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We investigate the relation between tripartite entanglement of the three-qubit system and the maximum
steering inequality violation of the reduced two-qubit states. Firstly, it is found that a single parameter family of
entangled three-qubit pure states have the maximum steering inequality violation among all of the three-qubit
pure states for a fixed amount of tripartite entanglement. The tripartite entanglement is quantified by the
genuinely multipartite concurrence, generalized geometric measure, and tangle. Subsequently, the complemen-
tary relation between tripartite entanglement and the maximum steering inequality violation for an arbitrary
three-qubit pure state can be established. Particularly, the result also holds for three-qubit mixed states if the
entanglement measure is tangle. The complementary relations indicate that the maximum steering inequality
violation of the reduced two-qubit system is at the expense of tripartite entanglement.
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I. INTRODUCTION

Quantum entanglement describes quantum correlations
among distant parties that are completely forbidden in the
classical regime [1]. Multipartite entangled states have vital
applications in quantum information processing tasks [2–4].
A fundamental issue in quantum information science is to
quantify the entanglement of the multipartite system. Various
measures of multipartite entanglement have been proposed,
such as the genuinely multipartite concurrence (GMC) [5,6],
generalized geometric measure (GGM) [7–12], tangle [13],
and concurrence fill [14].

Quantum steering lies between entanglement and Bell non-
locality [15]. The idea of Einstein-Podolsky-Rosen (EPR)
steering was first introduced in the bipartite scenario by
Schrödinger [16,17] in the context of the EPR argument
[1]. Much later, a criterion for experimentally demonstrating
the EPR argument using the Heisenberg uncertainty relation
was proposed [18]. Steering describes a nontrivial trait of
quantum physics that the local measurements on one side
can “steer” the state on the other side. Quantum steering
was rigorously and formally defined from the perspective
of quantum information theory in 2007 [19]. Since then,
quantum steering has attracted much attention in different
fields [20]. The violations of steering criteria, which are
obtained using correlations, state assemblages, and full infor-
mation, can be used to detect quantum steering. For example,
steering inequalities have been designed to observe steering
[18,21–29]. Several experiments to demonstrate the effect
of steering have been performed [29,30]. Steerable states
are beneficial for randomness generation [31], subchannel
discrimination [32], quantum information processing [33],
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and one-sided device-independent processing in quantum key
distribution [34].

The correlation statistics of two-body subsystems are al-
ways used to infer the multipartite properties of a composite
quantum system [35–41]. As quantum correlations and non-
locality both are essential as resources in information theory,
it is interesting to establish the link between them. The com-
plementarity between tripartite quantum correlations and the
Bell-inequality violation in three-qubit states has been in-
vestigated in Ref. [42]. The relations between the reduced
bipartite steering and bipartite as well as tripartite entangle-
ment of the three-qubit states have been established [43].
Moreover, a complementarity relation is established between
the capacity of multiport classical information transmission
via quantum states and multiparty quantum correlation mea-
sures for three-qubit pure states; this is important because
it establishes a connection between the multiparty entangle-
ment content of multipartite quantum states and their ability
to act as substrates in quantum information protocols [44].
Despite remarkable progress, how the correlation statistics
of two-body subsystems depends on the multipartite prop-
erties of a composite system is still not clear. Particularly,
comparatively little is known about the dependence of the
reduced bipartite steering of a three-qubit state on tripartite
entanglement of the three-qubit state. In this paper, we study
the complementary relations between tripartite entanglement
and the reduced bipartite steering in three-qubit states inspired
by the results given in Refs. [42–44]. It is found that, among
all the three-qubit pure states for a fixed amount of tripar-
tite entanglement, the maximally steering inequality violat-
ing states give the maximum steering inequality violation.
Therefore a complementary relation between tripartite en-
tanglement and the maximum steering inequality violation
can be obtained. The maximally steering inequality violating
states lie at the boundary of the complementary relation. The
measures of tripartite entanglement considered are the GMC,
GGM, and tangle.
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This paper is organized as follows. In Sec. II, we briefly
review the measures of tripartite entanglement and the three-
setting linear steering inequality. Subsequently, the relations
between tripartite entanglement and the steering inequality
violation of the reduced bipartite states are investigated in
Sec. III. The discussion and conclusion are given in Sec. IV.

