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Adaptiveness is a key principle in information processing including statistics and machine learning. We
investigate the usefulness adaptive methods in the framework of asymptotic binary hypothesis testing, when each
hypothesis represents asymptotically many independent instances of a quantum channel, and the tests are based
on using the unknown channel and observing outputs. Unlike the familiar setting of quantum states as hypotheses,
there is a fundamental distinction between adaptive and nonadaptive strategies with respect to the channel uses,
and we introduce a number of further variants of the discrimination tasks by imposing different restrictions on
the test strategies. The following results are obtained: (1) We prove that for classical-quantum channels, adaptive
and nonadaptive strategies lead to the same error exponents both in the symmetric (Chernoff) and asymmetric
(Hoeffding, Stein) settings. (2) The first separation between adaptive and nonadaptive symmetric hypothesis
testing exponents for quantum channels, which we derive from a general lower bound on the error probability
for nonadaptive strategies; the concrete example we analyze is a pair of entanglement-breaking channels. (3) We
prove, in some sense generalizing the previous statement, that for general channels adaptive strategies restricted
to classical feed-forward and product state channel inputs are not superior in the asymptotic limit to nonadaptive
product state strategies. (4) As an application of our findings, we address the discrimination power of an arbitrary
quantum channel and show that adaptive strategies with classical feedback and no quantum memory at the input
do not increase the discrimination power of the channel beyond nonadaptive tensor product input strategies.
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I. INTRODUCTION

Adaptiveness is a key principle in information processing
including statistics and machine learning [1], which can entail
great advantage over nonadaptive methods. Because of the
higher complexity of adaptive methods, we thus are moti-
vated to clarify in which situations they offer a significant
improvement. Here, we address this question in the setting
of binary hypothesis testing for quantum channels. Hypoth-
esis testing is one of the most fundamental primitives both
in classical and quantum information processing because a
variety of other information processing problems can be cast
in the framework of hypothesis testing; both direct coding
theorems and converses can be reduced to it. It is expected
that this analysis for adaptiveness reveals the role of adaptive
methods in various types of quantum information processing.
In binary hypothesis testing, the two hypotheses are usually
referred to as null and alternative hypotheses and, accordingly,
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two error probabilities are defined: type-I error due to a wrong
decision in favor of the alternative hypothesis (while the truth
corresponds to the null hypothesis) and type-II error due to
the alternative hypothesis being rejected despite being correct.
The overall objective of the hypothesis testing is to minimize
the error probability in identifying the hypotheses. Depend-
ing on the significance attributed to the two types of errors,
several settings can be distinguished. A historical distinction
is between the symmetric and the asymmetric hypothesis test-
ing: in symmetric hypothesis testing, the goal is to minimize
both error probabilities simultaneously, while in asymmetric
hypothesis testing, the goal is to minimize one type of error
probability subject to a constraint on the other type of error
probability.

In classical information theory, discriminating two distri-
butions has been studied by many researchers; Stein, Chernoff
[2], Hoeffding [3], and Han-Kobayashi [4] formulated asymp-
totic hypothesis testing of two distributions as optimization
problems and subsequently found optimum error exponents.
As generalizations of these settings to quantum realm,
discrimination of two quantum states has been studied exten-
sively in quantum information theory, albeit the complications
stemming from the noncommutativity of quantum mechanics
appear in the most visible way among these problems. The
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first study in this direction was done by Hiai and Petz [5],
which showed the possibility part of the quantum extension
of Stein’s lemma. That is, it showed that the error exponent of
type-II error probability attains the relative entropy registered
between the states under the constant constraint for type-I
error probability. Also, it shows the impossibility to exceed
the above error exponent when type-I error probability goes
to zero. Subsequently, Ogawa and Nagaoka [6] strengthened
the above impossibility, i.e., it showed the same fact under
the constant constraint for type-I error probability. As the
quantum extension of the Chernoff bound, Audenaert et al. [7]
derived a lower bound for the exponent of the sum of type-I
and type-II error probabilities, and Nussbaum and Szkoła [8]
showed its tightness. (See [9] for earlier significant progress.)
Concerning the quantum extension of the Hoeffding bound,
the paper [10] derived a lower bound of the exponent of the
type-II error probability under the exponential constraint for
type-I error probability, but it suggested the existence of a
tighter lower bound. Later, Ref. [11] proved the suggested
tighter lower bound and, subsequently, Nagaoka [12] showed
its optimality.

To study the effect of adaptiveness in the viewpoint of the
binary hypothesis testing, we focus on the discrimination of
(quantum) channels, which is a natural extension of the state
discrimination problem. Channel discrimination is a funda-
mental question not only in quantum information, but also
in other disciplines including theoretical computer science
where, under the name of oracle identification, discrimina-
tion of unitary operations as oracles in quantum algorithms
becomes relevant [13]. Despite inherent mathematical links
between the channel and state discrimination problems, due to
the additional degrees of freedom introduced by the adaptive
strategies, discrimination of channels is more complicated.
Many papers have been dedicated to study the potential ad-
vantages of adaptive strategies over nonadaptive strategies in
channel discrimination, such as [14,15].

The seminal classical work [16] showed that in the asymp-
totic regime, the exponential error rate for classical channel
discrimination cannot be improved by adaptive strategies for
any of the symmetric or asymmetric settings, i.e., the channel
versions of Stein’s lemma, Chernoff bound, and Hoeffing
bound. Since the publication of [16], significant amount of
research has focused on showing the potential advantages
of adaptive strategies in discrimination of quantum channels.
Significant progress was reported in [17] concerning classi-
cal quantum channels, i.e., the case when the channel has a
classical input and a quantum output. There are other pairs of
channels, for which it could be shown that adaptive strategies
do not outperform nonadaptive ones for any finite number of
copies, such as pairs of von Neumann measurements [18,19]
and teleportation-covariant channels (which are programmed
by their Choi states) [20]. Wilde et al. [17] showed that the
classical-quantum (cq) channel extension of Stein’s lemma
has no improvement by use of adaptive strategy. However, for
Chernoff and Hoeffding bounds, they derived upper and lower
bounds. These bounds do not coincide when the cq channel
has a certain noncommutativity. Therefore, it remained an
open problem whether an adaptive method improves Chernoff
and Hoeffding bounds in the classical-quantum channel dis-
crimination.

Concerning quantum-quantum (qq) channels, i.e., channels
having quantum input and quantum outputs, it is known that
adaptive strategies offer an advantage in the nonasymptotic
regime for discrimination in the symmetric Chernoff setting
[14,21–23]. In particular, Harrow et al. [14] demonstrated the
advantage of adaptive strategies in discriminating a pair of
entanglement-breaking channels that requires just two chan-
nel evaluations to distinguish them perfectly, but such that no
nonadaptive strategy can give perfect distinguishability using
any finite number of channel evaluations. However, it was
open whether the same holds in the asymptotic setting.

This question in the asymmetric regime was recently set-
tled by Wang and Wilde: In [24, Theorem 3], they found an
exponent in Stein’s setting for nonadaptive strategies in terms
of channel max-relative entropy, also in the same paper [24,
Theorem 6], they found an exponent in Stein’s setting for
the adaptive strategies in terms of amortized channel diver-
gence, a quantity introduced in [17] to quantify the largest
distinguishability between two channels. However, the fact
that adaptive strategies do not offer an advantage in the setting
of Stein’s lemma for quantum channels, i.e., the equality of
the aforementioned exponents of Wang and Wilde, was later
shown in [25] via a chain rule for the quantum relative en-
tropy proven therein. Cooney et al. [26] proved the quantum
Stein’s lemma for discriminating between an arbitrary quan-
tum channel and a “replacer channel” that discards its input
and replaces it with a fixed state. This work led to the con-
clusion that at least in the asymptotic regime, a nonadaptive
strategy is optimal in the setting of Stein’s lemma. However, in
the Hoeffding and Chernoff settings, the question of potential
advantages of adaptive strategies involving replacer channels
remains open.

Hirche et al. [27] studied the maximum power of a fixed
quantum detector, i.e., a positive-operator-valued measure-
ment (POVM), in discriminating two possible states. This
problem is dual to the state discrimination scenario considered
so far in that, while in the state discrimination problem the
state pair is fixed and optimization is over all measurements,
in this problem a measurement POVM is fixed and the ques-
tion is how powerful this discriminator is, and then whatever
criterion considered for quantifying the power of the given
detector, it should be optimized over all input states. In partic-
ular, if n � 2 uses of the detector are available, the optimiza-
tion takes place over all n-partite entangled states and also
all adaptive strategies that may help improve the performance
of the measurement. The main result of [27] states that when
asymptotically many uses (i.e., n → ∞) of a given detector
are available, its performance does not improve by consider-
ing general input states or using an adaptive strategy in any of
the symmetric or asymmetric settings described before.

In this paper, we tackle and solve all the aforementioned
open problems as we explain next: (i) We prove that for
cq channels, adaptive and nonadaptive strategies lead to the
same error exponents both in the symmetric (Chernoff) and
asymmetric (Hoeffding, Stein) settings. (ii) We derive the
first separation between adaptive and nonadaptive symmetric
hypothesis testing exponents for qq channels, which we de-
rive from a general lower bound on the error probability for
nonadaptive strategies. The two concrete examples we ana-
lyze are pairs of entanglement-breaking channels. (iii) When
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two qq channels are given as entanglement-breaking channel
with the same measurement, we prove that adaptive and non-
adaptive strategies lead to the same error exponents both in
the symmetric (Chernoff) and asymmetric (Hoeffding, Stein)
settings. (iv) As an application of our findings, we address
the discrimination power of an arbitrary quantum channel and
show that adaptive strategies with classical feedback and no
quantum memory at the input do not increase the discrimina-
tion power of the channel beyond nonadaptive tensor product
input strategies.

The rest of the paper is organized as follows. Section II
presents our results of cq-channel discrimination with discrete
feedback variables. Section III gives a general formulation for
adaptive discrimination for qq channels. In Sec. IV we show
two examples of qq channels, of the entanglement breaking
form, that have the first asymptotic separation between adap-
tive and nonadaptive strategies via proving a lower bound
on the Chernoff error for nonadaptive strategies and analyz-
ing an example where adaptive strategies achieve error zero
even with two copies of the channels. In Sec. V, we study
the discrimination of quantum channels when restricting to
a subclass of An allowing only strategies with classical feed
forward and without quantum memory at the input. Also,
Sec. V addresses the discrimination of two qq channels under
a special class of pairs of two qq channels. In Sec. VI we
apply our results to the discrimination power of an arbitrary
quantum channel. We conclude in Sec. VII. Appendixes are
denoted to prove the results for cq-channel discrimination,
which are stated in Sec. II.

II. DISCRIMINATION OF CLASSICAL-QUANTUM
CHANNELS

In this section, the hypotheses are described by two cq
channels. To spell out the precise questions, let us introduce
a bit of notation. Throughout the paper, A, B, C, etc., denote
quantum systems, but also their corresponding Hilbert space.
A cq channel is defined with respect to a set X of input signals
and the Hilbert space B of the output states. In this case, the
channel from X to B is described by the map from the set
X to the set of density operators in B; as such, a cq channel
is given as N : x → ρx, where ρx denotes the output state
when the input is x ∈ X . Our goal is to distinguish between
two cq channels, N : x → ρx and N : x → σx. Here, we do
not assume any condition for the set X , except that it is a
measurable space and that the channels are measurable maps
(with the usual Borel sets on the state space SB). In particular,
it might be an uncountably infinite set.

The task is to discriminate two hypotheses, the null hypoth-
esis H0 : N versus the alternative hypothesis H1 : N where
n → ∞ (independent) uses of the unknown channel are pro-
vided. Then, the challenge we face is to make a decision in
favor of the true channel based on n inputs �xn = (x1, . . . , xn)
and corresponding output states on Bn = B1 . . . Bn; note that
the input �xn = (x1, . . . , xn) is generated by a very complicated
joint distribution of n random variables, which, except for x1,
depend on the actual channel. Hence, they are written with the
capitals as X n = X1, . . . , Xn when they are treated as random
variables.

FIG. 1. Adaptive strategy for cq-channel discrimination. Solid
and dashed lines denote flow of classical and quantum information,
respectively. The classical outputs of instruments {�(m)

km |�xm,�km−1
}km∈Km

are employed to decide the inputs adaptively, and leave a post-
measurement state that can be accessed together with the next
channel output.

A. Quantum measurements

To formulate our general adaptive method for the discrim-
ination of cq channels, we prepare a general notation for
quantum measurements with state changes. A general quan-
tum state evolution from A to B is written as a completely
positive trace-preserving (CPTP) map M from the space T A

to the space T B of trace class operators on A and B, respec-
tively. When we make a measurement on the initial system A,
we obtain the measurement outcome K and the resultant state
on the output system B. To describe this situation, we use a set
{κk}k∈K of completely positive (CP) maps from the space T A

to the space T B such that
∑

k∈K κk is trace preserving. In this
paper, since the classical feed-forward information is assumed
to be a discrete variable, K is a discrete (finite or countably
infinite) set. Since it is a decomposition of a CPTP map, it is
often called a CP-map valued measure, and an instrument if
their sum is CPTP [28]. In this case, when the initial state
on A is ρ and the outcome k is observed with probability
Trκk (ρ), where the resultant state on B is κk (ρ)/Trκk (ρ).
A state on the composite system of the classical system K
and the quantum B is written as

∑
k∈K |k〉〈k| ⊗ ρB|k , which

belongs to the vector space T KB := ∑
k∈K |k〉〈k| ⊗ T B. The

above measurement process can be written as the following
CPTP E map from T A to T KB:

E (ρ) :=
∑
k∈K

|k〉〈k| ⊗ κk (ρ). (1)

In the following, both of the above CPTP map E and a CP-map
valued measure are called a quantum instrument.
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B. Formulation of adaptive method

To study the adaptive discrimination of cq channels, the
general strategy for discrimination of qq channels in Sec. I
should be tailored to the cq channels. We argue that the most
general strategy in Sec. I can without loss of generality be
replaced by the kind of strategy with the instrument and only
classical feed forward when the hypotheses are a pair of cq
channels, as Fig. 1. This in particular will turn out to be
crucial since we consider general cq channels with arbitrary
(continuous) input alphabet.

