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Quantum Krylov subspace algorithms for ground- and excited-state energy estimation
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Quantum Krylov subspace diagonalization (QKSD) algorithms provide a low-cost alternative to the conven-
tional quantum phase estimation algorithm for estimating the ground- and excited-state energies of a quantum
many-body system. While QKSD algorithms typically rely on using the Hadamard test for estimating Krylov
subspace matrix elements of the form 〈φi|e−iĤτ |φ j〉, the associated quantum circuits require an ancilla qubit with
controlled multiqubit gates that can be quite costly for near-term quantum hardware. In this paper, we show that
a wide class of Hamiltonians relevant to condensed-matter physics and quantum chemistry contain symmetries
that can be exploited to avoid the use of the Hadamard test. We propose a multifidelity estimation protocol that
can be used to compute such quantities, showing that our approach, when combined with efficient single-fidelity
estimation protocols, provides a substantial reduction in circuit depth. In addition, we develop a unified theory
of quantum Krylov subspace algorithms and present three quantum-classical algorithms for the ground- and
excited-state energy estimation problems, where each algorithm provides various advantages and disadvantages
in terms of total number of calls to the quantum computer, gate depth, classical complexity, and stability of the
generalized eigenvalue problem within the Krylov subspace.
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I. INTRODUCTION

The eigenpair problem for. large matrices, which often
consists of finding the smallest k (or largest k) eigenvalues
and eigenvectors of a matrix, remains one of the most ubiqui-
tous problems in science. Within physics and chemistry, this
problem is equivalent to finding the ground-state and low-
lying excited-state energies of a quantum many-body system
represented by a large Hamiltonian matrix. While quantum
computers provide a scalable route for solving this prob-
lem through the multiancilla-based quantum phase estimation
(QPE) algorithm [1–8], this approach will most likely require
fault-tolerant quantum computing hardware. As a result, vari-
ational quantum algorithms such as the variational quantum
eigensolver (VQE) [9–11] and quantum approximate opti-
mization algorithm (QAOA) [12] have emerged as possible
candidate algorithms capable of dealing with the constraints
of the current hardware in the noisy intermediate scale quan-
tum (NISQ) era [13].

Variational quantum algorithms aim to solve an optimiza-
tion problem, minθ C(θ), encoded through a cost function
that is typically written in the form C(θ) = 〈�(θ)|H |�(θ)〉,
where H represents a Hermitian operator that encodes the
problem of interest [14]. By defining a parametrized quan-
tum circuit, |�(θ)〉 = U (θ) |0〉⊗N , with respect to a tunable
set of parameters θ, e.g., single-qubit Pauli rotation gates,
the quantum computer provides estimates of C(θ) while the
classical computer performs an optimization subroutine that
provides an update rule for the parameters θ (e.g., using
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gradient descent). This methodology can be used to solve
the eigenpair problem to estimate the ground- and excited-
state energies of quantum systems [15–17]. While variational
quantum algorithms have a substantial advantage in terms of
gate depth, they also have significant drawbacks. For example,
it has been shown that for a large class of quantum circuits,
the optimization landscapes are highly nonconvex, making
the problem of finding the global minimum NP hard [18].
It has also been shown that barren plateaus, consisting of
exponentially vanishing gradients, can also arise in a wide
range of conditions [19–22]. For such cases, the optimization
problem becomes intractable due to the inability to update the
optimization parameters θ.

In recent years, quantum subspace diagonalization (QSD)
methods have emerged as an alternative way of solving the
eigenvalue problem for large matrices, capable of dealing
with the aforementioned drawbacks [23–26]. The basic idea
consists of using a set of nonorthogonal quantum states, easily
preparable on quantum computers, which can be used to de-
fine a generalized eigenvalue problem where the sizes of the
corresponding matrices are exponentially smaller. The hybrid
quantum-classical algorithm consists of using the quantum
computer to compute the relevant matrix elements, while the
generalized eigenvalue problem is solved on the classical
computer (see Fig. 1). The solution of the generalized eigen-
value problem provides an estimate of the relevant eigenpairs.

A number of interesting QSD methods have been proposed
which can be classified according to the numerous ways that
the nonorthogonal states are defined. For instance, McClean
and coworkers showed that by using the set of nonorthogonal
basis states a†

i a j |�G〉, it is possible to find low-lying excited
states based on the ground state |�G〉 ≈ |�(θ)〉, which is
found through the standard variational quantum eigensolver
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[27,28]. K-moment states have also been proposed as an al-
ternative way of constructing the nonorthogonal basis states,
which become scalable when the K-moment unitaries are
tensor products of Pauli operators [29,30].