II. MEASURES OF TRIPARTITE ENTANGLEMENT
AND THE THREE-SETTING LINEAR STEERING

INEQUALITY VIOLATION

The multipartite quantum state is genuinely entangled if
it is not separable in any bipartite split. We present the mea-
sures of tripartite entanglement that will be required later in
this paper. They are the GMC, GGM, and tangle. While the
first two measures are based on the concept of distance to a
relevant class of states, the third one is based on the concept of
monogamy. The three-setting linear steering inequality used
in this paper is the one given by Cavalcanti et al. [21], and we
will also introduce it in this section.

A. GMC

In order to distinguish genuine multipartite entanglement
from partial entanglement, Ma et al. defined a generalized
concurrence, GMC, as an entanglement measure for a mul-
tipartite system [5]. The GMC of an n-partite pure state |ψ〉 ∈
H1 ⊗ H2 ⊗ · · · ⊗ Hn with dim(Hi ) = di(i = 1, 2, . . . , n) is
given as

C(|ψ〉) = min
μi

√
2
[
1 − Tr

(
ρ2

Aμi

)]
, (1)

in which μi denotes the bipartition in the set of all possible
bipartitions {Ai|Bi}. The GMC can be generalized to the case
of mixed states via the convex roof construction

C(ρ) = inf
{pi,|ψi〉}

∑
i

piC(|ψi〉), (2)

where the infimum is over all possible decompositions ρ =∑
i pi|ψi〉〈ψi|. The GMC is exactly the square root of the

length of the shortest edge of the concurrence triangle for a
three-qubit system [14].

B. GGM

The GGM, as a measure of genuine multipartite entangle-
ment for pure states, is defined as the distance of the n-partite
state |ψ〉 from the set of all multiparty states |ϕ〉 that are not
genuinely entangled

G(|ψ〉) = 1 − max
|ϕ〉

|〈ϕ|ψ〉|2. (3)

Here, the maximization is done over all pure states that are not
genuinely n-party entangled. In Refs. [7–9], it is shown that an
equivalent mathematical expression of the GGM reads

G(|ψ〉)=1 − max
{
λ2

A:B

∣∣A ∪ B={1, 2, . . . , n}, A ∩ B = ∅}
,

(4)

where λA:B is the maximal Schmidt coefficient in the A : B
split of the state |ψ〉.

C. Tangle

Monogamy of quantum correlations can be used to quan-
tify the shareability of quantum correlations in multipartite
systems [13]. Tangle, as an entanglement measure of a three-
qubit system, is equal to the quantum monogamy score
corresponding to the square of concurrence [42]

τ (ρABC ) = C2
A:BC − C2

AB − C2
AC, (5)

where CXY (X,Y = A, B,C) is the concurrence of a two-qubit
system and is defined as CXY = max{0, λ1 − λ2 − λ3 − λ4}
with λ1, . . . , λ4 being the square roots of the eigenvalues of
ρXY [(σy ⊗ σy)ρ∗

XY (σy ⊗ σy)]. ρ∗
XY is the complex conjugation

of ρXY , and σy is the Pauli matrix. Tangle is always non-
negative due to the fact that the square of concurrence is
monogamous.

