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Annihilating and creating nonlocality without entanglement by postmeasurement information
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Nonlocality without entanglement (NLWE) is a nonlocal quantum phenomenon that arises in separable
state discrimination. We show that the availability of the postmeasurement information about the prepared
subensemble can affect the occurrence of NLWE in discriminating non-orthogonal nonentangled states. We
provide a two-qubit state ensemble consisting of four nonorthogonal separable pure states and show that the
postmeasurement information about the prepared subensemble can annihilate NLWE. We also provide another
two-qubit state ensemble consisting of four nonorthogonal separable states and show that the postmeasurement
information can create NLWE. Our result can provide a useful method to share or hide information using
nonorthogonal separable states.
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I. INTRODUCTION

Whereas nonorthogonal quantum states cannot be per-
fectly discriminated, in general, we can always perfectly
discriminate orthogonal quantum states by using appropriate
measurements [1–4]. However, it is also known that there are
some multiparty orthogonal nonentangled (separable) states
that cannot be perfectly discriminated only by local oper-
ations and classical communication (LOCC) [5]. In other
words, there exists some separable measurements that cannot
be implemented by LOCC. In discriminating separable states
of multiparty quantum systems, a phenomenon that can be
achieved by global measurements but cannot be achieved only
by LOCC is called nonlocality without entanglement (NLWE)
[5–7].

In discriminating orthogonal separable states, NLWE oc-
curs when the states cannot be perfectly discriminated by
LOCC [5,8–12]. On the other hand, in the problem of discrim-
inating nonorthogonal separable states, NLWE occurs when
the globally optimal discrimination cannot be achieved by
LOCC [6,7,13–15]. For example, the double trine ensemble in
a two-qubit system that consists of three nonorthogonal sep-
arable states is known to show NLWE in their discrimination
[6,7].

Recently, it was shown that there are some nonorthogonal
states that can be perfectly discriminated when the postmea-
surement information (PI) about the prepared subensemble is
provided [16]. However, it is also known that there are some
nonorthogonal states that are still impossible to be perfectly
discriminated even if the PI about the prepared subensemble
is available [17–19]. Therefore, in discriminating multiparty
nonorthogonal separable states with the PI about the prepared
subensemble, NLWE occurs when the globally optimal dis-
crimination cannot be achieved by LOCC even with the help
of PI. A natural question that can be raised here is whether
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the availability of the PI about the prepared subensemble can
affect the occurrence of NLWE.

Here, we provide an answer to the question by showing that
the PI about the prepared subensemble can annihilate or cre-
ate NLWE in discriminating nonorthogonal separable states.
We first consider an ensemble of two-qubit separable states
having a NLWE phenomenon and show that the ensemble
loses NLWN when the PI about the prepared subensemble is
available, thus, annihilating NLWE by PI. We further consider
a two-qubit ensemble of separable states without the NLWE
phenomenon and show that PI can activate NLWE of the
ensemble, therefore, creating NLWE by PI.

This paper is organized as follows. We first recall the
definition and some properties about separable states and sep-
arable measurements in two-qubit systems. We further recall
the definition of minimum-error discrimination (ME) [20–23],
one representative state discrimination strategy, and provide
some useful properties of ME depending on the availability of
PI. As the main results of this paper, we provide a two-qubit
state ensemble consisting of four nonorthogonal separable
states and show that NLWE occurs in discriminating the states
in the ensemble. With the same ensemble, we further show
that the occurrence of NLWE in the state discrimination can
be vanished when the PI about the prepared subensemble
is available. Moreover, we provide another two-qubit state
ensemble consisting of four nonorthogonal separable states
and show that NLWE does not occur in discriminating the
states of the ensemble. With the same ensemble, we further
show the occurrence of NLWE in the state discrimination with
the PI about the prepared subensemble.

II. QUANTUM STATE DISCRIMINATION
IN TWO-QUBIT SYSTEMS

In two-qubit (2 ⊗ 2) systems, a state is described by a
density operator ρ, that is, a positive-semidefinite operator
ρ � 0 having unit trace Tr ρ = 1, acting on a bipartite Hilbert
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space H = C2 ⊗ C2. A measurement with m outcomes is ex-
pressed by a positive operator valued measure (POVM) {Mi}i

that consists of m positive-semidefinite operators Mi � 0 on
H satisfying

∑
i Mi = 1, where 1 is the identity operator on

H. When {Mi}i is performed on a quantum system prepared
with ρ, the probability that Mi is detected is Tr(ρMi ) due to
the Born rule.

A positive-semidefinite operator is called separable if it is
a sum of positive-semidefinite product operators. Similarly,
a measurement {Mi}i is called separable if Mi is separable
for all i. In particular, a LOCC measurement is a separable
measurement that can be implemented by LOCC [24].