It is also possible to have provable guarantees for
convergence if the set of nonorthogonal states forms a
Krylov basis [31], which is defined by the repeated appli-
cation of the matrix of interest, H , acting on the initial
guess vector |φo〉, resulting in the Krylov subspace KM =
span{|φo〉 , H |φo〉 , H2 |φo〉 , · · · , HM−1 |φo〉}. The Lanczos
method [32] is one of the most well-known algorithms that
uses this subspace to solve the eigenpair problem with conver-
gence properties that are dependent on the spectral properties
of the matrix H as well as the overlap of the guess vector |φo〉
with the true solution. While this method is routinely executed
on classical computers, its implementation on a quantum com-
puter is more challenging since H is not unitary. Nonetheless,
interesting approaches that invoke sums of unitary operators
as approximations to the Hamiltonian matrix and its higher
powers have recently been suggested [25,33] and remain an
ongoing research direction. Motta et al. have also proposed
the QLanczos algorithm which defines the Krylov subspace
by the repeated application of the imaginary-time-evolution
propagator, f (Ĥ ) = e−βĤ [34]. In this framework, the nonuni-
tary imaginary-time propagator is written as a unitary operator
under the condition that the Hamiltonian is k local. A lin-
ear system of equations must be solved classically for each
imaginary-time step, where the number of measurements and
size of such equations grow exponentially with the spreading
of entanglement.

In this paper, we focus on solving the eigenpair prob-
lem with sets of Krylov basis states generated by real-time
quantum dynamics. This idea, in the context of quantum com-
puting approaches to the eigenpair problem, was pioneered by
Parrish and McMahon [24]. They referred to their approach
as the quantum filter diagonalization (QFD) algorithm, be-
cause of similarities with the classical-computer-based filter
diagonalization methods developed in the 1990s [35–37]. In-
dependently, Stair et al. proposed a multireference selected
quantum Krylov subspace (MRSQK) algorithm [26] which
can be viewed as a generalization of QFD. These methods
represent variants of the QLanczos algorithm where the real-
time-evolution operator, e−iĤτ , is used to generate the Krylov
basis, where τ is equal to the time step size and we assume
atomic units such that h̄ = 1 throughout this paper. While
these methods have shown great promise, they are not with-
out practical issues with respect to NISQ-era applications.
First, quantum Krylov subspace algorithms based on real-
time dynamics require Hadamard test quantum circuits (see
Appendix D for more details), which uses an ancilla qubit
with controlled multiqubit unitary operations [24,26]. This
approach substantially increases the circuit depth, making it
more difficult for NISQ-era hardware. Second, the number of
calls to the quantum computer that are required to construct
the Krylov subspace matrices scales as O(LM2) where L is
the number of terms in the Hamiltonian and M is the subspace
matrix size [26]. Third, single-reference Krylov subspace al-
gorithms also suffer from large condition numbers (ratio of
largest to smallest singular values) of the overlap matrix S

that become substantially worse as the number of time steps
increases. In principle, this could make the solution of the gen-
eralized eigenvalue problem not possible for many problems
of interest, such as strongly correlated systems.

In this paper, we provide several major contributions which
address the outstanding problems discussed above. First, we
show that the Hadamard test is not required to estimate the
Krylov subspace elements of the form 〈φi|e−iτ Ĥ |φ j〉 for a
large class of Hamiltonians relevant to nuclear physics, quan-
tum chemistry, and condensed-matter physics. Our approach
avoids the need for an ancilla qubit with controlled unitary
operations and, when combined with efficient fidelity estima-
tion protocols, provides a substantial reduction in circuit depth
compared to previous approaches. Our second major contri-
bution includes the proposal of three generalized eigenvalue
problems which can be used to estimate both ground- and
excited-state energies. Each of these generalized eigenvalue
problems provides various advantages and disadvantages in
terms of the total number of calls to the quantum computer,
gate depth, classical postprocessing complexity, as well as
stability of the generalized eigenvalue problem based on the
condition number of the overlap matrix S.

In particular, we show that two of the proposed generalized
eigenvalue problems involving the unitary function e−iĤτ only
require O(M ) calls to the quantum computer compared to the
O(LM2) calls that are required for QKSD algorithms which
use Hamiltonian-based generalized eigenvalue problems. We
also show that two of the proposed generalized eigenvalue
problems, which also use real-time quantum dynamics to gen-
erate the Krylov space as in the QFD approach [24], more
closely resemble the original classical filter diagonalization
method (FDM) originally proposed by Wall and Neuhauser
[35] and subsequently further developed and elaborated upon
by Mandelshtam and Taylor [36] in that they target specific
energy ranges by energy filtering. Compared to typical Krylov
subspace algorithms which have a classical computational
complexity scaling that is polynomial in the total number of
time steps, the FDM method provides a constant time scaling
O(1). We also find empirical evidence that the correspond-
ing generalized eigenvalue problems have condition numbers
that are orders of magnitude smaller than the single-reference
Krylov subspace counterparts as the number of time steps
increases. To test the efficacy of the proposed algorithms, we
numerically compare these four methods for the problem of
finding the ground-state and excited-state energies of various
quantum chemistry Hamiltonians, showing fast convergence
with a small number of discrete time steps.