For a three-qubit pure state given as |ψ〉 = ∑
i jk ai jk|i jk〉

in the standard basis, the tangle is [13]

τ (|ψ〉) = 4|d1 − 2d2 + 4d3|, (6)

where

d1 = a2
000a2

111 + a2
001a2

110 + a2
010a2

101 + a2
100a2

011,

d2 = a000a111a011a100 + a000a111a101a010

+ a000a111a110a001 + a011a100a101a010

+ a011a100a110a001 + a101a010a110a001,

d3 = a000a110a101a011 + a111a001a010a100. (7)

D. The three-setting linear steering inequality violation

Some steering inequalities, which are derived from the
assumption of the local hidden states model, can indicate the
occurrence of steering by the violation of them. As an exam-
ple, Cavalcanti et al. proposed the linear steering inequality
[21] to check whether a bipartite state is steerable from Alice
to Bob

Fn(ρAB, μ) = 1√
n

∣∣∣∣∣
n∑

k=1

〈Ak ⊗ Bk〉
∣∣∣∣∣ � 1, (8)

where 〈Ak ⊗ Bk〉 = Tr(ρAB(Ak ⊗ Bk )), Ak = âk · �σ , and Bk =
b̂k · �σ , with �σ = (σ1, σ2, σ3) being a vector composed of
the Pauli matrices. âk, b̂k ∈ R3 are unit and orthonor-
mal vectors. The set of measurements is given by
{â1, â2, . . . , ân, b̂1, b̂2, . . . , b̂n}. Obviously, Alice and Bob can
perform n dichotomic measurements on their respective sub-
systems.

In the Hilbert-Schmidt representation, a two-qubit state can
be given as

ρAB = 1

4

[
I2 ⊗ I2 + �a · �σ ⊗ I2 + I2 ⊗ �b · �σ +

∑
i, j

ti jσi ⊗ σ j

]
.

(9)
In the equation, �a and �b are the local Bloch vectors. ti j =
Tr(ρAB(σi ⊗ σ j )), and TAB = [ti j] is the correlation matrix.

For the case of the three measurement settings, i.e., n = 3,
the three-setting linear steering inequality can be obtained
from Eq. (8), and the state ρAB is F3 steerable if and only
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if [43]

SAB = Tr
(
T T

ABTAB
)

> 1, (10)

where the superscript T denotes the transpose of the cor-
relation matrix TAB. Actually, SAB = ∑3

i, j=1〈σi ⊗ σ j〉2 for
two-qubit states [45]. Among the three reduced two-qubit
states of a three-qubit state ρABC , Smax(ρABC ) is introduced
to pick the one with the maximum steering inequality
violation [43]

Smax(ρABC ) = max{SAB, SAC, SBC}. (11)

III. TRIPARTITE ENTANGLEMENT VERSUS THE
MAXIMUM STEERING INEQUALITY VIOLATION

For bipartite pure states, the relation between SAB and con-
currence CAB is SAB = 1 + 2C2

AB, which can be derived with
methods similar to those used in Refs. [43,46]. The result in-
dicates that the more entangled the state is, the more steerable
the state is. However, we cannot infer anything about steering
of the bipartite reduced states of a three-qubit pure state. In
this section, the relations between tripartite entanglement of
three-qubit pure states and the maximum steering inequality
violation for two-qubit reduced states are established.

In order to obtain the results, we introduce the single
parameter family of genuinely three-qubit entangled states,
which we can call the maximally steering inequality violating
states because they give the maximum steering inequality
violation among all three-qubit pure states for a fixed amount
of tripartite entanglement. The state is

|ψ〉α = 1√
2 + 2α2

[|000〉 + α(|010〉 + |101〉) + |111〉], (12)

where the state parameter α ∈ [0, 1]. The state |ψ〉α be-
longs to the Greenberger-Horne-Zeilinger (GHZ) class when
α ∈ [0, 1). For α = 1, it belongs to the W class having a
zero tangle. States of this class are considered to be the
maximally dense-coding-capable states [44] as well as the
maximally Bell-inequality violating states [42] because they
have the maximum multiport dense coding capacity and Bell-
inequality violation for a fixed amount of tripartite quantum
correlations.

The GHZ and W class states are two disjoint but complete
subsets of genuinely three-qubit entangled pure states. Hence
it is sufficient to establish the complementary relations for the
GHZ and W class states [42].

