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Quantum circuit engineering for correcting coherent noise
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Crosstalk and several forms of coherent noise are invisible when a qubit or a gate is calibrated or benchmarked
in isolation. These are unlocked during the execution of a full quantum circuit applying entangling gates to
several qubits simultaneously. Unitary crosstalk noise, such as an unwanted Z-Z coupling, limits the state fidelity
during the execution of cross-resonance controlled-NOT (CNOT) gates in superconductor quantum computers.
This work presents (1) a method of tracing coherent errors by exploiting their sensitivity to the arrangement of
CNOT gates in the circuit and (2) a correction scheme that modifies the original circuit by inserting carefully the
chosen compensating gates (single- or two-qubit) to possibly undo coherent errors. On two vastly different types
of IBMQ processors offering quantum volume 8 to 32, our experimental results show up to 25% reduction in
the infidelity of [[7, 1, 3]] code |+〉 state (Clifford circuits) and five- to 15-qubit W states (non-Clifford circuits).
Our experimental circuits aggressively deploy forced commutation of CNOT gates to obtain low-noise state-
preparation circuits. An encoded state initialized with fewer errors marks an important step towards successful
demonstration of fault-tolerant quantum computers.
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I. INTRODUCTION

In state-of-art quantum processors, two-qubit gates, being
at least an order of magnitude noisier than their single-qubit
counterparts, dictate the state fidelity [1–4]. Higher opera-
tional inaccuracy is not the only bottleneck of state fidelity;
the action of the controlled-NOT (CNOT) gate sequence adds to
several context-dependent noise sources including crosstalk
[5], coherent or systematic errors [6,7], correlated errors [8],
and non-Markovian baths [9,10]. These are some examples
of unforeseen errors [11] mostly unfolding during the execu-
tion of the quantum circuit. Such circuit-level errors are less
visible in the individual gate calibration usually performed
prior to the circuit run. Several recent studies illustrate pre-
vention [12–17], hardware mitigation [8,18–21], and software
mitigation [22–24] of circuit-level noise. Unfortunately, in
the presence of a large number of uncorrected errors, it still
remains unclear how to leverage improved CNOT gate fidelities
to prepare higher fidelity quantum states.

This study illustrates quantum circuit engineering for cor-
recting unwanted Z-Z coupling crosstalk and other unitary
errors [20] pervasive in the superconductor cross-resonance
CNOT gates [25,26]. Our noise-compensated circuits initialize
a higher fidelity Steane code [27] graph state on state-of-art
IBM quantum processors. One of the main findings of our
study reveals the sensitivity of state fidelity to the placement
of the CNOT gate with Z-Z crosstalk, and it serves one part
of our noise probe. Commuting CNOT gates, when infected
with crosstalk, may yield noncommuting quantum operations
in a physical circuit, leaving the state fidelity dependent
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on execution order of the gates. Figure 2 below provides
a proof-of-concept state-preparation circuit mapped to the
IBMQ device ibmq_melbourne (Melbourne), which is known
for high crosstalk noise [28] because of its denser topology.
Our simulation and experimental error analysis show approx-
imately 20% change in the phase-flip error probability pz

when two commuting CNOT gates are reordered as illustrated
in Fig. 2. Here pz is defined as the probability that there is at
least one phase-flip error in the [[7, 1, 3]] logical |+〉 state. The
other part of the noise probe comes from tracing pz along the
time axis describing the circuit execution progress. Addition
of crosstalk may significantly raise the likelihood of phase-flip
errors and introduce a marked deviation from an otherwise
smoothly decaying decoherence curve. Figure 3 below high-
lights a precipice at gate 6 in the experimental phase fidelity,√

(1 − pz )n, which sharply contrasts with the simulated deco-
herence curve without crosstalk or unitary phase-flip errors.
Section III C contains further elaboration of these results.
Once detected, the likely Z-Z coupling can be largely canceled
out by inserting a compensating gate, RZZ (θ ), defined as

RZZ (θ ) = e−i θ
2 |0〉〈0| + ei θ

2 |0〉〈1| + ei θ
2 |1〉〈0| + e−i θ

2 |1〉〈1|

The correction procedure can be direct or indirect; the
former is illustrated in Figs. 1 and 2. In the circuit identities
of Fig. 2(d), the Z-Z coupling on CNOT gate simplifies to a
single-qubit rotation about the Z axis. It can be corrected
by applying a conjugate single-qubit gate at the appropri-
ate circuit location. Notice that experimental phase-flip error
probabilities are significantly higher than those of simulation.
Even though predicting circuit error rates is not the central
objective of this study, our experience working with the IBMQ
qiskit noise simulator suggests that the gap may be attributed
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FIG. 1. An example of quantum circuit engineering. (a) Topol-
ogy of IBMQ seven-qubit processors including ibm_lagos that ran
the circuit. (b) A noise-compensated state-preparation circuit con-
taining RZZ (θ ) gate prepares a seven-qubit fully entangled state with
higher fidelity than the uncompensated circuit [without RZZ (θ )]. The
table (c) compares fidelities with and without RZZ (θ ). Note that in
this example θ = −π/3.5.

to several unmodeled circuit-level errors. Novel benchmark-
ing tools, for example, cycle benchmarking [29], may better
correlate simulation and experiment error probabilities.

Indirect cancellation is more subtle and relies on exper-
imental intuition that Z-Z coupling on two CNOT gates in
the circuit can cancel each other. Inserting a compensating
two-qubit stabilizer gate of the form H a; CNOT (a, b); H a;
X b into a carefully chosen circuit location may introduce an
opposite angle Z-Z coupling to cancel original crosstalk, in a
manner very similar to the direct method. Figure 3 evidences
this effect in the form of nearly identical compensated circuit
infidelity curves; both schemes insert compensating gates at
the same circuit location and prevent the fidelity curve from
plummeting at gate 7. Our experiments also highlight a sig-
nificant overall improvement in the state fidelity on both the
noisier [quantum volume (QV) = 8] as well as the less noisy
(QV = 16 and 32) IBM quantum processors. On QV = 32
chips, we also show similar performance gains for an X -basis
W state of sizes five to 15 qubits. The state preparation circuit
is a nonstabilizer circuit because it requires small rotations
about the Y axis.

