAL NUMERICAL
EVIDENCES FOR THE OPTIMALITY OF TMSV

In this Appendix we provide more evidences to verify the
optimality of TMSV for the rates FJ ’s defined in Eq. (I1).
We focus on the two-sender case, where we have the gauge
symmetry on the global phase θ1 + θ2. Thus, only the rela-

tive phase θ = θ2 − θ1 matters. For the relative phase θ , it is
noteworthy that there is a degeneracy

FJ (r1, r2, θ ) = FJ (r1,−r2, θ + π/2) (M1)

since S(r2, θ2) = S(−r2, θ2 + π/2). Due to the degeneracy, it
is sufficient to examine θ ∈ [0, π/2).

FIG. 14. Optimization of the Gaussian-state rate regions of 2-sender interference BGMACs using weak illumination. Four classes of
� are presented: (a), (b) Thermal-loss channel, NS,1 = 10−3, NS,2 = 2 × 10−3, η1 = 1

3 , η2 = 2
3 , |w|2 = 0.1, NB = 0.1; (c), (d) ampli-

fier channel, NS,1 = 10−3, NS,2 = 2 × 10−3, η1 = 1
3 , η2 = 2

3 , |w|2 = 1.1, NB = |w|2 − 1 + 0.1 = 0.2; (e), (f) conjugate amplifier channel,
NS,1 = 10−3, NS,2 = 2 × 10−3, η1 = 1

3 , η2 = 2
3 , |w|2 = 0.1, NB = |w|2 − 1 + 0.1 = 0.2; (g), (h) AWGN channel, NS,1 = 10−3, NS,2 = 2 ×

10−3, η1 = 1
3 , η2 = 2

3 , NB = 0.1. (a), (c), (e), (g) The evolution trend of the rate region. Colored according to the progress step of the

numerical optimization. (b), (d), (f), (h) The evolution trend of |r| = √r2
1 + r2

2 versus the progress step. Plotted with six typical ϕ’s,

ϕ = tan−1(
R2/Ccoh

2
R1/Ccoh

1
). See Appendix I for the evaluation method.
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FIG. 15. Two-sender EA capacities of thermal-loss BGMAC. Top: J = {1}, (a)–(c) θ = 0, π/8, and 3π/8, respectively; bottom: J = {2},
(d)–(f) θ = 0, π/8, and 3π/8, respectively. Normalized IJ under different relative squeezer phase θ with respect to squeeze parameters r1, r2.
NS,1 = 1, NS,2 = 2, η1 = 1

3 , η2 = 2
3 , |w|2 = 0.1, NB = 0.1. See Appendix I for the definition of r�

1, r�
2 .

Figure 13 shows the Gaussian-state capacity region of four
channels of which �’s cover all the four classes of the phase-
insensitive BGC. We see that the EA Gaussian-state capacity
region surpasses even the outer bound of the unassisted capac-
ity region considerably. Figure 14 shows more significant EA
advantage under weaker illumination.

Figure 15 shows the trend of the boundaries FJ , J =
{1}, {2} when varying squeezing parameters r1, r2 for sender
1, 2, and their relative phase θ for thermal-loss MAC. We

also plotted the gradient vector ∇rFJ (r, θ ) in blue arrows.
The gradient vanishes at (0,0). We see that the optima co-
incide at the zero point, i.e., TMSV, in all the presented
parameter settings. In addition, we have proven Theorem 2
which indicates that TMSV is the optimum for the bound-
ary F{1,2} of the total rate. Note that the capacity region is
the convex hull of pentagons formed by the edges R1 =
F1, R2 = F2, R1 + R2 = F{1,2} and R1 = 0, R2 = 0, and we
have shown that all the pentagons are subsets of the TMSV

FIG. 16. Two-sender EA capacities of amplifier BGMAC. Top: J = {1}, (a)–(c) θ = 0, π/8, and 3π/8, respectively; bottom: J = {2},
(d)–(f) θ = 0, π/8, and 3π/8, respectively. Normalized IJ under different relative squeezer phase θ with respect to squeeze parameters r1, r2.
NS,1 = 1, NS,2 = 2, η1 = 1

3 , η2 = 2
3 , |w|2 = 1.1, NB = |w|2 − 1 + 0.1 = 0.2. See Appendix I for the definition of r�

1, r�
2 .
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FIG. 17. Two-sender EA capacities of contravariant amplifier BGMAC. Top: J = {1}, (a)–(c) θ = 0, π/8, and 3π/8, respectively; bottom:
J = {2}, (d)–(f) θ = 0, π/8, and 3π/8, respectively. Normalized IJ under different relative squeezer phase θ with respect to squeeze
parameters r1, r2. NS,1 = 1, NS,2 = 2, η1 = 1

3 , η2 = 2
3 , |w|2 = 0.1, NB = |w|2 − 1 + 0.1 = 0.2. See Appendix I for the definition of r�

1, r�
2 .

region. Thus, TMSV achieves the capacity region in this
case.

