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High-Q microwave cavity modes coupled to transmon ancillas provide a hardware-efficient platform for
quantum computing. Due to their coupling, the cavity modes inherit finite nonlinearity from the transmons.
In this paper, we theoretically and experimentally investigate how an off-resonant drive on the transmon ancilla
modifies the nonlinearities of the cavity modes in qualitatively different ways, depending on the interrelation
among cavity-transmon detuning, drive-transmon detuning, and transmon anharmonicity. For a cavity-transmon
detuning that is smaller than or comparable to the drive-transmon detuning and transmon anharmonicity, the
off-resonant transmon drive can induce multiphoton resonances among cavity and transmon excitations that
strongly modify cavity nonlinearities as drive parameters vary. For a large cavity-transmon detuning, the drive
induces cavity-photon-number-dependent ac Stark shifts of transmon levels that translate into effective cavity
nonlinearities. In the regime of weak transmon-cavity coupling, the cavity Kerr nonlinearity relates to the
third-order nonlinear susceptibility function χ (3) of the driven ancilla. This susceptibility function provides
a numerically efficient way of computing the cavity Kerr, particularly for systems with many cavity modes
controlled by a single transmon. It also serves as a diagnostic tool for identifying undesired drive-induced
multiphoton resonance processes. Lastly, we show that by judiciously choosing the drive amplitude, a single
off-resonant transmon drive can be used to cancel the cavity self-Kerr nonlinearity or the intercavity cross-Kerr.
This provides a way of dynamically correcting the cavity Kerr nonlinearity during bosonic operations and
quantum error correction protocols that rely on the cavity modes being linear.

DOI: 10.1103/PhysRevA.105.022423

I. INTRODUCTION

Modes of superconducting microwave cavities have
emerged as a promising platform for quantum computing
and quantum simulations due to their long lifetime and in-
tegrability with Josephson-junction-based quantum devices,
including superconducting qubits [1,2]. Compared to two-
level systems, the large accessible Hilbert space of the cavity
modes enables a hardware-efficient way to encode error-
correctable logical qubits [3–6]. To manipulate the states of
cavity modes, it is necessary to introduce a source of non-
linearity via coupling to a nonlinear ancillary system [7],
such as a superconducting transmon [8]. Due to this coupling,
the cavity modes inherit finite nonlinearity from the ancillas
which make their energy levels nonequidistant. Such static
cavity nonlinearity limits the performance of bosonic error
correction schemes, in particular, for the type of encoding
that involves a large number of cavity photons [9]. It also
lowers the fidelity of Gaussian bosonic operations, such as
beam splitters, that are essential ingredients for entangling
operations between bosonic modes [10]. Recent experiments
have shown that off-resonant drives on transmon ancillas may
lead to significant modifications of the cavity Kerr nonlinear-
ity [11]. This suggests a possibility to dynamically control
cavity nonlinearities using off-resonant drives and, more im-
portantly, motivates the development of a systematic theory to
compute cavity nonlinearities in the presence of such drives.

In this paper, we study the nonlinearities of cavity modes
inherited from an off-resonantly driven transmon ancilla.
Specifically, we investigate the dependence of the nonlinearity
of the dressed cavity modes on the drive parameters and its in-
terrelation with transmon anharmonicity and cavity-transmon
detuning. We consider that the cavity modes are linearly
coupled to the same transmon and focus on the usual dis-
persive coupling regime, i.e., the coupling strengths are weak
compared to cavity-transmon detunings. Coupling-induced
hybridization between the cavity and transmon excitations
results in finite nonlinearity of the dressed cavity modes.

Off-resonant transmon drives are useful in inducing con-
trollable coupling between far-detuned cavity modes due to
the four-wave frequency mixing capability of the transmon
ancilla [11]. However, they can also lead to undesired resonant
or near-resonant hybridization between cavity excitations and
transmon excitations due to multiphoton resonances. As we
will show, such hybridization leads to a rather sensitive depen-
dence of cavity nonlinearity strength on the drive parameters,
which is further complicated by the drive-induced ac Stark
shift of the transmon transition frequencies. By working in the
basis of Floquet eigenstates of the driven Hamiltonian, we are
able to capture these drive-induced effects nonperturbatively
in the drive strength.

Away from the drive-induced resonances, the cavity-
transmon coupling results in cavity-photon-number-
dependent dispersive shifts of transmon transition frequencies
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between lower levels [12]. This means that the ac Stark
shift of transmon levels induced by the off-resonant drive
depends parametrically on the cavity photon number, which
translates into an effective cavity nonlinearity. This effect
has recently been utilized to realize error-transparent gates
[13] and cavity Hamiltonian engineering [14] through the use
of multiple drives applied close to the transmon transition
frequency between its lowest two levels with drive detunings
smaller than or comparable to the transmon-cavity dispersive
coupling strength.

Here, we explore the regime of large drive detuning, much
larger than the transmon-cavity dispersive coupling strength,
such that the drive-induced effects are only weakly dependent
on cavity photon numbers. Depending on the interrelation
between the drive detuning and transmon anharmonicity,
the drive-induced cavity nonlinearity displays qualitatively
different behaviors. Interestingly, as we will show, by judi-
ciously choosing the drive amplitude, the cavity nonlinearity
induced by a single drive blue-detuned from the transmon
is sufficient to cancel the static cavity Kerr nonlinearity.
This simple Kerr cancellation scheme is to be contrasted
with previous Kerr cancellation methods in which multiple
resonant or near-resonant transmon drives (with drive detun-
ings smaller or comparable to the cavity-transmon dispersive
coupling strength) are applied to impart strongly photon-
number-dependent phase shifts [14–16].

In the presence of many cavity modes coupled to a trans-
mon (cf. Ref. [2]), finding the nonlinearity of the dressed
cavity modes and their dispersive coupling with each other
and the transmon can be numerically daunting as it requires
diagonalization of the full multimode Hamiltonian. In the
absence of drive, approximate semiclassical method such as
the so-called black-box quantization [17,18] can be used to
find the cavity nonlinearity parameters perturbatively in the
transmon anharmonicity. In the presence of a drive, however,
we still need to deal with a large multimode Hilbert space.

In the regime of weak transmon-cavity coupling, as we will
show, computing cavity nonlinearities reduces to finding the
nonlinear susceptibility functions of the transmon. This gen-
eralizes our previous results that connect transmon-induced
linear properties of cavity modes such as frequency shift and
linear decay rate with its linear susceptibility function [19].
Specifically, cavity self-Kerr and intercavity cross Kerr are
given by the third-order nonlinear susceptibility function of
the transmon. The latter can be calculated rather efficiently
as it only requires diagonalization of the Hamiltonian of the
driven transmon. Importantly, although the transmon-cavity
coupling is treated perturbatively in using the susceptibility
function, the drive on the transmon is not (up to our fourth-
order truncation of the cosine potential). Therefore, it allows
us to capture and conveniently identify the undesired drive-
induced multiphoton resonances previously mentioned.

The rest of the paper is structured as follows. After de-
scribing the Hamiltonian of the system in Sec. II, we present
a general formalism in Sec. III for computing nonlinearities
of the dressed cavity modes inherited from an off-resonantly
driven transmon. In Sec. IV, we review how cavity non-
linearities arise in the absence of the drive. In Sec. V, we
apply the formalism to the regime of weak transmon-cavity
coupling in which the dominant cavity nonlinearity is the

FIG. 1. A schematic showing two LC oscillators (cavity modes)
coupled to a nonlinear LC oscillator (transmon ancilla).

fourth-order Kerr nonlinearity. We identify the connection
between the cavity Kerr nonlinearity with the third-order
nonlinear susceptibility function of the transmon. Through
the susceptibility function, we discuss the drive-induced
cavity Kerr nonlinearity in the regime of small and large
cavity-transmon detuning with respect to the transmon an-
harmonicity and drive-transmon detuning. In Sec. VI, we
describe analytical theories for the case of large cavity-
transmon detuning where cavity modes are far detuned from
drive-induced multiphoton resonances. The theories are val-
idated through quantitative agreement with numerical and
experimental results. In Sec. VII, we discuss the optimal
drive conditions to cancel cavity Kerr nonlinearity and demon-
strate that, under these conditions, the phase correlation of a
Schrödinger cat state can be extended far beyond the charac-
teristic phase collapse time under Kerr nonlinearity.

II. THE SYSTEM HAMILTONIAN

We consider a system that consists of two linear cavity
modes with frequency ωa, ωb coupled to a driven nonlinear
transmon ancilla; see Fig. 1. The transmon ancilla could serve
the role of mediating coupling between the two cavity modes
[11] or assisting in the state preparation for a single cavity
mode [20]. The linear modes could be modes of high-Q
microwave cavities [1] or phonon cavities [21]. The system
Hamiltonian reads

H = Hcav + Hanc(t ) + HI, Hcav = h̄ωaâ†â + h̄ωbb̂†b̂,

Hanc(t ) = 4ECn̂2 − EJ cos φ̂ − 2en̂Vd sin(ωdt + θd ),

HI = −2en̂[Va(â† + â) + Vb(b̂† + b̂)], (1)

where Hcav, Hanc, and HI refer to the Hamiltonian of the lin-
ear cavity modes, the transmon ancilla, and their interaction,
respectively. Va,Vb are the strengths of effective voltage fluc-
tuations due to electric fields from the cavity modes a, b. The
drive couples to the charge degree of freedom of the transmon
ancilla with frequency ωd and phase θd .

For EC � EJ and a drive whose strength only pop-
ulates the lower transmon levels, the transmon ancilla
behaves as a weakly anharmonic oscillator. In this regime,
one can expand the cosine potential and truncate to
fourth order in φ̂, and then introduce the annihilation and
creation operators ĉ, ĉ†, φ̂ = (8EC/EJ )1/4(c + c†)/

√
2, n̂ =

−i(8EC/EJ )−1/4(c − c†)/
√

2. In terms of operators ĉ, ĉ†, the
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TABLE I. Parameter regimes studied in different sections.

Sec. IV A: Large cavity-transmon detuning, |δa(b)| � α
Sec. IV Drive off

Sec. IV B: Small cavity-transmon detuning, |δa(b)| � α

Sec. V D 1: Small to intermediate cavity-transmon detuning,
Sec. V Drive on, weak coupling, perturbation in ga, gb |δa(b)| ∼ max(α, |δd |)

Sec. V D 2: Large cavity-transmon detuning, |δa(b)| � max(α, |δd |)
Sec. VI A: Weak drive, |�d | � |δd |

Sec. VI Drive on, large cavity-transmon detuning Sec. VI B: Small drive-transmon detuning, |δd | � α

Sec. VI C: Large drive-transmon detuning, |δd | � α

transmon Hamiltonian reads

Hanc(t )/h̄ ≈ ωcĉ†ĉ − α(ĉ† + ĉ)4/12

+ (ĉ − ĉ†)(eiωd t�∗
d − e−iωd t�d ), (2)

where h̄ωc = √
8ECEJ , h̄α = EC, h̄�d = eVd exp(−iθd )

(8EC/EJ )−1/4/
√

2. The condition for neglecting higher
order terms in the expansion can be found by comparing
the sixth-order term with fourth-order term, which leads to
〈φ̂2〉 � 1, i.e., (α/ωc)〈(ĉ† + ĉ)2〉 � 1.

A. The rotating wave approximation

To simplify the analysis, we switch to a frame that ro-
tates at the drive frequency ωd by making a unitary U =
exp[−i(â†â + b̂†b̂ + ĉ†ĉ)ωdt]. When the following conditions
are satisfied, i.e.,

|ωa,b,d − ωc|, α〈(ĉ† + ĉ)2〉 � ωc

and

|ga|
√

〈ââ†〉〈ĉĉ†〉, |gb|
√

〈b̂b̂†〉〈ĉĉ†〉, |�d |
√

〈ĉĉ†〉 � ωc,

where ga, gb are defined below, one can apply the rotating
wave approximation (RWA) and neglect terms that do not
conserve the excitation number, which leads to the following
RWA Hamiltonian [22]:

HRWA = −h̄δdaâ†â − h̄δdbb̂†b̂ + HRWA
anc + HRWA

I ,

HRWA
anc /h̄ = −δdcĉ†ĉ − α

2
(ĉ†ĉ + 1)ĉ†ĉ + �d ĉ† + �∗

d ĉ,

HRWA
I /h̄ = (gaâ + gbb̂)ĉ† + (g∗

aâ† + g∗
bb̂†)ĉ, (3)

in which δdx = ωd − ωx, x ∈ {a, b, c} and h̄ga(b) =
−√

2ieVa(b)(8EC/EJ )−1/4. Note that the transition frequency
from the first excited state to the ground state of the transmon
is ω10 = ωc − α [23]. Since it is often convenient to speak of
detunings of the drive and cavity modes from ω10, we define
these detunings as follows:

δx ≡ ωx − ω10, x ∈ {a, b, d}.

B. Parameter regimes of interest

The RWA Hamiltonian in Eqs. (3) contains a total of six
dimensionless parameters. Specifically, the static part of the
system is controlled by two sets of parameters, ga(b)/δa(b) and
δa(b)/α. The drive is controlled by two dimensionless drive
parameters, �d/δd and δd/α. A central goal of this paper is
to explore features of the cavity nonlinearities in different

parameter regimes. As a guide to readers, Table I summarizes
the parameter regimes being explored in different sections.

Throughout this paper, we focus on the regime where the
ratio ga(b)/δa(b) is much smaller than one. In the absence
of the drive, this ratio controls the amount of hybridization
between the cavity modes and the transmon. This regime is
of particular interest when we use the cavity modes to store
and encode quantum information. First, because the transmon
ancilla is typically the lossier element, having a small ratio of
|ga(b)/δa(b)| helps reduce the amount of the transmon-cavity
hybridization, therefore reducing the inverse Purcell decay
of the cavity due to coupling to the transmon artificial atom
[1]. Second, as we will show in Sec. IV, reducing the ratio
|ga(b)/δa(b)| can suppress the strength of nonlinearities of the
dressed cavity modes, making the cavity modes more suitable
for bosonic operations or implementing bosonic error correc-
tion.

III. DERIVING DISPERSIVE HAMILTONIAN

In the absence of the drive, it has been shown that the
off-resonant cavity-transmon coupling generates a dispersive
interaction between the so-called dressed cavity modes and
transmon [24]. Also, the dressed cavity modes inherit fi-
nite nonlinearity from the transmon [25]. In this section, we
present the formal theory of obtaining the dispersive Hamil-
tonian and cavity nonlinearities in the presence of the ancilla
drive.

To see how the dispersive Hamiltonian arises, let us first
consider the limit of zero coupling, i.e., HI = 0. In this limit,
eigenstates of the Hamiltonian HRWA are product states. We
label these states as |ψm, Na, Nb〉, where Na(b) represents the
cavity Fock state with photon number Na(b) and ψm represents
an eigenstate of the ancilla Hamiltonian HRWA

anc . It satisfies the
stationary Schrödinger equation:

HRWA
anc ψm = εmψm. (4)

Eigenstate ψm, stationary in the rotating frame, corresponds
to a Floquet state of the driven transmon in the laboratory
frame. Following the convention of previous work [19], we
label eigenstate ψm as the state that adiabatically connects
to Fock state |m〉 of the undriven transmon as the drive is
ramped up or down. Eigenenergy εm in the rotating frame can
be related to the mth energy level Em of the transmon in the
laboratory frame via the relation Em = mh̄ωd + εm. Because
of the drive-induced ac Stark shift, Em is shifted from the
bare energy level [E�d =0

m = mh̄ω10 − h̄αm(m − 1)/2] of the
undriven transmon.
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Now let us consider turning on the transmon-cavity cou-
pling HI . Suppose that there is no degeneracy in the system
eigenspectrum at HI = 0, then there is a unique state that
adiabatically connects to the product state |ψm, Na, Nb〉 [26].
We label this adiabatic state as |ψm, Na, Nb〉. Written in the
basis of the adiabatic eigenstates, the full RWA Hamiltonian
in Eqs. (3) reads

HRWA =
∑

m,Na,Nb

Em(Na, Nb)|ψm, Na, Nb〉〈ψm, Na, Nb|, (5)

where Em(Na, Nb) is the eigenenergy of the eigenstate
|ψm, Na, Nb〉 and can be thought of as an ancilla-state-
dependent function of Na, Nb. At zero coupling, Em(Na, Nb) is
a simple sum of eigenenergies of the uncoupled cavities and
driven ancilla [i.e., EHI =0

m (Na, Nb) = −Naδda − Nbδdb + εm],
while at finite coupling, Em(Na, Nb) is a more complicated
function of Na, Nb, as we will discuss in detail.

To gain further insight into the Hamiltonian in Eq. (5), we
introduce operators Â†, Â defined as Â(†) = Ud â(†)U †

d , where
Ud is the unitary operator that diagonalizes the Hamilto-
nian HRWA. By construction, for each eigenstate, we have
|ψm, Na, Nb〉 = Ud |ψm, Na, Nb〉. Clearly, operators Â†, Â sat-
isfy the bosonic commutation relation: [Â, Â†] = 1. State
|ψm, Na, Nb〉 is an eigenstate of Â†Â with eigenvalue Na:
Â†Â|ψm, Na, Nb〉 = Na|ψm, Na, Nb〉. One can think of Â†, Â as
creation and annihilation operators of a new dressed mode
whose excitation has overlap not just with that of the bare
mode a but also the transmon c and mode b. We refer to this
dressed mode as mode A. After defining operators B̂†, B̂ in a
similar way and promoting Na, Nb in Em(Na, Nb) to operators,
we rewrite Eq. (5) as follows:

HRWA =
∑

m

Em(N̂A, N̂B)P̂m,

P̂m =
∑
Na,Nb

|ψm, Na, Nb〉〈ψm, Na, Nb|, (6)

where N̂A = Â†Â, N̂B = B̂†B̂ are the occupation number op-
erators of the dressed cavity modes, P̂m is a projection
operator that projects to the subspace {|ψm, Na, Nb〉, Na, Nb =
0, 1, 2...}.