The first input is chosen subject to the distribution pX1 (x1).
The receiver receives the output ρx1 or σx1 on B1. Depen-
dent on the input x1, the receiver applies the first quantum
instrument {�(1)

k1|x1
}k1∈K1 : B1 → K1R2, where R2 is the quan-

tum memory system and K1 is the classical outcome. The
receiver sends the outcome K1 to the sender. Then, the sender
chooses the second input x2 according to the conditional dis-
tribution pX2|X1,K1 (x2|x1, k1). The receiver receives the second
output ρx2 or σx2 on B2. Dependent on the previous outcome
k1 and the previous inputs x1, x2, the receiver applies the
second quantum instrument {�(2)

k2|x1,x2,k1
}k2∈K2 : B2R2 → K2R3,

and sends the outcome K2 to the sender. The third input is
chosen as the distribution pX3|X1,X2,K1,K2 (x2|x1, x2, k1, k2).

In the same way as the above, the mth step is given
as follows. The sender chooses the mth input xm according
to the conditional distribution pXm| �Xm−1, �Km−1

(xm|�xm−1, �km−1).
The receiver receives the second output ρxm or σxm on
Bm. The remaining processes need the following di-
vided cases. For m < n, dependent on the previous out-
comes �km−1 := (k1, . . . , km−1) and the previous inputs �xm :=
(x1, . . . , xm), the receiver applies the mth quantum instrument
{�(m)

km|�xm,�km−1
}km∈Km : RmBm → KmRm+1, and sends the outcome

km to the sender. For m = n, dependent on the previous out-
comes �Kn−1 and the previous inputs �Xn, the receiver measures
the final state on RnBn with the binary POVM (Tn|�kn−1,�xn

, I −
Tn|�kn−1,�xn

), where hypothesis N (respectively N ) is accepted if
and only if the first (respectively second) outcome clicks.

In the following, we denote the class of the above gen-
eral strategies by Ac,0 because it can be considered that this
strategy has no quantum memory in the input side and no
quantum feedback. As a subclass, we focus on the class when
no feedback is allowed and the input state deterministically is
fixed to a single input x, which is denoted P 0. When the true
channel is N : x → ρx, the state before the final measurement
is

ρ (n) :=
∑

�xn,�kn−1

pX1 (x1) . . . pXn| �Xn−1, �Kn−1
(xn|�xn−1, �kn−1)

× [
�kn−1|�xn−1,kn−2 (. . . �k2|x1,x2,k1 (�k1|x1 (ρx1 ) ⊗ ρx2 ) ⊗ · · · ⊗ ρxn−1 ) ⊗ ρxn ⊗ |�xn, �kn−1〉〈�xn, �kn−1|

]
, (2)

where here we need to store the information for inputs �xn. Similarly, when the true channel is N : x → σx,

σ (n) :=
∑

�xn,�kn−1

pX1 (x1) . . . pXn| �Xn−1, �Kn−1
(xn|�xn−1, �kn−1)

× [
�kn−1|�xn−1,kn−2 (. . . �k2|x1,x2,k1 (�k1|x1 (σx1 ) ⊗ σx2 ) ⊗ · · · ⊗ σxn−1 ) ⊗ σxn ⊗ |�xn, �kn−1〉〈�xn, �kn−1|

]
. (3)

A test of the hypotheses {N ,N } on the true channel is a two-valued POVM {Tn, I − Tn}, where Tn is given as a Hermitian
operator

∑
�xn

T�xn ⊗ |�xn〉〈�xn| on B⊗n ⊗ X ⊗n satisfying 0 � Tn � I . Overall, our strategy to distinguish the channels {N ,N } when

n independent uses of each are available, is given by the triple Tn := ({�(m)

km|�xm,�km−1
}n−1

m=1, {pXm| �Xm−1, �Km−1
}n

m=1, Tn). The n-copy error

probabilities of type I and type II are, respectively, as follows:

αn(N‖N |Tn) := Trρ (n)(I − Tn),

βn(N‖N |Tn) := Trσ (n)Tn.

The generalized Chernoff and Hoeffding quantities introduced in the Introduction read as follows in the present cq-channel case
for a given class S = P 0,Ac,0 :

CS(a, b|N‖N ) := sup
{Tn}

{
lim inf

n→∞ −1

n
log2[2anαn(N‖N |Tn) + 2bnβn(N‖N |Tn)]

}
, (4)

BS
e (r|N‖N ) := sup

{Tn}

{
lim inf

n→∞ −1

n
log2[αn(N‖N |Tn)]

∣∣∣∣ lim inf
n→∞ −1

n
log2[βn(N‖N |Tn)] � r

}
, (5)

where a, b, are arbitrary real numbers and r is an arbitrary non-negative number.

C. Main results

We set ρx := N (x) and σx := N (x), and define

C(a, b|N‖N ) := sup
x

sup
0�α�1

(1 − α)Dα (ρx‖σx ) − αa − (1 − α)b

= sup
0�α�1

(1 − α)Dα (N‖N ) − αa − (1 − α)b, (6)
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B(r|N‖N ) := sup
x

sup
0�α�1

α − 1

α
[r − Dα (ρx‖σx )] = sup

0�α�1

α − 1

α
[r − Dα (N‖N )], (7)

where Dα (N‖N ) := supx Dα (ρx‖σx ) and Dα (ρx‖σx ) := 1
α−1 log2 Trρα

x σ 1−α
x is a quantum extension of the Rényi relative entropy.

In this section, we abbreviate C(a, b|N‖N ) and B(r|N‖N ) to C(a, b) and B(r), respectively.
Since Dα (ρx‖σx ) is monotonically increasing for α, Dα (N‖N ) is monotonically increasing for α. Thus,

lim
α→1

Dα (N‖N ) = sup
0�α�1

Dα (N‖N ) = sup
0�α�1

sup
x

Dα (ρx‖σx )

= sup
x

sup
0�α�1

Dα (ρx‖σx ) = sup
x

D(ρx‖σx ) = D(N‖N ).

Before stating the main results of this section we shall
study the B(r) function further. Since the B(r) func-
tion is monotonically decreasing in r, B(D(N‖N )) = 0.
To find B(0), since 1−α

α
Dα (N‖N ) = D1−α (N‖N ), we in-

fer that 1−α
α

Dα (N‖N ) is monotonically decreasing for
α, and D(N‖N ) = limα→0

1−α
α

Dα (N‖N ). Hence, B(0) =
D(N‖N ), and B(r) < D(N‖N ) for r > 0.

As shown in Appendix C, we have the following lemma.
Lemma 1. When real numbers a, b satisfy −D(N‖N ) �

a − b � D(N‖N ), there exists ra,b ∈ [0, D(N‖N )] such that
B(ra,b) − ra,b = a − b.

We are now in a position to present and prove our main
result, the generalized Chernoff bound and Hoeffding bound
as follows:

Theorem 1 (Generalized Chernoff bound and Hoeffding
bound). For two cq channels N and N , we have

CAc,0

(a, b|N‖N ) = CP 0

(a, b|N‖N )

= C(a, b) = ra,b − b = B(ra,b) − a

for real numbers a, b satisfying −D(N‖N ) � a − b �
D(N‖N ), and

BAc,0

e (r|N‖N ) = BP 0

e (r|N‖N ) = B(r)

for any 0 � r � D(N‖N ). �
This theorem is shown in Appendix D after various prepa-

rations. The key point of the proof of Theorem 1 is the
reduction of our general strategy to the special strategy that
restricts general instruments {�(m)

km|�xm,�km−1
}km∈Km to the applica-

tion of projective measurement with projection postulate. This
reduction is stated as Proposition 2 in Appendix B. In this re-
duction, as stated in Lemma 8, we convert the cq channels into
classical channels by means of the eigenvalue decomposition
of the output states, using the two distributions introduced by
[8,29].

III. FORMULATION OF GENERAL ADAPTIVE METHOD
FOR QQ-CHANNEL DISCRIMINATION

Hereafter, the hypotheses are described by two qq chan-
nels, i.e., completely positive and trace-preserving (CPTP)
maps, acting on a given quantum system, and more precisely
n 
 1 independent realizations of the unknown channel. It is
not hard to see that both the type-I and type-II error probabil-
ities can be made to go to 0 exponentially fast, just as in the

case of hypotheses described by quantum states, and hence the
fundamental question is the characterization of the possible
pairs of error exponents.

We identify states ρ with their density operators and use
superscripts to denote the systems on which the mathematical
objects are defined. The set of density matrices (positive-
semidefinite matrices with unit trace) on A is written as SA,
a subset of the trace class operators, denoted T A. An operator
is called projection operator if applying it twice has the same
effect as applying it once, i.e., ρ2 = ρ. The subspace that the
projection operator ρ projects onto is called its image and
is denoted by Im ρ. When talking about tensor products of
spaces, we may habitually omit the tensor sign, so A ⊗ B =
AB, etc. The capital letters X , Y , etc., denote random vari-
ables whose realizations and the alphabets will be shown by
the corresponding small and calligraphic letters, respectively:
X = x ∈ X . All Hilbert spaces and ranges of variables may
be infinite; the dimension of a Hilbert space A is denoted
|A|, as is the cardinality |X | of a set X . For any positive
integer m, we define �xm := (x1, . . . , xm). For the state ρ ∈ SAB

in the composite system AB, the partial trace over system
A (respectively B) is denoted by TrA (respectively TrB). We
denote the identity operator by I . Moving on to quantum chan-
nels, these are linear, completely positive and trace-preserving
maps M : SA → SB for two quantum systems A and B; M
extends uniquely to a linear map from trace class operators on
A to those on B. We often denote quantum channels, by slight
abuse of notation, as M : A → B. The input and output sys-
tems of quantum channels can include quantum and classical
information; if both input and output systems are quantum, the
channel is referred to as quantum-quantum channel (qq chan-
nel). Similarly, one can identify classical-quantum channels
(cq channels) and quantum-classical channels (qc channels).
The ideal, or identity, channel on A is denoted idA. Note
furthermore that a state ρA on a system A can be viewed as
a quantum channel ρ : 1 → A, where 1 denotes the canonical
one-dimensional Hilbert space, isomorphic to the complex
numbers C, which interprets a state operationally consistently
as a state preparation procedure.

The most general operationally justified strategy to distin-
guish two channels M,M : A → B is to prepare a state ρRA,
apply the unknown channel to A (and the identity channel idR

to R), and then apply a binary measurement POVM (T, I − T )
on BR, so that

α = Tr[(idR ⊗M)ρ](I − T ) and β = Tr[(idR ⊗M)ρ]T,
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FIG. 2. The most general adaptive strategy for discrimination of qq channels, from the class An. After the mth use of the unknown channel
(denoted “?”), the output system Bm as well as the state on the memory, i.e., the reference system Rm, is processed by the CPTP map Fm,
resulting in ρ

Rm+1Am+1
m+1 ; this continues as long as m < n. After the nth use of the channel, the state ωRnBn

n is measured by a two-outcome POVM.
Two variants of this strategy include restricting feed-forward information to be only classical, and additionally only allowing products state
inputs; these variants are denoted by Ac

n and Ac,0
n , respectively.

are the error probabilities of type I and type II, respectively.
When we choose the system R to be sufficiently large, ρRA is a
pure state. Since the rank of ρR is the same as the rank of ρA in
this case, we can restrict the dimension of R to be |A| without
loss of generality. For more on the dimension of reference sys-
tem, we refer to [23]. The strategy is entirely described by the
pair (ρ, (T, I − T )) consisting of the initial state and the final
measurement, and we denote it T . Consequently, the above
error probabilities are more precisely denoted α(M‖M|T )
and β(M‖M|T ), respectively.

These strategies use the unknown channel exactly once;
to use it n > 1 times, one could simply consider that M⊗n

and M⊗n
are quantum channels themselves and apply the

above recipe. While for states this indeed leads to the most
general possible discrimination strategy, for general channels
other, more elaborate, procedures are possible. The most gen-
eral strategy we shall consider in this paper is the adaptive
strategy, applying the n channel instances sequentially, using
quantum memory and quantum feed forward, and a measure-
ment at the end. This is called, variously, an adaptive strategy,
a memory channel, or a comb in the literature. It is defined as
follows [16,30–34].

Definition 1. A general adaptive strategy Tn is given by an
(n + 1)-tuple (ρR1A1

1 ,F1, . . . ,Fn−1, (T, I − T )), consisting of
an auxiliary system R1 and a state ρ1 on R1A1, quantum chan-
nels Fm : RmBm → Rm+1Am+1 and a binary POVM (T, I − T )
on RnBn. It encodes the following procedure (see Fig. 2):
in the mth round (1 � m � n), apply the unknown channel
	 ∈ {M,M} to ρm = ρRmAm

m , obtaining

ωRmBm
m = ωRmBm

m (	) = (idRt ⊗	)ρRmAm
m .

Then, as long as m < n, use Fm to prepare the state for the
next channel use:

ρ
Rm+1Am+1
m+1 = Fm

(
ωRmBm

m

)
.

When m = n, measure the state ωRnBn
n with (T, I − T ), where

the first outcome corresponds to declaring the unknown
channel to be M, the second M. Thus, the n-copy error
probabilities of type I and type II are given by

αn(M‖M|Tn) := Tr
[
ωRnBn

n (M)
]
(I − T ),

βn(M‖M|Tn) := Tr
[
ωRnBn

n (M)
]
T,

respectively. �

As in the case of a single use of the channel, one can with-
out loss of generality simplify the strategy, by purifying the
initial state ρ1, hence |R1| � |A|, and for each m > 1 going to
the Stinespring isometric extension of the CPTP map TrRm+1 ◦
Fm : RmBm → Am+1 that prepares the next channel input (and
which by the uniqueness of the Stinespring extension is an
extension of the given map Fm). This requires a system Rm+1

with dimension no more than |Rm+1| � |Rm||A||B| (cf. [30]).
This allows to efficiently parametrize all strategies in the case
that A and B are finite dimensional. An equivalent descrip-
tion is in terms of so-called causal channels [30], which are
ruled by a generalization of the Choi isomorphism. This turns
many optimizations over adaptive strategies into semidefinite
programs (SDP) [30,34–36], which is relevant for practical
calculations. See [37,38] for recent comprehensive surveys of
the concept of strategy and its history.

The set of all adaptive strategies of n sequential channel
uses is denoted An. It quite evidently includes the n parallel
uses described at the beginning, when a single-use strategy
is applied to the channel (?)⊗n, i.e., n-fold tensor product of
the unknown channel; the set of these nonadaptive or par-
allel strategies is denoted Pn. Among those again, we can
distinguish the subclass of parallel strategies without quan-
tum memory, meaning that R = 1 is trivial and that the input
state ρAn

at the input system An = A1 . . . An is a product state
ρAn = ρ

A1
1 ⊗ · · · ⊗ ρAn

n ; this set is denoted P 0
n . Other restricted

sets of strategies we are considering in this paper are that of
adaptive strategies with classical feed forward, denoted Ac

n,
and with classical feed forward and no quantum memory at
the input, denoted Ac,0

n , as well as no quantum memory at the
input but quantum feed forward, denoted A0

n. They are defined
formally in Sec. V.