Figures 16–18 show the trends of the boundaries F{1}, F{2}
for amplifier MAC, conjugate amplifier MAC, and AWGN
MAC. The layouts are similar to Fig. 15. Again, the optima
coincide at the zero point, where the gradient vanishes. Com-

bining with Theorem 2, we obtain the optimality of TMSV in
these cases.

It turns out that for each case we examined, the global
optima of FJ for all J coincide at r = 0, i.e., the TMSV state.
In these cases it concludes that the TMSV state achieves the
capacity region.

FIG. 18. Two-sender EA capacities of AWGN BGMAC. Top: J = {1}, (a)–(c) θ = 0, π/8, and 3π/8, respectively; bottom: J = {2},
(d)–(f) θ = 0, π/8, and 3π/8, respectively. Normalized IJ under different relative squeezer phase θ with respect to squeeze parameters r1, r2.
NS,1 = 1, NS,2 = 2, η1 = 1

3 , η2 = 2
3 , NB = 0.1. See Appendix I for the definition of r�

1, r�
2 .
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APPENDIX N: CONNECTING THE MINIMUM ENTROPY
CONJECTURE TO THE CAPACITY REGION

Consider an s-sender quantum MAC N ; each of the EA
capacity region boundaries involves a specific sender block
J . For n channel uses, define the ns-mode input system of N
as A = ⊗n

=1(⊗s
k=1A()

k ), purified by A′ = ⊗s
k=1A′

k for each of
the s senders, and an n-mode output system B = ⊗n

=1B().
For any J ⊆ {1, 2, . . . , s}, from Eq. (16) we have

CE,J
(
N
) = lim

n→∞
1

n
max

φ̂

C̃E,J (N⊗n, φ̂)

= lim
n→∞

1

n
max

φ̂

[S(A′[J])ρ̂ + S(BA′[Jc])ρ̂] − S(BA′)ρ̂

= lim
n→∞ Smax(N , {NS,k}s

k=1) − 1

n
Smin(N⊗n), (N1)

where the von Neumann entropies are evaluated on the out-
put state ρ̂ = (NA→B ⊗ IA′ )⊗n(φ̂AA′ ). In the last equality, we
define two quantities, detailed below. First,

Smax
(
N , {NS,k}s

k=1

) ≡ max
φ̂∈H({NS,k}s

k=1 )
S(A′[J])ρ̂/n

= max
φ̂∈H({NS,k}s

k=1 )
S(A[J])ρ̂/n, (N2)

where ρ̂ = NA→B ⊗ IA′ (φ̂AA′ ) is the output state of a single-
channel use, and φ̂ is maximized over the Hilbert space
H({NS,k}s

k=1) satisfying the energy constraint of on average.
In the last step, we utilized the purity of the input φ̂AA′ . The
second quantity is a minimum entropy

Smin(N⊗n) ≡ min
φ̂

S(BA′)ρ̂ − S(BA′[Jc])ρ̂. (N3)

Given the energy constraint of Eq. (5) on average per channel
use, Eq. (N2) is the total entropy, which is maximized by
an identical product of s-partite thermal state under the input
energy constraint [44]. Note that the purification of a s-partite
thermal state is the s-partite TMSV state ζ̂ , we have

Smax
(
N , {NS,k}s

k=1

) = S(A[J])ζ̂ . (N4)

Meanwhile, Conjecture 1 states that

Smin(N⊗n) = S[(N ⊗ I )⊗n(ζ̂)] = nS[N ⊗ I (ζ̂ )], (N5)

where ζ̂ = ζ̂⊗n. Combining with Eq. (N4), Conjecture 1
leads to the optimality of the s-partite TMSV for each J ⊆
{1, 2, . . . , s} simultaneously:

CE,J (N ) = S(A′[J])ζ̂ + S(BA′[Jc])ζ̂ − S(BA′)ζ̂ . (N6)

This immediately leads to the additivity of the capacity region.
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