There is another interesting dimension of unitary error cor-
rection; it overcomes important performance limiting factors
of experimental quantum error correction. A stray single-qubit
rotation transforms into an unwanted two-qubit gate (1) on
multiple encoding qubits or (2) between an encoding qubit and
ancilla, as it propagates through entangling gates implement-
ing parity-check operations. In principle, an accurate tracing
of these errors remains a difficult problem in fault-path count-
ing and threshold estimates [30]. A state-preparation circuit
low in coherent noise can adequately address this problem
and facilitates effective implementation of error correction in

the near-term quantum processors. The methods developed in
this work can be extended to quantum circuits implementing
fault-tolerant gates. For example, it has been shown that on
Melbourne, the bulk of failure probability of the Steane logical
CNOT gate comes from weight-2 errors due to large unitary
noise on specific encoding qubit(s). Interested readers may
wish to consult Ref. [24] for detailed experiments.

The remaining discussion is organized into five sections.
Section II contextualizes the contribution of this work with
respect to state-of-art noise mitigation schemes. Experiment
setup details, state preparation circuits, and fidelity calcula-
tions can be found in Sec. III; results and discussion compose
Sec. IV. The summary of relevant prior work can be found in
Sec. V, while the conclusion constitutes Sec. VI. Note that
in the terminology of this paper, the term noise correction
means correcting coherent errors by inserting compensating
gate(s) into the quantum circuit. Such a circuit is called a
noise-compensated or simply a compensated circuit, whereas
an uncompensated or original circuit is without the compen-
sating gate.

II. NOISE CANCELLATION IN THE CONTEXT OF
RANDOMIZED COMPILING AND

CYCLE BENCHMARKING

In the context of this work, it is worth citing a re-
cently proposed noise mitigation technique called randomized
compiling [31]. It transforms coherent noise into a depolar-
izing channel by applying a random Pauli gate before each
CNOT gate and equivalent inverse gate(s) after the gate. In-
verse gate(s) are obtained by commuting random Pauli gates
through the CNOT gate. In this way the Pauli-dressed CNOT

gate remains functionally invariant. The same procedure ap-
plies to the single-qubit gates of the circuit. Random Pauli
gates, however, depolarize the coherent noise channel and
lower the likelihood of constructive interference of noise
sources causing large errors. This increases the probability
of obtaining the correct result from the quantum algorithm or
circuit. Reference [32] provides a useful case of randomized
compiling; it improves the probability of obtaining the correct
output of a four-qubit quantum Fourier transform circuit.

Randomized compiling has inspired a novel and effi-
cient benchmarking scheme, cycle benchmarking [29]. It
reports the average gate fidelity under randomized compiling,
quantifying the presence of coherent errors surviving Pauli de-
polarization of quantum gates executed in the same cycle. For
a quantum application circuit containing multiple operation
cycles, this benchmarking scheme registers both coherent and
incoherent errors on parallel gates (and their operand qubits)
in the circuit and accurately measures cycle-level error rates.
One of its important contributions lies in validating constant
gate error rates in the presence of circuit-level noise sources.
For example, using cycle benchmarking, one can show that in
spite of coherent errors, average fidelities of single-qubit and
multiqubit gates remain independent of the number of qubits
on the ion-trap quantum computer [29].

Pauli randomization improves the probability of obtaining
the correct outcome of a quantum circuit at the expense of
higher state impurity [32]. However, it remains unclear if it
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FIG. 2. The contextual influence of Z-Z crosstalk on phase-flip error probability pz and how it can be corrected. Circuits (a) and
(b) prepare the [[7, 1, 3]] |+〉 state with a slightly different sequence of CNOT gates. However, simulation (sim) and experiment (expt) results
show that (b) has 20% higher pz than (a). Note that the RZZ (θ = −π/3.5) crosstalk model is used for simulation only. In circuit (c), the
noise-correcting single-qubit Z-rotation gate RZ (θ = −π/3.5) cancels crosstalk in (b) by utilizing the circuit identities in (d). The topology of
the ibmq_melbourne (Melbourne) processor is displayed in (e).

also boosts state fidelity. Table I compares randomized com-
piling with noise cancellation on the circuit given in Fig. 4.
It is a typical seven-qubit processor state-preparation circuit
used in our experiments. The table data shows that unlike

noise cancellation, randomized compiling fails to elevate the
baseline state fidelity i.e. the fidelity of the state prepared
by the uncompensated circuit. This preliminary comparison
suggests that vanishing contours of coherent noise may be

FIG. 3. (a) Example of the Melbourne circuit for tracing errors in the [[7, 1, 3]] code |+〉 state. (b) The phase fidelity profile. The curve
plummets at CNOT gate 7, indicating large coherent error(s). The compensated circuit elevates the curve and lowers infidelity by 33%. The
circuit (a) also assigns distinct labels to CNOT gates. These act as the abcissa of the phase fidelity plot in (b).
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FIG. 4. (a) Example of the ibm_lagos circuit for tracing errors in the [[7, 1, 3]] |+〉 state. (b) The phase fidelity profile. The curve plummets
at CNOT gate 13, indicating large coherent error(s). The compensated circuit elevates the curve and lowers infidelity by 50%. The circuit (a) also
assigns distinct labels to CNOT gates. These act as the abcissa of the phase fidelity plot in (b).

unsuitable for their in situ correction or cancellation, at least
for the entangled states. Yet fault-tolerant quantum compu-
tation will eventually need entanglement for implementing
logical qubits and gates. How do coherent noise and other
circuit-level errors accumulate in the entangled states, and
how can these be effectively corrected? Is there a specific
structure or pattern to the noise and a way to eliminate its
dominant component? These questions expand the active area
of research; our work opens avenues to find their answers by
means of experimental investigations and insights.