The various classes considered obey the following inclu-
sions that are evident from the definitions. Note that all of
them are strict:

An ⊃ Ac
n ⊃ Pn

∪ ∪ ∪ (8)

A0
n ⊃ Ac,0

n ⊃ P 0
n .

In Table I we show a summary of the different classes and
their notation, and where they are discussed.
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TABLE I. The different classes of adaptive strategies considered in this paper, how they are denoted, where they are defined. and which
mathematical elements have to specified to identify a strategy from each class. In the last column we point to the sections of the paper containing
results on the respective classes.

Name Defined Mathematical elements Description Discussed

An Def. 1, Fig. 2 State ρ
R1A1
1 , channels

Fm : RmBm → Rm+1Am+1, POVM
(T, I − T )

Most general adaptive strategy of n
channel uses

Secs. IV, V A, VI B

Pn Def. 1, Fig. 3 State ρRAn
, POVM (T, I − T ) Most general nonadaptive (parallel)

strategy allowing quantum memory at
the input

Sec. IV

P 0
n Def. 1, Fig. 3 State ρ

A1
1 ⊗ · · · ⊗ ρAn

n , POVM
(T, I − T )

Nonadaptive (parallel) strategy
without quantum memory at the input

Secs. V A, V B, VI B

Ac
n Def. 2 State ρ

R1A1
1 , instruments

{F�km
:BmCm →Cm+1}�km

, cptp
P�km

:Rm →Rm+1Am+1, POVM
(T, I − T )

Adaptive strategy of n channel uses
with classical feed forward, but

otherwise arbitrary quantum memory
at the input

Sec. V C

Ac,0
n Def. 2, Fig. 4 States ρAm

xm
, instruments

{F�km
:BmCm →Cm+1}�km

,

q(xm|�xm−1, �km−1), POVM
(T, I − T )

Adaptive strategy of n channel uses
with classical feed forward, and

without quantum memory at the input

Secs. V B, V C,

A0
n Def. 1, Rem. 3 State ρ

R1A1
1 , channels

Fm : BmCm → Am+1Cm+1, POVM
(T, I − T )

Adaptive strategy of n channel uses
without quantum memory at the

input, but otherwise arbitrary
quantum feed forward

Sec. V C

For a given class Sn ⊂ An of adaptive strategies for any
number n of channel uses, the fundamental problem is now

to characterize the possible pairs of error exponents for two
channels M and M:

E(M‖M|S) :=
{

(r, s) : ∃Tn ∈ Sn 0 � r � lim inf
n→∞ −1

n
log2 βn(M‖M|Tn), 0 � s � lim inf

n→∞ −1

n
log2 αn(M‖M|Tn)

}
. (9)

In particular, we are interested, for each r � 0, in the largest s such that (r, s) ∈ E(M‖M|S). To this end, we define the error
rate tradeoff

BS
e (r|M‖M) := sup

{
s

∣∣∣∣∃Tn ∈ Sn r � lim infn→∞ − 1
n log2 βn(M‖M|Tn),

s � lim infn→∞ − 1
n log2 αn(M‖M|Tn),

}
(10)

known as Hoeffding exponent, as well as the closely related function

CS(a, b|M‖M) := inf
Tn∈Sn

lim inf
n→∞ −1

n
log2[2naαn(M‖M|Tn) + 2nbβn(M‖M|Tn)]. (11)

Note that E(M‖M|S) is a closed set by definition, and for most “natural” restrictions S, it is also convex. In the latter case,
the graph of BS

e (r|M‖M) traces the upper boundary of E(M‖M|S), and it can be reconstructed from CS(a, b|M‖M) by a
Legendre transform.

Historically, two extreme regimes are of special interest: the maximally asymmetric error exponent,

max r s.t. ∃s (r, s) ∈ E(M‖M|S) = max r s.t. (r, 0) ∈ E(M‖M|S),

together with the opposite one of maximization of s, which are
known as Stein’s exponents, and the symmetric error exponent

CS(M,M) = max r s.t. (r, r) ∈ E(M‖M|S)

= CS(0, 0|M‖M),

which is generally known as Chernoff exponent or Chernoff
bound.

In this paper, we assume that all Hilbert spaces of interest
are separable, i.e., they are spanned by countable bases, and
we are primarily occupied with the performance of adaptive
strategies. Naturally, the first question in this search would be
to investigate the existence of quantum channels for which
some class Sn ⊂ An outperforms the parallel strategy when
n → ∞; in other words, if there exists a separation between
adaptive and nonadaptive strategies. We study this question in
general, and in particular when the channels are entanglement
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breaking of the following form:

M(ξ ) =
∑

x

(TrExξ )ρx, M(ξ ) =
∑

x

(TrE ′
xξ )σx, (12)

where {Ex} and {E ′
x} are PVMs and ρx, σx are states on the

output system. We show that when these two PVMs are the
same, Ex = E ′

x, then the largest class An cannot outperform
the parallel strategy as n → ∞. When the two PVMs are
different, we find two examples such that the largest class An

outperforms the parallel strategies as n → ∞. For a general
pair of qq channels we focus on the class Ac,0

n of strate-
gies without quantum memory at the sender’s side and with
adaptive strategies that only allow for classical discrete feed
forward. We show that the class Ac,0

n cannot outperform the
parallel strategies when n → ∞. These findings are then ap-
plied to the discrimination power of a quantum channel, which
quantifies how well two given states in A⊗n can be discrimi-
nated after passing through a quantum channel, and whether
adaptive strategies can be beneficial. To this end, we focus
on a particular class of channels, namely, cq channels, and
investigate if the most general strategy offers any benefit over
the most weak strategy P 0

n . This study takes an essential role
in the above problems.

IV. THE FIRST ASYMPTOTIC SEPARATION BETWEEN
ADAPTIVE AND NONADAPTIVE STRATEGIES

A. Useful proposition for asymptotic separation

In this section we exhibit an asymptotic separation be-
tween the Chernoff error exponents of discriminating between
two channels by adaptive versus nonadaptive strategies. Con-
cretely, we will show that two channels described in [14], and
shown to be perfectly distinguishable by adaptive strategies
of n � 2 copies, hence having infinite Chernoff exponent,
nevertheless have a finite-error exponent under nonadaptive
strategies.

The separation is based on a general lower bound on non-
adaptive strategies for an arbitrary pair of channels. Consider
two quantum channels, i.e., CPTP maps, M,M : A → B. To
fix notation, we can write their Kraus decompositions as

M(ρ) =
∑

i

EiρE†
i , M(ρ) =

∑
j

FjρF †
j .

The most general strategy to distinguish them consists in the
preparation of a, without loss of generality pure, state ϕ on
A ⊗ R, where R � A, send it through the unknown channel,
and make a binary measurement (T, I − T ) on B ⊗ R:

p = Tr[(idR ⊗M)ϕ]T, q = Tr[(idR ⊗M)ϕ]T,

and likewise 1 − p and 1 − q by replacing T in the above
formulas with I − T . Note that for uniform prior probabilities
on the two hypotheses, the error probability in inferring the
true channel from the measurement output is 1

2 (1 − |p − q|).
The maximum of |p − q| over state preparations and

measurements gives rise to the (normalized) diamond norm
distance of the channels [35,39–41]:

max
ϕ,T

|p − q| = 1

2
‖M − M‖�,

which in turn quantifies the minimum discrimination error
under the most general quantum strategy:

Pe = 1

2

(
1 − 1

2
‖M − M‖�

)
.

We are interested in the asymptotics of this error proba-
bility when the discrimination strategy has access to n 
 1
many instances of the unknown channel in parallel, or in other
words, in a nonadaptive way. This means effectively that the
two hypotheses are the simple channels M⊗n and M⊗n

, so
that the error probability is

P(n)
e,P = 1

2

(
1 − 1

2

∥∥M⊗n − M⊗n∥∥
�

)
.

The (nonadaptive) Chernoff exponent is then given as

CP (M,M) = lim
n→∞ −1

n
log2 P(n)

e,P ,

the existence of the limit being guaranteed by general prin-
ciples. Note that the limit can be +∞, which happens in all
cases where there is an n such that P(n)

e,P = 0. It is currently
unknown whether this is the only case; cf. the case of the
more flexible adaptive strategies, for which there is a simple
criterion to determine whether there exists an n such that the
adaptive error probability P(n)

e,A = 0 [21], and then evidently

CA(M,M) = +∞; conversely, we know that in all other
cases, the adaptive Chernoff exponent is CA(M,M) < +∞
[42]. There exist also other lower bounds on the symmetric
discrimination error by adaptive strategies, for instance [43,
Theorem 3] geared towards finite n.

Duan et al. [22] have attempted a characterization of the
channel pairs such that there exists an n with P(n)

e,P = 0, and
have given a simple sufficient condition for the contrary.
Namely, the existing result [22, Corollary 1] states that if
span{E†

i Fj} contains a positive-definite element, then for all
n we have P(n)

e,P > 0. The following proposition, which makes
the result of [22] quantitative, is the main result of this section.

Proposition 1. When complex numbers γi j ∈ C satisfy the
condition that

∑
i j |γi j |2 = 1 and P := ∑

i j γi jE
†
i Fj > 0, i.e.,

P is positive definite, then the inequality

P(n)
e,P � 1

4
λmin(P)4n

holds for all n, where λmin(A) denotes the smallest eigenvalue
of the Hermitian operator A. Consequently,

CP (M,M) � 4 log2 ‖P−1‖∞.

Proof. We begin with a test state ϕ as in the above descrip-
tion of the most general nonadaptive strategy for the channels
M and M, so that the two output states are ρ = (idR ⊗M)ϕ,
σ = (idR ⊗M)ϕ. By well-known inequalities [44], it holds

1

2
‖ρ − σ‖1 �

√
1 − F (ρ, σ )2 � 1 − 1

2
F (ρ, σ )2,

where F (ρ, σ ) = ‖√ρ
√

σ‖1 is the fidelity. Thus, it will be
enough to lower bound the fidelity between the output states
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of the two channels. With τ = TrR|ϕ〉〈ϕ|, we have

F (ρ, σ ) = ‖√ρ
√

σ‖1

� Tr
√

ρ
√

σ

� Trρσ

=
∑

i j

|TrE†
i Fjτ |2

�
∣∣∣∣∣
∑

i j

γi jTrE†
i Fjτ

∣∣∣∣∣
2

= |TrτP|2.
Here, the second line is by standard inequalities for the trace
norm, the third is because of ρ � √

ρ, the fourth is a formula
from [22, Sec. II], in the fifth we used Cauchy-Schwarz in-
equality, and in the last line the definition of P. Since τ , like
ϕ, ranges over all states, we get

F (ρ, σ )2 � λmin(P)4,

and so

Pe �
1

4
λmin(P)4.

We can apply the same reasoning to M⊗n and M⊗n
, for which

the vector (γi j )⊗n is eligible and leads to the positive-definite
operator P⊗n. Thus,

P(n)
e,P � 1

4
λmin(P⊗n)4 = 1

4
λmin(P)4n.

Taking the limit and noting λmin(P)−1 = ‖P−1‖∞ concludes
the proof. �

B. Two examples

Example 1. Next we show that two channels defined
by Harrow et al. [14] yield an example of a pair with
CP (M,M) < +∞, yet CA(M,M) = +∞ because indeed
P(2)

e,A = 0. In [14], the following two entanglement-breaking
channels from A ⊗ C = C2 ⊗ C2 (two qubits) to B = C2

(one qubit) are considered:

M(ρA ⊗ γC ) = |0〉〈0| 〈0|γ |0〉 + |0〉〈0| 〈1|γ |1〉〈0|ρ|0〉

+ 1

2
I〈1|γ |1〉〈1|ρ|1〉,

M(ρA ⊗ γC ) = |+〉〈+|〈0|γ |0〉 + |1〉〈1| 〈1|γ |1〉〈+|ρ|+〉

+ 1

2
I〈1|γ |1〉〈−|ρ|−〉,

extended by linearity to all states. Here, |0〉, |1〉 are the com-
putational basis (Z eigenbasis) of the qubits, while |+〉, |−〉
are the Hadamard basis (X eigenbasis).

In words, both channels measure the qubit C in the compu-
tational basis. If the outcome is “0,” they each prepare a pure
state on B (ignoring the input in A): |0〉〈0| for M, |+〉〈+| for
M. If the outcome is “1,” they each make a measurement on
A and prepare an output state on B depending on its outcome:
standard basis measurement for M with |0〉〈0| on outcome 0
and the maximally mixed state 1

2 I on outcome 1 Hadamard

basis measurement for M with |1〉〈1| on outcome “+” and the
maximally mixed state 1

2 I on outcome “-”. In [14], a simple
adaptive strategy for n = 2 uses of the channel is given that
discriminates M and M perfectly: The first instance of the
channel is fed with |0〉〈0| ⊗ |0〉〈0|, resulting in an output state
ρ1; the second instance of the channel is fed with |1〉〈1| ⊗ ρ1;
the output state ρ2 of the second instance is |0〉〈0| if the
unknown channel is M, and |1〉〈1| if the unknown channel
is M, so a computational basis measurement reveals it. Note
that no auxiliary system R is needed, but the feed forward nev-
ertheless requires a qubit of quantum memory for the strategy
to be implemented. In any case, this proves that P(2)

e,A = 0. In

[14], it is furthermore proved that for all n � 1, P(n)
e,P > 0.

We now show that Proposition 1 is applicable to yield an
exponential lower bound on the nonadaptive error probability.
The Kraus operators of the two channels can be chosen as
follows:

M : Ei ∈ {|0〉B〈00|AC, M : Fj ∈ {|+〉B〈00|AC,

|0〉B〈10|AC, |+〉B〈10|AC,

|0〉B〈01|AC, |1〉B〈+1|AC,

|0〉B〈11|AC/
√

2, |0〉B〈−1|AC/
√

2,

|1〉B〈11|AC/
√

2}, |1〉B〈−1|AC/
√

2}.