One can interpret Eqs. (6) as saying that the dynamics of
the dressed cavity modes A, B is controlled by an effective
Hamiltonian Em(N̂A, N̂B) conditioned on the coupled system
being in the subspace {|ψm, Na, Nb〉, Na, Nb = 0, 1, 2...} or,
equivalently, the transmon being in state ψm in the limit of
zero coupling. A more direct way to see this is to apply the
unitary Ud to the Hamiltonian HRWA in Eqs. (6), and one
readily obtains that U †

d HRWAUd = ∑
m Em(N̂a, N̂b)|ψm〉〈ψm|,

where N̂a = â†â, N̂b = b̂†b̂. As we will show in the next sec-
tions, while Em(N̂A, N̂B) is linear in N̂A, N̂B at HI = 0, it is
generally nonlinear in N̂A, N̂B at finite HI due to the nonlin-
earity of the transmon ancilla. This nonlinear dependence is
the source of the nonlinearity of the dressed cavity modes.

IV. CAVITY NONLINEARITIES IN THE ABSENCE OF A
TRANSMON DRIVE

In this section, we review how the nonlinearities of the
dressed cavity modes can be derived in the absence of an

ancilla drive. An important dimensionless parameter here is
the ratio between the ancilla anharmonicity and the cavity
detuning from the ancilla α/|δa(b)|. In a way, this parameter
controls the quantumness of the dynamics of the coupled
transmon-cavity system. The nonlinearities of the dressed cav-
ity modes, as we show below, differ qualitatively in the two
regimes of small and large α/|δa(b)|.

A. Transmon as a weakly anharmonic oscillator

In the regime α/|δa(b)| � 1, the unequal spacing of the
transmon levels (set by the transmon’s anharmonicity α) is
masked by the large detuning between the the transmon and
cavities. Therefore, transitions between neighboring transmon
states |n + 1〉 and |n〉 are almost equally likely to excite the
cavities. Put differently, the transmon behaves almost like a
linear oscillator when it interacts with the cavity modes.

In this regime, a convenient way to solve the Hamilto-
nian in Eqs. (3) is to first find out the eigenmodes of the
coupled system neglecting the transmon anharmonicity (the
term ∝ α), and then treat the anharmonicity as a perturbation
in the basis of the eigenmodes [17]. As we will show, the
transmon anharmonicity is responsible for the nonlinearities
of the eigenmodes.

For small ga(b)/(ωa(b) − ωc), hybridizations between cavity
and transmon modes are weak. Thus, an eigenmode of the
coupled system strongly overlaps with a certain bare mode.
Specifically, the annihilation operator of the bare transmon
mode expressed in terms of that of the eigenmodes can be
written as the following:

ĉ = ξAÂ + ξBB̂ + ξCĈ, (7)

where ξX is the linear participation ratio of the eigenmode X ∈
{A, B,C} on the bare transmon mode c. To leading order in
ga(b)/δa(b), ξA(B) ≈ ga(b)/(ωa(b) − ωc) ≈ ga(b)/δa(b), ξC ≈ 1 +
O(ξ 2

A, ξ 2
B ). We note that for an actual superconducting circuit,

the eigenmodes and the participation ratios can be found using
classical electromagnetic simulations [17,18].

In the rotating frame of mode C and in the absence of an
ancilla drive, the RWA Hamiltonian in Eqs. (3) expressed in
terms of the ladder operators for the eigenmodes reads

HRWA/h̄ = δACN̂A + δBCN̂B

− α

2

∑
X1,2,3,4∈{A,B,C}

ξ ∗
X1

ξX2 X̂ †
1 X̂2(ξ ∗

X3
ξX4 X̂ †

3 X̂4 + 1).

(8)

δA(B)C is the frequency difference between eigenmodes A(B)
and C: δA(B)C = ωA(B) − ωC ≈ δa(b).

Of primary interest to us are the quartic terms in Eq. (8).
It is straightforward to see that those terms that have unequal
numbers of X̂ † and X̂ for any X ∈ {A, B,C} are strongly off-
resonant in the limit α � |δa(b)|. This can be most easily seen
by making a unitary rotation Û = exp[−i(N̂AδAC + N̂BδBC )t]
such that the quartic terms generally oscillate at frequencies
δAC, δBC or their linear combinations. In the lowest approxi-
mation, we can neglect the oscillating terms and obtain the
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following quartic Hamiltonian [17]:

Hquar/h̄ ≈ −1

2

∑
X,X ′∈{A,B,C}

χXX ′N̂X N̂X ′ ,

χXX = α|ξX |4, χXX ′ = 2α|ξX ξX ′ |2. (9)

The above equation readily shows that eigenmode X has
a self-Kerr nonlinearity of strength χXX and a cross-Kerr
nonlinearity with another mode X ′ of strength χXX ′ . In the
dispersive regime that we are considering, where |ξA,B| �
1, |ξC | ≈ 1, we have χAA, χBB, χAB � χAC, χBC � χCC .

In the regime of small α/|δa(b)|, the strengths of the nonlin-
earities of the cavitylike eigenmodes A, B weakly depend on
the state of the transmonlike eigenmode C. To zeroth order in
α/|δa(b)|, the Kerr nonlinearities of the modes are independent
of the state of the mode C and have strengths χAA, χBB, χAB,
as shown in Eqs. (9). To the next order, we find that there is
a correction to the strength of cavity Kerr nonlinearities that
is proportional to the transmon excitation number N̂C and is
suppressed by the small factor χCC/δA(B)C ; see Appendix A.

To the next order in α/δa(b), there also emerge sixth-
order nonlinearities for the cavitylike modes A and B whose
strengths are smaller than Kerr nonlinearity by a factor of
χA(B)C/δA(B)C ; see Appendix A. Written in terms of bare mode
parameters, this factor becomes α|ga(b)/δa(b)|2/δa(b). We em-
phasize that this factor is simultaneously suppressed by two
small parameters α/δa(b) and ga(b)/δa(b). This ensures that it is
often a very good approximation to only keep Kerr nonlinear-
ity for the cavity modes. We show in Sec. VI that this is not
necessarily the case in the presence of transmon drive.

B. Transmon as a two-level system

In the regime α/|δa(b)| � 1, transmon transition frequency
ω(n+1)n from state |n + 1〉 to |n〉 for any n � 1 is strongly
off-resonant from cavity frequency ωa(b), much stronger than
the detuning of ω10 from ωa(b). One can think of the cavity
photons as being blocked from exciting the transmon to states
|n � 2〉 and the transmon behaves like a strongly quantum
two-level system when it interacts with the cavities.

To leading order in (α/|δa(b)|)−1 � 1, one can replace ĉ†

and ĉ in Eqs. (3) with σ+ and σ−, respectively, which are
defined as σ+ = |1〉〈0| and σ− = |0〉〈1|. Within the two-state
manifold of the transmon, the RWA Hamiltonian reduces to
the familiar Jaynes-Cummings Hamiltonian but with two cav-
ity modes. This Hamiltonian can be unitarily transformed into
a dispersive Hamiltonian [27]. To fourth order in ga(b)/δa(b)

and switching to the rotating frame at frequency ω10, the
dispersive Hamiltonian is found to be

HTLS/h̄ = δaN̂A + δbN̂B −
( |ga|2

δa
+ |gb|2

δb

)
σz

2

−
[ |ga|2

δa
N̂A + |gb|2

δb
N̂B + |ga|4

δ3
a

N̂2
A + |gb|4

δ3
b

N̂2
B

× 2|gagb|2(δa + δb)

δ2
aδ

2
b

N̂AN̂B

]
σz. (10)

We use HTLS to indicate that we have truncated the transmon
to its first two levels.

In contrast to the regime considered in the previous section,
here the strengths of the cavity nonlinearities strongly depend
on the state of the transmon. As shown in Eq. (10), both the
self-Kerr and cross-Kerr interaction strengths of the cavity
modes have opposite signs when the transmon is in the ground
and first excited state. When the transmon is in a higher level,
the cavity Kerr strengths are much smaller, suppressed by
small parameter (α/|δa(b)|)−1. It is not hard to see that in this
regime, sixth-order cavity nonlinearity is suppressed by the
factor |ga(b)/δa(b)|2 compared to the Kerr nonlinearity.

V. DRIVE-INDUCED CHANGE OF CAVITY
NONLINEARITIES IN THE WEAK-COUPLING REGIME

The drive on the transmon modifies its spectrum and eigen-
states, which, in turn, modifies the nonlinearities that the
cavity modes inherit from the transmon. In general, calculat-
ing the cavity nonlinearities in the presence of drive requires
diagonalizing exactly the coupled cavity-ancilla Hamiltonian
in Eqs. (3) and finding the effective Hamiltonian Em(N̂A, N̂B)
in Eqs. (6). The task of diagonalization can become numeri-
cally challenging in the case of a large photon number in the
cavity modes or a large number of cavity modes controlled by
a single transmon.

As mentioned in Sec. II B, of primary interest to us is
the regime where the cavity-transmon hybridization is weak,
which we will refer to as the weak-coupling regime. In this
regime, we can treat the cavity-transmon coupling HI as a
perturbation to the uncoupled system, and compute cavity
nonlinearities perturbatively in HI . As we will show, this
treatment allows us to alleviate the need of diagonalizing
the full coupled system, and at the same time capture the
nonperturbative modifications to the cavity nonlinearities due
to the drive.

A. Scaling properties of Em(N̂A, N̂B)

The goal of this section is to understand how the non-
linearities of the dressed cavity modes should scale with
respect to the cavity-transmon coupling in the weak-coupling
regime. In the absence of degeneracies, the effective Hamil-
tonian Em(N̂A, N̂B) of the dressed cavity modes is analytic in
N̂A, N̂B. It is instructive to separate the coupling-induced part
in Em(N̂A, N̂B) and expand it with respect to N̂A, N̂B:

δEm(N̂A, N̂B) ≡ Em(N̂A, N̂B) − EHI =0
m (N̂A, N̂B),

δEm(N̂A, N̂B)/h̄ =
∞∑

n,n′=0

cnn′,m

n!n′!
N̂n

AN̂n′
B ,

cnn′,m = ∂n+n′
δEm(NA, NB)

h̄∂Nn
A∂Nn′

B

∣∣∣∣
NA=NB=0

. (11)

One can identify the term proportional to N̂2
A(B) as the self-Kerr

nonlinearity of dressed mode A(B) considered in Sec. IV and
the term proportional to N̂AN̂B as the cross-Kerr nonlinearity
between modes A and B. As we have seen in Sec. IV, the
coefficients in front of these terms as well as higher-order
terms in the expansion are finite due to the nonlinearity of
the transmon and the finite cavity-transmon coupling.
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To understand how the coefficient cnn′,m in Eqs. (11) scales
with the cavity-transmon coupling strengths in the weak-
coupling regime, we find δEm(NA, NB) perturbatively in HRWA

I
of Eqs. (3). It is clear that to find terms proportional to
Nn

ANn′
B , we need to treat the perturbation at least to order

∼O(|ga|2n|gb|2n′
). It follows that to the leading order in the

coupling strengths ga, gb:

cnn′,m ∼ O(|ga|2n|gb|2n′
), n + n′ > 0,

c00,m ∼ O(|ga|2, |gb|2). (12)

Since higher-order expansion coefficients cnn′,m involve high-
order perturbation in ga, gb, in the case where the perturbation
theory applies, it suffices to consider the lowest-order cavity
nonlinearity including the cavity self-Kerr and inter-cavity
cross-Kerr; see Sec. V B.

Often we are interested in the dynamics of the low-energy
manifold of the dressed modes where there are only a few
photons present. In this case, it is more convenient to express
δEm(N̂A, N̂B) in the normal ordered form

δEm(N̂A, N̂B)/h̄ =
∞∑

n,n′=0

cnn′,m

n!n′!
: N̂n

AN̂n′
B :, (13)

where operators in between the two colons are normal or-
dered. When parametrized in this form, the eigenenergy
Em(NA, NB) only depends on a finite set of coefficients cnn′,m
with n � NA and n′ � NB. Specifically, we have the following
relation:

δEm(NA, NB)/h̄ =
NA∑

n=0

NB∑
n′=0

cnn′,m

n!n′!
NA!

(NA − n)!

NB!

(NB − n′)!
. (14)

Once we know δEm(NA, NB) from NA = NB = 0 up to NA =
n, NB = n′, coefficient cnn′,m can be be found by reverting the
above relation.

Although the coefficients cnn′,m are generally not the same
as cnn′,m, they become equal in the weak-coupling limit. This
can be seen as follows. By Wick’s theorem, the operator
N̂n

AN̂n′
B can always be expressed as a normal-ordered operator

:N̂n
AN̂n′

B : plus additional terms of normal ordered operators in
which one or multiple pairs of Â†, Â or B̂†, B̂ have contracted
each other. This means that cnn′,m can be expressed as cnn′,m
plus an infinite sum of higher order coefficients cn′′n′′′,m in
which n′′ � n, n′′′ � n′ but they cannot take equal signs at
the same time. Using the fact that cnn′,m ∼ O(|ga|2n|gb|2n′

), we
deduce the following relation that applies for n � 2 or n′ � 2:

cnn′,m = cnn′,m[1 + O(|ga|2, |gb|2)]. (15)

For n, n′ < 2, we have cnn′,m = cnn′,m. We conclude that in
the weak-coupling regime, the coefficients cnn′,m also fall off
polynomially in the coupling strength ga, gb.

B. Expression for cavity Kerr nonlinearity

In the weak-coupling regime, cavity nonlinearities are
dominated by Kerr nonlinearities, i.e., terms quadratic in
N̂A, N̂B in Eq. (13). For clarity, we rewrite those terms below:

δEm(N̂A, N̂B)/h̄ ≈ KA,m

2
: N̂2

A : +KB,m

2
: N̂2

B :

+ KAB,mN̂AN̂B + ...,

where KA,m ≡ c20,m, KB,m ≡ c02,m, KAB,m ≡ c11,m. KA(B),m and
KAB,m represent ancilla-state-dependent cavity self-Kerr and
cross-Kerr nonlinearities, respectively. We have chosen the
normal ordered form of cavity self-Kerr as in Eq. (13). This
choice is convenient for comparing with numerical diagonal-
ization of the full coupled Hamiltonian. As has been noted
before, coefficients cnn′,m are equal to cnn′,m in Eqs. (11) in the
weak-coupling limit.

As analyzed in the previous section, in the weak-coupling
regime, cavity nonlinearities can be computed perturbatively
in transmon-cavity coupling HRWA

I in Eqs. (3) using stan-
dard time-independent perturbation theory. To fourth order in
HRWA

I , we obtain terms in the eigenenergy Em(NA, NB) that are
second order in NA, NB; see Eqs. (11) and (12). Identifying
coefficients of those terms as cavity Kerr nonlinearities, we
obtain their expressions to be as follows:

KA,m

2|ga|4 =
∞∑

n=0

∑
j=±1

∣∣M ( j, j)
a,nm

∣∣2

εmn/h̄ − 2 jδda
+

∑
n �=m

∣∣M (+1,−1)
a,nm + M (−1,+1)

a,nm

∣∣2

εmn/h̄
− [

M (+1,−1)
a,mm + M (−1,+1)

a,mm

][
N (+1,−1)

a,mm + N (−1,+1)
a,mm

]
, (16)

KAB,m

|gagb|2 =
∞∑

n=0

∑
j=±1

[ ∣∣M ( j, j)
a,nm + M ( j, j)

b,nm

∣∣2

εmn/h̄ − j(δda + δdb)
+

∣∣M ( j,− j)
a,nm + M (− j, j)

b,nm

∣∣2

εmn/h̄ + j(δda − δdb)

]

+ 2Re
∑
n �=m

(
M (+1,−1)

a,nm + M (−1,+1)
a,nm

)(
M (+1,−1)

b,nm + M (−1,+1)
b,nm

)∗

εmn/h̄

− [
M (+1,−1)

a,mm + M (−1,+1)
a,mm

][
N (+1,−1)

b,mm + N (−1,+1)
b,mm

] − [
M (+1,−1)

b,mm + M (−1,+1)
b,mm

][
N (+1,−1)

a,mm + N (−1,+1)
a,mm

]
, (17)

where εmn ≡ εm − εn and the tensors M, N in Eqs. (16) and (17) above are defined as

M (i, j)
a(b),nm =

∑
m′

c(i)
nm′c

( j)
m′m

εmm′/h̄ − jδda(b)
, i, j = ±1, N (i, j)

a(b),nm =
∑

m′

c(i)
nm′c

( j)
m′m

(εmm′/h̄ − jδda(b) )2
, i, j = ±1. (18)
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Here c(±1)
mn represent the matrix elements of the operators ĉ

and ĉ† between eigenstates ψm and ψn of the driven ancilla:
c(+1)

mn = 〈ψm|ĉ†|ψn〉, c(−1)
mn = 〈ψm|ĉ|ψn〉 [28]. Self-Kerr KB,m

of cavity B is given by the same expression as Eq. (16) with a
replaced by b everywhere.

Equations (16) and (17) comprise a major result of the
paper. The result captures nonperturbatively the drive-induced
change to the cavity Kerr nonlinearity through the matrix
elements c(±1)

nm′ and eigenenergies εm of the driven ancilla. We
emphasize that evaluating the matrix elements and eigenen-
ergies only requires solving the ancilla Hamiltonian HRWA

anc
in Eqs. (3). This greatly reduces the numerical complexity
encountered in diagonalizing the full interacting transmon-
cavity system. Moreover, being an explicit function of the
cavity frequencies, the expressions for cavity Kerr allow us
to efficiently explore the cavity frequency dependence of Kerr
for given transmon and drive parameters; see Sec. V D.

In general, conditioned on the transmon being in different
Floquet state ψm, the cavity Kerr KA(B),m and KAB,m are differ-
ent. Of primary interest to us is the value of cavity Kerr when
the driven transmon is in state ψ0 that adiabatically connects
to the vacumm state |0〉 of the undriven transmon as the drive
is ramped up or down.