III. EXPERIMENT TOOLS AND SETUP

The Steane code logical |+〉 state, |+̄〉, is defined as

|+̄〉 = 1√
8

(| + + + + + ++〉 + | − + − + − +−〉
+| + − − + + −−〉 + | − − + + − −+〉
+| + + + − − −−〉 + | − + − − + −+〉
+| + − − − − ++〉 + | − − + − + +−〉),

where |+〉 = 1√
2
(|0〉 + |1〉). Designing state-preparation cir-

cuits with lower decoherence rate and stochastic errors is

TABLE I. Comparison of different noise reduction or mitigation
approaches for the [[7, 1, 3]] |+〉 state-preparation circuit. The state
was prepared on the ibmq_casablanca circuit the same as in Fig. 4(a).
We chose θ = −3π/14 for the noise correction (this work) scheme.
For randomized compiling, we ran 20 Pauli randomized experiments
of the circuit per datum of state fidelity. A single standard deviation
quantifies the margin of error. Mean fidelity and and standard devi-
ations were calculated from at least three experiments, each running
8192 instances of the same circuit.

critical to effectively unearth otherwise hidden coherent er-
rors. The IBMQ platform enables preparation of the Steane
|+〉 state on the 15-qubit Melbourne and on the seven-qubit
ibmq_casablanca ibmq_jakarta, ibm_lagos, and ibm_perth
processors. Their topologies, showing qubit-qubit connec-
tivity, can be found in Figs. 1(a) and 2(e). Topologies can
be modeled as an undirected graph describing device –level
qubit-qubit connectivity. Edges and vertices represent chan-
nels of the CNOT gates and their operand qubits, respectively.
The logical |+〉 state encoding requires entangling any seven
qubits on the quantum processor. Therefore, in the case of
seven-qubit processors, only a single partition of seven qubits
is possible. On the other hand, Melbourne can be partitioned
into 15 different ways such that each partition clusters seven
qubits in a fully connected graph. Figure 2(e) shows one such
partition. Because of the fully connected graph, we call these
local partitions. The significance of the local partition lies
is reducing the overhead of noisy swaps for CNOT gate on
the nonlocal qubit operands. Minimizing SWAP gates in turn
lowers decoherence noise floor and helps unearth otherwise
less prominent coherent errors.

A. [[7, 1, 3]] State preparation (encoding) circuits

There are multiple ways to map virtual qubits (i.e., qubits
in a hardware agnostic circuit) to physical qubits (i.e., qubits
in the real processor) for any local partition. Different maps
may produce a different sequence of CNOT gates, and hence
different circuits in the physical device. Note that for the
remaining discussion, the term circuit encapsulates the qubit
map as well as the CNOT gate sequence. To date, the smallest
Steane |+〉 state circuit contains nine CNOT gates.

1. Zero overhead (nine-gate) circuit for Melbourne

The gate count can increase only when device topological
constraints are taken into consideration. On any processor
including Melbourne, a nonlocal CNOT gate is inevitable,
which necessitates additional entangling gates for physically
nonadjacent qubits. However, by leveraging existing circuit
optimization tools such as the following:

(1) Dynamic (re)labeling of qubits [33]
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FIG. 5. Forced commutation technique for decrementing CNOT gate count and circuit depth in the [[7, 1, 3]] |+〉 state-preparation circuit.
(a) The nine-gate circuit. (b) The equivalent circuit prepares the qubit-5, 6, and 7 cat-state by changing the control operand of one of the CNOT

gates. (c) Swapping the order of CNOT (q7, q4) and CNOT (q4, q1) produces a new CNOT (q7, q1). The new gate cancels the existing CNOT (q7,
q1) and produces an eight-gate circuit. The technique doubled the number of circuits for Melbourne experiments.

(2) CNOT gate commutation [14,24]
(3) Alternate three-qubit cat-state circuit shown in Fig. 5(b)

we have designed a circuit which incurs no overhead entan-
gling gate and contains only nine CNOT gates (nine-gate) when
mapped to the Melbourne hardware sketched in Fig. 2(e). In
the figure, both circuits initialize qubits into the Steane |+〉
state and swap q7 and q8. Final qubit labels are inconsequen-
tial, and hence are omitted from the figure. Almost 60% of
Melbourne experiments in Figs. 6 and 7 below ran a nine-gate
circuit with valid reordering of CNOT gates.

2. Negative overhead (eight-gate) circuit for Melbourne

It is possible to further decrease the CNOT gate count with
the help of another optimization called forced commutation,
never explored before to the best of our knowledge. The nine-
gate circuit in Fig. 5(b) eliminates a (red colored) CNOT (q7,
q1) gate by reordering noncommuting CNOT (q7, q4) and CNOT

(q4, q1) gates and invoking the circuit identity in (1) to obtain
the simpler circuit of Fig. 5(c):

CNOT(a, c) CNOT(b, c) CNOT(a, b)

= CNOT(a, b) CNOT(b, c). (1)

A resulting decrease in gate count also reduces circuit
depth to 4. The eight-gate circuit comprises around 40% of
Melbourne experiments in Figs. 6 and 7. It has provably lower
phase-flip error probabilities than the nine-gate version for
the given partition. In certain Melbourne partitions, adequate
noise cancellation can be achieved only in the eight-gate ver-
sion. An example of an eight-gate circuit is shown in Fig. 3.

3. Circuits for seven-qubit processors

By contrast, the seven-qubit processors exhibit an order
of magnitude lower gate error rates. These offer two- to
fourfold higher quantum volume (QV), and their CNOT gates
exhibit an average failure probability nearly five times smaller.
On the other hand, a higher QV comes at the expense of
sparser qubit-qubit connectivity; these devices add several
swap gates and double the number of CNOT gates in the phys-
ical circuit. Using the same set of gate reduction techniques,
we obtained 17- and 18-gate state-preparation circuits. Both
are identical except one superfluous CNOT gate. We did not

notice any meaningful difference in state preparation error
probabilities of 17- and 18-qubit versions. Error analysis of
Figs. 6 and 8 uses the 18-gate version. On the other hand,
the error-tracing example of Fig. 4(a) contains the 17-gate
version.

To summarize, all experiments ran circuits derived by valid
reordering of commuting CNOT gates of the example circuits
given in Figs. 2 and 3 for Melbourne and Fig. 4 and the last
two rows of Table III for seven-qubit processors.