An operator E on H is called positive partial transpose
(PPT) [25,26] if

PT(E ) � 0, (1)

where PT(·) is the partial transposition taken in the standard
basis {|0〉, |1〉} on the second subsystem (Although the PPT
property does not depend on the choice of subsystem to be
transposed, we take the second subsystem throughout this
paper for simplicity). In two-qubit systems, PPT is a necessary
and sufficient condition for a positive-semidefinite operator to
be separable [26]. Thus, the set of all positive-semidefinite
separable operators on H can be represented as

SEP = {E |E � 0, PT(E ) � 0}. (2)

The dual set to SEP is defined as

SEP∗ = {A|Tr(AB) � 0 ∀ B ∈ SEP}. (3)

Since all elements of SEP are positive semidefinite, all posi-
tive semidefinite operators are in SEP∗. We also note that all
PPT operators are in SEP∗ because all elements of SEP are
PPT and Tr(AB) = Tr[PT(A)PT(B)] for any two operators A
and B.

Throughout this paper, we only consider the situation of
discriminating states from the state ensemble,

E = {ηi, ρi}i∈�, � = {0, 1,+,−}, (4)

where ρi is a 2 ⊗ 2 separable state and ηi is the probability
that state ρi is prepared.

The ensemble E can be seen as an ensemble consisting of
two subensembles,

E0 =
⎧⎨
⎩ηi

/ ∑
j∈A0

η j, ρi

⎫⎬
⎭

i∈A0

, A0 = {0, 1},

E1 =
⎧⎨
⎩ηi

/ ∑
j∈A1

η j, ρi

⎫⎬
⎭

i∈A1

, A1 = {+,−}, (5)

where E0 and E1 are prepared with probabilities
∑

j∈A0
η j and∑

j∈A1
η j , respectively.

A. Minimum-error discrimination

Let us consider the state discrimination of E in Eq. (4) us-
ing a measurement {Mi}i∈� where each measurement outcome
from Mi means that the prepared state is guessed to be ρi.
ME of E is to minimize the average probability of errors that
occur in guessing the prepared state. Equivalently, ME of E is

to maximize the average probability of correctly guessing the
prepared state where the optimal success probability is defined
as

pG(E ) = max
{Mi}i∈�

∑
i∈�

ηiTr(ρiMi ), (6)

over all possible POVMs. The optimality of the POVMs in
Eq. (6) can be confirmed by the following necessary and
sufficient condition [21,22,27]:∑

i∈�

ηiρiMi − η jρ j � 0 ∀ j ∈ �. (7)

When the available measurements are limited to LOCC
measurements, we denote the maximum success probability
by

pL(E ) = max
LOCC

∑
i∈�

ηiTr(ρiMi ). (8)

Since the states of E are nonentangled, NLWE occurs in terms
of ME if and only if ME of E cannot be achieved only by
LOCC, that is,

pL(E ) < pG(E ). (9)

The following proposition provides an upper bound of pL(E ).
Proposition 1 ([28]). If H is a Hermitian operator with

H − ηiρi ∈ SEP∗ ∀ i ∈ �, (10)

then Tr H is an upper bound of pL(E ).

B. Quantum state discrimination with postmeasurement
information

In the subsection, we consider ME of E in Eq. (4)
when the classical information b ∈ {0, 1} about the prepared
subensemble Eb defined in Eq. (5) is given after performing a
measurement. In this situation, it is known that a measurement
can be expressed by a POVM {M�ω}�ω∈� with the Cartesian
product outcome space,

� = A0 × A1, (11)

where each M(ω0,ω1 ) indicates the detection of ρω0 or ρω1

according to PI b = 0 or 1, respectively [17,18].
ME of E with PI is to minimize the average error probabil-

ity. Equivalently, ME of E with PI is to maximize the average
probability of correct guessing where the optimal success
probability is defined as

pPI
G (E ) = max

{M�ω}�ω∈�

∑
b∈{0,1}

∑
i∈Ab

ηiTr

[
ρi

∑
�ω∈�
ωb=i

M�ω

]
, (12)

over all possible POVMs. Note that when ρi is prepared and PI
b ∈ {0, 1} with i ∈ Ab is given, the prepared state is correctly
guessed if we obtain a measurement outcome �ω ∈ � with
ωb = i; otherwise, errors occur in guessing the prepared state.
Figure 1 illustrates ME of E with PI.

We note that for a given POVM {M�ω}�ω∈�, the average
probability of correct guessing, that is, the right-hand side of
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FIG. 1. ME of E = {ηi, ρi}i∈� with PI. For each i ∈ �, state ρi is
prepared with the probability ηi. After performing a measurement
{M�ω}�ω∈�, the classical information b ∈ {0, 1} satisfying i ∈ Ab is
given. For each measurement outcome (ω0, ω1) = �ω ∈ �, the pre-
pared state is guessed to be ρω0 or ρω1 according to PI b = 0 or
1. When ρi is prepared, it is correctly guessed if a measurement
outcome �ω ∈ � with ωb = i is obtained; otherwise, errors occur in
guessing the prepared state.