In the absence of the transmon drive, analytical expressions
for cavity Kerr can be readily obtained using Eqs. (16) and
(17). In this case, transmon driven eigenstates ψm reduce
to Fock states |m〉. The only nonzero matrix elements of
the transmon ladder operators are those between neighboring
Fock states. We find that the cavity self-Kerr and cross Kerr
when the transmon is in the vacuum state |0〉 read

KA,0 = −2|ga|4 α

δ3
a (2δa + α)

,

KAB,0 = −|gagb|2 2α(δa + δb)

δ2
aδ

2
b (δa + δb + α)

. (19)

It is straightforward to verify that the expressions for cavity
Kerr in Eqs. (19) reduce to the results in Eqs. (9) and (10)
in the limit of α � |δa(b)| and α � |δa(b)|, respectively. We
have also verified using Eq. (16) that the cavity Kerr when
the transmon is in the first excited state |1〉 satisfies KA,1 =
KA,0 and KA,1 = −KA,0 in the respective limit of small and
large α/|δa|, consistent with the discussion in Sec. IV. Similar
results hold for the cross Kerr.

C. Connection between cavity nonlinearities and nonlinear
susceptibility functions of the ancilla

An important feature of the expressions for cavity Kerr
in Eqs. (16) and (17) is that they are explicitly functions
of the cavity frequencies. Once the matrix elements c(†)

mn
and quasienergies εm are computed by solving the ancilla
Hamiltonian, the cavity Kerr nonlinearities as functions of
cavity frequencies are uniquely determined. This allows us to
efficiently explore the cavity-frequency dependence of their
Kerr nonlinearities for given ancilla and drive parameters.
Before diving into details of this dependence in Sec. V D,
we show that the cavity Kerr nonlinearities as functions of
the cavity frequencies are in fact related to the third-order
nonlinear susceptibility functions of the transmon ancilla.

We have previously shown that in the weak-coupling
regime, coupling-induced linear properties of the cavity
modes such as cavity frequency shifts and linear (i.e., single-
photon) decay rates can be calculated by treating the cavity
operators â† + â and b̂† + b̂ in the cavity-transmon coupling
HI as weak classical drives (probe tones), and then computing
the linear responses of relevant transmon dynamical variables
to these weak probes [19]. Here, we generalize this method by
considering transmon nonlinear responses to the probes, and
show that the third-order nonlinear response (characterized
by the third-order nonlinear susceptibility function) is directly
proportional to the cavity Kerr nonlinearties.

Let us consider a transmon-cavity interaction of the form
HI = −[λa(â + â†) + λb(b̂ + b̂†)]Ô, where Ô is some trans-
mon operator and λa, λb are the coupling strengths of the
cavity fields to this operator. For the Hamiltonian considered
in Eq. (1), Ô is the transmon charge operator and λa(b) ∝ Va(b).
As in Ref. [19], we switch to the interaction picture where
operator â becomes â exp(−iωat ) and operator b̂ becomes
b̂ exp(−iωbt ). Then we treat the cavity operators as ampli-
tudes of classical drives and compute the expectation value of
the response of the transmon operator Ô to the classical drives.
Specifically, the third-order nonlinear response contains the
following terms (see Appendix B):

〈Ô(3)〉m = λ3
aâ†â2χ (3)

m (ωa,−ωa, ωa; ωa)e−iωat

+ λaλ
2
bb̂†b̂âχ (3)

m (ωa,−ωb, ωb; ωa)e−iωat + (a ↔ b)

+ H.c. (20)

When computing the transmon response, we have approx-
imated the cavity operators â, b̂ as being constant in time
because they are slowly varying on the timescale of the in-
verse cavity-transmon detunings. The third-order nonlinear
susceptibility function χ (3)

m (ω1, ω2, ω3; ω4) follows the stan-
dard definition in nonlinear optics in which the first three
arguments represent the probe frequencies and the last argu-
ment represents the response frequency [29]; the subscript m
indicates that we are taking the expectation value with respect
to ancilla eigenstate ψm. Without the ancilla drive at frequency
ωd , the response frequency ω4 is equal to ω1 + ω2 + ω3;
however, with the drive, ω4 can differ from that by integer
multiples of ωd . Importantly, this susceptibility function is an
intrinsic property of the driven ancilla and is not dependent on
the ancilla-cavity coupling or the intrinsic cavity properties.
While there are also other terms in the third-order nonlinear
response, we have only written explicitly terms that are related
to the cavity Kerr nonlinearities, as we will show below. We
also note that although we chose to write the cavity operators
in a normal-ordered form on the right-hand side of Eq. (20),
the results for the cavity Kerr are not dependent on this choice
to leading order in λa(b).

To see how the susceptibility function χ (3) relates to cav-
ity Kerr, we look at the Heisenberg equations of motion for
operators â, b̂ which read

˙̂a = ih̄−1λaÔeiωat ,

˙̂b = ih̄−1λbÔeiωbt .

Upon the substitution of operator Ô in the above equations of
motion with 〈Ô(3)〉 in Eq. (20) and neglecting fast oscillating
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terms, we obtain that [30]

˙̂a = ih̄−1λ4
aâ†â2χ (3)

m (ωa,−ωa, ωa; ωa)

+ ih̄−1λ2
aλ

2
bb̂†b̂âχ (3)

m (ωa,−ωb, ωb; ωb) + ...,

˙̂b = ih̄−1λ4
bb̂†b̂2χ (3)

m (ωb,−ωb, ωb; ωb)

+ ih̄−1λ2
aλ

2
bâ†âb̂χ (3)

m (ωb,−ωa, ωa; ωb) + ....

From the above equations of motion, we immediately
identify the following relations between the cavity Kerr non-
linearities and transmon χ (3):

KA(B),m = −h̄−1λ4
a(b)Reχ (3)

m (ωa(b), ωa(b),−ωa(b); ωa(b) ), (21)

KAB,m = −h̄−1λ2
aλ

2
bReχ (3)

m (ωa, ωb,−ωb; ωa). (22)

In the absence of the ancilla decoherence, χ (3)
m (ωa(b),

ωa(b),−ωa(b); ωa(b) ) and χ (3)
m (ωa, ωb,−ωb; ωa) are real func-

tions. For the RWA Hamiltonian in Eqs. (3), we can substitute
λa(b) with ih̄ga(b), and operator Ô with −i(ĉ − ĉ†), and then
the expressions for χ (3) in Eqs. (21) and (22) under the RWA
can be found from Eqs. (16) and (17), respectively.

More insight into the connection between the cavity Kerr
in the weak-coupling regime and the transmon χ (3) can be
gained as follows. In applying the leading-order perturbation
theory to obtain the cavity Kerr in Eqs. (16) and (17), the
results are not sensitive to the difference between

√
Na(b) and√

Na(b) + m [m is some integer independent of Na(b)] that
come from the matrix elements of the bare cavity ladder
operators â and b̂. This means that to leading order in the
perturbation theory, the cavity Kerr is not sensitive to the
commutator between â†(b̂†) and â(b̂), thus justifying treating
the quantized cavity modes as classical drives, as we did
when computing the transmon response to the cavity fields
in Eq. (20).

D. Dependence of cavity Kerr nonlinearities on the
cavity-transmon detuning

In this section, we explore the dependence of the cavity
Kerr nonlinearities on the cavity-transmon detuning using
Eqs. (16) and (17).

Figure 2 shows the cavity self-Kerr KA,0 as a function of
the cavity detuning δa. As discussed in the previous section,
this function is proportional to the transmon susceptibility
function χ

(3)
0 (ω,−ω,ω; ω). Colloquially, we shall refer it as

the cavity self-Kerr spectrum. The spectrum can be qualita-
tively split into two regimes. The first regime [see Fig. 2(a)]
is where the cavity detuning from the ancilla is of the order
of ancilla anharmonicity and/or the drive detuning from the
ancilla: |δa| ∼ max(α, |δd|). In this regime, there is a rich
dispersive structure in the cavity Kerr spectrum as a result of
the drive-induced multiphoton resonances among cavity and
transmon excitations. The second regime [see Fig. 2(b)] is
where the cavity detuning from the ancilla is much larger than
ancilla anharmonicity and drive detuning |δa| � max(α, |δd|),
so the cavity is far away from any resonances. In this regime,
the sharp dispersive structures associated with resonances
become too weak to be visible and the cavity Kerr appears
to be a much smoother function of the cavity detuning. We
discuss features of these two regimes in more detail below.

(a)

(b)

FIG. 2. Cavity self-Kerr spectrum in the weak-coupling regime:
(a) small-to-moderate cavity-transmon detuning; (b) large cavity-
transmon detuning. The dimensionless cavity self-Kerr K̃A,0 is
defined as K̃A,0 = α3KA,0/|ga|4 [31]. δa is the detuning of cavity-a
frequency from transmon transition frequency ω10. The spectrum
is determined by two dimensionless drive parameters: |�d/δd |2 and
δd/α. Their values are |�d/δd |2 = 0 (red dots), 0.3 (green triangles),
0.6 (orange squares), 0.9 (blue stars), and δd/α = 3 for all. The
dashed lines in panel (b) refer to the large-δa asymptotic expression
for cavity self-Kerr in Eq. (23). The two outlier orange points in panel
(b) are due to a sharp resonance near δa/α = 11. The dashed red line
(not visible) overlaps with the solid red curve.

The cavity cross-Kerr KAB,0 as a function of cavity detuning
from the transmon shows similar features and is given in the
Appendix C.

1. Small to moderate cavity-transmon detuning:
Near-resonant regime

Because of the nonlinearity of the transmon, the drive
can induce multiphoton resonances that result in resonant
or near-resonant hybridization between the cavity excita-
tions and transmon excitations even though the cavity modes
are strongly off-resonant with the transmon in the absence
of the drive. The resonance processes that give rise to the
dispersive structures in the cavity self-Kerr (or cross-Kerr)
spectrum are those that involve two photons at a time from
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the same cavity (or one from each cavity). As we will see
below, these resonance processes occur in the regime where
the cavity-transmon detuning is comparable to the maximum
of transmon anharmonicity and the drive detuning: |δa(b)| ∼
max(α, |δd|).

The conditions for the resonant processes that affect cavity
self-Kerr KA(B),m can be found by setting the denominator of
the first term in Eqs. (16) to zero,

(i) 2 jωa(b) + (n − m − 2 j)ωd = ω̃nm, j = ±1,

Here ω̃nm = (n − m)ωd + (εn − εm)/h̄ is the transmon tran-
sition frequency from the nth to mth level in the laboratory
frame, with account taken of the drive-induced ac Stark
shift. We use ω̃nm to differentiate it from the un-Stark-
shifted transition frequency ωnm. As a result of the use
of the RWA, the resonance processes conserve the to-
tal excitation number. Whenever the cavity frequency ωa

satisfies the above condition, the expression for the cav-
ity self-Kerr in Eq. (16) diverges due to the perturbative
treatment of the cavity-transmon coupling strength; these
divergences can also be seen directly in Fig. 2(a). Similar
conditions can be derived for cavity cross-Kerr KAB,m; see
Appendix C.

The pronounced dispersive structures near δa/α = −3
and δa/α = 1.5 for the green curve in Fig. 2(a) are due
to processes n = 3, m = 0, j = 1 and n = 1, m = 0, j = 1
in condition i), respectively. The spectrum diverges when
exactly on resonance (indicating the breakdown of the weak-
coupling/dispersive approximation). Generically, the cavity
Kerr nonlinearity changes signs when the drive or sys-
tem parameters are swept across the resonances. Notice
that as the drive amplitude increases, the location of the
divergences shift to the lower frequency as a result of
the drive-induced ac Stark shift. Also, the widths of the
structures increase due to the increase in the resonance
strengths.

In addition to the two-cavity-photon processes (i), single-
cavity-photon processes also lead to sharp changes in the
cavity self-Kerr as shown in Fig. 2(a). This is because
single-cavity-photon processes affect the strengths of the in-
termediate virtual cavity-transmon transitions which in turn
affect the size of the cavity Kerr, as can be seen from the
expressions for the tensors M, N in Eqs. (16) and (17). The
conditions for the drive-induced single-photon resonances that
affect cavity self-Kerr KA(B),m are

(ii) jωa(b) + (n − m − j)ωd = ω̃nm, j = ±1.

In Fig. 2(a), the divergence near δa/α = −4 for the green
curve results from the process n = 2, m = 0, j = 1 in condi-
tion (ii) and the divergence near δa/α = 6 corresponds to the
process n = 1, m = 0, j = −1 in condition (ii).

The modification to the cavity Kerr near a resonance shown
in condition (i) or (ii) can be analyzed in the regimes of
small and moderate anharmonicity, similar to the analysis in
Secs. IV A and IV B. It is instructive to explicitly write the res-
onance conditions in the limit of zero drive amplitude: condi-
tion (i) becomes 2 jδa(b) + (k − 2 j)δd = −αk(2m + k − 1)/2
and condition (ii) becomes jδa(b) + (k − j)δd = −αk(2m +
k − 1)/2, where we have set k = n − m. Suppose that cavity a
or b is near a specific resonance with given k in condition (i). If

α � |2 jδa(b) + (k − 2 j)δd |, then the cavity is simultaneously
in near resonance with all processes with same k but different
m. In this case, the drive-induced change to KA,m weakly
depends on m similar to the situation in Sec. IV A. On the
contrary, if α � |2 jδa(b) + (k − 2 j)δd |, it is possible to have
δa(b) be in near resonance with a particular transmon transition
from state m to n but sufficiently far away from others. In
this case, the near-resonant dynamics can be well described
by restricting to the two-level subspace (state m and n) for
the transmon. Hybridization of the cavity excitations with
this subspace results in a characteristic change in cavity Kerr
KA(B),m and KA(B),n similar to that described in Sec. IV B. An
example of such near-resonant dynamics in which ωa + ωd ≈
ω̃20 is analyzed in Appendix D.

In both cases, the modification to the cavity Kerr is
accompanied by stronger hybridization between the cav-
ity and transmon, thus stronger decay the cavity inherits
from the transmon via the Purcell effect. In Sec. V D 2, we
shall focus on the regime of large cavity-transmon detun-
ing where the cavity-transmon interaction remains strongly
dispersive yet the cavity Kerr is subject to drive-induced
modification.

The divergent behavior of the cavity Kerr at the aforemen-
tioned multiphoton resonances indicates the breakdown of the
perturbation theory that leads to Eqs. (16) and (17). Gener-
ically, the perturbation theory becomes inaccurate when the
distance of the cavity frequencies to one of the resonances be-
come small or comparable to the coupling-induced frequency
shifts of either cavity or relevant transmon transition fre-
quency. Strengths of these frequency shifts are second order
in the transmon-cavity coupling; therefore, they are typically
stronger than the coupling-induced cavity Kerr nonlinearities.
In Appendix E, we discuss in more detail the breakdown
of the perturbation theory by comparing it with the exact
numerical diagonalization of the full system and show how to
incorporate nonperturbative corrections to the weak-coupling
expressions in Eqs. (16) and (17).

2. Large cavity-transmon detuning: Asymptotic regime

For a large cavity-transmon detuning [i.e., |δa(b)| �
max(α, |δd |)], the cavity modes are far detuned from being in
resonance with the driven transmon and thus cavity-transmon
coupling remains strongly off-resonant. This off-resonant
coupling leads to a dispersive cross-Kerr interaction between
the cavitylike eigenmodes and the transmonlike eigenmode as
described by Sec. IV A. As a result of this coupling, transition
frequencies of transmon mode depend on the cavity photon
numbers. In the presence of transmon drive, drive-induced
ac Stark shifts of transmon levels also depend on the cavity
photon number, which translates into effective cavity nonlin-
earities.

In contrast to the near-resonant regime discussed in the
previous section, the cavity Kerr spectra do not develop
sharp divergent features; see Fig. 2(b). Instead, it changes
relatively smoothly as a function of the cavity-transmon de-
tuning. For asymptotically large detuning, the cavity Kerr
spectra decay as a power law in 1/δa and 1/δb. This power-
law decay can be found by expanding the expressions for
cavity Kerr in Eqs. (16) and (17) with respect to 1/δa
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and 1/δb. To the leading order in the expansion, we obtain
that

K̃A,m ∼ sm

(
δa

α

)−4

, (23)

K̃AB,m ∼ 2cm

(
δaδb

α2

)−2

,

∣∣∣∣δa

α

∣∣∣∣,
∣∣∣∣δb

α

∣∣∣∣ → ∞. (24)

As in Fig. 2, the dimensionless cavity self-Kerr
and cross Kerr are defined as K̃A,m = α3KA,m/|ga|4,
K̃AB,m = α3KAB,m/|gagb|2. The asymptotic expression in
Eq. (23) agrees well with the full expression as shown in
Fig. 2(b).

The expansion coefficients sm, cm in Eqs. (23) and (24) are
controlled by two dimensionless drive parameters �d/δd and
δd/α. In the absence of drive, we have sm = cm = −1, which
follows from Eqs. (19). At finite drive, analytical expressions
for sm, cm can be obtained by calculating the drive-induced
ac Stark shift of transmonlike eigenmodes with account taken
of the cross-Kerr coupling between the transmon and cavity
modes, and then expanding it with respect to the cavity photon
numbers. Here, we discuss the implication of the results in the
weak coupling regime and describe the detailed calculation in
Sec. VI, which generally applies beyond the weak coupling
regime.

For weak drive, by evaluating the drive-induced ac Stark
shift of transmon levels to second order in �d (see Sec. VI A),
we have

sm = −1 + �m, cm = −1 + �m/2,

�m ≈ 8α|�d |2
[

m + 1

(δd + mα)3
− m

[δd + (m − 1)α]3

]
. (25)

It is interesting to note that for δd > 0, the coefficients s0

and c0 become less negative as the drive power increases.
At certain drive power, they even change sign as shown by
Fig. 2(b). As we will discuss in more detail in Sec. VII, such
dependence on the drive power provides a way to cancel the
cavity Kerr nonlinearity.