The GHZ class states can be converted into the GHZ
state using stochastic local quantum operations and classical
communication (SLOCC) with nonzero probability and be
characterized by parameters αX (X = A, B,C), β, φ as

|ψ〉GHZ = 1√
κ

[cos β|000〉 + eiφ sin β(cos αA|0〉 + sin αA|1〉)

× ⊗(cos αB|0〉 + sin αB|1〉)

× ⊗(cos αC |0〉 + sin αC |1〉)], (13)

where κ=1+ cos αA cos αB cos αC cos φ sin 2β. αX ∈(0, π/2],
β ∈ (0, π/4], and φ ∈ [0, 2π ).

Similarly, the W class states can be converted into the W
state using SLOCC with nonzero probability and be given as

|ψ〉W =
√

d|000〉 + √
a|001〉 +

√
b|010〉 + √

c|100〉, (14)

where a, b, c, d > 0 and satisfy the normalizing condition a +
b + c + d = 1.

A. GMC versus the maximum steering inequality violation

The relation between GMC and the maximum steering
inequality violation for three-qubit pure states is derived in
this section.

Lemma 1. For a three-qubit pure state |ψ〉, if the GMC
obtains from, for example, an A : BC split, then the maximum
steering inequality violation Smax(|ψ〉) = SBC (|ψ〉).

Proof. For the GHZ class states, the GMC is

C(|ψ〉GHZ) = min
{√

2
[
1 − Tr

(
ρ2

A

)]
,

√
2
[
1 − Tr

(
ρ2

B

)]
,

×
√

2
[
1 − Tr

(
ρ2

C

)]}
, (15)

in which ρX (X = A, B,C) are the reduced states of |ψ〉GHZ.
The condition that the GMC is obtained from the biparti-
tion A : BC implies Tr(ρ2

A) � Tr(ρ2
B), Tr(ρ2

A) � Tr(ρ2
C ). The

results will deduce the conditions

(cos2 αA − cos2 αB) sin2 αC � 0,

(cos2 αA − cos2 αC ) sin2 αB � 0. (16)

The steering inequality violations SAB(|ψ〉GHZ), SAC (|ψ〉GHZ),
and SBC (|ψ〉GHZ) for the reduced states ρAB, ρAC , and ρBC of
the GHZ class states are

SAB(|ψ〉GHZ) = κ2 + (2 sin2 αA sin2 αB − sin2 αB sin2 αC − sin2 αA sin2 αC ) sin2 2β

κ2
, (17)

SAC (|ψ〉GHZ) = κ2 + (2 sin2 αA sin2 αC − sin2 αA sin2 αB − sin2 αB sin2 αC ) sin2 2β

κ2
, (18)

SBC (|ψ〉GHZ) = κ2 + (2 sin2 αB sin2 αC − sin2 αA sin2 αB − sin2 αA sin2 αC ) sin2 2β

κ2
. (19)

Using the conditions given in Eq. (16), one can find

SBC (|ψ〉GHZ) − SAB(|ψ〉GHZ) = 3

κ2
(sin2 αC − sin2 αA) sin2 αB sin2 β � 0,

SBC (|ψ〉GHZ) − SAC (|ψ〉GHZ) = 3

κ2
(sin2 αB − sin2 αA) sin2 αC sin2 β � 0. (20)
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Thus the maximum steering inequality violation Smax(|ψ〉GHZ)
is equal to SBC (|ψ〉GHZ).

For the W class states, if the GMC is obtained from the
bipartition A : BC, i.e., C(|ψ〉W) =

√
2[1 − Tr(ρ2

A)], one will
get the following conditions:

(a + c)b − (a + b)c = a(b − c) � 0,

(b + c)a − (a + b)c = b(a − c) � 0. (21)

The steering inequality violations SAB(|ψ〉W), SAC (|ψ〉W),
and SBC (|ψ〉W) for the reduced states ρAB, ρAC , and ρBC of
the W class states are

SAB(|ψ〉W) = 1 + 8bc − 4a(b + c),

SAC (|ψ〉W) = 1 + 8ac − 4b(a + c),

SBC (|ψ〉W) = 1 + 8ab − 4c(a + b). (22)

The conditions given in Eq. (21) will ensure that SBC (|ψ〉W) �
SAB(|ψ〉W) and SBC (|ψ〉W) � SAC (|ψ〉W). Therefore the max-
imum steering inequality violation Smax(|ψ〉W) = SBC (|ψ〉W).