Eq. (12) without maximization, can be rewritten as

∑
b∈{0,1}

∑
i∈Ab

ηiTr

[
ρi

∑
�ω∈�
ωb=i

M�ω

]

=
∑

b∈{0,1}

∑
i∈Ab

∑
�ω∈�
ωb=i

Tr
(
ηωbρωbM�ω

)

=
∑

b∈{0,1}

∑
�ω∈�

Tr
(
ηωbρωbM�ω

)

= 2
∑
�ω∈�

1

2
Tr

[ ∑
b∈{0,1}

ηωbρωbM�ω

]

= 2
∑
�ω∈�

η̃�ωTr(ρ̃�ωM�ω ), (13)

where

η̃�ω = 1

2

∑
b∈{0,1}

ηwb, ρ̃�ω =
∑

b∈{0,1} ηwbρωb∑
b′∈{0,1} ηwb′

. (14)

When the available measurements are limited to LOCC
measurements, we denote the maximum success probability
by

pPI
L (E ) = max

LOCC

∑
b∈{0,1}

∑
i∈Ab

ηiTr

[
ρi

∑
�ω∈�
ωb=i

M�ω

]
. (15)

Because the states in E are nonentangled, NLWE occurs in
terms of ME with PI if and only if ME of E with PI cannot be
achieved only by LOCC, that is,

pPI
L (E ) < pPI

G (E ). (16)

Here, we note that {η̃�ω}�ω∈� is a set of positive numbers
satisfying

∑
�ω∈� η̃�ω = 1 and {ρ̃�ω}�ω∈� is a set of density oper-

ators. Thus, Eqs. (13) and (15) imply that pPI
L (E ) is twice the

maximum success probability for ME of Ẽ ,

pPI
L (E ) = 2pL(Ẽ ), (17)

where Ẽ is the ensemble consisting of the average states ρ̃�ω
prepared with the nonzero probabilities η̃�ω in Eq. (14),

Ẽ = {η̃�ω, ρ̃�ω}�ω∈�. (18)

In the following lemma, we provide an upper bound of pPI
L (E ).

Lemma 1. If H̃ is a Hermitian operator satisfying

H̃ − η̃�ωρ̃�ω ∈ SEP∗ ∀ �ω ∈ �, (19)

then 2 Tr H̃ is an upper bound of pPI
L (E ).

Proof. For the ensemble Ẽ in Eq. (18), Proposition 1 im-
plies that Tr H̃ is an upper bound of pL(Ẽ ). Thus, 2 Tr H̃ is an
upper bound of pPI

L (E ) due to Eq. (17). �
We close this section by providing the concept of annihi-

lating and creating NLWE by PI.
Definition 1. For ME of an ensemble E in Eq. (4), we say

that the PI b ∈ {0, 1} about the prepared subensemble Eb in
Eq. (5) annihilates NLWE if NLWE occurs in discriminating
the states of E and the availability of PI b about the prepared
subensemble vanishes the occurrence of NLWE, that is,

pL(E ) < pG(E ), pPI
L (E ) = pPI

G (E ). (20)

Also, we say that the PI b about the prepared subensemble
Eb creates NLWE if NLWE does not occur in discriminating
the states of E and the availability of PI b about the prepared
subensemble releases the occurrence of NLWE, that is,

pL(E ) = pG(E ), pPI
L (E ) < pPI

G (E ). (21)

III. ANNIHILATING NLWE BY POSTMEASUREMENT
INFORMATION

In this section, we consider a situation where the PI about
the prepared subensemble Eb in Eq. (5) annihilates NLWE. We
first provide a specific example of a state ensemble E in Eq. (4)
and show that NLWE occurs in discriminating the states in
the ensemble. With the same ensemble, we further show that
the occurrence of NLWE in the state discrimination can be
vanished if the PI about the prepared subensemble is available,
thus, annihilating NLWE by PI.

Example 1. Let us consider the ensemble E in Eq. (4) with

η0 = γ

2(1 + γ )
, ρ0 = |0〉〈0| ⊗ |0〉〈0|,

η1 = γ

2(1 + γ )
, ρ1 = |0〉〈0| ⊗ |1〉〈1|,

η+ = 1

2(1 + γ )
, ρ+ = |+〉〈+| ⊗ |+〉〈+|,

η− = 1

2(1 + γ )
, ρ− = |−〉〈−| ⊗ |−〉〈−|, (22)

where 2 � γ < ∞, {|0〉, |1〉} is the standard basis in one-qubit
system, and |±〉 = 1√

2
(|0〉 ± |1〉). In this case, the subensem-

bles in Eq. (5) become

E0 = {
1
2 , |0〉〈0| ⊗ |0〉〈0|, 1

2 , |0〉〈0| ⊗ |1〉〈1|},
E1 = {

1
2 , |+〉〈+| ⊗ |+〉〈+|, 1

2 , |−〉〈−| ⊗ |−〉〈−|}, (23)

with the probabilities of preparation γ

1+γ
and 1

1+γ
, respec-

tively.
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To show the occurrence of NLWE in terms of ME about
the state ensemble E in Example 1, we first evaluate the
optimal success probability pG(E ) defined in Eq. (6). From the
optimality condition in Eq. (7) together with a straightforward
calculation, we can easily verify that the following POVM
{Mi}i∈� is optimal for pG(E ):