Thus, the products E†
i Fj include the matrices

E†
1 F1 =

√
1

2
|00〉〈00| ,

E†
2 F2 =

√
1

2
|10〉〈10| ,

E†
5 F3 =

√
1

2
|11〉〈+1|,

E†
5 F5 = 1

2
|11〉〈−1| ,

E†
3 F4 =

√
1

2
|01〉〈−1| ,

from which we can form, by linear combination, the operators

E†
1 F1 =

√
1

2
|0〉〈0| ⊗ |0〉〈0| ,

E†
2 F2 =

√
1

2
|1〉〈1| ⊗ |0〉〈0| ,√

1

2
E†

5 F3 − E†
5 F5 =

√
1

2
|1〉〈1| ⊗ |1〉〈1| ,√

1

2
E†

3 F4 − E†
5 F5 =

√
1

2
|−〉〈−| ⊗ |1〉〈1| ,

whose sum is indeed positive definite, so we get an ex-
ponential lower bound on P(n)

e,P and hence a finite value of

CP (M,M). To get a concrete upper bound on CP (M,M)
from the above method, we choose γ11 = γ22 = α and γ53 =
γ34 = γ55 = β, with α, β > 0 and 2α2 + 5β2 = 1 and γi, j =
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0 for other cases in Proposition 1. Then, P is written as

P = αE†
1 F1 + αE†

2 F2 + β

√
1

2
E†

5 F3 + β

√
1

2
E†

3 F4 − 2βE†
5 F5

= α

√
1

2
I ⊗ |0〉〈0| + β

√
1

2
( |1〉〈1| + |−〉〈−| ) ⊗ |1〉〈1| ,

which implies the condition P > 0. Now, P is an orthogonal
sum of two rank-2 operators, i.e., as a 4 × 4 matrix it has
block-diagonal structure with two 2 × 2 blocks. Their min-

imum eigenvalues are easily calculated: they are α

√
1
2 and

β
√

2 sin2 π
8 . Since λmin(P) will be the smaller of the two,

we optimize it by making the two values equal, i.e., we want
α = 2β sin2 π

8 . Inserting this in the normalization condition
and solving for β yields β2 = (8 sin4 π

8 + 5)−1, thus,

λmin(P) =
√

2

8 sin4 π
8 + 5

sin2 π

8
= 2 − √

2

4
√

4 − √
2

≈ 0.091,

where we have used the identity sin2 π
8 = 1

2 (1 −
√

1
2 ). Hence,

Proposition 1 guarantees that

CP (M,M) � 4 log2
4
√

4 − √
2

2 − √
2

≈ 13.83.

Note that a lower bound is the Chernoff bound of the
two pure output states |0〉〈0| = M(|00〉〈00|) and |+〉〈+| =
M(|00〉〈00|), which is log2 = 1, so CP (M,M) � 1. It seems
reasonable to conjecture that this is optimal, but we do not
have at present a proof of it. �

Example 2. For later use, we briefly discuss another ex-
ample due to Krawiec et al. [15], which consists of two qc
channels implementing two rank-1 POVMs on a qutrit A, and
the output Y is a nine-dimensional Hilbert space. They are
given by vectors |xi〉 ∈ A and |yi〉 ∈ A (i = 1, . . . , 9) such that∑9

i=1 |xi〉〈xi| = ∑9
j=1 |y j〉〈y j | = I:

P (ρ) =
9∑

i=1

〈xi|ρ|xi〉 |i〉〈i| , P (ρ) =
9∑

j=1

〈y j |ρ|y j〉 | j〉〈 j| .

(13)
The Kraus operators are Ei = |i〉〈xi| and Fj = | j〉〈y j |, which
makes it easy to calculate span{E†

i Fj} = span{|xi〉〈yi|}.
In [15] it is shown how to choose the two POVMs in

such a way that this subspace does not contain the identity
I and indeed satisfies the “disjointness” condition of Duan
et al. [21] for perfect finite-copy distinguishability of the two
channels using adaptive strategies. Thus, CA(P,P ) = +∞.
On the other hand, it is proven in [15] that the subspace
contains a positive-definite matrix P > 0. Hence, Proposition
1 guarantees that CP (P,P ) < +∞. �

So indeed there are channels, entanglement-breaking chan-
nels at that, for which the adaptive and the nonadaptive
Chernoff exponents are different; in fact, the separation is
maximal, in that the former is +∞ while the latter is finite:
they lend themselves easily to experiments, as the channels of
Example 1 are composed of simple qubit measurement and
state preparations. It should be noted that this separation is a
robust phenomenon, and not for example related to the perfect

finite-copy distinguishability. Namely, by simply mixing our
example channels with the same small fraction ε > 0 of the
completely depolarizing channel τ , we get two new chan-
nels M′ = (1 − ε)M + ετ and M′ = (1 − ε)M + ετ with
only smaller nonadaptive Chernoff bound CP (M′,M′

) �
CP (M,M) < +∞. As shown below, by choosing a suitable
ε > 0, the fully general adaptive strategy satisfies

CP (M,M) < CA(M′,M′
) < ∞. (14)

This case gives an example for the asymptotic separation
between adaptive and nonadaptive strategies even with a finite
exponent for adaptive strategy.

Now, we show the existence of ε > 0 to satisfy (14). Be-
cause CA(M′,M′

) goes to infinity as ε goes to zero, there
exists ε > 0 to satisfy the first inequality in (14). On the other
hand, the relation CA(M′,M′

) < +∞ with an arbitrary ε >

0 can be shown in the following way. Because the Kraus op-
erators {E ′

i } and {F ′
j } of the channels satisfy I ∈ span{E ′†

i F ′
j },

Duan et al. [21] guarantee that M′ and M′
are not perfectly

distinguishable under any An for any finite n. Applying this
fact to the result by Yu and Zhou [42], we find the existence of
a finite upper bound on the Chernoff exponent CA(M′,M′

).
Furthermore, since the error-rate tradeoff function

BP
e (r|M‖M) is continuous near r = CP (M,M), whereas

the adaptive variant BA
e (r|M‖M) is infinite everywhere,

we automatically get separations in the Hoeffding setting,
as well. Note that there is no contradiction with the results
of [17,24], which showed equality of the adaptive and the
nonadaptive Stein’s exponents, which are indeed both +∞:
for the nonadaptive one this follows from the fact that the
channels on the same input prepare different pure states |0〉〈0|
for M and |+〉〈+| for M.

V. RESPONSIBLE RESOURCES FOR QUANTUM
ADVANTAGE

We showed in Sec. IV that quantum feed forward can
improve the error exponent in the symmetric and Hoeffding
settings for the discrimination of two qq channels. This result
followed by investigating a pair of entanglement-breaking
channels introduced in [14], and a pair of qc channels from
[15].

In contrast, this section investigates which features of gen-
eral feed-forward strategies are responsible for this advantage
and, conversely, which restricted feed-forward strategies can-
not improve the error exponents for discrimination of two
qq channels. To address this question, we first import the
results on cq channels from Sec. II to a special class of qq
channels. Note that if X is discrete, i.e., either finite or count-
ably infinite, with the atomic (power set) Borel algebra, so
that arbitrary mappings N : x → ρx and N : x → σx define
cq channels, we can think of them as special, entanglement-
breaking, qq channels M,M : T X → T B:

M(ξ ) =
∑
x∈X

ρxTrξEx, M(ξ ) =
∑
x∈X

σxTrξEx, (15)
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where {Ex}x∈X is a PVM of rank-1 projectors Ex = |x〉〈x|, and
X labels an orthonormal basis {|x〉}x∈X of a separable Hilbert
space, denoted X , too [cf. Eq. (12)].

In particular, using the results of Sec. II, we will show
the following fact for discrimination of special entanglement-
breaking channels given by Eq. (15). The most general class
of adaptive strategies An offers no gain over the weakest class
of strategies P 0

n , i.e., nonadaptive strategies without entan-
gled input, even though this class uses entangled input and
quantum feed forward. Since in the analysis of cq channels
it turns out that the most general strategy does not use quan-
tum memory at the input and feed forward that is classical,
we are motivated to consider this restricted class of adaptive
strategies for general qq channels, denoted Ac,0

n , in Sec. V B.
We will show that this subclass of adaptive strategies offers
no gain over nonadaptive strategies without quantum memory
at the input. Finally, in Sec. V C we consider whether it is
really necessary to impose both the restriction of no input
quantum memory and classical feed forward to rule out an ad-
vantage for nonadaptive strategies. Indeed, we shall show that
the examples considered in Sec. IV demonstrate asymptotic
advantages both for adaptive strategies with no input quantum
memory but quantum feed forward (“A0

n”) and for adaptive
strategies with quantum memory at the input and classical
feed forward (“Ac

n”).

A. Discrimination of cq channels as CPTP maps
under An strategies

The most general class An of strategies to distinguish two
qq channels M and M is the set of strategies given in Defini-
tion 1. For this class, recall that we denote the generalized
Chernoff and Hoeffding quantities as CA(a, b|M‖M) and
BA

e (r|M‖M), respectively. In this section, we discuss the
effect of input entanglement for our cq-channel discrimination
strategy, when the input alphabet is discrete. Recall the form
(15) of the two channels as qq-quantum channels.

In this case, the most general strategy stated in Definition
1 for the discrimination of two qq channels M and M can
be converted to the strategy stated in Sec. II B for the discrim-
ination of two cq channels N : x �→ ρx and N : x �→ σx as
follows. In the general strategy for qq channel, the operation
in the mth step is given as a quantum channel Fm : RmBm →
Rm+1Am+1. To describe the general strategy for cq channel,
we define the quantum instrument Em : RmBm → XmRm+1 in
the sense of Eq; (1) as

Em(ξ ) :=
∑

xm∈X
|xm〉〈xm| ⊗ [TrAm+1 ExmFm(ξ )]. (16)

Then, the general strategy for cq channel is given as applying
the above quantum instrument and choosing the obtained out-
come xm as the input of the cq channel to be discriminated.
The final states in the general strategy for qq channel are the
same as the final state in the general strategy for cq channel.
That is, the performance of the general strategy for these two
qq channels is the same as the performance of the general
strategy for the above-defined cq channels. This fact means
that the adaptive method does not improve the performance of
the discrimination of the channels (15).

Furthermore, when the quantum channel Fm in the strat-
egy is replaced by the channel F ′

m defined as F ′
m(ξ ) :=∑

xm
ExmFm(ξ )Exm , we do not change the statistics of the

protocol for either channel. Since the output of F ′
m has no

entanglement between Xm and Rm+1, the presence of input
entanglement does not improve the performance in this case.

To state the next result, define for two quantum channels
M and M mapping A to B,

D(M‖M) := sup
ρ∈SA

D(M(ρ)‖M(ρ)) and (17)

Dα (M‖M) := sup
ρ∈SA

Dα (M(ρ)‖M(ρ)). (18)

Theorem 2. Assume that two qq-quantum channels M and
M are given by Eq. (15). For 0 � r � D(M‖M) and real a
and b with −D(M‖M) � a − b � D(M‖M), the following
holds:

CA(a, b|M‖M) = CP 0
(a, b|M‖M) = C(a, b|N‖N ),

BA
e (r|M‖M) = BP 0

e (r|M‖M) = Be(r|N‖N ).

�
Note that it was essential that not only the channels are

entanglement breaking, but that the measurement {Ex} is a
PVM, and in fact the same PVM for both channels. The
discussion fails already when the channels each have their
own PVM, which are noncommuting. Indeed, such channels
were essential to the counterexample in Sec. IV, Example 1,
showing a genuine advantage of general adaptive strategies.
In this case, the construction of the channel F ′

m depends on
the choice of the hypothesis. Therefore, the condition (15) is
essential for this discussion.

Furthermore, if the channels are entanglement breaking,
but with a general POVM in Eq. (15), i.e., the Ex are
not orthogonal projectors, the above discussion does not
hold, either. Indeed, the second counterexample in Sec. IV,
Example 2, consists of qc channels implementing overcom-
plete rank-1 measurements, once more showing a genuine
advantage of general adaptive strategies. In this case, the out-
put state is separable, but it cannot be necessarily simulated
by a separable input state.

Remark 1. The discussion of this section shows that with-
out loss of generality, we can assume that the measurement
outcome equals the next input when X is discrete. That is, it is
sufficient to consider the case when km = xm. This fact can be
shown as follows. Given two cq channels x �→ ρx and x �→ σx,
we define two entanglement-breaking channels M and M
by Eq. (15). For the case with two qq channels, the most
general strategy is given in Definition 1. For two cq channels
M : x �→ ρx and M : x �→ σx, the most general strategy can
be simulated by an instrument with km = xm.

However, when X is not discrete, neither can we view
the cq channels as special qq channels [as the Definition in
Eq. (15) only makes sense for discrete X ], nor do we allow
arbitrary, only discrete feed forward; hence, to cover the case
with continuous X , we need to address it using general out-
comes km as in Sec. II. �
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FIG. 3. The most general parallel strategy for discrimination
of qq channels, from the class Pn. An (n + 1)-partite state ρ on
RA1 . . . An is prepared and each system Ai is fed into a separate chan-
nel input; the final measurement is performed with a two-outcome
POVM on RB1 . . . Bn. If we do not allow input states to be entan-
gled among different A systems or with the reference system R, the
strategy falls into the class P 0

n .

B. Restricting to classical feed forward and no quantum
memory at the input: Ac,0

n

In this setting, the protocol is similar to the adaptive
protocol described in Sec, II, but extended to general quan-
tum channels (see Fig. 4): after each transmission, the input

FIG. 4. Adaptive quantum channel discrimination with classical
feed forward and without quantum memory at the channel input,
from the class Ac,0

n . Solid and dashed arrows denote the flow of quan-
tum and classical information, respectively. At step m, Alice sends
the state ρxm which she has prepared using Bob’s m − 1 classical
feed-forward information, and sends it via either M or M to Bob.

state ρxm is chosen adaptively from the classical feed for-
ward. Denoting this adaptive choice of input states as �xm =
(x1, . . . , xm), the mth input is chosen conditioned on the
feed-forward information �km−1 and �xm−1 from the conditional
distribution pXm| �Xm−1, �Km−1

(xm|�xm−1, �km−1).

Theorem 3. Let M and M be qq channels. Then, for real
numbers a, b satisfying −D(M‖M) � a − b � D(M‖M)
and any 0 � r � D(M‖M), it holds

CAc,0
(a, b|M‖M) = CP 0

(a, b|M‖M)

= sup
0�α�1

(1 − α)Dα (M‖M)

− αa − (1 − α)b,

BAc,0

e (r|M‖M) = BP 0

e (r|M‖M)

= sup
0�α�1

α − 1

α
[r − Dα (M‖M)

]
,

where D(M‖M) and Dα (M‖M) are defined in Eqs. (17)
and (18).