One should note that a similar proof holds for the cases in
which the GMC is obtained from the other two bipartitions no
matter whether the three-qubit pure states considered are the
GHZ or W class states. Hence the proof is completed. �

With Lemma 1, one can prove the following theorem.
Theorem 1. If |ψ〉, which is a three-qubit pure state, has

the same value of the GMC as that of the state |ψ〉α , the
maximum steering inequality violations of the former and the
latter satisfy the ordering Smax(|ψ〉α ) � Smax(|ψ〉).

Proof. If C(|ψ〉GHZ) is obtained from the A : BC split for
the GHZ class states, the GMC of |ψ〉GHZ is

C(|ψ〉GHZ) = 1

κ

√
(cos2 αB cos2 αC − 1) sin2 αA sin2 2β. (23)

From Lemma 1, the corresponding maximum steering in-
equality violation Smax(|ψ〉GHZ) = SBC (|ψ〉GHZ), which is
given in Eq. (19).

The GMC and the maximum steering inequality violation
of the state |ψ〉α are given as

C(|ψ〉α ) = 1 − α2

1 + α2
, (24)

Smax(|ψ〉α ) = 1 + 10α2 + α4

(1 + α2)2
, (25)

respectively. The condition C(|ψ〉GHZ) = C(|ψ〉α ) implies

α2 = κ −
√

(cos2 αB cos2 αC − 1) sin2 αA sin2 2β

κ +
√

(cos2 αB cos2 αC − 1) sin2 αA sin2 2β
. (26)

Substituting α2 into the expression of Smax(|ψ〉α ), one
can compare Smax(|ψ〉α ) with Smax(|ψ〉GHZ) and find
Smax(|ψ〉α ) � Smax(|ψ〉GHZ) through numerical calculation.

Under the assumption that the GMC is obtained from the
bipartition A : BC, C(|ψ〉W) is given as

C(|ψ〉W) = 2
√

(a + b)c. (27)

If C(|ψ〉W) = C(|ψ〉α ), one will get

α2 = 1 − C(|ψ〉W)

1 + C(|ψ〉W)
. (28)

Substituting α2 into the expression of Smax(|ψ〉α ), one can
compare Smax(|ψ〉α ) with Smax(|ψ〉W). Through numerical
calculation, it is easily found that Smax(|ψ〉α ) � Smax(|ψ〉W).

Similarly, the proof also holds for the cases when the GMC
of GHZ or W class states is obtained from the other two
bipartitions. Therefore the proof is completed. �

From the expressions of the GMC and the maximum steer-
ing inequality violation of the state |ψ〉α , i.e., C(|ψ〉α ) and
Smax(|ψ〉α ), one may note that 2C2(|ψ〉α ) + Smax(|ψ〉α ) = 3.
According to Theorem 1, this indicates that Smax(|ψ〉α ) �
Smax(|ψ〉) when C(|ψ〉α ) = C(|ψ〉) if |ψ〉 is a three-qubit pure
state. Thus the following complementary relation holds for the
three-qubit pure states:

2C2(|ψ〉) + Smax(|ψ〉) � 3. (29)

The complementary relation suggests that the maximum
steering inequality violation by the reduced bipartite states
depends on the tripartite entanglement present in the tripartite
system. From the relation, one may note that for all three-qubit
pure states with a fixed amount of the maximum steering
inequality violation S, the maximum value of the GMC of
these states is

√
(3 − S)/2.

B. GGM versus the maximum steering inequality violation

The complementary relation between GGM and the max-
imum steering inequality violation for three-qubit pure states
is derived in this section.

Lemma 2. For a three-qubit pure state |ψ〉, if the GGM
obtains from, for example, an A : BC split, then the maximum
steering inequality violation Smax(|ψ〉) = SBC (|ψ〉).