To go beyond the weak drive regime, one can consider two
different limits. First, in the limit where the drive frequency
is in near resonance with a specific transmon transition fre-
quency but far detuned from others,

|ωd − ω(m0+1)m0 | � |ωd − ω(m+1)m| ∼ α, for m �= m0,

i.e., δd/α + m0 � 1, the cavity Kerr nonlinearity is strongly
altered by the drive only when the transmon is in state m0 or
m0 + 1. Truncating to the subspace spanned by states m0 and
m0 + 1 allows us to obtain an analytical expression for �m

beyond the weak-drive regime (see Sec. VI B):

�m0 = −�m0+1

= 8(m0 + 1)sgn[δd + m0α]α|�d |2
[(δd + m0α)2 + 4(m0 + 1)|�d |2]3/2

,

|�m| � |�m0 |, for, m �= m0, m0 + 1. (26)

To leading order in |�d |2, Eqs. (26) can also be obtained from
Eqs. (25) in the limit δd/α + m0 � 1. For stronger drive, �m0

changes nonlinearly in the drive power. |�m0 | reaches a max-

imum (4/
√

27)α/|δdc + (m0 + 1)α| at |�d | = |δd + m0α|/2
and then decreases to zero in the limit |�d | � |δd + m0α|.

In the opposite limit, where the drive is far away from any
transmon transition frequency,

|ωd − ω(m+1)m| � α, for all m,

namely, δd � α, dynamics of the driven ancilla becomes
semiclassical. One can solve the ancilla Hamiltonian pertur-
batively in the dimensionless parameter α/δdc � 1. To first
order in α/δdc, we have (see Sec. VI C for the detailed deriva-
tion)

�m = 8Q2
0

3Q2
0 + 1

− 12

(
m + 1

2

)
α

δdc

×
Q2

0

(
4 + 3Q2

0

)√(
3Q2

0 + 1
)(

Q2
0 + 1

)
(
1 + 3Q2

0

)4 , (27)

where Q0 is the solution to the cubic equation: Q3
0 +

Q0 = |�d |
√

α/δ3
dc. For weak drive, we have �m ≈ 8α

(|�d |2/δ3
dc)[1 − 6(α/δdc)(m + 1/2)], which can also be ob-

tained from Eqs. (25) by taking the limit δd � α. For a strong
drive, interestingly, we find that �m saturates to a drive-
independent value �m = 8/3.

An important qualitative difference between the small- and
large-drive-detuning limit lies in the variation of the drive-
induced change of cavity Kerr among different transmon
states ψm. In the small-drive-detuning limit, the drive mainly
couples to a two-level subspace of the transmon, resulting in
a strong change of cavity Kerr conditioned on the transmon
in this subspace. In the large-drive-detuning limit, however,
the nonequidistance (∼α) of the transmon levels is masked
by the relatively large drive detuning δd . As a result, the
drive-induced ac Stark shifts of transmon levels are all close to
each other (at least for lower levels). This results in a relatively
weak dependence of cavity Kerr on the transmon levels.

To illustrate this difference, we show in Fig. 3 the cavity
self-Kerr as a function of the scaled drive power for the two
different limits: δd � α where the drive frequency is close
to the transmon transition frequency ω10 and δd � α where
the drive is far away from all transmon transition frequen-
cies. In the former case, consistent with Eqs. (26), the cavity
Kerr KA,0 and KA,1 change in opposite direction and varies
nonmonotonically with respect to the drive amplitude. In con-
trast, the cavity self-Kerr KA,m �=0,1 does not change much with
respect to the drive amplitude. In the latter case, as predicted
by Eq. (27), cavity Kerr KA,m relatively weakly depends on
m. Note that, for weak drive, we have KA,m+1 > KA,m [as
expected from Eq. (A1)]. At stronger drive, this hierarchy
is flipped as predicted by the second term in Eq. (27). A
comparison of the semiclassical result [Eq. (27)] with the
full expression [Eq. (16)] for cavity self-Kerr is given in
Appendix F.

VI. DRIVE-INDUCED CAVITY NONLINEARITIES IN THE
LARGE CAVITY-TRANSMON DETUNING REGIME

In this section, we focus on the parameter regime in
which the individual cavity detuning from the transmon is
much larger than the transmon anharmonicity: |δa,b| � α.
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FIG. 3. Variations of cavity self-Kerr KA,m among different trans-
mon states ψm: (a) small drive-transmon detuning, δd = α/10 and
(b) large drive-transmon detuning, δd = 10α. The red, green, and
blue curves refer to m = 0, 1, 2, respectively. Solid lines are weak-
coupling expression in Eq. (16), and dashed lines in panel (a) are
analytical results in Eqs. (26). Cavity-transmon detuning is δa = 50α

in both panels. Inset in panel (a) refers to the range |�d/δd |2 � 0.02
zoomed in.

This is a regime of significant experimental interest due to
the relatively weak anharmonicity of the transmon. Further,
we require that the cavity-transmon detunings are also much
larger than the drive detuning, i.e., |δa,b| � |δd |, such that
the cavity modes are far detuned from any drive-induced
resonances. These two conditions allow us to go beyond the
weak-coupling regime, in particular, to derive analytical ex-
pressions not just for the cavity Kerr nonlinearity but also
higher-order nonlinearities in the presence of transmon drive.
As we will show, convergence of higher-order cavity non-
linearities requires a more strict condition in the presence
of the transmon drive than that without the drive. We com-
pare the analytical results with experiments and numerics in
Sec. VI D.

As discussed in Sec. IV A, in the regime of |δa(b)| � α, it
is convenient to express the RWA Hamiltonian in Eqs. (3) in
terms of the ladder operators for the eigenmodes of the linear

system,

HRWA/h̄ =
∑

X∈{A,B,C}
(−δdX N̂X + �∗

dξX X̂ + �dξ
∗
X X̂ †)

− α

2

∑
X1,2,3,4∈{A,B,C}

ξ ∗
X1

ξX2 X̂ †
1 X̂2(ξ ∗

X3
ξX4 X̂ †

3 X̂4 + 1),

(28)

where δdX = ωd − ωX . Because of the hybridization between
modes, the drive initially only acting on the bare transmon
mode now acts on all the eigenmodes with a strength weighted
by the participation factor ξX introduced in Sec. IV A. Since
we are primarily interested in the regime where ξA,B �
1, ξC ≈ 1 and the drive is much closer to the transmonlike
mode than the cavitylike modes, we will approximate ξC�d

as �d and ξA(B)�d as 0.
In the absence of the drive, as we have shown in Sec. IV A,

one can disregard nondispersive terms in the second line of
Eq. (28) to first order in α/|δa,b|. Such approximation does not
necessarily apply in the presence of the drive since the drive
can induce resonant or near-resonant interaction between cav-
ities and transmon. This occurs when the drive detuning to
the transmon is comparable to the cavity detunings to the
transmon: |δd | ∼ |δa(b)|. We give an example of how such
drive-induced resonance can modify cavity nonlinearities in
Appendix D.

Under the condition |δa,b| � max(|δd|, α), however, one
can still neglect nondispersive terms in the second line of
Eq. (28). This leads to the following Hamiltonian:

HRWA ≈ HC (N̂A, N̂B) + HAB,

HC/h̄ = −δ̂dC (N̂A, N̂B)N̂C − α

2
N̂C (N̂C + 1)

+ �dĈ† + �∗
dĈ,

HAB/h̄ = −
∑

X∈{A,B}
δdX N̂X −

∑
X,X ′∈{A,B}

χXX ′N̂X N̂X ′ ,

δ̂dC (N̂A, N̂B) = δdC + χACN̂A + χBCN̂B. (29)

The definition of χXX ′ is below Sec. (IV A). There is a shift
in the frequency of eigenmodes A, B due to the transmon
anharmonicity which we have absorbed into δdA(B). We have
approximated the anharmonicity χCC of eigenmode C as the
bare transmon anharmonicity α which differ by a factor of
|ξC |4. Note that the only coupling between mode C and A, B
is the cross-Kerr coupling which we have absorbed into the
definition of the drive detuning δ̂dC (N̂A, N̂B).

The Hamiltonian HC (N̂A, N̂B) in Eqs. (29) can be inter-
preted as that of a driven transmonlike mode C. The drive
detuning δ̂dC (N̂A, N̂B) depends parametrically on the cavity
photon number operators N̂A, N̂B as a result of the cross-
Kerr interaction between A, B, and C. Accordingly, the
drive-induced ac Stark shift of the transmon levels depends
parametrically on the cavity photon numbers. As we will
show below, this dependence is generally nonlinear, which
translates into effective nonlinearities of the cavitylike modes.

A. Weak drive limit

To leading order in the drive power, the drive-induced
ac Stark shift to the mth level of the transmonlike mode C

022423-11



YAXING ZHANG et al. PHYSICAL REVIEW A 105, 022423 (2022)

reads

δ̂ε
ac
m (N̂A, N̂B) ≈ |�d,m|2

δ̂d,m(N̂A, N̂B)
− |�d,m−1|2

δ̂d,m−1(N̂A, N̂B)
,

δ̂d,m(N̂A, N̂B) ≡ δ̂dC (N̂A, N̂B) + (m + 1)α,

�d,m ≡ √
m + 1�d . (30)

δ̂d,m is the drive detuning from the transition frequency of the
transmonlike mode between states m + 1 and m. Expanding
δ̂ε

ac
m with respect to N̂A, N̂B, we obtain

δ̂ε
ac
m (N̂A, N̂B) =

∞∑
n=0

( |�d,m−1|2
(−δd,m−1)n+1

− |�d,m|2
(−δd,m)n+1

)

× (χACN̂A + χBCN̂B)n, (31)

where δd,m ≡ δ̂d,m(0, 0) = δdC + (m + 1)α. Identifying the
coefficients in front of N̂2

A and N̂AN̂B as the drive-induced
self-Kerr of mode A and cross Kerr between modes A and B,
we reproduce Eqs. (25) in the weak coupling limit.

Higher-order terms in N̂A, N̂B in Eq. (31) correspond to
drive-induced change to higher-order cavity nonlinearities.
To clearly see the condition of convergence of higher-order
terms, let us take m = 0. Equation (31) simplifies to

δ̂ε
ac
0 (N̂A, N̂B) = |�d |2

δd,0

∞∑
n=0

(
− χACN̂A + χBCN̂B

δd,0

)n

. (32)

It follows that convergence of cavity nonlinearities when the
transmon mode is in the lowest state requires that χAC, χBC �
|δd,0|. For general transmon state m, the condition becomes
χAC, χBC � |δd,m|, |δd,m−1|. Recall that in the absence of
the drive, convergence of higher-order cavity nonlinearities
requires a less strict condition, i.e., χA(B)C � |δA(B)C |; see
Appendix A.

B. Small drive-transmon detuning: Two-level approximation

In this section, we consider the regime |δd,m0 | � α such
that the drive frequency is close to a specific transmon tran-
sition frequency between states m0 + 1 and m0 and far from
others. In this case, we can restrict the analysis to the Fock

states |m0〉 and |m0 + 1〉 of the transmonlike mode C. Then
Hamiltonian HC (N̂A, N̂B) in Eqs. (29) becomes

HC (N̂A, N̂B)

h̄
≈ −δ̂d,m0 (N̂A, N̂B)

σz

2
+ �d,m0σ+ + H.c. (33)

Here we have introduced σz = |m0 + 1〉〈m0 + 1| − |m0〉〈m0|,
σ̂+ = |m0 + 1〉〈m0|.

Hamiltonian HC (N̂A, N̂B) in Eq. (33) can be diagonalized:

HC (N̂A, N̂B)

h̄
= − ˆ̃δd,m0 (N̂A, N̂B)

σ̃z

2
,

ˆ̃δd,m0 (N̂A, N̂B) = sgn(δ̂d,m0 )
√

4|�d,m0 |2 + δ̂2
d,m0

(N̂A, N̂B).

(34)

Note that here eigenstates of σ̃z are rotated with respect to
those of σz in Eq. (33); in the limit �d → 0, the eigenstate
of σ̃z with eigenvalue +1(−1) continuously goes over to the
eigenstate of σz in Eq. (33) with eigenvalue +1(−1).

As a result of the diagonalization, the transition frequency
from transmon state m0 + 1 to m0 depends nonlinearly on the
cavity photon number as manifested in ˆ̃δd,m0 (N̂A, N̂B). Again,

we expand ˆ̃δd,m0 (N̂A, N̂B) with respect to N̂A, N̂B and obtain

ˆ̃δd,m0 (N̂A, N̂B) =
∑

n

δ̃d,m0

(
χACN̂A + χBCN̂B

δ̃d,m0

)n

×
n∑

k=ceil(n/2)

(−1)k+12k−n(2k − 3)!!

(2k − n)!(n − k)!

×
(

δd,m0

δ̃d,m0

)2k−n

, (35)

where δ̃d,m0 = sgn(δd,m0 )
√

δ2
d,m0

+ 4|�d,m0 |2. The summation

over k goes to zero when �d = 0 for n � 2. Equation
(35) shows that higher-order terms in the expansion are
higher-order in χA(B)C/δ̃d,m0 . Therefore, the expansion series
converges faster at stronger drive due to the increase in |δ̃d,m0 |
with the drive strength.

Substituting Eq. (35) into Eqs. (34) and combining with
HAB in Eq. (33), we obtain that

HRWA/h̄ = −
(

δ̃d,m0 + δd,m0

δ̃d,m0

∑
X∈{A,B}

χXCN̂X

)
σ̃z

2
−

∑
X∈{A,B}

δdX N̂X − 1

2

∑
X,X ′∈{A,B}

(χXX ′ + �χXX ′ σ̃z )N̂X N̂X ′

+
(

�βA

3!
N̂3

A + �βB

3!
N̂3

B + �βAB

2!
N̂2

AN̂B + �βBA

2!
N̂2

BN̂A + �σA

4!
N̂4

A + �σB

4!
N̂4

B + ...

)
σ̃z, (36)

where ... represents the fourth- and higher-order terms in
NA, NB (excluding the N̂4

A and N̂4
B terms). The drive-induced

nonlinearity parameters scaled by the static cavity Kerr pa-
rameters are given by the following:

�χAA(BB)

χAA(BB)
= 8α|�d,m0 |2

δ̃3
d,m0

,

�χAB

χAB
= 4α|�d,m0 |2

δ̃3
d,m0

,

�βA(B)

χAA(BB)
= 24α|�d,m0 |2

δ̃3
d,m0

χA(B)C

δ̃d,m0

δd,m0

δ̃d,m0

,

�βAB(BA)

χAB
= 12α|�d,m0 |2

δ̃3
d,m0

χA(B)C

δ̃d,m0

δd,m0

δ̃d,m0

,

�σA(B)

χAA(BB)
= −24α|�d,m0 |2

δ̃3
d,m0

χ2
A(B)C

δ̃2
d,m0

5δ2
d,m0

− δ̃2
d,m0

δ̃2
d,m0

. (37)
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Equation (36) immediately shows that the cavity Kerr and
higher-order nonlinearity strengths when the transmon is in
states m0 and m0 + 1 are modified by the drive, and the sign
of the modification is opposite for the two states. We note
that the above expressions for the drive-induced cavity non-
linearities go beyond the perturbation theory in ga, gb laid out
in Sec. V. To fourth order in the coupling strengths ga, gb,
the expressions for the drive-induced cavity Kerr nonlinearity
�χXX ′ reduce to the perturbative results in Eqs. (26).

At large drive strengths where |�d,m0 | � |δd,m0 |, both the
drive-induced change of the cavity fourth-order Kerr and
higher-order nonlinearity strengths decay to zero with the
increase of the drive amplitude. However, the former decays
as |�d,m0/δd,m0 |−1 while the latter decays as |�d,m0/δd,m0 |−3

for the sixth-order nonlinearities (i.e., the �β terms) or
|�d,m0/δd,m0 |−5 for the eighth-order nonlinearities (i.e., the
�σ terms).

C. Large drive-transmon detuning: A semiclassical analysis

In this section, we consider that the drive is far detuned
from any transmon transition frequency, i.e., δdC � α. In this
regime, the driven transmonlike mode C can be analyzed
using a semiclassical approximation; see Refs. [19,32,33],
which we follow here.

For the purpose of semiclassical analysis, we introduce
coordinate and momentum operators for mode C:

Q̂ =
√

λ

2
(Ĉ† + Ĉ), P̂ = −i

√
λ

2
(Ĉ − Ĉ†). (38)

Operators Q̂, P̂ satisfy the commutation relation, [P̂, Q̂] =
−iλ, where λ can be thought of as an effective Planck’s
constant and is to be specified.

Substituting operators Ĉ, Ĉ† with P̂, Q̂ in Eqs. (29), we
obtain that

HC (N̂A, N̂B)/h̄ = α

2λ2

[
− λδ̂dC

α
(P̂2 + Q̂2)

− 1

4
(P̂2 + Q̂2)2 + (2λ)3/2�d

α
Q̂

]
+ δ̂dC

2
+α

8
.

(39)

Now we define λ to be

λ = α

2|δdC | . (40)

It follows that Eq. (39) becomes

HC (N̂A, N̂B)/h̄ = 2|δdC |2
α

ĝ + δ̂dC

2
+ α

8
, (41)

where

ĝ ≡ ĝ(Q̂, P̂, N̂A, N̂B) = −1

2

δ̂dC

|δdC | (P̂2 + Q̂2)

− 1

4
(P̂2 + Q̂2)2 + �d Q̂, �d =

√
α�d

|δdC |3/2
. (42)

Without loss of generality, we assume �d > 0.
Hamiltonian ĝ in Eq. (42), a function of operators P̂, Q̂, N̂A,

and N̂B, is a dimensionless Hamiltonian that controls the dy-
namics of the driven mode C. In the absence of the dispersive

coupling to modes A, B, it is controlled by two parameters:
the dimensionless drive amplitude �d and the scaled Planck’s
constant λ.