Proof. Since only classical feed forward is allowed, one
can cast this discrimination problem in the framework of the
cq-channel discrimination problem treated in Sec. II. Namely,
we apply Theorem 1 to the case when the cq channels have
input alphabet X = SA, i.e., it equals the set of all states on
the input systems. In other words, we choose the classical
(continuous) input alphabet as X , where each letter x ∈ X
is a classical description of a state ξ on the input system
A. In this application, ρx and σx are given as M(ξ ) and
M(ξ ), respectively, for x ≡ ξ . Hence, supx Dα (ρx‖σx ) equals
Dα (M‖M) = supξ Dα (M(ξ )‖M(ξ )). Hence, the desired re-
lation is obtained. �

Remark 2. The above theorem concludes that in the ab-
sence of entangled inputs, no adaptive strategy built upon
classical feed forward can outperform the best nonadaptive
strategy, which is in fact a tensor power input. In other words,
the optimal error rate can be achieved by a simple independent
and identically distributed input sequence where all n input
states are chosen to be the same: ρ⊗n. �

C. No advantage of adaptive strategies beyond Ac,0
n ?

One has to wonder whether it is really necessary to impose
classical feed forward and to rule out quantum memory at
the channel input to arrive at the conclusion of Theorem 3,
that nonadaptive strategies with tensor product inputs P 0

n are
already optimal. What can we say when only one of the
restrictions holds? We start with defining the class Ac

n of
adaptive strategies using classical feed forward.

Definition 2. The class Ac
n of adaptive strategies using

classical feed forward is defined as a subset of An given
in Definition 1, where now the maps Fm are subject to an
additional structure. To describe it, one has to distinguish two
operationally different quantum memories, the systems Rm of
the sender, and systems Cm of the receiver. The initial state is
ρ

R1A1
1 , with trivial system C1 = 1. Then, Fm maps RmBmCm to
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Rm+1Am+1Cm+1, in the following way:

Fm =
∑
�km

F�km
⊗ P�km

, (19)

where {F�km
}�km

is an instrument of CP maps mapping BmCm

to Cm+1 (this is the measurement of the channel outputs up
to the mth channel use generating the classical feed forward,
together with the evolution of the receiver’s memory), and
where all the P�km

are quantum channels mapping Rm to
Rm+1Am+1, which serve to prepare the next channel input.

The class Ac,0
n is now easily identified as the subclass

of strategies in Ac
n where Rm = 1 is trivial throughout the

protocol. �
Remark 3. Regarding adaptive strategies with quantum

feed forward, but no quantum memory at the input, which
class might be denoted A0

n: Note that the adaptive strategy
considered in Sec. IV, Example 1, that is applied to a pair of
entanglement-breaking channels and shown to be better than
any nonadaptive strategies, while actually using quantum feed
forward, required, however, no entangled inputs nor indeed
quantum memory at the channel input. This shows that quan-
tum feed forward alone can be responsible for an advantage
over nonadaptive strategies. �

Remark 4. Regarding adaptive strategies with classical
feed forward, however, allowing quantum memory at the
input, i.e., Ac

n: It turns out that the channels considered in
Sec. IV, Example 2, show that this class offers an advantage
over nonadaptive strategies. This is because they are qc chan-
nels, i.e., their output is already classical, and so any general
quantum feed-forward protocol can be reduced to an equiva-
lent one with classical feed forward. It can be seen, however,
that the perfect adaptive discrimination protocol described in
[15] relies indeed on input entanglement. �

VI. DISCRIMINATION POWER OF A QUANTUM
CHANNEL

In this section we study how well a pair of quantum states
can be distinguished after passing through a quantum channel.
This quantifies the power of a quantum channel when it is seen
as a measurement device. In some sense this scenario is dual
to the state discrimination problem in which a pair of states
are given and the optimization is taken over all measurements,
while in the current scenario a quantum channel is given and
the optimization takes place over all pairs of states passing
through the channel. Reference [27] studies the special case of
qc channels, that is, investigation of the power of a quantum
detector given by a specific POVM in discriminating two
quantum states. It was shown in the paper that when the qc
channel is available asymptotically many times, neither entan-
gled state inputs nor classical feedback and adaptive choice of
inputs can improve the performance of the channel. We extend
the model of the latter paper to general quantum channels,
considering whether adaptive strategies provide an advantage
for the discrimination power; see Fig. 5, where we consider
classical feedback without quantum memory at the sender’s
side.

FIG. 5. Discrimination with a quantum channel Mo. At step m,
Alice prepares a state, either ρxm or σxm , which she has prepared using
Bob’s m − 1 feedbacks (dashed arrows), and sends it via the channel
Mo to Bob. Bob’s measurements resemble the PVM’s of Sec. II;
they are used to extract classical information fed back to Alice and
to prepare post-measurement states that he keeps for the next round
of communication.

A. Simple extension of [27] with classical feedback: Āc,0

It is useful to cast this hypothesis testing setting as a com-
munication problem as follows: Assume a quantum channel
Mo = MAo→B

o connects Alice and Bob, where Alice pos-
sesses two systems Ao,0, Ao,1 and Bob has B. They did not
know which system of Ao,0, Ao,1 works as the input system of
the quantum channel Mo = MAo→B

o . Hence, the hypothesis
H0 (H1) refers to the case when the system Ao,0 (Ao,1) is the
input system of the quantum channel Mo and the remaining
system is simply traced out, i.e., is discarded. To identify
which hypothesis is true, Alice and Bob make a collaboration.
Alice chooses two input states ρ and σ on Ao,0 and Ao,1 for this
aim. Bob receives the output state. They repeat this procedure
n times. Bob obtains the n-fold tensor product system of B
whose state is Mo(ρ)⊗n or Mo(σ )⊗n. Applying two-outcome
POVM {Tn, I − Tn} on the n-fold tensor product system, Bob
infers the variable Z by estimating which state is the true state.
In this scenario, to optimize the discrimination power, Alice
chooses the best two input states ρ and σ on Ao,0 and Ao,1 for
this aim. We denote this class of Bob’s strategies by P̄ 0.

Now, similar to [27], we consider an adaptive strategy.
To identify which hypothesis is true, Alice and Bob make a
collaborating strategy, which allows Alice to use the channel
n times and also allows Bob, who has access to quantum
memory, to perform any measurement of his desire on its
received systems and send back classical information to Alice;
then Alice chooses a suitable pair of states ρ and σ on two
systems Ao,0 and Ao,1 adaptively based on the feedback that
she receives after each transmission. We denote this class of
adaptive strategies by Āc,0.

The adaptive strategy in the class Āc,0
n follows the

cq-channel discrimination strategy: denoting the input gener-
ically as x1, . . . , xn, the sequence of Bob’s measurements
is given as {�(m)

�km|�xm
}n−1

m=1 and the classical feedback depends

on the previous information �xm, �km−1, and Alice’s adaptive
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choice of the input states (ρx1 , σx1 ), . . . , (ρxn , σxn ) labeled by
(x1, . . . , xn) is given as the sequence of conditional random-
ized choice {pXm| �Xm−1, �Km−1

}n
m=1 of the pair of the input states

(ρ, σ ). In this formulation, after obtaining the measurement
outcome Km, using a two-outcome POVM {Tn, I − Tn} on the
n-fold tensor product system, Bob decides which hypothesis
of H0 and H1 is true according to the conditional distributions
{pXm| �Xm−1, �Km−1

}n
m=1.

In this class, we denote the generalized Chernoff and
Hoeffding quantities as CĀc,0

(a, b|Mo) and BĀc,0

e (r|Mo), re-
spectively. When no feedback is allowed and the input state
deterministically is fixed to a single form (ρ, σ ), we de-
note the generalized Chernoff and Hoeffding quantities as
CP̄ 0

(a, b|Mo) and BP̄ 0

e (r|Mo), respectively.
We set

D(Mo) : = max
ρ,σ

D(Mo(ρ)‖Mo(σ ))

= max
ρ,σ

D(Mo(σ )‖Mo(ρ)). (20)

Theorem 4. Let 0 � r � D(Mo) and real numbers a and b
satisfy −D(Mo) � a − b � D(Mo), then we have

CĀc,0
(a, b|Mo) = CP̄ 0

(a, b|Mo)

= sup
ρ,σ

sup
0�α�1

(1 − α)Dα (M(ρ)‖Mo(σ )) − αa − (1 − α)b,

BĀc,0

e (r|Mo) = BP̄ 0

e (r|Mo)

= sup
ρ,σ

sup
0�α�1

α − 1

α
[r − Dα (Mo(ρ)‖Mo(σ ))].

Proof. Here we only need to consider the set SAo × SA′
o of

pairs of input states as the set X . In other words, we choose
the classical (continuous) input alphabet as X = SAo × SA′

o ,
where each letter x ≡ (ρ, σ ) ∈ X is a classical description
of the pair of states (ρ, σ ). Then, the result follows from
the adaptive protocol in Sec. II. (Compare also the proof of
Theorem 3.) �

Remark 5. As another scenario, [27] also considers the
case when the input states are given as ρn, σn where ρn and σn

are states on the n-fold systems A⊗n
o,0 and A⊗n

o,1, respectively. It
shows that this strategy can be reduced to the adaptive strategy
presented in this subsection when the channel Mo is a qc
channel, i.e., it has the form

Mo(ρ) =
∑
x∈X

(TrρMx )|x〉〈x|, (21)

where {|x〉}x∈X forms an orthogonal system. However, it is not
so easy to show the above reduction when the channel Mo is
a general qq channel. When the channel Mo is a cq channel
in the sense of (15), the next subsection shows that the above
type of general strategy cannot improve the performance.

B. Quantum feedback: An

Next, we discuss the most general class, in which Bob
makes quantum feedback to Alice. To discuss this case, we
generalize the above formulated problem by allowing more
general inputs because the formulation in the above section
allows only a pair of states (ρ, σ ) ∈ SAo,0 × SAo,1 . In the gen-
eralized setting, the hypothesis Hi is that the true channel is

ρ �→ Mo(Tri⊕1ρ). Then, Alice and Bob collaborate in order
to identify which hypothesis is true. That is, it is formulated
as the discrimination between two qq channels M and M,
mapping A = Ao,0Ao,1 to B defined as

M(ρ) := Mo(Tr1ρ) = Tr1(Mo ⊗ Mo)(ρ), (22)

M(ρ) := Mo(Tr0ρ) = Tr0(Mo ⊗ Mo)(ρ), (23)

for ρ ∈ SAo,0Ao,1 . For this discrimination, Alice has the input
quantum composite system Ao,0Ao,1 and her own quantum
memory. She makes the input state on this system by using
the quantum feedback and her own quantum memory. In each
step, Bob makes measurement, and sends back a part of the
resultant quantum system to Alice while the remaining part
is kept in his local quantum memory. Therefore, this general
strategy contains the strategy presented in Remark 5.

Then, the problem can be regarded as a special case of
discriminating the two qq channels given in Sec. V. That
is, Bob’s operation is given as the strategy of discriminat-
ing the two qq channels. In the most general class, we
denote the generalized Chernoff and Hoeffding quantities as
CA(a, b|Mo) and BA

e (r|Mo), respectively. When no feed-
back nor no quantum memory of Alice side is allowed, we
denote the generalized Chernoff and Hoeffding quantities as
CP 0

(a, b|Mo) and BP 0

e (r|Mo), respectively. As a corollary of
Theorems 2 and 4, we have the following corollary.

Corollary 1. Assume that the qq channel Mo has the form

Mo(ρ) =
∑

x

ρxTrExρ, (24)

where {Ex}x∈X is a PVM and the rank of Ex is one. For 0 �
r � D(Mo) [see Eq. (20)] and real a and b with −D(Mo) �
a − b � D(Mo), the following holds:

CA(a, b|Mo) = CP 0
(a, b|Mo) = CP̄ 0

(a, b|Mo), (25)

BA
e (r|Mo) = BP 0

e (r|Mo) = BP̄ 0

e (r|Mo). (26)

�
This corollary shows that the above extension of our strat-

egy does not improve the generalized Chernoff and Hoeffding
quantities under the condition (24).

Proof. Theorem 2 implies the first equations in (25) and
(26) under the condition (24). When the condition (24) holds,
any input state on A = Ao,0Ao,1 can be simulated on a sep-
arable input state on A = Ao,0Ao,1. Such a separable input
state can be considered as a probabilistic input with the form
(ρ, σ ) ∈ SAo,0 × SAo,1 . The strategy Āc,0 in the problem set-
ting of Sec. VI A contains such probabilistic input. Hence,
Theorem 4 implies the second equations in the first equations
in (25) and (26). �

Remark 6. The above result states that the optimal er-
ror rates for discrimination with a quantum channel can be
achieved by independent and identically distributed state pairs
(ρ⊗n, σ⊗n), among all strategies without quantum memory
at the sender’s side. On the other hand, when entangled
state inputs are allowed, we could only show the optimality
of nonadaptive tensor-product strategy P 0

n for entanglement-
breaking channel of the form (24). The same conclusion holds
for the Chernoff bound and Stein’s lemma. �
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C. Examples

In this section we derive the generalized Chernoff and Ho-
effding bounds for three qubit channels, namely, we study the
discrimination power of depolarizing, Pauli, and amplitude
damping channels. In each case, the key is identifying the
structure of the output states of each channel by employ-
ing the lessons learned in [45]. Here we briefly summarize
the basics. A quantum state ρ in two-level systems can be
parametrized as ρ = 1

2 (I + �r · �σ ), where �r = (rx, ry, rz ) ∈ R3

is the Bloch vector which satisfies r2
x + r2

y + r2
z � 1 and �σ

denotes the vector of Pauli matrices {σx, σy, σz} such that
�r · �σ := rxσx + ryσy + rzσz. Any CPTP map Mo on qubits can
be represented as follows:

Mo

(
1

2
(I + �r · �σ )

)
= 1

2
[I + (�t + T �r) · �σ ],

where �t is a vector and T is a real 3 × 3 matrix. For each
channel, we first need to identify these parameters. The fol-
lowing lemma comes in handy in simplifying the optimization
problem.

Lemma 2 (Cf. [46, Theorem 3.10.11]). A continuous con-
vex function f on a compact convex set attains its global
maximum at an extreme point of its domain. �

Lemma 3. For any quantum channel Mo we have

sup
ρ,σ

Dα (Mo(ρ)‖Mo(σ ))

= sup
|ψ〉,|φ〉

Dα (Mo( |ψ〉〈ψ | )‖Mo( |φ〉〈φ| )),

that is, pure states are sufficient for the maximization of the
Rényi divergence with channel Mo.