Proof. For the GHZ class states, the GGM is G(|ψ〉GHZ) =
1 − max{λA, λB, λC} with λX (X = A, B,C) being the maxi-
mum eigenvalues of the reduced states ρX of |ψ〉GHZ. Through
straightforward calculation, λX is given as

λA(|ψ〉GHZ)

= 1

2

⎛
⎝1 +

√
1 + (cos2 αB cos2 αC − 1) sin2 αA sin2 2β

κ2

⎞
⎠,

λB(|ψ〉GHZ)

= 1

2

⎛
⎝1 +

√
1 + (cos2 αA cos2 αC − 1) sin2 αB sin2 2β

κ2

⎞
⎠,

λC (|ψ〉GHZ)

= 1

2

⎛
⎝1 +

√
1 + (cos2 αA cos2 αB − 1) sin2 αC sin2 2β

κ2

⎞
⎠.

(30)

The fact that the GGM is obtained from the bipartition A : BC
implies λA � λB and λA � λC , which give the same condi-
tions as those expressed in Eq. (16). These conditions ensure
that SBC (|ψ〉GHZ) takes the biggest value among SAB(|ψ〉GHZ),
SAC (|ψ〉GHZ), and SBC (|ψ〉GHZ). Thus the maximum steering
inequality violation Smax(|ψ〉GHZ) = SBC (|ψ〉GHZ).
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For the W class states, the corresponding maximum eigen-
values λX of the reduced states ρX of |ψ〉W are

λA(|ψ〉W) = 1
2 [1 +

√
1 − 4(a + b)c],

λB(|ψ〉W) = 1
2 [1 +

√
1 − 4(a + c)b],

λC (|ψ〉W) = 1
2 [1 +

√
1 − 4(b + c)a]. (31)

When the GGM is obtained from the bipartition A : BC, one
will get λA(|ψ〉W) � λB(|ψ〉W) and λA(|ψ〉W) � λC (|ψ〉W),
which deduce the same conditions given in Eq. (21). These
conditions will give the results SBC (|ψ〉W) � SAB(|ψ〉W),
SBC (|ψ〉W) � SAC (|ψ〉W). Thus the maximum steering in-
equality violation Smax(|ψ〉W) = SBC (|ψ〉W).

Similar results will be given for the cases in which the
GGM is obtained from the other two bipartitions. Therefore
the proof is completed. �

Based on the result given in Lemma 2, we can prove the
following theorem.

Theorem 2. If |ψ〉, which is a three-qubit pure state, has
the same value of the GGM as that of the state |ψ〉α , the
maximum steering inequality violations of them satisfy the
ordering Smax(|ψ〉α ) � Smax(|ψ〉).

Proof. For the GHZ class states, G(|ψ〉GHZ) = 1 −
λA(|ψ〉GHZ) if the GGM is obtained from the bipartition A :
BC. With the result given in Lemma 2, the corresponding
maximum steering inequality violation Smax(|ψ〉GHZ) is equal
to SBC (|ψ〉GHZ) given in Eq. (19).

On the other hand, the GGM of the state |ψ〉α is G(|ψ〉α ) =
1
2 − α

1+α2 , and the maximum steering inequality violation is
given in Eq. (25). G(|ψ〉GHZ) = G(|ψ〉α ) implies

α = 1 −
√

1 − (2λA(|ψ〉GHZ) − 1)2

2λA(|ψ〉GHZ) − 1
. (32)

Thus one can compare Smax(|ψ〉α ) with Smax(|ψ〉GHZ) by
substituting α into Smax(|ψ〉α ), and find Smax(|ψ〉α ) �
Smax(|ψ〉GHZ) through numerical calculation.

For the W class states, G(|ψ〉W) = 1 − λA(|ψ〉W) when
the GGM is obtained from the bipartition A : BC. The corre-
sponding maximum steering inequality violation Smax(|ψ〉W)
is equal to SBC (|ψ〉W) given in Eq. (22) based on the result of
Lemma 2.