M0 = |�0〉〈�0|, M+ = |μ+〉〈μ+| ⊗ |+〉〈+|,
M1 = |�1〉〈�1|, M− = |μ−〉〈μ−| ⊗ |−〉〈−|, (24)

where

|μ±〉 =
√

1

2
− γ

2
√

1 + γ 2
|0〉 ±

√
1

2
+ γ

2
√

1 + γ 2
|1〉,

|�0〉 =
√

1

2
+ γ

2
√

1 + γ 2
|00〉 −

√
1

2
− γ

2
√

1 + γ 2
|11〉,

|�1〉 =
√

1

2
+ γ

2
√

1 + γ 2
|01〉−

√
1

2
− γ

2
√

1 + γ 2
|10〉. (25)

Thus, the optimality of the POVM {Mi}i∈� in Eq. (24) and the
definition of pG(E ) lead us to

pG(E ) = 1

2

(
1 +

√
1 + γ 2

1 + γ

)
. (26)

In order to obtain the maximum success probability pL(E )
in Eq. (8), we consider lower and upper bounds of pL(E ).
A lower bound of pL(E ) can be obtained from the following
POVM {Mi}i∈�:

M0 = |0〉〈0| ⊗ |0〉〈0|, M+ = |1〉〈1| ⊗ |+〉〈+|,
M1 = |0〉〈0| ⊗ |1〉〈1|, M− = |1〉〈1| ⊗ |−〉〈−|, (27)

which gives 1
2 (1 + γ

1+γ
) as the success probability in dis-

criminating the states of the ensemble E in Example 1.
We also note that the measurement given in Eq. (27) can
be achieved with finite-round LOCC: We perform a mea-
surement {|0〉〈0|, |1〉〈1|} on the first subsystem and measure
{|0〉〈0|, |1〉〈1|} or {|+〉〈+|, |−〉〈−|} on the second subsystem
depending on the first measurement result |0〉〈0| or |1〉〈1|.
Thus, the success probability for the LOCC measurement in
Eq. (27) is a lower bound of pL(E ),

pL(E ) � 1

2

(
1 + γ

1 + γ

)
. (28)

To obtain an upper bound of pL(E ), let us consider a Her-
mitian operator,

H = 1

4(1 + γ )
(2γ |0〉〈0| ⊗ σ0+|1〉〈1| ⊗ σ0+σ1 ⊗ σ1),

(29)

where σ0 and σ1 are the Pauli operators,

σ0 = |0〉〈0| + |1〉〈1|,
σ1 = |0〉〈1| + |1〉〈0|. (30)

We will show that H − ηiρi ∈ SEP∗ for any i ∈ �, therefore,
Tr H is an upper bound of pL(E ) by Proposition 1.

For each i ∈ �, H − ηiρi can be rewritten as

H − η0ρ0 = 1

4(1 + γ )
[T0 + |11〉〈11| + PT(T0)],

H − η1ρ1 = 1

4(1 + γ )
[T1 + |10〉〈10| + PT(T1)],

H − η+ρ+ = 2γ − 1

4(1 + γ )
(ρ0 + ρ1) + 1

2(1 + γ )
ρ−,

H − η−ρ− = 2γ − 1

4(1 + γ )
(ρ0 + ρ1) + 1

2(1 + γ )
ρ+, (31)

where T0 and T1 are positive-semidefinite operators,

T0 = γ |01〉〈01| + |01〉〈10| + |10〉〈01| + 1
2 |10〉〈10|,

T1 = γ |00〉〈00| + |00〉〈11| + |11〉〈00| + 1
2 |11〉〈11| (32)

for 2 � γ < ∞. In other words, each H − ηiρi in Eq. (31) is
a sum of positive-semidefinite operators and PPT operators.
From the argument after Eq. (3), H − ηiρi is in SEP∗ for each
i ∈ �, thus, Proposition 1 leads us to

pL(E ) � Tr H = 1

2

(
1 + γ

1 + γ

)
. (33)

Inequalities (28) and (33) imply

pL(E ) = 1

2

(
1 + γ

1 + γ

)
. (34)

From Eqs. (26) and (34), we note that there exists a nonzero
gap between pG(E ) and pL(E ),

pL(E ) = 1

2

(
1 + γ

1 + γ

)
<

1

2

(
1 +

√
1 + γ 2

1 + γ

)
= pG(E ),

(35)
for 2 � γ < ∞, thus, NLWE occurs in terms of ME in dis-
criminating the states of the ensemble E in Example 1.

Now, we show that the occurrence of NLWE in Inequal-
ity (35) can be vanished when the PI about the prepared
subensemble is available. Let us consider the following
POVM {M�ω}�ω∈�:

M(0,+) = |+〉〈+| ⊗ |0〉〈0|, M(1,+) = |+〉〈+| ⊗ |1〉〈1|,
M(0,−) = |−〉〈−| ⊗ |0〉〈0|, M(1,−) = |−〉〈−| ⊗ |1〉〈1|, (36)

which can be performed using finite-round LOCC: Two lo-
cal measurements {|+〉〈+|, |−〉〈−|} and {|0〉〈0|, |1〉〈1|} are
performed on first and second subsystems, respectively. More-
over, it is a straightforward calculation to show that the
success probability for the LOCC measurement of Eq. (36)
in discriminating the states in the ensemble E with PI is one.
That is, the states in E can be perfectly discriminated when PI
is available.