Proof. This is a consequence of Lemma 2. Note that the
space of quantum states is a convex set; on the other hand, the
Rényi divergence is a convex function, and we actually need
convexity separately in each argument. Therefore, the optimal
states are extreme points of the set, i.e., pure states. �

Remark 7. Since we will focus on two-level systems, we
should recall that a special property of the convex set of qubits
which is not shared by n-level systems with n � 3 is that
every boundary point of the set is an extreme point. Since the
states on the surface of the Bloch sphere are mapped onto the
states on the surface of the ellipsoid, the global maximum will
be achieved by a pair of states on the surface of the output
ellipsoid. �

Remark 8. In the following we will use symmetric prop-
erties of the states in the Bloch sphere to calculate the Rényi
divergence. Note that the Rényi divergence of two qubit states
is not just a function of their Bloch sphere distance. For
instance, for two states ρ1 and σ1 with Bloch vectors �r1 =
(0, 0, 1

4 ) and �s1 = (0, 0,− 1
4 ), respectively, we can see that

‖ρ1 − σ1‖1 = ‖�r1 − �s1‖2 = 1
2 and the divergence equals 0.17

(α → 1). On the other hand, for states ρ2 and σ2 with Bloch
vectors �r2 = (0, 0, 1) and �s2 = (1, 0, 0), respectively, we can
see that ‖ρ2 − σ2‖1 = ‖�r2 − �s2‖2 = √

2 and the divergence
equals 0 (α → 1). However, we will see that for states with
certain symmetric properties, the Rényi divergence increases
with the distance between two arguments. �

Example 3 (Depolarizing channel). For 0 � q � 1, the
depolarizing channel is defined as follows:

Dq : ρ �→ (1 − q)ρ + q
I

2
,

that is, the depolarizing channel transmits the state with prob-
ability (1 − q) or replaces it with the maximally mixed state
with probability q. In both generalized Chernoff and Hoeffd-
ing exponents, we should be dealing with two optimizations,
one over (ρ, σ ) and the other over 0 � α � 1. We can take the
supremum over the state pair inside each expression and deal
with α next. Hence, we start with the supremum of the Rényi
divergence employing Lemma 3.

For the depolarizing channel, it can be easily seen that

�t =
⎛
⎝0

0
0

⎞
⎠ and T =

⎛
⎝1 − q 0 0

0 1 − q 0
0 0 1 − q

⎞
⎠.

Therefore, the set of output states consists of a sphere of radius
1 − q centered at the origin, i.e., r2

x + r2
y + r2

z = (1 − q)2.
Note that we only consider the states on the surface of the
output sphere. Because of the symmetry of the problem and
the fact that divergence is larger on orthogonal states, we
can choose any two states at the opposite sides of a diame-
ter. Here for simplicity we choose the states corresponding
to �r1 = (0, 0, 1 − q) and �r2 = (0, 0,−1 + q) leading to the
following states, respectively:

ρ ′ =
(

1 − q

2

)
|0〉〈0| + q

2
|1〉〈1| , (27)

σ ′ = q

2
|0〉〈0| +

(
1 − q

2

)
|1〉〈1| . (28)

Then it can be easily seen that

sup
ρ,σ

Dα (Mo(ρ)‖Mo(σ )) = 1

α − 1
log2 Q(q, α), (29)

where Q(q, α) = (1 − q
2 )α ( q

2 )1−α + (1 − q
2 )1−α ( q

2 )α . By
plugging back into the respective equations, we have for
0 � r � −(1 − q) log2

q
2−q and (1 − q) log2

q
2−q � a − b �

−(1 − q) log2
q

2−q ,

CAc,0
(a, b|Mo) = sup

0�α�1
− log2 Q(q, α) − αa − (1 − α)b,

BAc,0

e (r|Mo) = sup
0�α�1

α − 1

α

(
r − 1

α − 1
log2 Q(q, α)

)
.

The function Q(q, α) introduced above is important and will
also appear in later examples; we have

∂Q(q, α)

∂α
=

(
ln

q

2 − q

)[(q

2

)α(
1 − q

2

)1−α

−
(q

2

)1−α(
1 − q

2

)α
]
,

∂2Q(q, α)

∂α2
=

(
ln

q

2 − q

)2

Q(q, α),

where ∂
∂α

and ∂2

∂α2 denote the first- and second-order partial
derivatives with respect to the variable α. It can also be easily
checked that log2

q
2−q � 0, 0 � Q(q, α) � 1.
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FIG. 6. Hoeffding bound for depolarizing channel when entan-
gled inputs are not allowed. [The vertical axis shows BAc,0

n
e (r|Mo),

represented as B(r).] The legitimate values of r for each exponent
are imposed by strong Stein’s lemma and differ with q as r =
(q − 1) log2

q
2−q .

Let C(α) denote the expression inside the supremum in
CAc,0

(a, b|Mo). For the generalized Chernoff bound, from the
observations above and some algebra, it can be seen that

∂C(α)

∂α
= 0 ⇒ α = 1

2
−

log2
log2

q
2−q +(a−b)

log2
q

2−q −(a−b)

2 log2
q

2−q

. (30)

On the other hand, it can be checked that ∂2C(α)
∂α2 � 0, making

sure that the generalized Chernoff bound is a convex function
and also that the above zero is unique. Note that the general-
ized Chernoff bound is not a monotonic function since ∂C(α)

∂α

obviously changes sign, hence, the zero is not necessarily at
the ends of the interval.

For the Hoeffding exponent BAc,0

e (r|Mo), finding a com-
pact formula for the global maximum is not possible.
However, numerical simulation guarantees that BAc,0

e (r|Mo)
is a convex function that the first derivative has a unique
zero. We solved the optimization numerically for depolarizing
channel with three different parameters (see Fig. 6). �

Example 4 (Pauli channel). Let �p = (pI , px, py, pz ) be a
probability vector. The Pauli channel is defined as follows:

P �p : ρ �→ pIρ +
∑

i=x,y,z

piσiρσ
†
i ,

that is, it returns the state with probability pI or applies the
Pauli operators σx, σy, σz with probabilities px, py, pz, respec-
tively.

For this channel, it can be seen by some algebra that (see,
e.g., [9, Sec. 5.3] and [47])

�t =

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠ and T =

⎛
⎜⎜⎜⎝

pI + px − py − pz 0 0

0 pI − px + py − pz 0

0 0 pI − px − py + pz

⎞
⎟⎟⎟⎠. (31)

Therefore, the states on the surface of the Bloch sphere are mapped into the surface of the following ellipsoid:

(
rx

pI + pX − pY − pz

)2

+
(

ry

pI − pX + pY − pz

)2

+
(

rz

pI − pX − pY + pz

)2

= 1. (32)

Note that the Pauli channel shrinks the unit sphere with different magnitudes along each axis, and the two states on the surface
of the ellipsoid that have the largest distance depend on the lengths of the coordinates on each axis. We need to choose the states
along the axis that is shrunk the least. We define the following:

pmax = max
{|pI + pX − pY − pZ |, |pI − pX + pY − pZ |, |pI − pX − pY + pZ |}, (33)

then from the symmetry of the problem and the fact that the eigenvalues of the state �r = (rx, ry, rz ) are { 1−|�r|
2 ,

1+|�r|
2 }, the following

can be seen after some algebra:

sup
ρ,σ

Dα (Mo(ρ)‖Mo(σ )) = 1

α − 1
log2 Q(1 − pmax, α). (34)

From this, for 0 � r � −pmax log2
1−pmax

1+pmax
and pmax log2

1−pmax

1+pmax
� a − b � −pmax log2

1−pmax

1+pmax
, we have

CAc,0
(a, b|M) = sup

0�α�1
− log2 Q(1 − pmax, α) − αa − (1 − α)b,

BAc,0

e (r|M) = sup
0�α�1

α − 1

α

(
r − 1

α − 1
log2 Q(1 − pmax, α)

)
.
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FIG. 7. The Bloch sphere and its image under the amplitude damping channel with parameter γ . There are two large and one small
principal axes. As indicated in the right-hand figure, the points (0,0,1) and (0, 0, 2γ − 1) are the intersection points of the surface of the
displaced ellipsoid with the z axis; the former point also is its intersection point with the Bloch sphere.

Similar to our findings in Example 3, we can show that the
generalized Hoeffding bound is maximized at

α = 1

2
−

log2
log2

1−pmax
1+pmax

+(a−b)

log2
1−pmax
1+pmax

−(a−b)

2 log2
1−pmax

1+pmax

,

and this point is unique. The same conclusion using numer-
ical optimization indicates that the Hoeffding bound of the
Pauli channel resembles that of the depolarizing channel. Note
that a depolarizing channel with parameter q is equivalent to
a Pauli channel with parameters {pI = 1 − 3q

4 , px = q
4 , py =

q
4 , pz = q

4 } [9, Example 5.3]. �
Example 5 (Amplitude damping channel). The amplitude

damping channel with parameter 0 � γ � 1 is defined as
follows:

Aγ : ρ �→ A0ρA†
0 + A1ρA†

1, (35)

where the Kraus operators are given as A0 = √
γ |0〉〈1| and

A1 = |0〉〈0| + √
1 − γ |1〉〈1|.

For this channel, simple algebra shows that

�t =
⎛
⎝0

0
γ

⎞
⎠ and T =

⎛
⎝

√
1 − γ 0 0

0
√

1 − γ 0
0 0 1 − γ

⎞
⎠.

(36)

Note that unlike depolarizing and Pauli channels, �t has a
nonzero element for the amplitude damping channel, meaning
that the amplitude damping channel is not unital. The nonzero
�t indicates shifting the center of the ellipsoid. The ellipsoid of
output states of the amplitude damping channel is depicted in
Fig. 7 . Some algebra reveals the equation of the image to be
as follows:(

rx√
1 − γ

)2

+
(

ry√
1 − γ

)2

+
(

rz − γ

1 − γ

)2

= 1. (37)

To calculate the divergence, from the argument we made in
Remark 8, we choose the optimal states on x-z plane as �r1 =
(
√

1 − γ , 0, γ ) and �r2 = (−√
1 − γ , 0, γ ). It can be numeri-

cally checked that these points lead to maximum divergence.
These two points correspond to the following states, respec-
tively:

ρ1 = 1

2

(
1 + γ

√
1 − γ√

1 − γ 1 − γ

)
and

ρ2 = 1

2

(
1 + γ −√

1 − γ

−√
1 − γ 1 − γ

)
.

Since |�r1| = |�r2| =
√

γ 2 − γ + 1, both states have the follow-
ing eigenvalues:

λ1, λ2 = 1 ±
√

γ 2 − γ + 1

2
,

and since ρ1 and ρ2 obviously do not commute, we find the
eigenvectors for ρ1 and ρ2, respectively, as follows:

|ν1〉 = 1√
1 + ( 2λ1−1−γ√

1−γ

)2

(
1

2λ1−1−γ√
1−γ

)
,

|ν2〉 = 1√
1 + ( 2λ2−1−γ√

1−γ

)2

(
1

2λ2−1−γ√
1−γ

)
,

and

|μ1〉 = 1√
1 + ( 2λ1−1−γ√

1−γ

)2

(
1

− 2λ1−1−γ√
1−γ

)
,

|μ2〉 = 1√
1 + ( 2λ2−1−γ√

1−γ

)2

(
1

− 2λ2−1−γ√
1−γ

)
.

The following can be seen after some algebra:

sup
ρ,σ

Dα (Mo(ρ)‖Mo(σ )) = 1

α − 1
log2 W (γ , α),
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where

W (γ , α) = λ1

⎛
⎝1 − ( 2λ1−1−γ√

1−γ

)2

1 + ( 2λ1−1−γ√
1−γ

)2

⎞
⎠

2

+ λ2

⎛
⎝1 − ( 2λ2−1−γ√

1−γ

)2

1 + ( 2λ2−1−γ√
1−γ

)2

⎞
⎠

2

+
(
Q(1 −

√
γ 2 − γ + 1, α)

)(
1 − (2λ1−1−γ )(2λ2−1−γ )

(
√

1−γ )2

)2

[
1 + ( 2λ1−1−γ√

1−γ

)2
][

1 + ( 2λ2−1−γ√
1−γ

)2
] .

We also have

D(M) = λ1 log2 λ1 + λ2 log2 λ2 − λ1 log2 λ1

⎛
⎝1 − ( 2λ1−1−γ√

1−γ

)2

1 + ( 2λ1−1−γ√
1−γ

)2

⎞
⎠

2

− λ2 log2 λ2

⎛
⎝1 − ( 2λ2−1−γ√

1−γ

)2

1 + ( 2λ2−1−γ√
1−γ

)2

⎞
⎠

2

−
(λ1 log2 λ2 + λ2 log2 λ1)

(
1 − (2λ1−1−γ )(2λ2−1−γ )

1−γ

)2

[
1 + ( 2λ1−1−γ√

1−γ

)2
][

1 + ( 2λ2−1−γ√
1−γ

)2
] .

The cumbersome expressions reflect the complexity of an-
alytically solving the optimizations; however, it can be seen
numerically that the first derivative of the generalized Cher-
noff bound has a unique zero and its second derivative is
positive ensuring the convexity. We calculate and plot the
Hoeffding exponent for three different parameters of the am-
plitude damping channel in Fig. 8. �

VII. CONCLUSION

In an attempt to further extend the classical results of [16]
to quantum channels, we have shown that for the discrim-
ination of a pair of cq channels, adaptive strategies cannot
offer any advantage over nonadaptive strategies concerning
the asymmetric Hoeffding and the symmetric Chernoff prob-
lems in the asymptotic limit of error exponents, even when
the input system is continuous. Our approach is to turn the
cq channels into classical channels using eigenvalue decom-
position of the output states by using the two distributions
introduced by [8,29], and subsequently deal with the classical
channels. This latter finding led us to prove the optimality
of nonadaptive strategies for discriminating qq channels via
a subclass of protocols which only use classical feed-forward
and product inputs.

FIG. 8. Hoeffding exponent for amplitude damping channel
when entangled inputs are not allowed. [The vertical axis shows
BAc,0

n
e (r|Mo), represented as B(r).] The legitimate values of r for each

exponent are imposed by the strong Stein’s lemma and differ as a
function of γ , i.e., D(M).

In contrast, the most general strategy for discriminating
qq channels allows quantum feed-forward and entangled in-
puts. In this class, we have obtained two results for a pair
of two entanglement-breaking channels. When these two
entanglement-breaking channels are constructed via the same
PVM, the most general strategy cannot improve the parallel
scheme concerning the asymmetric Hoeffding and the sym-
metric Chernoff problems. In contrast, in an example of a
pair of entanglement-breaking channels that are constructed
via different PVMs, and in another example of a pair of
qc channels implementing general POVMs, we have shown
asymptotic separations between the Chernoff and Hoeffd-
ing exponents of adaptive and nonadaptive strategies. These
examples show the importance of the above condition for
two entanglement-breaking channels. For general pairs of qq
channels, we leave open the question of the condition for
the optimality of nonadaptive protocols; note that it is open
already for entanglement-breaking channels.