In the regime of λ � 1, Hamiltonian ĝ can be diago-
nalized perturbatively in the parameter λ. Note that it is
already diagonalized in the Fock basis of modes A, B. We
can simplify the analysis by projecting onto any of their
Fock states |NA, NB〉 or, equivalently, replace operators N̂A, N̂B

with numbers NA, NB. The rest of the analysis follows that
in Refs. [19,33]. First, we find out the extrema of function
g(Q, P, NA, NB) (where Q, P are classical coordinate and mo-
mentum) with respect to Q, P for fixed NA, NB. These extrema
correspond to stable classical vibrational states of mode C in
the presence of a weak dissipation. Then we expand function
g about one of the extrema and quantize the classical motion
surrounding this point. Close to the extremum, this motion is
just that of a harmonic oscillator, which we call an auxiliary
oscillator. The frequency of this oscillator is given by the
curvature of function g at the extremum. After these steps, we
obtain, to order linear in λ, the following Hamiltonian:

ĝ = ĝ0(N̂A, N̂B) − sgn(Q̂0)λν̂0(N̂A, N̂B)(Ĉ†
auxĈaux + 1/2),

ĝ0(N̂A, N̂B) ≡ ĝ[Q̂0, P̂0, N̂A, N̂B]. (43)

Q̂0, P̂0 is the location of a local extremum of the function
ĝ(Q, P, N̂A, N̂B) in the Q − P plane if we think of N̂A, N̂B as
integers. Q̂0, P̂0 are generally functions of N̂A, N̂B and can
be found by solving the equations ∂g(Q, P, N̂A, N̂B)/∂P =
∂g(Q, P, N̂A, N̂B)/∂Q = 0. Because g is even in P, we al-
ways have P̂0 = 0 and Q̂0 satisfies the equation Q̂0[Q̂2

0 +
(δ̂dC/|δdC |)] = �d . ν̂0 is the frequency of the small oscilla-
tions about the extremum, and it is given by

ν̂0(N̂A, N̂B) =
√

(∂2g/∂Q2)(∂2g/∂P2)|Q=Q̂0,P=P0

=
√(

(δ̂dC/|δdC |) + 3Q̂2
0

)(
(δ̂dC/|δdC |) + Q̂2

0

)
.

(44)

Ĉ†
aux, Ĉaux are the creation and annihilation operators of the

auxiliary mode. They are related to operators Ĉ†, Ĉ via a
squeezing and displacement transformation [19,33].

To find out the drive-induced change to the Kerr nonlinear-
ity of modes A, B, we expand g0 and ν0 in Eqs. (43) to second
order in N̂A, N̂B:

ĝ0(N̂A, N̂B) = g0 − Q2
0

2
η̂ + Q2

0

3Q2
0 + sgn(δdC )

η̂2

2
, (45)

ν̂0(N̂A, N̂B) = ν0 + ν0(
sgn(δdC ) + 3Q2

0

)2 η̂

+ 3ν0Q2
0

(
4sgn(δdC ) + 3Q2

0

)
(
sgn(δdC ) + 3Q2

0

)4

η̂2

2
,

η̂ = χACN̂A + χBCN̂B

|δdC | . (46)

Here g0, ν0, Q0 without the hat are defined as the value of
ĝ0, ν̂0, Q̂0 at N̂A = N̂B = 0, respectively. Substituting the ex-
pressions for ĝ0 and ν̂0 above into Eqs. (43) and collecting
terms quadratic in N̂A or N̂B or linear in N̂AN̂B, we obtain
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Eq. (27) in the weak-coupling limit. A comparison between
this semiclassical result with the full weak coupling calcula-
tion of cavity Kerr using Eq. (16) was shown in Appendix F.

To third order in η̂, we found that the correction to the right-
hand side of Eq. (45) reads −η̂3Q2

0(sgn(δdC ) + Q2
0)/2(3Q3

0 +
sgn(δdC ))3. It is interesting to note that here, while the coef-
ficient of the quadratic in η̂ term in Eq. (45) (which modifies
cavity Kerr nonlinearity) saturates to a constant value at Q0 �
1, that of the cubic term decays as 1/Q2

0. This is in contrast to
the regime of small drive-transmon detuning regime discussed
in the previous section in which both the drive-induced cavity
Kerr and sixth-order nonlinearity decays to zero at large drive.

D. Comparison with experiment and numerical diagonalization

To confirm the analytic result, we perform numerical diag-
onalization of the full cavity-transmon Hamiltonian to find the
strengths of the cavity nonlinearities. The theoretical results
are further corroborated by experiments.

For numerical diagonalization, we consider a model that
consists of a single cavity mode a and a transmon described
by Hamiltonian HRWA in Eqs. (3) (with gb set to zero). We then
diagonalize the Hamiltonian to find eigenstates |ψm, Na〉 and
eigenenergies Em(Na); see Sec. III. According to the analysis
in Sec. V A, we parametrize the effective Hamiltonian Em(N̂A)
of dressed cavity mode A conditioned on the transmon in
Floquet state ψm in the following normal-order form:

Em(N̂A) =: δωA,mN̂A + KA,m

2
N̂2

A + βA,m

3!
N̂3

A

+ σA,m

4!
N̂4

A + ... : . (47)

Again, of primary interest to us is m = 0 corresponding to
the transmon in state ψ0 that adiabatically connects to the
transmon ground state as the drive is turned on/off.

The experiment was performed on a circuit QED setup
that consists of a high-Q 3D microwave cavity coupled to a
transmon ancilla; see Ref. [11]. The experimental procedure
to measure cavity nonlinearities is as follows. We first prepare
a coherent state in the cavity mode and then turn on the pump
on the transmon. We let the cavity coherent state evolve for
some time and then measure the cavity Wigner function. We
fit it to a Wigner function that is simulated using a Lindblad
master equation with the Hamiltonian given in Eq. (47) and a
single photon loss channel. This fitting allows us to extract the
nonlinearity parameters in Eq. (47). Due to lack of sensitivity,
we did not include the σA,0 term in the fit. More details on the
experimental procedure can be found in Appendix G.

Figure 4 shows the drive-power dependence of the nonlin-
earity parameters in Eq. (47) for m = 0. While at zero drive
the cavity nonlinearity is dominated by Kerr nonlinearity,
there is a significant increase in higher-order cavity nonlin-
earities at finite drive amplitude. By comparing Fig. 4(a) with
Fig. 4(b), we note that for the same amount of change in cavity
Kerr, the change in higher-order nonlinearities is smaller for
a larger drive-transmon detuning. In particular, at the drive
power where KA,0 crosses zero, the magnitude of βA,0 ap-
proximately goes as δ−1

d and σA,0 goes as δ−2
d , consistent with

predictions of Eqs. (37). This suggests that for the purpose of
canceling cavity Kerr using an off-resonant transmon drive,

FIG. 4. Higher-order cavity nonlinearities: Comparison between
numerics (solid), analytics (dashed), and experiments (dots) for two
different drive detunings, (a) δd/α = 0.08 and (b) δd/α = 0.26.
The cavity parameters are δa/α = 9.64, ga/δa = 0.064. The exper-
imental values of bare transmon frequency ω10/2π = 4.936 GHz,
anharmonicity α/2π = 0.168 GHz. The theoretical curves are inde-
pendent of the actual values of ω10 and α. For these parameters,
cavity self-Kerr in the absence of drive is K�d =0

A,0 /2π = −2.63 kHz
and cross Kerr between cavity mode and transmon is χAC/2π =
1.25 MHz.

it is preferable to use a larger drive-transmon detuning so
the drive-induced higher-order cavity nonlinearities are sup-
pressed while the Kerr is canceled; see Sec. VII. The results of
numerical diagonalization match quite well with experimental
results. The analytical results using Eqs. (37) also match well
with both numerics and experiments at small δd/α, but deviate
from them for larger δd/α. This is because the two-level
approximation used in obtaining Eqs. (37) requires |δd | � α.

We show in Fig. 5 the result with the same parameter as in
Fig. 4(a) but for a broader range of drive powers. It shows that
for large scaled drive powers, higher-order cavity nonlinearity
decays faster than lower-order nonlinearity. Specifically, KA,0

decays as |�d/δd |−1, βA,0 decays as |�d/δd |−3 and σA,0 de-
cays as |�d/δd |−5; see the text below Eqs. (37). We believe the
deviation of the experimental data from the theoretical result
for βA,0 at strong drives is partly due to the terms not included
in the RWA Hamiltonian in Eqs. (3) such as the sixth-order
terms from the cosine potential of the transmon.

VII. CANCELLATION OF CAVITY KERR NONLINEARITY

Finite nonlinearity results in nonequidistance of cavity
energy levels. Classically, this leads to an energy-dependent
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FIG. 5. Higher-order cavity nonlinearities for a broader range of
drive power. Same parameters as in Fig. 4(a).

cavity frequency. As a result, energy fluctuations of the cavity
mode due to coupling to environment translates into fre-
quency fluctuations or dephasing. Quantum mechanically, a
somewhat similar situation occurs even without coupling to
the environment. A cavity mode initially in a coherent state
with mean photon number n̄ will undergo deterministic phase
scrambling over the characteristic timescale τph ∼ π/2K

√
n̄

[34], where K is the cavity self-Kerr. In contrast to the noise-
induced pure dephasing, such phase scrambling is a unitary
effect. A Schrödinger cat state displays similar behavior; see
Fig. 7.

In the context of quantum error correction based on encod-
ing information in the states of harmonic oscillators, logical
states are typically designed to correct for photon loss. Be-
cause photon loss does not commute with unitary evolution
under cavity nonlinearity, this leads to uncorrectable errors,
which have been shown to be a leading factor limiting the
performance of bosonic quantum error correction codes [3–5].

As analyzed in Secs. V D 2 and VI, in the regime of large
cavity-transmon detuning, a single off-resonant drive can can-
cel cavity Kerr without inducing stronger cavity-transmon
hybridization. In this section, we demonstrate numerically
that such Kerr cancellation enables preserving the phase of a
Schrödinger cat state stored in the cavity mode for a time that
is much longer than the characteristic phase scrambling time
τph. The same method can be used to cancel the cross-Kerr
between two cavity modes.

A. Numerical procedure

The numerical procedure to quantify the performance of
the Kerr cancellation drive in preserving the Schrödinger cat
state is as follows. We first construct an even Schrödinger cat
state in the eigenbasis of the RWA Hamiltonian in Eqs. (3)
(with gb = 0):

|β+〉 = N−1/2(|β〉 + | − β〉),
(48)

|β〉 = e− |β|2
2

∑
Na

βNa

√
Na!

|ψ0, Na〉,

where N is a normalization factor equal to 2 + 2 exp(−2|β|2).
β is the amplitude of the coherent state |β〉. Of interest to us is
the regime where |β|2 � 1. Also we focus on the transmon
being in state ψ0 that adiabatically connects to the ground
state as the drive is turned on or off.

Then we let this state evolve under the full RWA Hamil-
tonian for some time t and compute its overlap with an
approximate state that evolves under a Kerr-free Hamiltonian
with a simple linear frequency term:

F (t ) = |〈�approx(t )|�(t )〉|2,
�(t ) = e−iHRWAt |β+〉, �approx(t ) = e−iN̂Aωt |β+〉. (49)

In practice, one can choose an ω that maximizes the fidelity
F (t ). Here we choose ω to be the frequency at the mean
photon number: ω = (dE0(NA)/dNA)|NA=〈N̂A〉, where 〈N̂A〉 ≡
〈β+|N̂A|β+〉 = |β|2 tanh(|β|2). Since NA only takes discrete
values, we further approximate the derivative as E0(�〈N̂A〉�) −
E0(�〈N̂A〉� − 1).

In Sec. VII D, we will discuss the effects of transmon
decoherence on the state fidelity. For here and in Secs. VII B
and VII C, we focus on the coherent dynamics.

B. Optimal drive parameters and scaling of infidelity

Before we show the performance of the Kerr cancellation
drive, we discuss the optimal drive condition to maximize the
fidelity F (t ). The aforementioned nonlinearity-induced phase
scrambling of the cavity coherent state or Schrödinger cat
state results from finite variance of the cavity photon number
distribution. To quantify this effect, we expand the eigenen-
ergy E0(NA) with respect to NA about the mean photon number
NA = 〈N̂A〉:

E0(NA) =
∞∑

n=0

1

n!

dE0(NA)n

dNn
A

∣∣∣∣
NA=〈N̂A〉

δNn
A,

δNA ≡ NA − 〈N̂A〉. (50)

In the absence of drive, the dominant cavity nonlinear-
ity is the Kerr nonlinearity. Therefore, the second derivative
of E0(NA) in Eq. (50) is much larger than higher deriva-
tives. A reasonable choice of drive parameters to minimize
nonlinearity-induced phase scrambling is such that

d2E0(NA)

dN2
A

∣∣∣∣
NA=〈N̂A〉

= 0. (51)

Using the parametrization of E0(NA) in Eq. (47) and keeping
up to the βA,0 term, we have

d2E0(NA)

dN2
A

∣∣∣∣
NA=〈N̂A〉

≈ KA,0 + βA,0(〈N̂A〉 − 1). (52)

We note that there is a contribution from higher-order non-
linearity βA,0 to (d2E0(NA)/dN2

A )|NA=〈N̂A〉, which can become
significant for large 〈N̂A〉.

Neglecting higher-order cavity nonlinearities, the con-
dition in Eq. (51) approximately becomes KA,0 = 0. To
the lowest order in the drive amplitude, the condition
to cancel cavity self-Kerr KA,0 follows from Eq. (36)
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to be

8α|�d |2/δ3
d,0 = 1. (53)

We remind readers that here δd,0 is the drive detuning
from the transition frequency between the first two states of
the transmonlike eigenmode C, which differs from transi-
tion frequency ω10 of the bare transmon by approximately
|ga|2/δa; i.e., δd ≈ δd,0 − |ga|2/δa. In the case δd is compa-
rable to |ga|2/δa, it is important to take into account this
frequency shift. The condition in Eq. (53) can be rewritten
as 2α|�d |2/δ2

d,0 = δd,0/4, where the left-hand side is ap-
proximately the drive-induced ac Stark shift of the transition
frequency of transmon mode C. The precise drive power re-
quired to cancel the cavity Kerr is higher than that set by
this condition because, for δd > 0, the cavity Kerr becomes
sublinear in the drive power as the drive power increases as
can be seen from Fig. 4.

Upon the cancellation of the δN2
A term in Eq. (50), the

major contribution to the remaining infidelity 1 − F comes
from the δN3

A term whose coefficient is proportional to βA,0.
Since the infidelity should be independent of the sign of βA,0,
we have to leading order in βA,0: 1 − F ∝ β2

A,0. As discussed
in Sec. VI [cf. Eq. (36)], the magnitude of βA,0 scales as
χAC/δd,0 at the Kerr cancellation point. It follows that the
infidelity should scale as

1 − F ∝ (χAC/δd,0)2. (54)

C. Numerical results

Parameters of the cavity-transmon system are chosen to be
the same as in Fig. 4. For these parameters, the cavity Kerr
in the absence of a transmon drive K�d =0

A,0 /2π = −2.63 kHz.
We choose the size of the Schrödinger cat state to be β =√

3. This means that after τph = π/2
√

〈N̂A〉|K�d =0
A,0 | ≈ 55 μs,

the state dephases and the fidelity F drops to close to zero
in the absence of a transmon drive. Applying an off-resonant
transmon drive significantly increases the fidelity F (t ). For
a drive detuning δd/α = 2, the fidelity F (t ) remains above
98.5% for as long as 500 μs; see Fig. 6(c).

Figure 6(a) shows that given a drive detuning, there exists
an optimal drive amplitude �

opt
d that maximizes the fidelity.

The scaled optimal drive power |�opt
d /δd |2 approximately

increases linearly with the drive detuning, as predicted by
Eq. (53). We have verified that the value of the optimal drive
power matches that given by Eqs. (51) and (52). �

opt
d is

slightly larger than the drive amplitude at the Kerr cancellation
point due to due to finite βA,0; see Fig 6(b).

Figures 6(a) and 6(b) demonstrate two advantages of using
a large drive detuning. First, the infidelity 1 − F at the optimal
drive amplitude �

opt
d decreases quadratically with the increase

of the drive detuning, consistent with our analysis around
Eq. (54). Second, away from the optimal drive power, the
fidelity drops slower at larger drive detuning, i.e., it is less
sensitive to deviation from the optimal drive power. This is
related to the fact that the slope of cavity Kerr at the zero
crossing point decreases with the increase of the scaled drive
detuning δd/α; see Fig. 6(b) and Eq. (53). Approximating
the optimal drive amplitude as that given by the condition in
Eq. (53), one can show that the deviation from the maximal

FIG. 6. Performance of the Kerr cancellation drive. Hamiltonian
parameters of the static cavity-transmon system are the same as
in Fig. 4. (a) Fidelity F (t ) at t = 200 μs as a function of scaled
drive power for a set of equally spaced drive detunings. Each peak
corresponds to a fixed drive detuning. From left to right, the scaled
drive detuning δd/α increases from 0.5 to 2. (b) The cavity Kerr non-
linearity KA,0 (solid lines) and the leading higher-order nonlinearity
βA,0 (dashed lines) as a function of the scaled drive power for drive
detuning δd/α = 1 (red) and 2 (cyan). The same color encoding is
used in panel (a). The horizontal black dashed line indicates where
zero is for the cavity Kerr nonlinearity. (c) The fidelity F (t ) as a
function time for δd/α = 2(cyan) and 1 (red) at the optimal drive
amplitude �d = �

opt
d . The fidelity decreases quadratically in time t

for short times. (d) The fidelity Fγ (t ) for various transmon decay
rates at drive detuning δd/α = 2. The solid lines show the results
of the master equation in Eq. (57). The dashed lines show the
results of Eq. (58), where κγ and Wψ0→ψm are given by Eqs. (59)
and (61), respectively; the cavity inverse Purcell decay (the term
∝ κr in Eq. (58)) accounts for the majority (≈83%) of the infidelity
1 − Fγ (t ), while the incoherent excitation from transmon state ψ0 to
ψ1 [the term ∝ Wψ0→ψ1 in Eq. (58)] accounts for the rest.

fidelity scales with respect to the distance to the optimal drive
power as follows:

F opt (t ) − F (t ) ∝
(

α

δd,0
K�d =0

A,0 t

)2[(
�

opt
d

δd,0

)2

−
(

�d

δd,0

)2]2

.