We note that the success probability obtained from the
LOCC measurement in Eq. (36) is a lower bound of pPI

L (E )
in Eq. (15), therefore,

pPI
L (E ) � 1 (37)

for the ensemble E in Example 1. Moreover, from the defini-
tions of pPI

G (E ) and pPI
L (E ) in Eqs. (12) and (15), respectively,
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FIG. 2. Annihilating NLWE by PI in terms of ME. For all η0 ∈
[ 1

3 , 1
2 ), pL(E ) (dotted blue line) is less than pG(E ) (dot-dashed blue

line), but pPI
L (E ) (dashed red line) is equal to pPI

G (E ) (solid red line).

we have

pPI
G (E ) � pPI

L (E ). (38)

As both pPI
G (E ) and pPI

L (E ) are bounded above by 1, we have

pPI
G (E ) = pPI

L (E ) = 1. (39)

Thus, NLWE does not occur in terms ME in discriminating
the states of the ensemble E in Example 1 when the PI about
the prepared subensemble is available.

Inequality (35) shows that NLWE occurs in terms of ME
about the ensemble E in Example 1, whereas Eq. (39) shows
that NLWE does not occur when PI is available. Figure 2 il-
lustrates the relative order of pG(E ), pL(E ), pPI

G (E ), and pPI
L (E )

for the range of 1
3 � η0 < 1

2 .
Theorem 1. For ME of the ensemble in Example 1, the PI

about the prepared subensemble annihilates NLWE.

IV. CREATING NLWE BY POSTMEASUREMENT
INFORMATION

In this section, we consider the opposite situation to the
previous section; the PI about the prepared subensemble Eb

in Eq. (5) creates NLWE. After providing an example of a
state ensemble E in Eq. (4), we first show that NLWE does
not occur in discriminating the states of the ensemble. With
the same ensemble, we further show the occurrence of NLWE
in the state discrimination with the help of PI, thus, creating
NLWE by PI.

Example 2. Let us consider the ensemble E in Eq. (4) with

η0 = γ

2(1 + γ )
, ρ0 = |0〉〈0| ⊗ |0〉〈0|,

η1 = γ

2(1 + γ )
, ρ1 = |0〉〈0| ⊗ |1〉〈1|,

η+ = 1

2(1 + γ )
, ρ+ = |+〉〈+| ⊗ |+〉〈+|,

η− = 1

2(1 + γ )
, ρ− = |+〉〈+| ⊗ |−〉〈−|, (40)

where 2 � γ < ∞. In this case, the subensembles in Eq. (5)
become

E0 = {
1
2 , |0〉〈0| ⊗ |0〉〈0|, 1

2 , |0〉〈0| ⊗ |1〉〈1|},
E1 = {

1
2 , |+〉〈+| ⊗ |+〉〈+|, 1

2 , |+〉〈+| ⊗ |−〉〈−|}, (41)

with the probabilities of preparation γ

1+γ
and 1

1+γ
,

respectively.
To show the nonoccurrence of NLWE in terms of ME

about the ensemble E in Example 2, we first evaluate the
optimal success probability pG(E ) defined in Eq. (6). From the
optimality condition in Eq. (7) together with a straightforward
calculation, we can easily verify that the following POVM
{Mi}i∈� is optimal for pG(E ):

M0 = |ν−〉〈ν−| ⊗ |0〉〈0|, M+ = |ν+〉〈ν+| ⊗ |+〉〈+|,
M1 = |ν−〉〈ν−| ⊗ |1〉〈1|, M− = |ν+〉〈ν+| ⊗ |−〉〈−|, (42)

where

|ν±〉 =
√

1

2
∓ γ

2
√

1 + γ 2
|0〉 ±

√
1

2
± γ

2
√

1 + γ 2
|1〉. (43)

Thus, the optimality of the POVM {Mi}i∈� in Eq. (42) and the
definition of pG(E ) lead us to

pG(E ) = 1

2

(
1 +

√
1 + γ 2

1 + γ

)
. (44)

The measurement given in Eq. (42) can be achieved
with finite-round LOCC: First, a local measurement
{|ν+〉〈ν+|, |ν−〉〈ν−|} is performed on the first subsystem, and
then according to |ν+〉〈ν+| or |ν−〉〈ν−|, a local measurement
{|+〉〈+|, |−〉〈−|} or {|0〉〈0|, |1〉〈1|} is performed on the sec-
ond subsystem. Thus, the success probability for the LOCC
measurement in Eq. (42) is a lower bound of pL(E ) in Eq. (8),
therefore,

pL(E ) � 1

2

(
1 +

√
1 + γ 2

1 + γ

)
(45)

for the ensemble E in Example 2. Moreover, from the defini-
tions of pG(E ) and pL(E ) in Eqs. (6) and (8), respectively, we
have

pG(E ) � pL(E ). (46)

Inequalities (45) and (46) lead us to

pL(E ) = pG(E ) = 1

2

(
1 +

√
1 + γ 2

1 + γ

)
. (47)

Thus, NLWE does not occur in terms of ME in discriminating
the states of the ensemble E in Example 2.