We have also studied the hypothesis testing of binary
information via a noisy quantum channel and have shown
that when no entangled inputs nor quantum feedback are
allowed, nonadaptive strategies are optimal. In addition, when
the channel is an entanglement-breaking channel composed
of a PVM followed by a state preparation, we have shown
the optimality of nonadaptive strategies without the need for
entangled inputs among all adaptive strategies.

Both our work and quantum machine-learning (ML) model
in [1] aim at learning about quantum channels. Reference
[1] considers a finite number of uses of a quantum channel
and establishes quantum advantage in the sense that classical
learning process is exponential while quantum learning pro-
cess is polynomial in the number of queries to the quantum
channel. These results are conceptually in line with results
in [14,21,22] where the number of channel uses leading to
perfect identification is relevant. In fact, one particularly in-
teresting research topic would be to find particular quantum
channels such that the quantum ML model strictly outper-
forms classical ML models in the setting of [1]. We feel that
such channels might be found by looking into our Examples
1 and 2. On the other hand, in the context of quantum ML
models, our results establish when and what kind of quan-
tum technology is required to benefit from quantum ML. In
particular, our results in Sec. VI are related to the setting of
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[1] in that in both problems there is one single channel inside
a black box, and the question is how well one can predict (or
learn about or distinguish between) the outputs of the channel.
While we study the asymptotic advantage, we expect that our
results can be applied to the scenarios where the scaling of
the prediction accuracy with respect to the sample complexity
becomes important. An example of such scaling relevant to
our work is presented in [1]. More precisely, the so-called
scaling property of our results stems from two points: First,
we have shown that, for certain channels, adaptive strategies
cannot beat nonadaptive ones. We have done so by proving
that the Rényi relative entropy in the adaptive setting can
be reduced to the Rényi relative entropy in the nonadaptive
setting. This analysis has been applied to the discrimination
of qq entanglement-breaking channels where the measure-
ment bases are the same, and without considering asymptotic
limits. The relation between the Rényi relative entropy and
the discrimination task holds no matter which type of scaling
is considered. Therefore, this reduction is expected to play
an important role even in the scaling of [1]. Second, we
have derived a lower bound for discrimination error for gen-
eral nonadaptive strategies. Since this bound can be applied
to any pair of qq channels, it led us to the first examples
of asymptotic separation between adaptive and nonadaptive
strategies. On the other hand, as this lower bound comes from
the minimum eigenvalue of a certain operator, it applies in the
nonasymptotic regime, in particular in the scaling of [1] as
well.

An obvious extension of our work would be to restrict the
number of samples (channel uses) to be a random variable
rather than a fixed number (see Li et al. [48]). Besides, Ref. [1]
studies prediction of classical bits even when quantum ML is
employed. Since our obtained bounds work in the scaling of
[1], an extension of our results should go beyond the classical
data prediction of [1].
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APPENDIX A: QUANTUM MEASUREMENTS

The aim of the Appendixes is showing Theorem 1, which
discusses the generalized Chernoff bound and Hoeffding
bound for cq-channel discrimination. The Appendixes are or-
ganized as follows: We first introduce quantum instruments
and provide useful lemmas needed for the rest of this Ap-
pendix. Our adaptive method is proven in Appendix B, and
subsequently Appendix C proves several auxiliary lemmas
leading to the main result of this section, which is presented
in Appendix D.

Since we need to handle CP-map valued measure, we pre-
pare the following lemma.

Lemma 4 (Cf. [9, Theorem 7.2]). Let κ = {κω : A → B}ω
be an instrument (i.e., a CP-map valued measure) with an
input system A and an output system B. Then there exist a
POVM M = {Mω} on a Hilbert space A and CPTP maps κ ′

ω

from A to B for each outcome ω, such that for any density
operator ρ,

κω(ρ) = κ ′
ω

(√
Mωρ

√
Mω

)
.

�
A general POVM can be lifted to a projection-valued mea-

sure (PVM), as follows.
Lemma 5 (Naimark’s theorem [49]). Given a positive

operated-valued measure (POVM) M = {Mω}ω∈� on A with
a discrete measure space �, there exists a larger Hilbert space
C including A and a projection-valued measure (PVM) E =
{Eω}ω∈� on C such that

TrρMω = TrρEω ∀ ρ ∈ SA, ω ∈ �.

�
Combining these two lemmas, we have the following

corollary.
Corollary 2. Let κ = {κω : A → B}ω be an instrument

(i.e., a CP-map valued measure) with an input system A and
an output system B. Then there exists a PVM E = {Eω} on a
larger Hilbert space C including A and CPTP maps κ ′′

ω from C
to B for each outcome ω, such that for any density operator ρ,

κω(ρ) = κ ′′
ω(EωρEω ). (A1)

Proof. First, using Lemma 4, we choose a POVM M =
{Mω} on a Hilbert space A and CPTP maps κ′

ω from A to B
for each outcome ω. Next, using Lemma 5, we choose a larger
Hilbert space C including A and a projection-valued measure
(PVM) E = {Eω}ω∈� on C. We denote the projection from C
to A by P. Then, we have

(EωP)†EωP = PEωP = Mω =
√

Mω

√
Mω (A2)

for any ω ∈ �. Thus, there exists a partial isometry Vω from
C to A such that

√
Mω = VωEωP. Hence, we have

κω(ρ) = κ ′
ω(

√
Mωρ

√
Mω ) = κ ′

ω(VωEωPρPEωV †
ω )

= κ ′
ω(VωEωρEωV †

ω ).

Defining CPTP maps κ ′′
ω by κ ′′

ω(ρ) = κ ′
ω(VωρV †

ω ). This com-
pletes the proof. �
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FIG. 9. Adaptive strategy for cq-channel discrimination. Solid
and dashed lines denote flow of classical and quantum information,
respectively. The classical outputs of PVMs are employed to decide
the inputs adaptively, and leave a post-measurement state that can be
accessed together with the next channel output.

APPENDIX B: PROTOCOL WITH PVM
FOR CQ CHANNELS

Now, we rewrite a general adaptive method in a form of a
protocol with PVM. The general procedure for discriminating
cq channels can be rewritten as follows using PVMs. To start,
Fig. 9 illustrates the general protocol with PVMs, which we
shall describe now. In the following, according to Naimark’s
dilation theorem, in each mth step, we choose a sufficiently
large space Bm including the original space Bm such that the
measurement is a PVM.

The first input is chosen subject to the distribution pX1 (x1).
Then, the output state is measured by a projection-valued
measure (PVM) {�(1)

k1|x1
}k1 on B1. The second input is then

chosen according to the distribution pX2|X1,K1 (x2|x1, k1). Then,
a PVM {�(2)

k2,k1|x1,x2
}k1,k2 is made on B1B2, which satisfies∑

k2
�

(2)
k2,k1|x1,x2

= �
(1)
k1|x1

⊗ I . The third input is chosen as
the distribution pX3|X1,X2,K1,K2 (x3|x1, x2, k1, k2), etc. Continu-
ing, the mth step is given as follows. The sender chooses
the mth input xm according to the conditional distribution
pXm| �Xm−1, �Km−1

(xm|�xm−1, �km−1). The receiver receives the mth
output ρxm or σxm on Bm.

The description of the remaining processing requires that
we distinguish two cases.

(i) For m < n, depending on the previous outcomes
�km−1 = (k1, . . . , km−1) and the previous inputs �xm =
(x1, . . . , xm), as the mth projective measurement, the receiver
applies a PVM {�(m)

�km|�xm
}�km

on B1B2 . . . Bm, which satisfies the

condition
∑

km
�

(m)
�km|�xm

= �
(m−1)
�km−1|�xm−1

⊗ I . He sends the outcome

km to the sender.
(ii) For m = n, dependent on the inputs �xn, the receiver

measures the final state on B1B2 . . . Bn with the binary POVM
(T�xn , I − T�xn ) on B1B2 . . . Bn, where hypothesis N (respec-
tively N ) is accepted if and only if the first (respectively
second) outcome clicks.

Proposition 2. Any general procedure given in Sec. II B
can be rewritten in the above form.

Proof. Recall Corollary 2 given in Sec. II A. Due
to Corollary 2, when the Hilbert space B can be cho-
sen sufficiently large, any state reduction written by a
CP-map valued measure {�k1|x1}k1 can also be written
as the combination of a PVM {�(1)

k1|x1
}k1 and a state

change by a CPTP map �k1,x1 depending on the measure-
ment outcome k1 such that �k1|x1 (ρ) = �k1,x1 (�(1)

k1|x1
ρ�

(1)
k1|x1

)
for k1, x1. Hence, we have �k1|x1 (ρ) = �k1,x1 (�k1|x1ρ�k1|x1 )
for k1, x1.

Then, we treat the CPTP map �k1,x1 as a part of the
next measurement. Let {�k2|x1,x2,k1}k2 be the quantum in-
strument to describe the second measurement. We define
the quantum instrument {�k2|x1,x2,k1}k2 as �k2|x1,x2,k1 (ρ) :=
�k2|x1,x2,k1 (�k1,x1 (ρ)). Applying Corollary 2 to the quantum in-
strument {�k2|x1,x2,k1}k2 , we choose the PVM {�(2)

k2|x1,x2,k1
}k2 on

Im �
(1)
k1|x1

⊗ B2 and the state change by a CPTP map �k1,k2,x1,x2

depending on the measurement outcome k2 to satisfy (A1).
Since

∑
k1,k2

�
(2)
k2|x1,x2,k1

is the identity on B1B2, setting

�
(2)
k1,k2|x1,x2

:= �
(2)
k2|x1,x2,k1

, we define the PVM {�(2)
k1,k2|x1,x2

}k1,k2

on B1B2.
In the same way, for the mth step, using a quantum in-

strument {�km|�xm,�km−1
}km , CPTP maps ��km−1,�xm−1

, and Corollary

2, we define the PVM {�(m)

km|�xm,�km−1
}km on Im �

(m−1)
�km−1|�xm−1

⊗ Bm

and the state change by CPTP maps ��km,�xm
. Then, set-

ting �
(m)
�km|�xm

:= �
(m)

km|�xm,�km−1
, we define the PVM {�(m)

�km|�xm
}�km

on

B1B2 . . . Bm.
In the nth step, i.e., the final step, using the binary

POVM (Tn|�kn−1,�xn
, I − Tn|�kt−1,�xn

) and CPTP maps ��kn−1,�xn−1
,

we define the binary POVM (T�xn , I − T�xn ) on B1B2 . . . Bn

as follows:

T�xn :=
∑
�kn

�
†
�kn−1,�xn−1

(Tn|�kn−1,�xn
), (B1)

where �
†
�kn−1,�xn−1

is defined as Tr��kn−1,�xn−1
(ρ)X =

Trρ�
†
�kn−1,�xn−1

(X ). In this way, the general protocol given

in Sec. II B has been converted to a protocol given in this
subsection. �

It is implicit that the projective measurement {�(m)
�km|�xm

}�km

includes first projecting the output from the quantum memory
onto a subspace spanned by {�(m−1)

�km−1|�xm−1
}�km−1

, and then find-

ing �km in the entire subspace of Im �
(m−1)
�km−1|�xm−1

⊗ Bm. Hence,

{�(m)
�km|�km−1,�xm−1

}�km
can be regarded as a PVM on B1B2 . . . Bm and

from the construction

∑
km

�
(m)
�km|�xm

= (
�

(1)
k1|x1

⊗ I⊗(m−1)) . . .
(
�

(m−1)
�km−1|�xm−1

⊗ I
)
,

which shows that the PVMs commute.
Notice also that

�
(n−1)
�kn−1|�xn−1

� �
(n−2)
�kn−2|�xn−2

⊗ I � · · · � �
(1)
�k1|�x1

⊗ I⊗(n−2).
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Therefore, the states ρ (n) and σ (n) before the final measure-
ment, which are defined in (2) and (3), are rewritten as

ρ (n) =
∑

�xn,�kn−1

pX1 (x1) . . . pXn| �Xn−1, �Kn−1
(xn|�xn−1, �kn−1)

×
(
�

(n−1)
�kn−1|�xn−1

(
ρx1 ⊗ · · · ⊗ ρxn

)
�

(n−1)
�kn−1|�xn−1

⊗ |�xn〉〈�xn|
)
,

(B2)

σ (n) =
∑

�xn,�kn−1

pX1 (x1) . . . pXn| �Xn−1, �Kn−1
(xn|�xn−1, �kn−1)

×
(
�

(n−1)
�kn−1|�xn−1

(
σx1 ⊗ · · · ⊗ σxn

)
�

(n−1)
�kn−1|�xn−1

⊗ |�xn〉〈�xn|
)
.

(B3)

APPENDIX C: AUXILIARY RESULTS AND PROOF
OF LEMMA 1

For our proof of Theorem 1, we prepare several properties
for the quantities C(a, b) and B(r) defined in (6) and (7). The
following lemma states the continuity of the B(r) function,
of which we give two different proofs. The first proof uses the
known facts for the case of two states, and the cq-channel case
is reduced to the former by general statements from convex
analysis. The second proof is rather more ad hoc and relies on
peculiarities of the functions at hand.

Lemma 6. The function (Hoeffding exponent) B(r) is con-
tinuous in r, i.e., for any non-negative real number r0,

lim
r→r0

B(r) = B(r0). (C1)

The combination of Lemma 6 and the above observa-
tion guarantees that the map r �→ B(r) − r is a contin-
uous and strictly decreasing function from [0, D(N‖N )]
to [−D(N‖N ), D(N‖N )]. Hence, we obtain Lemma 1,
i.e., when real numbers a, b satisfy −D(N‖N ) � a −
b � D(N‖N ), there exists ra,b ∈ [0, D(N‖N )] such that
B(ra,b) − ra,b = a − b.