B. Computing error probabilities

Algorithm 1 details an experimental method of computing
and tracing fidelity of the evolving stabilizer state ρ. The

Algorithm 1. Algorithm of tracing full fidelity of a stabilizer
state.

1 Input: An m−qubit quantum circuit C containing n
gates, annotated with some valid gate execution
order S = [g1, g2, g3, . . . , gn]

2 Output: Array F containing fidelities indexed by gate
in S

3 for i ←− 1 to n do
4 gi ←− S[i];
5 Fsum ←− 0;
6 for j ←− 1 to 2m do

7 s
(i)
j ←− obtain j-th stabilizer of quantum state
by simulating ideal circuit till gate gi

8 probSum ←− 0
9 repeat

10 Execute C on real device till gi. It will
generate noisy quantum state ρ;

11 Destructively measure ρ in s
(i)
j to obtain

0/1 outcome

12 outcome ←− Measure s
(i)
j on ρ

13 probSum ←− probSum + outcome

14 until N iterations;

15 prob := Tr[s
(i)
j ρ] ←− probSum/N

16 Fsum ←− Fsum + prob

17 end

18 F [i] ←− Fsum/2m

19 end
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method measures all 2n state stabilizers {sk}k=2n

k=1 on the state
as follows:

Fidelity =
√√√√ 1

2n

k=2n∑
k=1

Tr[skρ].

Experimentally, calculating the fidelity of a general quan-
tum state becomes computationally expensive as the number
of qubits grows. It requires a prohibitively large number of
state tomography experiments, although this number shrinks
considerably for the stabilizer states. This allowed us to effi-
ciently run state tomography for the [[7, 1, 3]] logical |+〉 state
because only 128 stabilizers were needed to be measured, as
generalized in Algorithm 1. For the nonstabilizer states, we
have leveraged the fact that arbitrary noise can be decomposed
into bit-flip (X ), phase-flip (Z), and bit- and phase-flip (Y )
errors upon measurement. It is possible to define observables
whose measurement statistics reveal a specific subset of Pauli
errors. For example, qubits (1) read out in the Z basis will
sense both X and Y errors, and state (2) read out in the X basis
will sense Z and Y errors. Partial fidelities for the two cases
can be efficiently obtained and enable evaluation of correction
scheme for the nonstabilizer states. The same framework was
also used to quantify component fidelities of the stabilizer
state. Next, we outline the procedure of calculating these
fidelities from experiment statistics.

To revisit, the metric pz, defined as phase-flip error prob-
ability, quantifies the likelihood of phase-flip error averaged
over all encoding qubits. It is derived from the phase fidelity
Fz as pz = 1 − F 2/n

z . We define Fz to be the fidelity between
projection

∑
i piEiρE†

i of the real state ρ and the projection∑
i qiEi|ψ〉〈ψ |E†

i of an ideal state |ψ〉〈ψ |, where operators

Ei = H |i〉〈i|H

constitute POVM with respective outcome probabilities pi =
Tr(Eiρ) and qi = Tr(Ei|ψ〉〈ψ |. By definition Ei renders pro-
jection states density matrices diagonal in the X basis only,
and therefore their overlap can be computed by classical fi-
delity measure

∑
k
√

pkqk set equal to Fz as follows:

Fz =
∑

k

√
Tr(Ekρ)Tr(Ekρ). (2)

Since projective measurements discretize any noise pro-
cess into Pauli errors, only Z and Y errors will impact Fz.
This implies that overall fidelity F (ρ, |ψ〉〈ψ |) cannot exceed
Fz. Experimental computation of the phase fidelity of both
the [[7, 1, 3]] logical |+〉 and X -basis W states use this
definition throughout the paper. To quantify bit-flip errors,
we define bit fidelity Fx according to Eq. (2) with Ei =
|i〉〈i|. This figure of merit is used in Table II to measure
bit-flip noise. Derived from bit fidelity, the probability of
bit-flip error, px = 1 − F 2/n

x , compares the performance of the
noise correction scheme for the [[7, 1, 3]] logical |+〉 state in
Fig. 7(b) below. The partial fidelity metrics enable efficient
experimental means of quantifying reduction in the dominant
fidelity-limiting errors.

C. Tracing unitary errors

Detecting unitary errors requires an adequate tool of trac-
ing error probability in the circuit. Error tracing identifies the
appearance of coherent errors by noting the uncharacteristic
decline of the phase fidelity curve, for example, the appear-
ance of deep valleys. Two such examples are given in Figs. 3
and 4 for Melbourne and ibm_lagos experiments, respectively.
To put things in correct perspective, both figures compare
experimental and simulation results so that we can quantify
how much circuit level noise has been reduced. For better
understanding, we provide relevant details of simulation noise
model as follows. The qiskit Ignis tool [34] contains several
noise models satisfying CPTP constraints, including a device-
specific noise channel derived from latest calibration data. It
employs a depolarizing channel to model imperfections in
the unitary and nonunitary circuit operations, and amplitude
and phase-damping channels for the qubit decoherence. The
overall noise model then superimposes all these channels to
simulate error probabilities for the whole circuit. However,
because it discounts any circuit-level errors, the simulated
error probabilities underestimated real noise. As a result, error
probabilities obtained from the device noise model can set
only the lower limit on pz and px obtained from experimental
circuits. The phase fidelity curve obtained from the simulation
of the device-specific noise model provides a credible refer-
ence to quantify the circuit-level noise reduction. More details
of the qiskit Ignis tool can be found in Ref. [34].