Now, we show that NLWE occurs when the PI about the
prepared subensemble is available. Let us consider the fol-
lowing POVM {M�ω}�ω∈�:

M(0,+) = |�+〉〈�+|, M(0,−) = |�−〉〈�−|,
M(1,+) = |�+〉〈�+|, M(1,−) = |�−〉〈�−|, (48)
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where |�±〉 and |�±〉 are Bell states,

|�±〉 = 1√
2

(|00〉 ± |11〉),

|�±〉 = 1√
2

(|01〉 ± |10〉). (49)

From a straightforward calculation, we can easily see that
the success probability obtained from the measurement of
Eq. (48) in discriminating the states in the ensemble E with

PI is one,

pPI
G (E ) = 1. (50)

That is, the states of E can be perfectly discriminated when PI
is available.

In order to obtain the maximum success probability pPI
L (E )

in Eq. (15), we consider lower and upper bounds of pPI
L (E ).

For a lower bound of pPI
L (E ), let us first consider the average

state ensemble Ẽ defined in Eqs. (14) and (18) with respect to
Example 2,

η̃�ω = 1

4
∀ �ω ∈ �, ρ̃(0,±) = η0

η0 + η±
ρ0 + η±

η0 + η±
ρ± = γ

1 + γ
|0〉〈0| ⊗ |0〉〈0| + 1

1 + γ
|+〉〈+| ⊗ |±〉〈±|,

ρ̃(1,±) = η1

η1 + η±
ρ1 + η±

η1 + η±
ρ± = γ

1 + γ
|0〉〈0| ⊗ |1〉〈1| + 1

1 + γ
|+〉〈+| ⊗ |±〉〈±|, (51)

which satisfy

(σ0 ⊗ σ2)ρ̃(0,±)(σ0 ⊗ σ2) = ρ̃(1,∓), (52a)

(σ0 ⊗ σ1)ρ̃(0,±)(σ0 ⊗ σ1) = ρ̃(1,±), (52b)

with the Pauli operators σ0 and σ1 in Eq. (30) and

σ2 = −i|0〉〈1| + i|1〉〈0|. (53)

We further consider the following Hermitian operators,

ρ̃(0,+) − ρ̃(1,−), ρ̃(1,+) − ρ̃(0,−), (54)

where both of them have the same four eigenvalues; two
positive eigenvalues λ+ and λ−, and two negative eigenvalues
−λ+ and −λ− with

λ± =
√

1 + γ + γ 2 ±
√

1 − γ + γ 2

2(1 + γ )
(55)

for 2 � γ < ∞. We denote �(0,+) and �(1,−) as the pro-
jection operators onto the positive and negative eigenspaces
of ρ̃(0,+) − ρ̃(1,−), respectively. Similarly, we denote �(1,+)

and �(0,−) as the projection operators onto the positive and
negative eigenspaces of ρ̃(1,+) − ρ̃(0,−), respectively.

Now, we consider the following POVM {M�ω}�ω∈�:

M(0,+) = 1
2�(0,+), M(0,−) = 1

2�(0,−),

M(1,+) = 1
2�(1,+), M(1,−) = 1

2�(1,−). (56)

From the property of (52a) and the definition of ��ω, we can
see that

(σ0 ⊗ σ2)�(0,+)(σ0 ⊗ σ2) = �(1,−),

(σ0 ⊗ σ2)�(1,+)(σ0 ⊗ σ2) = �(0,−),

�(0,+) + �(1,−) = 1,

�(1,+) + �(0,−) = 1. (57)

Here we note that for any Hermitian operator A satisfying,

A + (σ0 ⊗ σ2)A(σ0 ⊗ σ2) = 1, (58)

it holds that

〈i0|A| j1〉 = 〈i1|A| j0〉 (59)

for any i, j ∈ {0, 1}. From Eqs. (57)–(59), we have

PT(��ω ) = ��ω ∀ �ω ∈ �, (60)

which implies that ��ω is in SEP for any �ω ∈ �. Thus,
two POVMs {�(0,+),�(1,−)} and {�(1,+),�(0,−)} are sep-
arable. Moreover, both of them can be performed using
finite-round LOCC because each of them consists of two or-
thogonal rank-2 projection operators [29]. The measurement
given in Eq. (56) can be realized with finite-round LOCC
by performing two LOCC measurements {�(0,+),�(1,−)} and
{�(1,+),�(0,−)} with the equal probability 1