Proof. The crucial difficulty in this lemma is that unlike
previous works, here we allow that |X | is infinite. Note that in
the case of a finite alphabet, we just need to note the role of the
channel (as opposed to states): it is a supremum over channel
inputs x ∈ X , so a preliminary task is to prove that for a fixed
x, i.e., a pair of states ρx and σx, the Hoeffding function is
continuous. This is already known [10, Lemma 1] and follows
straightforwardly from the convexity and monotonicity of the
Hoeffding function. After that, the channel’s Hoeffding func-
tion is the maximum over finitely many continuous functions
and so continuous. However, when the alphabet size is infinite,
the supremum of infinitely many continuous functions is not
necessarily continuous. Nevertheless, it inherits the convexity
of the functions for each x (cf. [46, Corollary 3.2.8]). Since
the function is defined on the non-negative reals R�0, it is
continuous for all r0 > 0, by the well-known and elementary
fact that a convex function on an interval is continuous on its
interior. It only remains to prove the continuity at r0 = 0; to
this end, consider swapping null and alternative hypotheses
and denote the corresponding Hoeffding exponent by B(r).
We then find that B(r) is the inverse function of B(r). Since
B(r) is continuous even when it is equal to zero, i.e., at

r = D(N‖N ), we conclude B(r) is continuous at r = 0 and
B(0) = D(N‖N ). �

Lemma 7. When real numbers a, b satisfy −D(N‖N ) �
a − b � D(N‖N ), then we have

C(a, b) = ra,b − b = B(ra,b) − a. (C2)

Proof. Definition of C(a, b) [Eq. (6)] implies that C(a −
c, b − c) = C(a, b) + c. Hence, it is sufficient to show that for
r ∈ [0, D(N‖N )],

C(B(r), r) = 0, (C3)

C(B(r), r) = sup
0�α�1

(1 − α)Dα (N‖N ) − αB(r) − (1 − α)r

= sup
0�α�1

α

(
α − 1

α

(
r − Dα (N‖N )

) − B(r)

)
= 0,

where the last equality follows since α−1
α

[r − Dα (N‖N )] �
B(r) for 0 � α � 1. �

Our approach consists of associating suitable classical
channels to the given cq channels, and noting the lessons
learned about adaptive strategy for discrimination of classical
channels in [16]. Our proof methodology, however, is the
classical case. The following Lemmas 8 and 9 address these
matters; the former is verified easily and its proof is omitted,
and the latter is more involved and is the key to our develop-
ments.

Lemma 8. Consider the cq channels N : x → ρx and N :
x → σx with input alphabet X and output density operators
on Hilbert space B. Let the eigenvalue decompositions of the
output operators be as follows:

ρx =
∑

i

λx
i |ux

i 〉〈ux
i | , (C4)

σx =
∑

j

μx
j

∣∣vx
j

〉〈
vx

j

∣∣ . (C5)

According to [8,29], we define two distributions

�x(i, j) := λx
i

∣∣〈vx
j

∣∣∣∣ux
i

〉∣∣2
, (C6)

�x(i, j) := μx
i

∣∣〈vx
j

∣∣∣∣ux
i

〉∣∣2
. (C7)

First, note that for all pair of indices (i, j), we have �x(i, j) �
0, �x(i, j) � 0, and

∑
(i, j) �x(i, j) = ∑

(i, j) �x(i, j) = 1,

that is, �x(i, j) = p((i, j)|x) and �x(i, j) = p̄((i, j)|x) form
conditional probability distributions on the range {(i, j)} of
the pairs (i, j). One can think of � and � as classical channels
form the input system X to the output system {(i, j)}i, j .
Second, we have

Dα (ρx‖σx ) = Dα (�x‖�x ),

which implies [see Eq. (7)]

B(r) = sup
x

sup
0�α�1

α − 1

α
[r − Dα (�x‖�x )]. (C8)

�
Note that any extensions of the operators {ρx, σx} (not

just independent and identically distributed) correspond to
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the classical extensions by distributions �x(i, j) and �x(i, j).
Define

�n
�xn

(�in, �jn) := �x1 (i1, j1) . . . �xn (in, jn),

�
n
�xn

(�in, �jn) := �x1 (i1, j1) . . . �xn (in, jn).

Then, we have the following lemma.
Lemma 9. The states ρ (n) and σ (n) defined in (2) and (3)

satisfy

EQ
a,b,n := min

T
2anTr(I − T )ρ (n) + 2bnTrT σ (n) � 1

2
EC

a,b,n,

where

EC
a,b,n := min

qX1 ,...,qXnKn−1 | �Kn−2 �Xn−1 �In−1 �Jn−1

∑
�xn,�jn,�in,�kn−1

qX1 (x1) . . .

× qXnKn−1| �Kn−2 �Xn−1 �In−1 �Jn−1
(xn, kn−1|�kn−2, �xn−1,�in−1, �jn−1)

× min
{
2an�n

�xn
(�in, �jn), 2bn�

n
�xn

(�in, �jn)
}
.

Proof. Let∣∣u�xn

�in
〉

:= ∣∣ux1
i1

, . . . , uxn
in

〉
, λ�xn

�in
:= λ

x1
i1
, · · · λxn

in
,∣∣v�xn

�jn
〉

:= ∣∣vx1
j1
, . . . , v

xn
jn

〉
, μ�xn

�jn
:= μ

x1
j1
, · · · μxn

jn
.

Consider minT 2anTr(I − T )ρ (n) + 2bnTrT σ (n); it is sufficient
to consider T to a projective measurement because the mini-
mum can be attained when T is a projection onto the subspace
that is given as the linear span of eigenspaces corresponding
to negative eigenvalues of −2anρ (n) + 2bnσ (n). For a given �xn,
the final decision is given as the projection T�xn on the image
of the projection �

(n−1)
�kn−1|�xn−1

on B⊗n depending on �xn. Since ρ (n)

and σ (n) both commute with the projection �
(n−1)
�kn−1|�xn−1

, without

loss of generality, we can assume that the projection T�xn is also
commutative with �

(n−1)
�kn−1|�xn−1

. Then, the final decision operator

Tn is given as the projection Tn := ∑
�xn

T�xn ⊗ |�xn〉〈�xn|.
Now, we recall the forms (B2) and (B3) for the states ρ (n)

and σ (n). Then, we expand the first term as follows:

Tr(I − Tn)ρ (n) =
∑

�xn,�kn−1

Tr(I − T�xn )pX1 (x1) . . . pXn| �Xn−1, �Kn−1
(xn|�xn−1, �kn−1)�(n−1)

�kn−1|�xn−1

(
ρx1 ⊗ · · · ⊗ ρxn

)
�

(n−1)
�kn−1|�xn−1

=
∑

�xn,�kn−1

Tr(I − T�xn )2 pX1 (x1) . . . pXn| �Xn−1, �Kn−1
(xn|�xn−1, �kn−1)�(n−1)

�kn−1|�xn−1

(
ρx1 ⊗ · · · ⊗ ρxn

)
�

(n−1)
�kn−1|�xn−1

=
∑

�xn,�kn−1

Tr(I − T�xn )
∑

�jn

∣∣∣v�xn

�jn

〉〈
v�xn

�jn

∣∣∣ (I − T�xn )pX1 (x1) . . . pXn| �Xn−1, �Kn−1
(xn|�xn−1, �kn−1)

× �
(n−1)
�kn−1|�xn−1

(
ρx1 ⊗ · · · ⊗ ρxn

)
�

(n−1)
�kn−1|�xn−1

=
∑

�xn,�jn,�in,�kn−1

pX1 (x1) . . . pXn| �Xn−1, �Kn−1
(xn|�xn−1, �kn−1)λ�xn

�in

∣∣∣〈u�xn

�in |(I − T�xn )�(n−1)
�kn−1|�xn−1

|v�xn

�jn 〉
∣∣∣2

,

where the first line follows from the definition of T , the second line is due to the fact that the final measurement can be chosen
as a projective measurement, the third line follows because

∑
�jn |v�xn

�jn 〉〈v
�xn

�jn | = I⊗n, and the last line is simple manipulation.

Similarly, we have

TrT σ (n) =
∑

�xn,�jn,�in,�kn−1

pX1 (x1) . . . pXn| �Xn−1, �Kn−1
(xn|�xn−1, �kn−1)μ�xn

�jn
∣∣〈u�xn

�in |T�xn�
(n−1)
�kn−1|�xn−1

|v�xn

�jn
〉∣∣2

.

For m ∈ [1 : n], define

qXmKm−1| �Km−2 �Xm−1 �Im−1 �Jm−1
(xm, km−1|�xm−1, �km−2,�im−1, �jm−1)

:= pXm| �Xm−1, �Km−1
(xm|�xm−1, �km−1)

∣∣〈u�xm−1

�im−1
|�(m−1)

�km−1|�xm−1
|v�xm−1

�jm−1

〉∣∣2

∣∣∣〈u�xm−2

�im−2
|�(m−2)

�km−2|�xm−2
|v�xm−2

�jm−2

〉∣∣∣2∣∣〈uxm−1
im−1

|vxm−1
jm−1

〉∣∣2
.

Hence,

min
T

2anTr(I − T )ρ (n) + 2bnTrT σ (n) =
∑

�xn,�jn,�in,�kn−1

pX1 (x1) . . . pXn| �Xn−1, �Kn−1
(xn|�xn−1, �kn−1)

× (
2anλ�xn

�jn
∣∣〈u�xn

�in |(I − T�xn )�(n−1)
�kn−1|�xn−1

|v�xn

�jn
〉∣∣2 + 2bnμ�xn

�in
∣∣〈u�xn

�in |T�xn�
(n−1)
�kn−1|�xn−1

|v�xn

�jn
〉∣∣2)

�
∑

�xn,�jn,�in,�kn−1

pX1 (x1) . . . pXn| �Xn−1, �Kn−1
(xn|�xn−1, �kn−1) min

{
2anλ�xn

�in , 2bnμ�xn

�jn

}

× (∣∣〈u�xn

�in |T�xn�
(n−1)
�kn−1|�xn−1

|v�xn

�jn 〉
∣∣2 + ∣∣〈u�xn

�in |(I − T�xn )�(n−1)
�kn−1|�xn−1

|v�xn

�jn
〉∣∣2)
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(a)
�

∑
�xn,�jn,�in,�kn−1

pX1 (x1) . . . pXn| �Xn−1, �Kn−1
(xn|�xn−1, �kn−1) min

{
2anλ�xn

�in , 2bnμ�xn

�jn
}

× 1

2

∣∣〈u�xn

�in |�(n−1)
�kn−1|�xn

|v�xn

�jn
〉∣∣2

=1

2

∑
�xn,�jn,�in,�kn−1

qX1 (x1) . . . qXnKn−1| �Kn−2 �Xn−1 �In−1 �Jn−1
(xnkn−1|�kn−2�xn−1�in−1 �jn−1)

× min{2an��xn (�in, �jn), 2bn��xn (�in, �jn)},
where (a) follows from the relation |α|2 + |β|2 � 1

2 |α + β|2. �

APPENDIX D: PROOF OF THEOREM 1

We are now in a position to show Theorem 1, which is shown by the combination of Lemma 10 and Corollary 3, which are
proven in this Appendix.

Lemma 10 (Generalized Chernoff bound). For two cq channels N and N , and for real numbers a, b satisfying −D(N‖N ) �
a − b � D(N‖N ),

CAc,0

(a, b|N‖N ) = CP 0

(a, b|N‖N ) = C(a, b) = ra,b − b = B(ra,b) − a.

Proof. For the direct part, i.e., that strategies in P 0 achieve this exponent, the following nonadaptive strategy achieves C(a, b).
Consider the transmission of a letter x on every channel use. Define the test Tn as the projection to the eigenspace of the positive
eigenvalues of 2naρ⊗n

x − 2nbσ⊗n
x . Audenaert et al. [7] showed that

2naTr[ρ⊗n
x (I − Tn)] + 2nbTr[σ⊗n

x Tn] � inf
0�α�1

Tr(2naρ⊗n
x )α (2nbσ⊗n

x )1−α

= 2−n sup0�α�1[(1−α)Dα (ρx‖σx )−αa−(1−α)b]. (D1)

Considering the optimization for x, we obtain the direct part.
For the converse part, since

CAc,0

(a, b|N‖N ) = CAc,0

(B(ra,b), ra,b|N‖N ) + B(ra,b) − a = CAc,0

(B(ra,b), ra,b|N‖N ) + ra,b − b,

it is sufficient to show CAc,0
(B(r), r|N‖N ) � 0 for r ∈ [0, D(N‖N )]. Observe that

EC
a,b,n = 2anαn(�‖�|Ta,b,n) + 2bnβn(�‖�|Ta,b,n),

where we let Ta,b,n be the optimal test to achieve EC
a,b,n. We choose a = B(r) and b = r in Lemma 9. The combination of (C8)

and [16, Eq. (16)] guarantees that

BAc,0

e (r|�‖�) = B(r). (D2)

Notice that the analysis in [16] does not assume any condition on the set X . When

lim inf
n→∞

1

n
log2 2rnβn(�‖�|TB(r),r,n) < 0,

then Eq. (D2) implies

lim inf
n→∞

1

n
log2 2B(r)nαn(�‖�|TB(r),r,n) � 0.

Hence, we have

lim inf
n→∞

1

n
log2 EC

B(r),r,n = max

{
lim inf

n→∞
1

n
log2 2rnβn(�‖�|TB(r),r,n) , lim inf

n→∞
1

n
log2 2B(r)nαn(�‖�|TB(r),r,n)

}
� 0. (D3)

Therefore, the combination of Lemma 9 and (D3) implies that

CAc,0

(B(r), r|N‖N ) = lim inf
n→∞

1

n
log2 EQ

B(r),r,n � 0. (D4)

This completes the proof. �
As corollary, we obtain the Hoeffding exponent.

Corollary 3 (Hoeffding bound). For two cq channels N
and N , and for any 0 � r � D(N‖N ),

BAc,0

e (r|N‖N ) = BP 0

e (r|N‖N ) = B(r).

Proof. For the direct part, note that a nonadaptive strat-
egy following the Hoeffding bound for state discrimination
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developed in [11] suffices to show the achievability. More
precisely, sending the letter x optimizing the expression on the
right-hand side to every channel use and invoking the result
by [11] for state discrimination shows the direct part of the
theorem.

For the converse part, note first that from Theorem 1, for
any r ∈ [0, D(N‖N )],

CAc,0

(B(r), r|N‖N ) = 0.

When a sequence of tests Tn satisfies lim infn→∞
1
n log2 βn[N‖N |Tn] � −r0 < −r0 + ε, Eq. (D4) with

r = r0 − ε implies that lim infn→∞ 1
n log2 αn[N‖N |Tn] �

−B(r0 − ε). Hence, we have

BAc,0

e (r0|N‖N ) � B(r0 − ε). (D5)

Due to Lemma 6, taking the limit ε → 0 leads to the following
inequality:

BAc,0

e (r0|N‖N ) � B(r0). (D6)

This completes the proof. �
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