Error tracing skips a set of CNOT gates to initialize qubits
in a partial [[7, 1, 3]] state before Steane measurements. For
this purpose, CNOT gates are ordered according to some es-
tablished rule of representing scheduling constraints, e.g., a
dependency graph. We ran the state-preparation circuit only
up to the ith CNOT gate to collect readout statistics. Tracing
pz for each case of i ∈ {1, 2, 3, . . . , n} obtains a phase fidelity
curve such as those in Figs. 3 and 4. Here n is the total number
of CNOT gates in the circuit. For an incomplete circuit, the
pz computation first applies missing CNOT gates in postpro-
cessing as reversible XOR gates before computing pz. The
X -basis Steane measurements swap the operands of classical
XOR operations since H a; H b; CNOT (a,b); H a; H b = CNOT

(b,a).
While the phase fidelity simulation curve declines

smoothly throughout, a corresponding experimental curve
shows a similar trend up to a point of steep fall, followed
by resurrection. Our experiments show that noise correction
proves effective whenever a curve shows similar behavior. A
deeper valley enables compensated circuits to achieve higher
reduction in pz. In both figures, compensatory gates elevate
the curve minima, leading to substantial fidelity gain. With
reference to the simulation phase fidelity curve, noise correc-
tion slashes the infidelity by 50% and 33% for ibm_lagos and
Melbourne, respectively. Therefore, it is evident that the most
likely cause of sudden decrease in fidelity is a large error on
the gate, possibly Z-Z crosstalk, which can be corrected by
an appropriate conjugate gate. However, curve resurrection
behavior may be explained by two hypotheses. One possibility
lies in attributing revival of fidelity to the non-Markovian
noise. In this model, a quantum circuit can increase the fidelity
of the evolving state by recovering the qubit coherence pre-
viously lost in qubit-environment interaction. The recovery is
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possible if the environment coherence lasts till at least the next
qubit-environment interaction [35–37]. Such an environment
provides basis for the non-Markovian noise model. A second
explanation views increasing fidelity as destructive interfer-
ence of coherent errors on the gates, for example, CNOT gate-7
and CNOT gate-8 in the case of Fig. 3 and CNOT gate-13 to
gate-16 in Fig. 4. The latter hypothesis is simpler and more
consistent with the underlying reason of noise cancellation
in our compensated circuits. That said, preliminary evidence
of non-Markovian or another relevant noise model opens av-
enues for future work.

It is possible to sense coherent errors by reordering com-
muting CNOT gates, which can cause substantial change in
pz. Figure 2 illustrates this with the help of an example
Melbourne circuit simulation as well as experiment. Two cir-
cuits (a) and (b) containing the same set of CNOT gates are
functionally identical but differ in gate sequence. Circuit (b)
dispatches CNOT (q4, q9) to the end and interchanges the order
of CNOT (q7, q8) and CNOT (q9, q8). An Rzz(θ ) gate simulating
Z-Z crosstalk on CNOT (q8, q7) produces different pz. In (a),
crosstalk acts trivially on the EPR pair, whereas in (b) it
introduces nontrivial correlated phase flips on q7 an q8 and
elevates pz by 20%. The error probabilities are higher in the
experiments, yet pz still increases by at least 20%, from 0.177
in (a) to 0.233 in (b). Therefore, the altered gate sequence can
sense such unitary errors.

The above example illustrates how reordering commuting
CNOT paves the way for reducing circuit-level noise. While
this may work fine for the stabilizer circuits containing several
commuting CNOT gates, it does not constitute a general solu-
tion because the gates may not always commute. Therefore,
we need a noise correction tool for general quantum circuits.

D. Noise correction

1. Melbourne

An effective noise correction tool should be able to de-
crease pz lower than gate reordering. On all local partitions
we found that gate reordering provided up to a 20% change in
pz in the presence of unitary errors. This number was obtained
from rigorous analysis of experimental results of the nine-gate
and eight-gate version of Melbourne circuits as well as 17-
gate and 18-gate versions of seven-qubit processor circuits.
For data collection and analysis, nearly 45 000 circuits were
executed on the IBMQ platform. Figure 2 shows that while
the error-compensating single-qubit gate Rz(θ ) achieves 20%
lower pz in simulation, the corresponding experiment attains
higher reduction—nearly 24%—in the error probability. This
underpins one of the main contributions of this work.

Yet Rz(θ ) is not the only route to correct errors; we have
found that other single-qubit gates, although not being exact
conjugates of unitary errors, nevertheless can be just as ef-
fective in certain cases. We are omitting their details in the
interest of more interesting results. A two-qubit stabilizer en-
tangling gate of the form H a; CNOT (a, b); H a X b := HCNOT,
inserted at suitable location, can also undo coherent errors in
a manner similar to that of Rz(θ ). It somewhat contradicts
the intuition developed in Fig. 2, which shows Z-Z crosstalk
cancellation necessitates nonstabilizer (conjugate) rotations
about the Z axis. However, it is not difficult to explain how

the HCNOT gate may replicate crosstalk cancellation by Rz(θ ).
Earlier, we described that Z-Z couplings on two different
CNOT gates can interfere destructively. The HCNOT gate, like
other entangling gates, is also noisy; however, it is possible to
manipulate its noise to cancel errors and improve state fidelity.
The physical HCNOT gate can introduce reverse rotation [e.g.,
Rz(−θ )] or coupling [Rzz (−θ )] to become a noise-correcting
gate. The location of the HCNOT gate becomes crucial nonethe-
less; it must be inserted at a circuit location to ensure that
it acts trivially on the ideal state. Our experiments show that
HCNOT-based error correction is more effective in Melbourne,
whose gates are at least an order of magnitude higher error
rate. This is not a surprising result; after all, we wish to
counter noise with noise!

We further illustrate noise correction with HCNOT for an
example circuit in Fig. 3. The nose-diving phase fidelity curve
indicates error on CNOT (q4, q6). With the help of the qiskit
qasm simulator, we systematically short-listed circuit loca-
tions wherein single or multiple insertions of HCNOT stabilize
the evolving state, hoping that in real experiments, some form
of a noise-correcting unitary would accompany the HCNOT

gate. Among feasible candidate locations, our simulations
revealed that a combination of HCNOT (q7, q1) and Rzz (θ =
−π/3.5) on qubits q4 and q1, inserted at the circuit location
shown by arrows, best cancels error on CNOT (q6, q5). At
the same location, the HCNOT gate with a tensor product of
Rz(θ = −π/7) rotations on q4 and q1 also works equally
well. Interestingly, in a real Melbourne experiment, inserting
HCNOT works as expected, raising the phase fidelity curve at
CNOT (q4, q6), as does the Rz(θ ) curve. A close resemblance
between the two experimental curves of Fig. 3(b) further
strengthens the hypothesis that HCNOT adds noise-correcting
gates to mimic the phase-flip curve of Rz(θ ).