(55)

The width of F as a function of drive power curve in Fig. 6(a)
decreases as 1/t .

Figure 7 shows examples of the Wigner functions of state
�(t ). At t ≈ τph, the cat state maintains its phase coherence
in the presence of the Kerr cancellation drive, but completely
dephases without the drive. The Wigner function is defined in
a standard way for the dressed cavity mode as follows:

W (QA, PA) = 1

π h̄

∫ ∞

−∞
�∗(QA + Q′

A)�(QA − Q′
A)

× e2iPAQ′
A/h̄dQ′

A, (56)
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FIG. 7. Wigner functions of state �(t ) defined in Eq. (56) with
(left) and without (right) the Kerr cancellation drive at the charac-
teristic phase scrambling time t = 55 μs ≈ τph. The drive amplitude
is chosen to be at �d = �

opt
d that maximizes the fidelity F (t ) in

Fig. 6(a) and the drive detuning is δd/α = 2. As shown in Fig. 6(c),
with the Kerr cancellation drive, overlap of state �(t ) with Kerr-free
evolution remains above 98.5% up to 500 μs; without Kerr cancella-
tion drive, this overlap drops to zero near t = τph.

where �(QA) ≡ 〈QA|�(t )〉. |QA〉 is eigenstate of coordinate
operator of the dressed cavity mode A: Q̂A = √

h̄/2(Â† + Â).

D. Effects of transmon decay

We have discussed how the Schrödinger cat state |β+〉
undergoes phase scrambling under unitary evolution and how
such a process can be suppressed by canceling cavity Kerr
nonlinearity. In a circuit QED setup that consists of high-Q
3D microwave cavities coupled to a transmon ancilla, the
transmon is typically the most lossy element. In this section,
we consider the effect of transmon decay on the state fidelity.

To model transmon decay, we consider a model where
the transmon dynamical operator ĉ† + ĉ is linearly coupled
to some bath variable whose spectral density is assumed to
be smooth over the characteristic frequency scale of HRWA in
Eqs. (3). The bath is further assumed to be in thermal equi-
librium at zero temperature. Upon a Markov approximation
and in the rotating frame of the drive, we obtain the following
Lindblad master equation:

ρ̇ = − i

h̄
[HRWA, ρ] − D[

√
γ ĉ]ρ, D[ĉ] ≡ {ρ, ĉ†ĉ}/2 − ĉρĉ†.

(57)

We then compute the overlap of the density matrix with
the approximate Kerr-free state: Fγ (t ) = 〈�approx(t )|ρ(t )|
�approx(t )〉, with ρ(0) = |β+〉〈β+|. To differentiate this fi-
delity from the fidelity without transmon decay, we use a
subscript γ . The result for Fγ (t ) is shown in Fig. 6(d). For
the chosen parameters, the infidelity 1 − Fγ is dominated
by transmon decay and the reduction in Fγ can be approxi-
mated as purely coming from incoherent processes, i.e., Fγ ≈
〈�(t )|ρ(t )|�(t )〉.

Transmon decay leads to a linear in time reduction of the
fidelity Fγ (t ) at a short timescale (short compared to the char-
acteristic decoherence time of the dressed cavity mode and
transmon). Such reduction in fidelity has two origins. First,
the dressed cavity mode inherits finite decay from the lossy
transmon, an effect sometimes referred to as inverse Purcell
decay [1]. To leading order in the cavity-transmon coupling
strength ga, the rate of this inherited decay is linear in the
cavity photon number, i.e., |ψ0, NA〉 decays into |ψ0, NA − 1〉

with a rate given by NAκγ where κγ ∝ γ . To leading order in
κγ t , the decrease in the fidelity Fγ (t ) due to the cavity inverse
Purcell decay comes from the no jump evolution that maps
ρ(0) to exp(−κγ N̂At/2)ρ(0) exp(−κγ N̂At/2). It follows that
at short time κγ t � 1, we have (1 − Fγ (t ))κγ

= κγ t〈N̂A〉.
Second, the transmon undergoes transitions from state

ψ0 to some other state ψm �=0, which occurs even when the
bath is at zero temperature. These transitions result in the
dressed cavity mode seeing a different effective Hamiltonian
Em �=0(N̂A) which has a different effective cavity frequency
δωA,m; see Eq. (47). One can think that once the transmon
escapes state ψ0, the Schrödinger cat state will rotate in the
phase space with a speed that is different from ω̄ by the
amount of δωA,m �=0 − δωA,0 that is approximately equal to
−mχAC . After the transition, the state overlap with �approx(t )
will therefore rapidly oscillate at a rate set by χAC . Since the
time of escape is random, these oscillations will be averaged
with respect to the escape time from time t = 0 to the obser-
vation time t . For γ t � 1, the resulting infidelity 1 − Fγ (t )
due to escaping from state ψ0 can be expressed as follows:

(1 − Fγ (t ))esc =
∑

m

Wψ0→ψm

∫ t

0
dtesc

× (1 − |〈β+|e−i(δωA,m−δωA,0 )N̂A(t−tesc )|β+〉|2),

where Wψ0→ψm ∝ γ is the rate of transition from state ψ0 to
ψm and δωA,m − δωA,0 ≈ −mχAC . On a timescale that is much
larger than 1/χAC , the oscillations of the state overlap in the
integrand will be averaged to a constant value between 0 and
1 that depends on the size β of the Schrödinger cat state |β+〉.

Combining the infidelity due to the cavity inverse Purcell
decay and transmon escaping state ψ0, we obtain the overall
infidelity 1 − Fγ (t ) to be (on the timescale shorter than the
decoherence time of the dressed cavity and transmon but
longer than 1/χAC):

1 − Fγ (t ) = (κγ 〈N̂A〉 + C
∑

m

Wψ0→ψm )t + O(t2), (58)

where 〈N̂A〉 = |β|2 tanh(|β|2), and coefficient C =
1 − [J0(2|β|2) + J0(2i|β|2)]/2 cosh2(|β|2) ∈ [0, 1]. For
|β|2 = 3 shown in Fig. 6, we have C ≈ 0.67 and 〈N̂A〉 ≈ 3.
Using Fermi’s golden rule expressions for κγ and Wψ0→ψm

below, we verify that Eq. (58) matches well with the master
equation simulation using Eq. (57); see the dashed lines in
Fig. 6(d).

The inverse Purcell decay rate κγ in Eq. (58) can be calcu-
lated using Fermi’s golden rule:

κγ = |〈ψ0, 0|ĉ|ψ0, 1〉|2γ . (59)

To leading order in the drive amplitude and the transmon-
cavity coupling ga, we found it to be

κγ ≈
∣∣∣∣ga

δa

∣∣∣∣
2(

1 − 4α|�d |2
δ3

d

δd

δa

)
γ . (60)

We also only kept leading order terms in δd/δa and α/δa,
which are much smaller than one in the considered large
cavity-transmon detuning regime. Part of the drive-induced
inverse Purcell decay rate (the term proportional to |�d |2)
simply comes from the drive-induced ac Stark shift pushing
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FIG. 8. Left: Inverse Purcell decay rate of the dressed cavity
mode. Right: Incoherent transition rate from transmon Floquet state
ψ0 to ψ1. Hamiltonian parameters of the static cavity-transmon sys-
tem are the same as in Fig. 4. The scaled drive detuning is δd/α = 2.

For this drive detuning, the drive amplitude at Kerr cancellation is
|�d/δd |2 ≈ 0.45; see Fig. 6(b). The numerical results are obtained
using Fermi’ s golden rule formula in Eqs. (59) and (61). The
analytical results correspond to the expressions in Eqs. (60) and
(62), which are derived using the Fermi’s golden rule formula but
are perturbative in the drive power. The deviation of the analytical
from the numerical results at large drive strengths is partly due to
the fact that the drive pushes the transmon frequency ω10 away from
the drive frequency through ac Stark shift which makes the effective
drive detuning larger. For the chosen drive parameters, transition
rate Wψ0→ψm>1 from transmon Floquet state ψ0 to ψm>1 is negligible
compared to Wψ0→ψ1 .

the transmon frequency ω10 away or closer to the cavity
frequency depending on the sign of δa. Notably, at the Kerr
cancellation point [see Eq. (53)], this term is suppressed by
the small ratio of δd/δa compared to the static inverse Purcell
decay. In general, the drive-induced inverse Purcell decay can
surpass the static value, in particular, when the cavity is in
the vicinity of the drive-induced cavity-transmon reasonance
that we discussed in Sec. V D 1. Detailed discussions of this
scenario can be found in Ref. [19].

The Fermi’s golden rule expression for Wψ0→ψm in Eq. (58)
is given by

Wψ0→ψm = |〈ψm|ĉ|ψ0〉|2γ . (61)

To leading order in the drive amplitude, the transition rate
from ψ0 to ψ1 is much larger than transition rates to other
states and was found to be [19]

Wψ0→ψ1 ≈
∣∣∣∣ α�2

d

δ2
d (2δd + α)

∣∣∣∣
2

γ . (62)

A comparison between the perturbative analytical results in
Eqs. (60) amd (62) and numerics shows good agreement; see
Fig. 8.

On a timescale that is much larger than transmon deco-
herence time (γ t � 1), the transmon has undergone many
incoherent transitions among its Floquet states until observa-
tion time t . Because of the transmon-state-dependent cavity
frequency, these random transitions dephase the dressed cav-
ity. Taking into account transitions between states ψ0 and
ψ1, this pure dephasing rate scales as κph ∼ Wψ0→ψ1 (χAC/γ )2.
The results shown in Fig. 6(d) refer to the intermediate regime
γ t � 1 and the infidelity 1 − Fγ scales approximately linearly
in γ .

In summary, in the presence of the Kerr cancellation drive,
the fidelity of the cavity Schrödinger cat state is no longer lim-
ited by the coherent phase scrambling, but rather limited by
the decoherence processes which include both transmon de-
coherence and the intrinsic decoherence of the cavity modes.
Using realistic experimental parameters (see the caption of
Fig. 4), we found that the cavity state infidelity due to trans-
mon dissipation is about 3% at t = 100 μs for a cat state
of size β = √

3 and transmon decay rate γ = (50 μs)−1 [see
Fig. 6(d)]. Through semianalytic analysis, we found that the
inverse Purcell effect accounts for the majority (≈83%) of this
infidelity; the rest (≈17%) comes from the incoherent excita-
tion of the transmon from state ψ0 to ψ1, which occurs even
at zero temperature due to the finite drive. For the parameters
we used, the inverse Purcell effect limits the cavity lifetime to
about 5 ms, which is comparable to the intrinsic lifetime of
the state-of-art 3D microwave cavities [2].

VIII. CONCLUSIONS

We have studied the nonlinearities of cavity modes inher-
ited from an off-resonantly driven superconducting transmon.
These nonlinearities can be tuned in situ by the drive. In
different regimes, the form of this tunability is qualitatively
different.

First, for a small-to-moderate cavity-transmon detun-
ing that is comparable to drive-transmon detuning and/or
transmon anharmonicity, the drive can induce multiphoton
resonances among the cavity and transmon excitations. In
the vicinity of these resonances, cavity nonlinearity param-
eters experience sharp changes as a function of the drive
parameters. Second, for large cavity-transmon detuning where
the cavity is far away from these resonances, off-resonant
cavity-transmon interaction leads to a cavity-photon-number-
dependent dispersive shift in transmon transition frequencies.
This results in drive-induced ac Stark shifts of the transmon
levels also depending on the cavity photon number, which
translates into an effective cavity nonlinearity. Depending on
the interrelation between the drive-transmon detuning and
transmon anharmonicity, this ac Stark shift shows qualita-
tively different behavior ranging from strongly quantum to
semiclassical, which, in turn, leads to different features in the
cavity nonlinearities.

For large cavity-transmon detuning, cavity nonlinearity in-
duced by a single drive blue-detuned from the transmon can be
used to cancel the cavity Kerr nonlinearity that is the dominant
nonlinearity without the drive. In the case of multiple cavity
modes coupled to the same transmon, the drive can also cancel
the cross-Kerr interaction between cavity modes. Compared
to previous Kerr cancellation methods [14–16], this simple
scheme only requires one drive and does not require popu-
lating the transmon excited states, therefore suppressing the
susceptibility to transmon loss. We demonstrate numerically
the performance of Kerr cancellation by extending the phase
correlation of a cavity Schrödinger cat state well beyond the
characteristic phase collapse time under Kerr nonlinearity.
This Kerr-cancellation method is particularly suitable to the
recently realized grid-state encoding using a microwave cavity
mode that involves a large number of cavity photons [5].

In the limit of weak transmon-cavity coupling, comput-
ing cavity nonlinearity reduces to calculating the nonlinear
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susceptibility function of the driven transmon. For systems
with a large number of cavity modes coupled to the same
transmon (cf. [2]), computing the susceptibility function is
numerically more efficient than solving the full transmon-
cavity Hamiltonian, as the former only requires diagonalizing
the Hamiltonian of the driven transmon. This method based
on susceptibility function can be useful for characterizing
multimode microwave cavities or acoustic cavities controlled
by transmon ancillas.

For future research, it would be interesting to investigate
whether one can exploit the aforementioned drive-induced
multiphoton resonances between cavity and transmon exci-
tations as a way to dynamically and robustly control cavity
nonlinearity. Although the cavity modes may inherit un-
favorable decoherence properties from the typically lossier
transmon ancilla, its nonlinearity strength can be tuned over
a great range for a relatively small change in the drive am-
plitude or drive detuning due to the resonance. This tunable
nonlinearity can be useful in many ways, including cavity
state preparation [35] and quantum simulations of many-body
systems such as those described by the Bose-Hubbard model
[36].
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APPENDIX A: HIGHER-ORDER CORRECTIONS
TO EQS. (9)

The effect of the nondispersive terms in Eq. (8) can be
captured by going to higher order in the perturbation the-
ory in terms of the small parameter α/δa(b). Specifically,
one can make a unitary transformation (Schrieffer-Wolff
transformation) US = exp(iS) to eliminate the nondisper-
sive terms order by order in α/δa(b). To first order in
α/δa(b), we have S = i

∑
n Hn/�n (cf. Ref. [37]), where Hn

represents a nondispersive term, and it would become pro-
portional to exp(i�nt ) upon a unitary transformation Û =
exp[−i(δACN̂a + δBCN̂b)t]. It follows that the Hamiltonian af-
ter the unitary reads

U †
S HRWAUS ≈ H0 +

∑
n

[Hn, H†
n ]

2�n
= δ̃ACN̂A + δ̃BCN̂B − 1

2

∑
X,X ′∈{A,B,C}

χXX ′ N̂X N̂X ′ (1 − εXX ′ N̂C )

+
∑

X∈{A,B}

1

3!
βX N̂3

X + 1

2

(
βABN̂2

AN̂B+βBAN̂2
BN̂A

)
, (A1)

where

δ̃A(B)C = δA(B)C + α(|ξC |2 − |ξA(B)|2)/2, εAA(BB) = 9
χCC

δA(B)C
, εCC = −χAC

δAC
− χBC

δBC
,

εA(B)C = 3χCC

2δA(B)C
, εAB = 2χCC

(
1

δAC + δBC
+ 2

δAC
+ 2

δBC

)
, βA(B) = 3χAA(BB)χA(B)C

2δA(B)C
,

βAB(BA) = χAA(BB)χB(A)C

(
1

δA(B)C
+ 4

δB(A)C
+ 1

2δA(B)C − δB(A)C

)
. (A2)

The above equation shows that the fractional difference in the
nonlinearity strength χXX ′ among different transmon states
varies linearly in the transmon mode excitation number NC

with the proportionality constant being εXX ′ ∼ χCC/δA(B)C �
1, for X, X ′ ∈ {A, B}. Additionally, there emerges sixth-
order nonlinearity for the cavitylike modes. Their strengths
characterized by coefficients βA(B) and βAB(BA) are smaller
than the fourth-order Kerr nonlinearity by a factor of
∼χA(B)C/δA(B)C � 1.

APPENDIX B: LINEAR AND NONLINEAR
SUSCEPTIBILITIES OF THE DRIVEN ANCILLA

Due to the weak coupling between the cavity modes and
the transmon ancilla, one can treat the cavity fields as weak
probe tones that act on the transmon ancilla. As we have
previously shown in Ref. [19], the linear and nonlinear sus-

ceptibilities of the periodically driven ancilla to additional
weak classical probe tones are related to the ancilla-induced
linear and nonlinear properties of the cavity modes. In the
absence of ancilla decoherence, the calculation of the suscep-
tibility functions is equivalent to the perturbative calculation
in the weak-coupling regime presented in Sec. V. In this
section, we derive the expressions for the linear and nonlinear
susceptibilities of the driven transmon ancilla. The proce-
dure to derive susceptibilities follows the standard linear and
nonlinear response theory [29,38]. To make the formalism
general, we work in the laboratory frame and derive formulas
that go beyond the RWA.

We start with the equation of motion for the density matrix
of the driven ancilla:

˙̂ρ = −i[Hanc+bath(t ) + Hprobe(t ), ρ̂]/h̄,

Hprobe(t ) = − f (t )Ô. (B1)
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Hanc+bath is the total Hamiltonian of the ancilla under the
periodic drive and the bath degrees of freedom that cou-
ple to the ancilla. Hprobe describes a weak time-dependent
classical force f (t ) (the probe) coupled to an ancilla oper-
ator Ô. The probe f (t ) plays the role of the cavity fields
that act upon the transmon. Since the cavity modes cou-
ple to the charge degree of freedom of the transmon, later
we will consider the case where Ô is the charge opera-
tor of the transmon ancilla; here we keep the formalism
general.