If the assumption G(|ψ〉W) = G(|ψ〉α ) is considered, the
state parameter α of |ψ〉α is equal to

α = 1 − 2
√

(a + b)c√
1 − 4(a + b)c

. (33)

Substituting α into Smax(|ψ〉α ) and comparing it with
Smax(|ψ〉W), one can find Smax(|ψ〉α ) � Smax(|ψ〉W).

Similarly, the proof also holds when one obtains the GGM
of the GHZ or W class states from the other bipartitions. Thus
the proof is completed. �

One may also note that the GGM and the maximum
steering inequality violation of the state |ψ〉α saturate
8G(|ψ〉α )[1 − G(|ψ〉α )] + Smax(|ψ〉α ) = 3. The result of The-
orem 2 implies Smax(|ψ〉) � Smax(|ψ〉α ) if G(|ψ〉) = G(|ψ〉α )
for the |ψ〉 being a three-qubit pure state. Thus the following
complementary relation exists for the three-qubit pure states:

8G(|ψ〉)[1 − G(|ψ〉)] + Smax(|ψ〉) � 3. (34)

FIG. 1. For three-qubit pure states, the region in which the GGM
and the maximum steering inequality violation satisfy the inequality
given in Eq. (34).

Obviously, the complementary relation again suggests that
the maximum steering inequality violation by the reduced
bipartite states depends on the tripartite entanglement present
in the tripartite system. If at least one of the reduced states
of a three-qubit pure state is F3 steerable, the GGM of the

three-qubit pure state is larger than 1
2 +

√
S−1

8 or smaller than

1
2 −

√
S−1

8 for a fixed amount of the maximum steering in-
equality violation S. The complementary relation between the
GGM and the maximum steering inequality violation given in
Eq. (34) is plotted in Fig. 1. The maximally steering inequality
violating states |ψ〉α form the boundary of the region.

C. Tangle versus the maximum steering inequality violation

In this section, the complementarity between tangle and the
maximum steering inequality violation for three-qubit states is
derived.

Theorem 3. If |ψ〉, which is a three-qubit pure state, has the
same value of tangle as that of the state |ψ〉α , i.e., τ (|ψ〉) =
τ (|ψ〉α ), the maximum steering inequality violations of them
satisfy the ordering Smax(|ψ〉α ) � Smax(|ψ〉).

Proof. The tangle of the GHZ class states is

τ (|ψ〉GHZ) = sin2 αA sin2 αB sin2 αC sin2 2β

κ2
. (35)

The tangle of the state |ψ〉α is

τ (|ψ〉α ) = 1 − 4α2

(1 + α2)2
. (36)

The condition τ (|ψ〉GHZ) = τ (|ψ〉α ) implies

α2 = 1 + (cos αA cos αB cos αC − sin αA sin αB sin αC ) sin 2β

1 + (cos αA cos αB cos αC + sin αA sin αB sin αC ) sin 2β
.

(37)
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Substituting α2 into the expression of Smax(|ψ〉α ) given in
Eq. (25), one can compare Smax(|ψ〉α ) with Smax(|ψ〉GHZ).
Through straightforward calculation, it is found that
Smax(|ψ〉α ) � Smax(|ψ〉GHZ).

For the W class states, τ (|ψ〉W) = 0. For the state |ψ〉α ,
τ (|ψ〉α ) = 0 if and only if α = 1. The corresponding max-
imum steering inequality violation Smax(|ψ〉α ) = 3 when
α = 1. One can straightforwardly compare Smax(|ψ〉α=1)
with SAB(|ψ〉W), SAC (|ψ〉W), and SBC (|ψ〉W) and find
Smax(|ψ〉α=1) � Smax(|ψ〉W). Thus the proof is completed. �

Based on the expressions of the tangle τ (|ψ〉α ) and
the maximum steering inequality violation Smax(|ψ〉α ), one
has the complementary relation 2τ (|ψ〉α ) + Smax(|ψ〉α ) =
3. Theorem 3 indicates that Smax(|ψ〉α ) � Smax(|ψ〉) when
τ (|ψ〉α ) = τ (|ψ〉), and thus the following complementary re-
lation holds for three-qubit pure states:

2τ (|ψ〉) + Smax(|ψ〉) � 3. (38)

The complementary relation between the tangle and the
maximum steering inequality violation can be extended to
the case of three-qubit mixed states. In Ref. [47], the tangle
of three-qubit mixed states has been defined by convex roof
construction

τ (ρ) = min
{pi,|ψ〉i}

∑
piτ (|ψ〉i ). (39)

The minimization is over all the pure state decompositions of
ρ, i.e., ρ = ∑

i pi|ψ〉i〈ψ | with pi � 0 and
∑

i pi = 1. On the
other hand, Smax(ρ) is convex under mixing [43]. Therefore
the tangle τ (ρ) and the maximum steering inequality violation
Smax(ρ) of an arbitrary three-qubit state ρ follow the following
complementary relation:

2τ (ρ) + Smax(ρ) � 3. (40)

The complementary relation indicates that the maximum
steering inequality violation by the reduced bipartite states
depends on the tripartite entanglement present in the tripartite
system. From the relation, one could conclude that for all
three-qubit pure states with a fixed amount of the maximum
steering inequality violation S, the maximum value of the
tangle of these states is (3 − S)/2.

IV. DISCUSSION AND CONCLUSIONS

In Ref. [43], the authors investigated relations between the
maximum steering inequality violation in reduced two-qubit
systems, different measures of bipartite entanglement of the
reduced states, and tripartite entanglement of the three-qubit
state. Particularly, they obtained a similar result to that given
in Eq. (40) by straightforwardly calculating the reduced bi-
partite steering of a three-qubit state and the tangle of the

three-qubit state. Here, we give the result with a different
method. Firstly, we prove that the maximum steering inequal-
ity violation of the state |ψ〉α is always greater than or equal to
that of an arbitrary three-qubit pure state if the state |ψ〉α and
the three-qubit pure state have the same value of tangle. Then,
we give the complementary relation between the maximum
steering inequality violation and tangle for the state |ψ〉α . In
the end, we obtain the complementary relation for the three-
qubit pure state given in Eq. (38) and extend it to the case of
the three-qubit mixed state. Thus the complementary relation
between the maximum steering inequality violation and the
tangle is the corollary of Theorem 3. Furthermore, different
from tangle, which is based on the concept of monogamy, the
other two measures of tripartite entanglement are based on the
concept of distance to a relevant class of states, and the two
measures are not considered in Ref. [43]. In addition, the tan-
gle is not a good measure of genuine tripartite entanglement
even for pure states because there exist a large number of pure
states [for example, the W class states given in Eq. (14)] for
which it becomes 0. Therefore the introduction of the other
two measures of tripartite entanglement is necessary.

Steering lies between entanglement and Bell nonlocality,
and the relations between steering and entanglement deserve
investigation. In this paper, a single parameter family of entan-
gled three-qubit pure states are introduced and are called the
maximally steering inequality violating states due to the fact
that the states have the maximum steering inequality violation
among all of the three-qubit pure states for a fixed amount
of tripartite entanglement. The GMC, GGM, and tangle are
employed to quantify tripartite entanglement. Subsequently,
the corresponding complementary relations between tripartite
entanglement of three-qubit pure states and the maximum
steering inequality violation in reduced two-qubit systems are
established. In particular, the complementary relation can also
hold for the three-qubit mixed states when the tangle is used
to quantify tripartite entanglement. From the complementary
relations, one could make the conclusion that the maximum
steering inequality violation in two-qubit reduced systems is
at the expense of tripartite entanglement of the three-qubit sys-
tem, or vice versa. Our results can be used in a scenario where
three parties share genuinely entangled systems to perform
information-theoretic protocols among them and at the same
time they might need steering between their subparts. In this
regard, it is very useful to know which state is more entangled
for a fixed amount of steering in the bipartite scenario.
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