2. Seven-qubit processors

Further experimental evidence of noise cancellation can
be found in the phase fidelity curve of the ibm_lagos circuit.
The processor exhibits lowest error rates among publicly ac-
cessible seven-qubit computing chips. Figure 4(b) shows that
adding the Rz(θ ) compensating gate to the circuit, in spite of
lowering the curve initially, eventually elevates and sustains
phase fidelity considerably higher than the uncompensated
circuit gate 13 and onward. Initial decline is less visible in
Melbourne experiments, probably due to the high decoher-
ence rate dictating phase fidelity in the early stages of the
circuit. On the other hand, ibm_lagos has much longer qubit
coherence times; its circuit suffers lesser decoherence, allow-
ing circuit-level noise to strongly influence fidelity. Therefore,
the impact of adding unitary rotation can be seen even in the
early stages of its circuit. A quick calculation in Fig. 4 shows
that the initial 20% deficit of fidelity (0.96 → 0.76) at gate 4 in
the compensated circuit transforms into a 19% gain in fidelity
(0.68 → 0.81) by the end of the circuit. This remarkable sym-
metry provides much cleaner evidence of noise cancellation.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We now discuss phase-flip error-probability experiment
results for various Melbourne and seven-qubit processor cir-
cuits containing a single partition. The goal is to (1) show
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FIG. 6. Compensated circuits lower phase-flip error probability pz of the [[7, 1, 3]] |+〉 state on (a) Melbourne and (b) seven-qubit devices
(b). All compensated circuits inserted a RZ (θ ) gate(s) at appropriate locations and lowered error probability by at least 20%. The value of θ

and the circuit location were carefully selected to minimize the compensated circuit error probability. Each data point (original circuit error
probability, compensated circuit error probability) is vertically aligned on the graph for a given abscissa and corresponds to a unique circuit
(i.e., qubit map and CNOT gate sequence). Melbourne circuits explore noise correction at higher error rates, whereas circuits of seven-qubit
devices show that it works even at lower error rates. Error bars show the 95% confidence interval.

at least 20% lower pz with the compensated circuit and (2)
obtain a trend of noise-corrected pz with an overall increase
in the noise. A large number of circuits were experimentally
explored to satisfy both requirements. Results of Melbourne
and seven-qubit processors are distinguishable because of a
significant difference in topologies, error rates, circuit sizes,
and depths.

A. Reducing phase-flip errors using single-qubit compensatory
gate: Rz(θ)

Figure 6 compares pz of an uncompensated (origi-
nal) and corresponding noise-compensated circuit containing
Rz(θ ) gates. It plots ordered pairs pz (original), pz (noise-
compensated) w.r.t. pz (original) for a given circuit. The two
error probabilities in the pair are vertically juxtaposed, that
is, these are meant to be compared along the graph ordinate.
This setting enables comparison over a wide range of pz (orig-
inal) describing noise levels available in experimental circuit
space. We note that noise correction decreases phase-flip error
probability in the compensated circuits. In fact, all order pairs
lower the error probability by at least 20%. In some cases, the
decrease can be 25% or even higher. Melbourne experiments
[Fig. 6(a)] examine the efficacy of noise correction at com-
paratively higher noise levels, whereas seven-qubit processors
[Fig. 6(b)] highlight its performance at lower noise levels.
Compensated circuits are adequately effective in both cases.
On the other hand, adding Rz(θ ) does not change bit-flip error
probability px except for negligibly small statistical fluctu-
ations. When plotted on the graph, data points of the two
circuits were indistinguishable, and hence excluded from the
discussion.

Achieving minimal pz, hence maximum phase fidelity, re-
quires fine tuning of the Rz(θ ) gate rotation angle. To this end,
we experimentally searched for optimal θ in the range 0 <

θ � π/2 by systematically incrementing its value in small
steps. Figure 10(c) plots phase fidelity with θ to locate the
optimal rotation angle of the compensating gate.

B. Reducing phase-flip errors using two-qubit compensatory
gate: HCNOT

The HCNOT compensated circuit similarly lowers the
phase-flip error probability although at the cost of a slight
increase in px. Still, in most cases, the difference remains
less than height of error bars representing a 95% confidence
interval. Figure 7(a) displays all ordered pairs in which pz

is lowered by at least 20% in the compensated circuit. Cor-
responding px are compared in Fig. 7(b) showing a small
increase in px, conserving a net decrease in overall error prob-
ability. The compensated HCNOT noise correction represents
an indirect form of noise correction and remains exclusive
to Melbourne, whose entangling gates have high error rates.
Adding a noisy stabilizer two-qubit gate can bring new unitary
error, which cancels the one on the original circuit.

C. Quantifying overall noise reduction

The last set of experiments compute fidelity to show overall
noise reduction. Algorithm 1 computes fidelity by measur-
ing 128 stabilizers on the [[7, 1, 3]] logical |+〉 state. This
requires 128 experiments per fidelity datum. For selected lo-
cal partitions of Melbourne and a qubit map of seven-qubit
devices, the fidelity results are summarized in Figs. 8 and 9
for Rz(θ ) and HCNOT compensated circuits, respectively. Both
figures show fidelity improvement with and without measure-
ment of noise mitigation [38] for selected circuits of Figs. 5
and 7. Qiskit Ignis contains readout noise-mitigation routines
that apply linear filtration: v = B−1e. Here B is a 2n × 2n

matrix containing conditional probabilities, and the vectors v

and e represent filtered and unfiltered (actual) readout prob-
ability distributions. Entries in the B matrix are conditional
probabilities, P(actual_readout | correct_readout), and come
from a separate set of experiments. The random variables ac-
tual_readout and correct_readout are a seven-bit-long string,
quantifying the likelihood of obtaining the correct result for
a known (classical) state of qubits. Coherent errors are more
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FIG. 7. Performance of HCNOT noise-compensated [[7, 1, 3]] |+〉 state-preparation Melbourne circuits. (a) Compensated circuits lowered
phase-flip error probability; (b) comparison of corresponding bit-flip error probabilities shows inconsequential rise in bit-flip noise. All
instances lowered the phase-flip error probability by at least 20%. Each data point (original circuit error probability, noise-compensated
circuit error probability) is vertically aligned on the graph for the given abscissa and corresponds to a unique circuit (i.e., qubit map and CNOT

gate sequence). These and circuits of Fig. 6(a) exhibit a 20% or higher decrease in the phase-flip error probability on all local partitions of
Melbourne. Error bars show the 95% confidence interval.

pronounced at lower readout inaccuracy and provide a greater
opportunity of noise correction.