Equation (B1) has a formal solution,

ρ̂(t ) = L̂→(t, 0)ρ̂(0) − i

h̄

∫ t

0
dt1L̂→(t, t1)[Hprobe(t1), ρ̂(t1)],

(B2)

where L̂→ is a superoperator that acts on all op-
erators to its right according to L̂→(t, t1)Ô = Û (t, t1)
ÔU †(t, t1), Û (t, t1) = T exp[−i

∫ t
t1

Hanc+bath(t ′)].
With the help of the formal solution (B2), the density

matrix can be found perturbatively in the probe strength f (t )

via iteration:

ρ̂ =
∞∑

m=0

ρ̂ (m), ρ̂ (m) ∼ O( f m),

ρ̂ (m)(t ) = − i

h̄

∫ t

0
dt1L̂→(t, t1)[Hprobe(t1), ρ̂ (m−1)(t1)],

ρ̂ (0)(t ) = L̂→(t, 0)ρ̂(0). (B3)

Of interest to us is the response of the ancilla operator Ô to
the coupling to the probe. This response is manifested as the
change in the expectation value of the operator which formally
reads

〈Ô(t )〉 =
∞∑

m=0

〈Ô(m)(t )〉,

where Ô(m)(t ) ∼ O( f m) is the operator Ô solved to mth
order in Hprobe in the Heisenberg picture. For instance,
the unperturbed operator Ô(0)(t ) = Û †(t, 0)ÔÛ (t, 0). In the
Schrödinger picture, we have 〈Ô(m)(t )〉 = Tr[Ôρ̂ (m)(t )].

Using Eqs. (B3) and the cyclic property of the trace opera-
tion, we find the mth order response of the ancilla operator Ô
to the probe to be

〈Ô(m)(t )〉 =
∫ t

0
dtm

∫ tm

0
dtm−1...

∫ t2

0
dt1χ

(m)(t, tm, ..., t1) f (tm)... f (t1), m � 1,

χ (m)(t, tm, ..., t1) =
(

i

h̄

)m

〈[...[[Ô(0)(t ), Ô(0)(tm)], Ô(0)(tm−1)]..., Ô(0)(t1)]〉. (B4)

where 〈...〉 ≡ Tr(...ρ̂(0)). χ (m)(t, tm, ..., t1) is an mth order response function in the time domain associated with operator Ô and
is an intrinsic property of the driven ancilla.

1. Time-domain structure of the response function

In the absence of coupling to the bath, some generic
properties of the response function χ (m)(t, t1, ..., tm ) can be
inferred by inserting a complete set of ancilla Floquet states
between adjacent operators. The Floquet states are eigenstates
of the periodically driven ancilla,

ψm(t ) = e−iεmt um(t ),

where εm is the quasienergy and um(t ) is called Floquet
mode and has the same periodicity as the drive, i.e., um(t +
2π/ωd ) = um(t ). The Floquet modes form a complete set of
states at any instant of time:

∑
m |um(t )〉〈um(t )| = Î . Using the

relation Û (t, 0)ψm(0) = ψm(t ), we immediately obtain that
for ρ(0) = |ul0〉〈ul0〉,

χ (m)(t, tm, ..., t1) =
(

i

h̄

)m ∑
�lm, �Km

m∏
m′=0

Olm′+1lm′ ,Km′+1

× exp[−iεlm′ (tm′+1 − tm′ ) + iKm′+1ωdtm′+1] + ..., (B5)

where Omn,K is the K th Fourier component of the
matrix element 〈um(t )|Ô|un(t )〉: Omn,K = (2π/ωd )−1∫ 2π/ωd

0 dt〈um(t )|Ô|un(t )〉 exp(−iKωdt ). To make the
notation compact, we have defined tm+1 ≡ t and introduced
�lm = {l1, l2.., , lm}, �Km = {K1, K2..., Km+1}. Also due to the
trace operation, in Eq. (B5), we identify m + 1 with 0
such that lm+1 ≡ l0, tm+1 ≡ t0 ≡ t . Note that Eq. (B5) only

shows one term from the commutators in χ (m); other terms
represented by ... in Eq. (B5) will have similar structure but
with pairs of tm and tn switching order.

Equation (B5) shows that in the absence of external drive
(i.e., all K ′

m′s are zero), the response function χ (m)(t, tm, ..., t1)
is a function of m + 1 time differences (difference in the argu-
ments) out of which only m time differences are independent.
In other words, χ (m) is independent of initial time. In the
presence of periodic drive, χ (m)(t, tm, ..., t1) is periodically
modulated as a function of all m + 1 arguments in addition
to the dependence on m time differences. This property of
the response function χ (m) holds when the ancilla is coupled
to a Markovian bath and ρ(0) is the steady state. If ρ(0) is
a transient state, then in general χ (m) will depend on all the
arguments even without periodic drive.

2. Linear response to harmonic probes

Now let us consider the response to a specific form of the
probe that consists of multiple harmonic drives,

f (t ) =
∑

ω

fωe−iωt ,

where ω can be positive and negative and f−ω = f ∗
ω. In

the case where operator Ô is the ancilla charge operator,
the probes can represent the fields from the cavity modes
considered in the main text, except that here the probes are
classical fields.
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Let us study first the property of the linear re-
sponse 〈Ô(1)(t )〉 in Eqs. (B4). First, at the linear response
level, the response 〈Ô(1)(t )〉 to the probe is a sum of response
to each probe at the respective probe frequency.

Second, as a generic property, upon integration of the
right-hand side of Eqs. (B4) and in the absence of ancilla
decoherence, the lower integration limit will yield terms that
oscillate as a function of t at the transition frequencies of
the driven ancilla, whereas the upper limit will yield terms
that oscillate at the probe frequency plus integer multiples of
the drive frequency ω + Kωd . This property can be readily
seen from Eq. (B5). In the presence of ancilla dissipation,
the terms from the lower limit will decay to zero in the long
time limit t → ∞, whereas those from the upper limit will
remain oscillating at frequency ω + Kωd , even in the long
time limit.

As mentioned in the main text, of interest to us is the
dispersive regime where the cavity (probe) frequency is far
away from any ancilla transition frequency. Thus, the terms
from the lower integration limit can be neglected when
we consider their back action on the cavity since they are
strongly off-resonant with cavity frequency. This approxima-
tion holds even in the transient regime where the size of those
terms is comparable to terms from the upper integration
limit.

Under the above considerations, we obtain that

〈Ô(1)(t )〉 =
∑
ω,K

fωχ (ω; ω + Kωd )e−i(ω+Kωd )t ,

χ (−ω; −ω − Kωd ) = χ∗(ω; ω + Kωd ). (B6)

The linear susceptibility χ (ω; ω′) in frequency domain is
a function of both the probe frequency ω and response
frequency ω′; they do not need to be the same for a driven
system. The susceptibility χ is given by the Fourier transform
of the response function in the time domain:

χ (ω; ω + Kωd ) =
∫ t

0
dt1χ

(1)(t, t1)

× exp[iω(t − t1) + iKωdt]. (B7)

As discussed above, only the smooth terms (nonrotating
terms from the upper integration limit) should be kept in the
calculation of χ . In the absence of ancilla dissipation, χ is
time independent; otherwise, χ slowly changes in time on
the scale of ancilla relaxation time in the transient regime. As
discussed in Ref. [19], real and imaginary parts of χ (ω; ω)
correspond to the ancilla-induced cavity frequency shift and
inverse Purcell decay. For K �= 0, χ (ω; ω + Kωd ) relates
to ancilla-mediated beam-splitter coupling (or two-mode
squeezing coupling if ω and ω + Kωd have opposite signs)
between one cavity at frequency |ω| and another at frequency
|ω + Kωd |.

In the absence of ancilla decoherence, and taking initial
density matrix to be ρ(0) = |um〉〈um| and denoting the cor-

responding χ as χm, we obtain from Eq. (B7) the following
result:

χm(ω; ω + Kωd ) =
∑
n,K ′

(
Omn,K ′−K Onm,−K ′

−h̄ω − K ′h̄ωd + εnm

− Onm,K ′−K Omn,−K ′

−h̄ω − K ′h̄ωd + εmn

)
, (B8)

where εnm ≡ εn − εm. We have used a subscript m for the
susceptibility χ to indicate that this is calculated with respect
to ρ(0) = |um〉〈um|. We emphasize that the expressions for the
susceptibility in Eqs. (B7) and (B8) apply for the probe-ancilla
coupling of the general form in Eq. (B1). They are applicable
for any nonlinear ancilla with a time-periodic Hamiltonian not
limited to a voltage-driven transmon and apply beyond the
RWA.

Now we consider that the operator Ô that the probe field
is coupled to is proportional to transmon charge operator:
Ô = i(ĉ† − ĉ). In the case where the transmon ancilla can be
well approximated as a weakly nonlinear oscillator and both
the drive and probes are relatively close in frequency to the
ancilla |ω − ωc|, |ωd − ωc| � ωc, one can apply RWA and
neglect terms that do not preserve excitation number in the
Hamiltonian; see Sec. II for the conditions of RWA. Under
RWA, the frequencies at which the linear response oscillate
are limited to the first harmonic K = 0 and K = −2sgn(ω).
The expression for the susceptibility in Eq. (B7) is simplified
to (for ω > 0)

χ (ω; ω) ≈
(

i

h̄

)∫ t

0
dt1〈[ĉ(0)(t ), ĉ†(0)(t1)]〉eiω(t−t1 ),

χ (ω; ω − 2ωd ) ≈
(

i

h̄

)∫ t

0
dt1〈[iĉ†(0)(t ), iĉ†(0)(t1)]〉

× eiω(t−t1 )−2iωd t , (B9)

which coincide with the results obtained in Ref. [19]. In the
absence of ancilla decoherence, explicit expression for χ un-
der RWA can be obtained from Eq. (B8) by only keeping the
term K ′ = −1 in the summation (for ω > 0) and using that the
nonvanishing matrix elements of Ô under RWA are approxi-
mately given by Omn,±1 ≈ ±ic(±1)

mn , where c(±1)
mn is the matrix

element of operator ĉ or ĉ† between ancilla RWA eigenstates
ψm and ψn defined in Eq. (4) [see the text below Eqs. (18)].

3. Third-order nonlinear response

Of primary interest to us in this paper is the third-order
nonlinear response of the drive ancilla to the probe. Due to
the nonlinearity of the driven ancilla and the beating between
different probe frequencies, third-order nonlinear response of
the ancilla can in general oscillate at any frequency combina-
tion of three probe frequencies,

〈Ô(3)(t )〉 =
∑

ω,ω′,ω′′,K

fω fω′ fω′′χ (3)(ω,ω′, ω′′; ω + ω′ + ω′′ + Kωd )e−i(ω+ω′+ω′′+Kωd )t

χ (3)(ω,ω′, ω′′; ω + ω′ + ω′′ + Kωd ) =
∫ t

0
dt3

∫ t3

0
dt2

∫ t2

0
dt1χ

(3)(t, t3, t2, t1)

× P exp [iω(t − t3) + iω′(t − t2) + iω′′(t − t1) + iKωdt], (B10)
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where P indicates a summation over terms that are invariant with respect to permuting ω,ω′, ω′′. Similar to the linear
susceptibility, only smooth terms in χ (3) need to be kept. As in Eq. (B8), explicit expression for χ (3) can be obtained in the
absence of ancilla decoherence from Eq. (B10).

As discussed in Sec. V C of the main text, Reχ (3)(ω,ω,−ω; ω) characterizes the ancilla-induced self-Kerr of a cavity at
frequency ω whereas Reχ (3)(ω,ω′,−ω′; ω) characterizes the ancilla-induced cross-Kerr between two cavities with frequency
ω and ω′. Taking the initial state to be ρ(0) = |um〉〈um| and denoting the corresponding susceptibility as χ (3)

m , we obtain from
Eq. (B10) that in the absence of ancilla decoherence, the nonlinear susceptibilities χ (3)

m (ω,−ω,ω; ω) and χ (3)
m (ω,−ω′, ω′; ω)

read

χ (3)
m (ω,−ω,ω; ω) = −

∑
n,K

[ ∑
j=±1

∣∣M̃ ( j)
nm,K (ω)

∣∣2

εmn + 2 jh̄ω − Kh̄ωd
+

∣∣M̃ (−1)
nm,K (ω) + M̃ (+1)

nm,K (ω)
∣∣2

εmn − Kh̄ωd

]

+ [
M̃ (−1)

mm,0(ω) + M̃ (+1)
mm,0(ω)

][
Ñ (−1)

mm,0(ω) + Ñ (+1)
mm,0(ω)

]
, (B11)

χ (3)
m (ω,−ω′, ω′; ω) = −

∑
n,K

[ ∑
j=±1

∣∣M̃ ( j)
nm,K (ω) + M̃ ( j)

nm,K (ω′)
∣∣2

εmn + jh̄(ω + ω′) − Kh̄ωd
+

∑
j=±1

∣∣M̃ ( j)
nm,K (ω) + M̃ (− j)

nm,K (ω′)
∣∣2

εmn + jh̄(ω − ω′) − Kh̄ωd

+2Re

(
M̃ (+1)

nm,K (ω) + M̃ (−1)
nm,K (ω)

)(
M̃ (+1)

nm,K (ω′) + M̃ (−1)
nm,K (ω′)

)∗

εmn − Kh̄ωd

]

+ {[
M̃ (−1)

mm,0(ω) + M̃ (+1)
mm,0(ω)

][
Ñ (−1)

mm,0(ω′) + Ñ (+1)
mm,0(ω′)

] + (ω ↔ ω′)
}
, (B12)

where tensors M̃ ( j)
mn,K and Ñ ( j)

nm,K read

M̃ ( j)
mn,K (ω) =

∑
n′K ′

Omn′,K−K ′On′n,K ′

εnn′ − K ′h̄ωd + jh̄ω
, (B13)

Ñ ( j)
mn,K (ω) =

∑
n′K ′

Omn′,K−K ′On′n,K ′

(εnn′ − K ′h̄ωd + jh̄ω)2
. (B14)

Similar to the expression for the linear susceptibility in Eq. (B8), Eqs. (B11) and (B12) for the nonlinear susceptibility work for
any periodically driven ancilla with an ancilla-probe couplng of the form in Eq. (B1) and apply beyond the RWA.

For a transmon ancilla capacitively coupled to cavity modes, we substitute operator Ô with i(ĉ† − ĉ) and under the RWA as
discussed in Sec. II, the expressions for χ (3)(ω,ω,−ω; ω) and χ (3)(ω,ω′,−ω′; ω) follow from Eq. (B10) and read

χ (3)(ω,ω,−ω; ω) ≈
(

i

h̄

)3 ∫ t

0
dt3

∫ t3

0
dt2

∫ t2

0
dt1{〈[[[ĉ(0)(t ), ĉ†(0)(t3)], ĉ†(0)(t2)], ĉ(0)(t1)]〉 exp [−iω(t3 + t2 − t1)]

+ 〈[[[ĉ(0)(t ), ĉ†(0)(t3)], ĉ(0)(t2)], ĉ†(0)(t1)]〉 exp [−iω(t3 − t2 + t1)]

+ 〈[[[ĉ(0)(t ), ĉ(0)(t3)], ĉ†(0)(t2)], ĉ†(0)(t1)]〉 exp [−iω(−t3 + t2 + t1)]} exp(iωt ), (B15)

χ (3)(ω,ω′,−ω′; ω) ≈
(

i

h̄

)3 ∫ t

0
dt3

∫ t3

0
dt2

∫ t2

0
dt1{〈[[[ĉ(0)(t ), ĉ†(0)(t3)], ĉ†(0)(t2)], ĉ(0)(t1)]〉 exp (−iωt3 − iω′t2 + iω′t1)

+ 〈[[[ĉ(0)(t ), ĉ†(0)(t3)], ĉ(0)(t2)], ĉ†(0)(t1)]〉 exp (−iωt3 − iω′t1 + iω′t2)

+ 〈[[[ĉ(0)(t ), ĉ(0)(t3)], ĉ†(0)(t2)], ĉ†(0)(t1)]〉 exp (−iω′t2 − iωt1 + iω′t3)} exp(iωt )

+ (ω ↔ ω′). (B16)

Using Eqs. (21) and (22) in the main text and the expressions for χ (3) above, we obtain the same results for the cavity self-Kerr
and cross-Kerr as in Eqs. (16) and (17).

It immediately follows from Eq. (B15) that for large |ω − ωc|, Reχ (3)(ω,ω,−ω; ω) ∼ O((ω − ωc)−4). The terms
∼O((ω − ωc)−3) would come from taking all ĉ(0)(t ′) in the integrand to be ĉ(0)(0) exp(−iωct ′), which would necessarily
vanish due to the commutators. This is consistent with our analysis in Sec. V D 2.
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FIG. 9. Cavity cross-Kerr spectrum: (a) δb/α = 1; (b) δb/α = 2.
The dimensionless cavity cross-Kerr K̃AB,0 is defined as K̃AB,0 =
α3KAB,0/|gagb|2. For fixed δb/α, the spectrum is controlled by two di-
mensionless drive parameters δd/α = 3 and |�d/δd |2 = 0 (red dots),
0.3 (green dots).

APPENDIX C: INTERCAVITY CROSS-KERR
NONLINEARITY

In this section, we briefly discuss cavity cross-Kerr KAB,m

as a function of cavity frequencies [i.e., the susceptibility
function χ (3)(ω,−ω′, ω′; ω) in Eq. (22)], which we refer to
as cavity cross-Kerr spectrum.