2 .
The success probability of the LOCC measurement in

Eq. (56) for the average state ensemble Ẽ in Eq. (51) is

∑
�ω∈�

η̃�ωTr(ρ̃�ωM�ω ) = 1

4

(
1 +

√
1 + γ + γ 2

1 + γ

)
. (61)

This probability is upper bounded by pL(Ẽ ) which is the
maximum success probability for ME of Ẽ when the available
measurements are limited to LOCC measurements,

pL(Ẽ ) � 1

4

(
1 +

√
1 + γ + γ 2

1 + γ

)
. (62)

Since any lower bound of 2pL(Ẽ ) becomes a lower bound of
pPI

L (E ) due to Eq. (17), we have

pPI
L (E ) � 1

2

(
1 +

√
1 + γ + γ 2

1 + γ

)
. (63)

To obtain an upper bound of pPI
L (E ), let us first consider the

following two operators:

K0 = 1
2 ρ̃(0,+)�(0,+) + 1

2 ρ̃(1,−)�(1,−),

K1 = 1
2 ρ̃(1,+)�(1,+) + 1

2 ρ̃(0,−)�(0,−). (64)

Since the projective measurement {�(0,+),�(1,−)} is opti-
mal in ME between two states ρ̃(0,+) and ρ̃(1,−) with equal
prior probability [20], it satisfies a necessary and sufficient
condition for a measurement to be optimal in ME between
two states ρ̃(0,+) and ρ̃(1,−) with equal prior probability 1

2
[21,22,27],

K0 − 1
2 ρ̃(0,+) � 0, K0 − 1

2 ρ̃(1,−) � 0. (65)
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Similarly, {�(1,+),�(0,−)} is the optimal measurement in ME
between two states ρ̃(1,+) and ρ̃(0,−) with equal prior probabil-
ity 1

2 , thus,

K1 − 1
2 ρ̃(1,+) � 0, K1 − 1

2 ρ̃(0,−) � 0. (66)

We further note that K0 and K1 are Hermitian operators due to
the positive semidefiniteness of (65) and (66).

Now, we consider a Hermitian operator,

H̃ = 1
4 K0 + 1

4 K1. (67)

We will show that H̃ − η̃�ωρ̃�ω ∈ SEP∗ for all �ω ∈ �, therefore,
2TrH̃ is the upper bound of pPI

L (E ) by Lemma 1.
From Eqs. (52) and (57), we can see that

(σ0 ⊗ σ1)K0(σ0 ⊗ σ1) = K1,

(σ0 ⊗ σ1)K1(σ0 ⊗ σ1) = K0,

(σ0 ⊗ σ2)K0(σ0 ⊗ σ2) = K0,

(σ0 ⊗ σ2)K1(σ0 ⊗ σ2) = K1. (68)

Moreover, for any Hermitian operator A with

(σ0 ⊗ σ2)A(σ0 ⊗ σ2) = A, (69)

it holds that

〈i0|A| j0〉 = 〈i1|A| j1〉,
〈i0|A| j1〉 = −〈i1|A| j0〉 (70)

for any i, j ∈ {0, 1}. From Eqs. (68)–(70), we have

PT(K0) = (σ0 ⊗ σ1)K0(σ0 ⊗ σ1) = K1,

PT(K1) = (σ0 ⊗ σ1)K1(σ0 ⊗ σ1) = K0. (71)

Thus, for each �ω ∈ �, H̃ − η̃�ωρ̃�ω can be rewritten as

H̃ −η̃(0,+)ρ̃(0,+) = 1

4

(
K0 − 1

2
ρ̃(0,+)

)
+ 1

4
PT

(
K0 − 1

2
ρ̃(0,+)

)
,

H̃ −η̃(1,−)ρ̃(1,−) = 1

4

(
K0 − 1

2
ρ̃(1,−)

)
+ 1

4
PT

(
K0 − 1

2
ρ̃(1,−)

)
,

H̃ −η̃(1,+)ρ̃(1,+) = 1

4
PT

(
K1 − 1

2
ρ̃(1,+)

)
+ 1

4

(
K1 − 1

2
ρ̃(1,+)

)
,

H̃ −η̃(0,−)ρ̃(0,−) = 1

4
PT

(
K1 − 1

2
ρ̃(0,−)

)
+ 1

4

(
K1 − 1

2
ρ̃(0,−)

)
.

(72)

From the argument after Eq. (3) together with the positive
semidefiniteness of (65) and (66), each H̃ − η̃�ωρ̃�ω in Eq. (72)
is in SEP∗, therefore, Lemma 1 leads us to

pPI
L (E ) � 2 Tr H̃ = 1

2

(
1 +

√
1 + γ + γ 2

1 + γ

)
. (73)

Inequalities (63) and (73) imply

pPI
L (E ) = 1

2

(
1 +

√
1 + γ + γ 2

1 + γ

)
. (74)

From Eqs. (50) and (74), we note that there exists a nonzero
gap between pPI

G (E ) and pPI
L (E ),

pPI
L (E ) = 1

2

(
1 +

√
1 + γ + γ 2

1 + γ

)
< 1 = pPI

G (E ) (75)

FIG. 3. Creating NLWE by PI in terms of ME. For all η0 ∈
[ 1

3 , 1
2 ), pL(E ) (solid blue line) is equal to pG(E ) (dashed blue line),

but pPI
L (E ) (dot-dashed red line) is less than pPI

G (E ) (dotted red line).

for 2 � γ < ∞. Thus, NLWE occurs in terms of ME when
the PI about the prepared subensemble is available.