The bar charts in Figs. 8 and 9 juxtapose state fidelities
for the compensated circuit Rz(θ )) and original circuits. We
define infidelity as 1-fidelity to situate these results within
the context error-probability graphs. Because bit-flip errors
remain uncorrected, only phase-flip error-probability dictates
an overall infidelity. In the case of the HCNOT gate, these may
slightly increase infidelity. Still, several compensated circuits
achieved 20% less infidelity for both compensated circuits and
on all devices with mitigated readout noise. Overall, these
graphs show several compensated circuits lowering infideli-
ties by more than 25%. In one circuit, M5, the reduction
even reach 35%, thereby validating the effectiveness of the
noise-correction scheme.

D. Noise reduction in the X -basis W state circuits

For completeness, we show that nonstabilizer states can
also be purified from coherent noise. For this set of ex-
periments we choose X -basis W state circuits of different

sizes and depths. The n-qubit X -basis W state, |Wx〉, is
defined as

|Wx〉 = 1√
2n

(| + + + · · · + −〉 + | + + + · · · − +〉
+| + + + · · · − −〉 + · · · + | − + + · · · + +〉).

Experimental circuits prepare the states on three devices:
ibm_perth, ibm_lagos, and ibmq_guadalupe. Figure 10 shows
ibmq_perth initializing the five-qubit X -basis W state. Be-
cause circuits contain a controlled rotation about the Y
axis, i.e., Ry(θ ), the state cannot be described by stabilizer
formalism. In this case, full fidelity calculations become com-
putationally prohibitive. Instead, we present phase fidelities
and bit fidelities computed from Algorithm 2 as metrics for
comparing noise levels of original and compensated circuits.
Seven-qubit devices, ibmq_perth and ibm_lagos, initialize
a five- and seven-qubit W state, while a 16-qubit device,
ibmq_guadalupe, prepares a nine-, 11-, 13-, and 15-qubit W
state. Table II shows that percentage increase in the phase fi-
delity generally trends upwards for larger and deeper circuits.

FIG. 8. RZ (θ ) noise correction increases fidelity of the [[7, 1, 3]] |+〉 state for selected circuits. (a) Without readout noise mitigation;
(b) with readout noise mitigation [38]. Refer to Table III for circuit details. Error bars show standard deviation.
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FIG. 9. HCNOT noise correction increases fidelity of the [[7, 1, 3]] |+〉 state for selected Melbourne circuits. (a) Without readout noise
mitigation and (b) with readout noise mitigation [38]. Refer to Table III for the circuit details. Error bars show standard deviation.

The corresponding bit fidelities change only nominally. In the
case of a HCNOT gate, this can be slightly higher, for example,
up to 4.8%, although it still remains a very small fraction of
the corresponding gain in the phase fidelity (see the 32.5%
increase for the 15-qubit state). Finally, we observed familiar
dips, though somewhat shallower, in the guadalupe circuits

phase fidelity curves. In the interest of brevity, detailed anal-
ysis has not been included in this paper. The nonstabilizer
state results highlight that the proposed scheme can be equally
effective in calibrating general quantum circuits entangling
almost all qubits on a chip as large as ibmq_guadalupe.

FIG. 10. (a) A five-qubit X -basis W state circuit for ibm_perth. The compensated circuit inserted the Rz(θ ) gate with θ = −π/3. Note
that 1Ry,

2Ry,
3Ry,

4Ry (and their conjugates) are rotations about the y axis, with corresponding rotation angles 0.615, 1.37, π/4, and π/4.
(b) Phase fidelity profile. The compensated circuit increases phase fidelity by 9% (c) Role of θ in optimizing phase fidelity of compensated
circuit. Optimal Rz(θ ), one that maximizes the phase fidelity, can be obtained by systematically exploring the rotation angle in [0, π/2].
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Algorithm 2. Algorithm of tracing phase fidelity (or bit fidelity)

1 Input: An m−qubit quantum circuit C containing n
gates, annotated with some valid gate execution
order S = [g1, g2, g3, . . . , gn]

2 Output: Array Fz containing phase-fidelities indexed
by the gate in S

3 for i ←− 1 to n do
4 gi ←− S[i];
5 |φ − Simulate ideal C till gi and compute state

vector
6 prob prod ←− 0
7 for k ←− 0 to 2m − 1 do
8 Ek ←− H|k k|H
9 k ←− |k k| for bit-fidelity

10 pSum ←− 0 ; qSum ←− 0
11 repeat
12 Execute C on real device till gi. It will

generate noisy quantum state ρ
13 Destructively measure ρ in Ek to obtain

0/1 outcome
14 outcome ←− Measure Ek on ρ
15 pSum ←− pSum + outcome
16 Destructively measure |φ φ| in Ek to

obtain 0/1 outcome
17 outcome ←− Measure Ek on |φ φ|
18 qSum ←− qSum + outcome

19 until N iterations;
20 p[k] := Tr[Ekρ] ←− pSum/N
21 q[k] := Tr[Ek|ψ ψ|] ←− qSum/N

22 prob prod ←− prob prod + p[k]q[k]

23 end
24 Fz[i] ←− prob prod

25 end

E. Experiment time of finding the optimal location of the
compensatory gate

We ran separate trial experiments for identifying the best
circuit location to insert a compensating gate(s). All loca-
tions corresponding to the original circuit CNOT gates were
explored, one at a time, and we selected the one where in-
serting the compensating gate maximized the overall increase
in fidelity. In the case of Rz(θ ), additional trial experiments
were required to find optimal θ [see Fig. 10(c)] as well. This
makes the total number of trials scale only linearly with the
CNOT gates of the circuit. The last column of Table II lists
the total experiment time consumed in searching for the op-
timal location of the compensating gate [and also θ in case
of Rz(θ )]. The time was obtained from the qiskit job status
timeline. One can see that sizing the W state from five to 15
qubits quadruples the number of CNOT gates, at the cost of
only 2.2 times increase in the search time. We believe that time
complexity can be improved by incorporating deeper insights
into the circuit-level errors, possibly with the help of cycle
benchmarking.