Figure 9 shows the cavity cross-Kerr KAB,0 as a function
cavity-a detuning δa for fixed cavity-b detuning δb. In the
presence of transmon drive, the cross-Kerr spectrum shows
rich dispersive structures as a result of the drive-induced
multiphoton resonance processes. The locations and strengths
of these structures depend sensitively on the value of δb as
can be seen going from the upper to the lower panel of Fig. 9.

The resonance processes that are responsible for the strong
dispersive structures in KAB,m as a function of δa, δb are as
follows:

(iii) (n − m − 2 j)ωd + j(ωa + ωb) = ω̃nm, j = ±1,

(iv) (n − m)ωd + j(ωb − ωa) = ω̃nm, j = ±1.

In addition to the above processes that involve photons from
both cavity modes, the processes that involve only one cavity
mode [see resonance condition (ii) in Sec. V D 1] also affect
the cross-Kerr KAB,m.

APPENDIX D: CAVITY NONLINEARITIES IN THE
VICINITY OF A DRIVE-INDUCED CAVITY-TRANSMON

RESONANCE

While the cavities are off-resonant with the transmon in
the absence of the drive, turning on the drive can bring them
into near resonance with certain transition between trans-
mon states. Cavity nonlinearities are modified as a result of
stronger hybridization with the transmon. To illustrate this
point, we consider as an example that cavity a is in the vicinity
of a resonance: ωa + ωd ≈ ω̃20.

We consider the regime |δa| � α which is convenient for
analytical analysis and also of experimental interest. As in
Sec. VI, we start from the Hamiltonian in Eq. (28) that is
expressed in terms of the eigenmodes of the linear part of the
system described in Sec. IV A. The condition ωa + ωd ≈ ω̃20

implies that the drive is also far detuned from the transmonlike
mode C with a detuning much larger than its anharmonic-
ity, i.e., |δdC | � α. As discussed in Sec. VI C, for such a
large-detuning drive, the leading-order effect (leading order
in α/δdC) of the drive is to induce a classical displacement on
mode C. This displacement can be found nonperturbatively in
the drive strength with account taken of the finite nonlinearity
of the mode by solving the classical equation of motion. We go
to the displaced frame for mode C by performing the standard
displacement transformation D̂ = exp[dCĈ† − d∗

CĈ] such that
D̂†ĈD̂ = Ĉ + dC , where dC ≡ Q0/

√
2λ. Q0 is the classical

displacement [see text below Eqs. (43)] and λ is the scaled
Plack’s constant [see Eq. (40)].

After the displacement transformation, the quartic terms
in Eq. (28) now capture various four-wave mixing processes
involving the drive. We keep the near-resonant term that
corresponds to the process (ωa + ωd ↔ ω̃20) and disregard
nonresonant terms. After switching to a rotating frame where
mode A has zero frequency, we arrive at the following Hamil-
tonian:

HRWA ≈ H�σ −
∑

X∈{A,B}

h̄χXX ′

2
N̂X N̂X ′ ,

H�σ /h̄ = δ̂eff (N̂A, N̂B)
σz

2
+ �effσ+Â + �∗

effσ−Â†,

δ̂eff (N̂A, N̂B) = ω̃20 − ω̃A − ωd − 2χACN̂A − 2χBCN̂B,

�eff = −√
χACχCCdC, ω̃20 ≈ 2ωC − 3α−4|dC |2α,

ω̃A = ωA − χAC/2−χAC |dC |2. (D1)

We have restricted to the first and third levels of the eigenmode
C by defining σ+ = |2C〉〈0C |. The conditions to restrict to the
two-level subspace are

|δeff |, |�eff | � α. (D2)

022423-23



YAXING ZHANG et al. PHYSICAL REVIEW A 105, 022423 (2022)

In this rotating frame, the effective frequency δ̂eff of the two-
level system depends on the cavity photon numbers N̂A, N̂B

through the cross-Kerr interaction between modes A, B, and
C.

H�σ is the same as the Jaynes-Cummings Hamiltonian, ex-
cept that the frequency of the two-level system depends on
the cavity photon numbers. Diagonalizing H�σ leads to the
following Hamiltonian:

H�σ /h̄ =
ˆ̃δeff (N̂A, N̂B)

2
σz,

ˆ̃δeff (N̂A, N̂B) = sgn(δ̂eff )
{
δ̂eff (N̂A, N̂B)2 + 4|�eff |2[N̂A + (σz + 1)/2]

}1/2
. (D3)

To see how the cavity nonlinearities arise from the above Hamiltonian, we expand ˆ̃δeff (N̂A, N̂B) with respect to N̂A, N̂B. To third
order in N̂A, N̂B, we found that HRWA in Eqs. (D1) becomes

HRWA

h̄
=

(
δeff

2
−

∑
X∈{A,B}

(χXC + �χXC )N̂X

)
σz − 1

2

∑
X,X ′∈{A,B}

(χXX ′ − �χXX ′σz )N̂X N̂X ′

+
( ∑

X∈{A,B}

�βX

3!
N̂3

X + �βAB

2!
N̂2

AN̂2
B + �βBA

2!
N̂2

BN̂A

)
σz, (D4)

where to lowest order in χAC/δeff and �eff/δeff , we have

�χAC

χAC
= −εeff ,

�χBC

χBC
= −εeff

χAC

δeff
(σz + 1),

�χAA

χAA
= 16εeff

α

δeff

(
1 − εeff

2

)
,

�χAB

χAB
= 4εeff

α

δeff
,

�χBB

χBB
= 16εeff

α

δeff

χAC

δeff
(σz + 1),

�βA

χAA
= 48εeff

χAC

δeff

α

δeff

(
ε2

eff − 3εeff + 2
)
,

�βB

χBB
= 96εeff

χBC

δeff

α

δeff

χAC

δeff
(σz + 1),

�βAB

χAB
= 24εeff

χAC

δeff

α

δeff
(2 − εeff ),

�βBA

χAB
= 24εeff

χBC

δeff

α

δeff
, εeff ≡ α|dC |2/δeff , δeff ≡ δ̂eff (0, 0). (D5)

Although we have assumed |�eff/δeff | � 1, parameter εeff

can be of order O(1). Interestingly, the fractional change in
cavity-A self-Kerr and its cross-Kerr with cavity B can be
much larger than unity in the considered regime of α � |δeff |.
In addition to the change in cavity nonlinearities, strength of
cavity cross-Kerr with the transmon is also modified by the
drive.

Comparing the drive-induced change to sixth-order cav-
ity nonlinearity strength with Kerr nonlinearity leads to the
following condition for the expansion of ˆ̃δeff (N̂A, N̂B) with
respect to N̂A, N̂B to converge:

|�βA|
|�χAA| ∼ χAC

|δeff |max(1, |εeff |) � 1.

The above condition indicates that for the purpose of obtain-
ing a large fractional change of cavity Kerr nonlinearity while
keeping higher-order cavity nonlinearity small, the coupling
between cavity a and the transmon needs to sufficiently weak
so χAC � α and there is a large bandwidth to place δeff to
satisfy χAC � |δeff | � α.

APPENDIX E: NONPERTURBATIVE CORRECTIONS TO
THE WEAK-COUPLING EXPRESSIONS OF THE CAVITY

KERR NONLINEARITIES

For any finite cavity-transmon coupling strengths, there are
higher-order corrections to the weak-coupling expressions for
cavity Kerr nonlinearities in Eqs. (16) and (17). In the absence
of the drive, these corrections are small perturbations as long

as |ga(b)/δa(b)| � 1, as can be seen from the limiting cases in
Sec. IV. In the presence of the drive, however, the corrections
can be nonperturbative, even when |ga(b)/δa(b)| � 1. In this
section, we discuss these cases and show how to incorporate
the nonperturbative corrections to the weak-coupling expres-
sions in Eqs. (16) and (17).

1. Near a drive-induced cavity-transmon resonance

The first situation where corrections to the weak-coupling
expressions are important is when a cavity mode is in
near-resonance with the driven transmon. As discussed in
Sec. V D 1, the drive can induce resonant interaction between
the cavities and the transmon. Near those resonances, cavity
nonlinearities sensitively depend on the frequencies of the
modes and the drive parameters, as seen from Fig. 2(a). When
exactly on resonance, the perturbation theory that leads to
Eqs. (16) and (17) predicts the divergence of cavity Kerr
nonlinearity indicating the breakdown of the theory.

To understand at what distance to a resonance the per-
turbation theory becomes inaccurate, we can inspect the
perturbative expressions in Eqs. (16) and (17). The distance
to a particular resonance is essentially given by the energy de-
nominator of a relevant term in Eq. (16) or (17). In evaluating
these denominators, we used the unperturbed eigenenergies,
neglecting the fact that the transmon-cavity coupling leads to
shifts in these eigenenergies (or equivalently in the transition
frequencies of the cavities and the transmon). When the result-
ing shift in the energy denominator is comparable to or larger
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FIG. 10. Comparison between the weak-coupling expression for
the cavity self-Kerr in Eq. (16) (red dashed line) and the exact diag-
onalization (solid lines) of the full transmon-cavity Hamiltonian in
Eqs. (3). The ordinate shows cavity self-Kerr scaled by its zero-drive
value calculated using the weak-coupling expression. For this scal-
ing, the red dashed line is independent of the scaled coupling strength
ga/δa. The black dotted line refers to a modified version of Eq. (16)
in which the coupling-induced cavity and transmon frequency shifts
are taken into account; see the text for details. (a) Cavity-a is near
a drive-induced resonance, ωa + ωd ≈ ω̃20. δa/α = −5.1, δd/α = 3.
(b) Cavity-a is far detuned from the transmon, but the drive is
relatively close to ω10. For this panel, we have δa/α = 10 and
δd/α = 0.1.

than the size of the unperturbed denominator, the effect of the
shift is nonperturbative.

To illustrate, we choose the frequency of cavity a to be near
the resonance ωa + ωd → ω̃20, and show the cavity self-Kerr
KA,0 as a function of the drive power in Fig. 10(a). Occur-
rence of the resonance can be seen as the sharp increase of
the cavity Kerr as the drive approaches a certain power. As
the figure shows, the Kerr as a function of the drive power
calculated through the full diagonalization is shifted along the
abscissa from the weak-coupling result using Eq. (16) and
the shift is larger for stronger cavity-transmon coupling. This
shift is precisely due to the coupling-induced frequency shifts
of the cavity mode and the transmon. The deviation of the
weak-coupling result from the full diagonalization becomes

significant when the distance to the resonance becomes com-
parable to the shift.

To leading order in the cavity-transmon coupling strengths,
there are two types of coupling-induced frequency shifts.
First, there are transmon-state-dependent cavity frequency
shifts [corresponding to c10,m and c01,m term in Eqs. (11)]. To
leading order in the coupling strengths ga, gb and neglecting
the drive, they are equal to

c�d =0
10(01),m = |ga(b)|2 δa(b) − α

(δa(b) + mα)(δa(b) + (m − 1)α)
.

Second, there are cavity-photon-number-independent shifts in
the transmon levels, corresponding to c00,m term in Eqs. (11).
To leading order in ga, gb and at zero drive strength, it is equal
to

c�d =0
00,m = −|ga|2 m

δa + (m − 1)α
− |gb|2 m

δb + (m − 1)α
.

The two types of frequency shifts can be taken into account
by modifying Eqs. (16) and (17) as follows. For the first type,
one can simply replace the bare cavity frequencies with the
shifted cavity frequencies in the energy denominators. For the
second type, since the transmon transition frequencies also
affect the matrix elements, we add a term

∑
m c�d =0

00,m |m〉〈m| to
the ancilla Hamiltonian HRWA

anc in Eqs. (3) before diagonalizing
it. The result of this procedure is shown as the modified weak
coupling in Fig. 10 and achieves a better agreement with the
full diagonalization. Note that this modified weak coupling
scheme is still numerically more efficient than the full diag-
onalization as it only requires diagonalization of the ancilla
Hamiltonian, yet is able to capture nonperturbative effects
beyond the weak-coupling regime.

2. Near a drive-transmon resonance

A second situation in which the coupling-induced fre-
quency shifts lead to nonperturbative corrections to the
weak-coupling expression is when the drive frequency is
close to certain transmon transition frequency while the cavity
modes are far detuned from any resonance with the transmon
or the drive. For instance, the drive frequency can be close
to transmon transition frequency ω(m0+1)m0 . If their distance is
small or comparable to the coupling-induced shift in ω(m0+1)m0

(i.e., |ωd − ω(m0+1)m0 | � |c�d =0
00,m0+1 − c�d =0

00,m0
|), then the effect of

the shift on the driven dynamics of the transmon is strongly
nonperturbative. As explained in the previous section, to cap-
ture the nonperturbative effect of this frequency shift while
still using the weak coupling expression, we add a term∑

m c�d =0
00,m |m〉〈m| to the Hamiltonian of the driven transmon

before we diagonalize it. As shown in Fig. 10(b) for the
case of m0 = 0, this simple modification leads to much better
agreement with the full diagonalization.

APPENDIX F: COMPARING THE SEMICLASSICAL
RESULT WITH THE QUANTUM-MECHANICAL

CALCULATION FOR CAVITY KERR NONLINEARITY
IN THE WEAK-COUPLING REGIME

We compare in Fig. 11 the drive-induced change of cavity
self-Kerr obtained from Eq. (16) where the driven transmon
is treated quantum mechanically and Eq. (27) where it is
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FIG. 11. Comparing the semiclassical result in Eq. (27) (dashed
lines) with the quantum mechanical calculation using Eq. (16) (solid
lines) for cavity self-Kerr. Top: α/δdc = 1/15. Bottom: α/δdc =
1/30. In both panels, α/δa = 1/500.

treated semiclassically and the cavity is assumed to be far
away from any drive-induced resonances. As shown in the
figure, in the regime where |δa| � δdc � α, the semiclas-
sical treatment agrees well with the quantum mechanical
calculation.

As shown by Eq. (27) and Fig. 11, the behavior of KA,m is
controlled by a dimensionless drive amplitude

√
α|�d |/δ3/2

dc
and the effective Planck’s constant λ = α/2δdc. Finite λ leads
to a finite variation of KA,m with m. To leading order in λ, this
variation is linear in mλ.

We note that in Fig. 3(b), although |δa| � δdc is not strictly
satisfied, the behavior of KA,m is already qualitatively captured
by Eq. (27).

APPENDIX G: EXPERIMENTAL DETAILS

We determined the Hamiltonian parameters KA,0 and βA,0

in Eq. (47) under different drive strengths and detunings by
fitting simulated Wigner functions to measured Wigner func-
tions. First, we actively cool the transmon to its ground state
and prepare a coherent state |α = 1.5〉 in cavity mode A using
a short resonant cavity drive of duration 72 ns. Next, we apply
an off-resonant transmon drive, with different detunings and
strengths, of 10 μs duration and 160 ns rise time. The rise time
is chosen to be longer than the inverse of the drive detuning so

FIG. 12. The top row are measured cavity Wigner functions with
the same transmon drive detuning and different drive amplitudes.
From the left to right, they correspond to the same drive parameters
as the third, fourth and fifth data point in Fig. 4(b) (counted from
the lower amplitude side). We acquire these Wigner functions by
measuring the displaced parity at each point z shown in the plots after
allowing a cavity coherent state of α = 1.5 to undergo evolution in
the presence of the transmon drive for 10 μs. Next, we perform mas-
ter equation simulations parametrized by δωA,0, KA,0, βA,0 in Eq. (47)
and a scale factor to account for Wigner normalization. From these
we construct simulated Wigner functions, which we use to perform
least-squares fits of the above parameters, excluding the normaliza-
tion factor. The bottom row contains the fit residuals (experimental
Wigners minus the simulated Wigners), with the same drive param-
eters as the plots above. The fits capture the main features of the
experimental Wigners. The residuals are partly due to a z-dependent
contrast reduction in the experimental Wigners which is currently
under investigation.

that the transmon adiabatically follows the drive and evolves
from the vacuum state to the adiabatic Floquet state ψ0. We
then perform cavity Wigner tomography by measuring the
displaced parity of cavity mode A [34],

W (z) = 2

π
Tr(D̂†(z)ρ̂D̂(z)P̂), (G1)

where z is a complex variable that represents a point in the
cavity phase space in the unit of

√
h̄, z = (QA + iPA)/

√
2h̄;

see Eq. (56). D̂ is the displacement operator and P̂ = eiπ Â†Â is
the parity operator.

The Wigner function W (z) contains full state information
and allows extraction of the density matrix ρ̂ via various
methods including direct inversion, iterative methods, and
maximum likelihood methods. For simplicity, we choose not
to reconstruct ρ̂, but rather perform a least-squares fit between
a simulated and measured Wigner function. While this ap-
proach does not allow us to calculate the fidelity of the fitted
and measured states, it does avoid possible systematic errors
introduced in reconstructing ρ̂.

To extract the Hamiltonian parameters in Eq. (47), we fit a
simulated Wigner function to the measured Wigner function
via a least-squares cost function. We obtain simulated Wigner
functions through a Lindblad master equation simulation that
excludes the σA,0 term and includes single photon loss in
cavity mode A. For the cavity loss rate, we used the exper-
imentally measured value of 1/330 μs−1 at zero transmon
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drive. The simulated Wigners are only weakly influenced by
this loss rate due to that the drive duration time (10 μs) is
much shorter than 330 μs. We show in Fig. 12 examples
of experimentally measured cavity Wigner functions and the
residuals with respect to the simulated Wigners that best fit the
measured ones. The simulation does not include loss, heating,
or dephasing errors in the dressed transmon ancilla used for
cavity parity measurement. These error channels reduce the
contrast of the measured Wigner function, although not to

the degree observed in the experiment. Work is ongoing to
understand the z dependence on Wigner function contrast
reduction.

Finally, note that our choice of small α = 1.5 is due to the
small lifetime T1 ≈ 330 μs of cavity mode A. This provides
good signal to noise (SNR) for KA,0, but reduced SNR for
higher order nonlinearities due to the small fraction of pop-
ulation present in energy levels shifted by them. Attempts to
fit σA,0 failed for this reason.
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