Equation (47) shows that NLWE does not occur in terms of
ME about the ensemble E in Example 2, whereas Inequality
(75) shows that NLWE occurs when PI is available. Figure 3
illustrates the relative order of pG(E ), pL(E ), pPI

G (E ), and
pPI

L (E ) for the range of 1
3 � η0 < 1

2 .
Theorem 2. For ME of the ensemble E in Example 2, the

PI about the prepared subensemble creates NLWE.

V. DISCUSSION

We have shown that the PI about the prepared subensemble
can annihilate or create NLWE in discriminating multi-
party nonorthogonal nonentangled quantum states. We have
first provided a two-qubit state ensemble consisting of four
nonorthogonal separable states (Example 1) and shown that
NLWE occurs in discriminating the states in the ensemble.
With the same ensemble, we have further shown that the oc-
currence of NLWE in the state discrimination can be vanished
when the PI about the prepared subensemble is available,
thus, annihilating NLWE by PI (Theorem 1). Moreover, we
have provided another two-qubit state ensemble consisting of
four nonorthogonal separable states (Example 2) and shown
that NLWE does not occur in discriminating the states of the
ensemble. With the same ensemble, we have further shown
the occurrence of NLWE in the state discrimination with the
PI about the prepared subensemble, thus, creating NLWE by
PI (Theorem 2).

We note that in both Examples 1 and 2, the prepared state
can be perfectly identified by a global measurement when the
PI about the prepared subensemble is provided. In Example
1, the prepared state can be perfectly identified by a LOCC
measurement when the PI about the prepared subensemble is
available. However, in Example 2, the prepared state cannot
be perfectly discriminated by a LOCC measurement even if
the PI about the prepared subensemble is available. As far as
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we know, the latter is an example exhibiting NLWE in terms
of perfect discrimination with the help of PI.

We remark that the phenomenon of creating NLWE by PI
cannot arise in perfectly discriminating orthogonal separable
states because there is no better state discrimination than
perfect discrimination. On the other hand, the phenomenon of
annihilating NLWE by PI can arise in perfectly discriminat-
ing orthogonal separable states with local indistinguishability,
such as an unextendible product basis (UPB) [30].

For example, let us consider a two-qutrit state ensemble
{ 1

5 , ρi}5
i=1 consisting of UPB states ρi with the equal prior

probability 1
5 [30],

ρ1 = |φ1〉〈φ1| ⊗ |2〉〈2|, ρ4 = |0〉〈0| ⊗ |φ1〉〈φ1|,
ρ2 = |φ2〉〈φ2| ⊗ |0〉〈0|, ρ5 = |2〉〈2| ⊗ |φ2〉〈φ2|,
ρ3 = |φ3〉〈φ3| ⊗ |φ3〉〈φ3|, (76)

where {|0〉, |1〉, |2〉} is the standard basis in one-qutrit system
and

|φ1〉 = 1√
2

(|0〉 − |1〉), |φ2〉 = 1√
2

(|1〉 − |2〉),

|φ3〉 = 1√
3

(|0〉 + |1〉 + |2〉). (77)

Since every UPB can be perfectly discriminated by global
measurements but cannot be perfectly discriminated only by
LOCC [8,31], NLWE occurs in terms of the perfect discrim-
ination of { 1

5 , ρi}5
i=1. However, the occurrence of NLWE can

be vanished by PI because the prepared state can be perfectly
identified in the following situation: The classical informa-
tion on whether the prepared state belongs to {ρ1, ρ2, ρ3} or

{ρ4, ρ5} is provided after a LOCC measurement {M(i, j)}3
i, j=1,

M(i, j) = |φi〉〈φi| ⊗ |φ j〉〈φ j |, i, j = 1, 2, 3, (78)

where each M(i, j) indicates the detection of ρi or ρ3+ j depend-
ing on whether the set to which the prepared state belongs is
{ρ1, ρ2, ρ3} or {ρ4, ρ5}. Thus, annihilating NLWE by PI.

Our result can provide a useful method to share or hide
information using nonorthogonal separable states [32–37]. In
Example 1, the PI about the prepared subensemble makes
the information locally accessible, and the information can be
locally shared between parties. On the other hand, in Example
2, the PI about the prepared subensemble makes the infor-
mation globally accessible but not locally, and the globally
accessible information can be locally hidden to some extent.
Our results can also be applied to multiparty secret sharing,
such as two-qubit nonlocal bases with multicopy adaptive
local distinguishability [37]. We finally remark that it would
be an interesting future task to investigate if the availability of
PI affects the occurrence of NLWE in terms of other optimal
discrimination strategies besides ME.
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