V. PREVIOUS WORK

Noise cancellation adds to the repertoire of schemes de-
signed to counter errors in near-term noisy intermediate-scale

quantum (NISQ) computers [39]. At the same time, it features
in situ correction of errors without ancilla overhead—a dis-
tinctive attribute in the context of relevant prior work. It can
also be instrumental to achieve high-fidelity circuit execution
on the generation of low-decoherence quantum processors.
For example, many superconductor quantum computing plat-
forms are converging to a heavy hexagonal topology, offering
quantum volume as high as 64 [40]. Improved quantum
hardware lowers decoherence and amplifies coherent error
contribution to state infidelity. Several recent works have
explored various forms of noise suppression, prevention, or
mitigation that can be broadly characterized as either gate- or
circuit-level methods, although such bifurcation may be less
crisp in some cases.

Gate-level approaches typically rely on advances in pulse
shaping [41], control [42–44], and dynamically corrected
gates [8], in some cases adding compensating pulses [20,45]
to decouple the principal quantum system state from the
environment and cancel unwanted Hamiltonian terms in en-
tangling gate implementation. Recently, dynamic decoupling
[19] has been shown to effectively suppress the Z-Z crosstalk
noise and improving coherence times. Circuit-level noise
approaches can be classified as either preprocessing or post-
processing in nature. The former techniques apply hardware
calibration data to obtain a noise-aware qubit map and gate
schedule [13,15,17,21]. Gate commutation properties [14,24]
reduce SWAP gate overhead for a lower gate count to lower
accumulated noise. Just-in-time [16] compilation takes fresh
calibration into account for generating a low-noise circuit
map. Detailed noise characterization and intelligent gate
scheduling mitigate crosstalk [12] on 20-qubit IBM quantum
processors.

On the other hand, the postprocessing circuit-level schemes
modify the probability distribution of the circuit readout re-
sults such that the mean value of an observable of our interest
becomes more accurate at the cost of increased variance.
This can be achieved either by artificially scaling the error
rates per gate [22,23] with the help slower execution (zero-
noise extrapolation) or by carefully depolarizing [22] the
circuit (probabilistic noise cancellation). These postprocess-
ing schemes improve only the estimate of the mean value
of an observable mapped to read out the probability dis-
tribution, and do not improve the likelihood of obtaining
a correct distribution. Error-correction protocols have been
shown to address this shortcoming although at the scale of
single logical qubit protected by distance-2 [[4, 1, 2]] code
[33] as well as distance-3 five-qubit [[5, 1, 3]] [46] and
seven-qubit [[7,1, 3]] codes [47]. Very recently, arbitrary er-
ror correction for logical state preparation and measurement
(SPAM) has been successfully demonstrated for the Steane
code, achieving SPAM failure probability of a logical qubit
lower than its unprotected (physical) counterpart [47]. In any
experimental realization of quantum error correction, high-
fidelity encoded state preparation will be a crucial milestone
for NISQ processors; a large number of entangling gates
can easily gather enough errors to leave subsequent parity
checks operation ineffective [48,49]. Therefore, eliminating
coherent errors is a prerequisite of successful quantum error
correction.
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TABLE II. Noise correction improves fidelity of X -basis W states prepared on ibm_perth, ibm_lagos, and ibmq_guadalupe. The five-qubit
state-preparation circuit is shown in Fig. 10. The last column lists qiskit-provided total experimentation time to find the optimal location (and
angle) of the compensating gate that maximizes the net % increase in the fidelity.

VI. CONCLUSION

Tracing and correcting unitary errors pose a challenging
and important problem in state-of-art quantum computing
platforms. We experimentally demonstrate unitary noise de-
tection and correction on IBM quantum computing devices.
We have shown that coherent errors, such as undesirable Z-Z
coupling, can be sensitive to the sequence of gates in the phys-
ical circuit and cause sudden decrease in fidelity, followed
by a recovery trend. Such peculiar behavior is in sharp con-
trast with a monotonically declining decoherence curve. The

depth of the curve valley may indicate the amplitude of co-
herent noise. Noise tracing requires a number of experiments
proportional to the circuit size. Correction inserts compen-
satory gates that partly cancel unitary errors either directly
or indirectly, and both have been shown to work effectively
in respective circuits. Detailed experiments highlight overall
gain in the fidelity of the [[7, 1, 3]] code |+〉 state as well as
the nonstabilizer X -basis W state of different sizes, prepared
on various IBM quantum processors with quantum volume 8,
16, and 32.

TABLE III. Details of circuits used in Figs. 8 and 9.
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Although our case study structures important details of
noise behavior, it also unfolds some interesting questions for
future work thereby. The presented cancellation approach,
a form of circuit-level calibration, has been shown to work
for multiqubit entanglement circuits. Is it possible to con-
struct a noise model which can encapsulate circuit-level errors
more accurately and predict the performance of similar cir-
cuits? Furthermore, the valleys traced by the fidelity curve
strongly motivate investigation of the likely connection be-
tween non-Markovian noise and coherence revival. Can we
use the tools developed in this work to better comprehend
the role of non-Markovian noise in dictating the state fidelity?
Finally, considering encouraging noise-cancellation results, it
is tempting to alter noise composition in favor of more unitary
than nonunitary errors. To a certain extent, increasing qubit
coherence times and decreasing operational error rates and

processor sparse topologies have already changed this compo-
sition. However, several unmodeled and unmitigated sources
of circuit-level errors expand ample space for quantum circuit
engineering.
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