A recent paper by Klymko et al. [38] is similar in spirit
to our paper. Klymko et al. provide a theoretical basis for
nonorthogonal states generated by real-time dynamics, and
independently propose a hybrid quantum-classical algorithm
based on the generalized eigenvalue problem with the uni-
tary function, e−iĤτ , which they refer to as variational QPE
(VQPE). This method is equivalent to one of the three meth-
ods that we present in this paper, which we refer to as KDM U.
In addition, their major contributions include a comprehensive
study of the effects of noise and Trotter-Suzuki error, and a
comparison between VQPE and the conventional QPE algo-
rithm in terms of the total simulation time and total number
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of time steps required to reach chemical accuracy. Our ma-
jor contributions include the multifidelity estimation (MFE)
protocol which may be used to avoid the Hadamard test, as
well as the two hybrid quantum-classical algorithms based
on Fourier filter energies, which more closely resemble the
classical filter diagonalization method of Wall and Neuhauser
[35] and Mandelshtam and Taylor [36], which we refer to as
the FDM H and FDM U methods, respectively.

II. QUANTUM KRYLOV SUBSPACE DIAGONALIZATION
METHOD

We aim to find the ground- and excited-state energies of a
general many-body Hamiltonian written as a sum of N-qubit
Pauli terms, Ĥ = ∑L

i hiP̂i, where hi is a weighting coefficient
and P̂i is a general tensor product of N Pauli operators, P̂i =
⊗Ni

k=1σ̂
(μk )
ik

, with μk denoting the qubit number and ik acting
as a label for the type of Pauli operator {Î, σ̂x, σ̂y, σ̂z}. We
do not impose any type of restrictions on the locality of the
Hamiltonian, thereby allowing for the implementation of the
proposed algorithms for many problems relevant to nuclear
physics, condensed-matter physics, and quantum chemistry.
For illustration purposes, we will focus on the canonical
quantum chemistry Hamiltonian in second quantization which
is able represent the electronic structure problem of a wide
variety of molecular systems (see Appendix A for details).

The Hamiltonian Ĥ obeys the standard eigenvalue equa-
tion, Ĥ |ψk〉 = Ek |ψk〉, with the energy eigenvalue Ek and
corresponding eigenvector |ψk〉, assumed to satisfy the or-
thonormality condition, 〈ψk′ |ψk〉 = δkk′ . General functions of
the Hamiltonian f (Ĥ ) will also obey the eigenvalue equation

f (Ĥ ) |ψk〉 = f (Ek ) |ψk〉 . (1)

The matrix size for this eigenvalue problem scales exponen-
tially with the total number of qubits. However, as we show
below, this equation can be used to define a wide variety
of generalized eigenvalue problems in a subspace that is ex-
ponentially smaller. The basic idea requires expanding the
eigenvector |ψk〉 as a linear combination of nonorthogonal
states |φn〉:

|ψk〉 ≈
M−1∑
n=0

cn |φn〉 . (2)

Substituting this result into (1) and multiplying from the left
by 〈φn′ |, we find the generalized eigenvalue problem,

F(Ĥ )c = f (Ek )Sc, (3)

where c = (c0, c1, · · · , cM−1)T is a column vector of expan-
sion coefficients and the subspace matrices F(Ĥ ) and S are
defined by the matrix elements

[F(Ĥ )]nn′ = 〈φn| f (Ĥ )|φn′ 〉 and [S]nn′ = 〈φn|φn′ 〉 . (4)

Naturally, the subspace matrix size is much smaller in the
nonorthogonal basis when M � 2N , and is also more gen-
eral than Hamiltonian-based generalized eigenvalue problems
derived in previous works. The choice of Hamiltonian func-
tion f (Ĥ ) and nonorthogonal basis, |φn〉, will ultimately lead
to a wide variety of different hybrid quantum-classical al-
gorithms with tradeoffs in terms of convergence, number

of calls to the quantum computer, circuit depth, and clas-
sical complexity required for postprocessing. Although it
might not be implementable in the near term, it is worth
mentioning that a nonorthogonal basis defined by the func-
tion f (Ĥ ) = exp[i arccos (Ĥτ )], as used in qubitization [39],
would provide an effective way to estimate both ground- and
excited-state energies with equivalent circuit depths as a single
Trotter time step but avoiding Trotter error [40]. However, this
comes at the cost of adding a register of ancilla qubits with
controlled multiqubit unitary gates. For our purposes, we will
focus on the standard Hamiltonian and real-time-evolution
operators, f (Ĥ ) = Ĥ and e−iĤτ . We will also consider two
different sets of nonorthogonal states, thereby obtaining four
different quantum-classical algorithms which provide various
advantages and disadvantages as discussed below.

A. Krylov subspace diagonalization method

The Krylov subspace diagonalization method assumes the
eigenvector |ψk〉 may be written as a linear combination of
real-time evolved Krylov basis states:

|ψk〉 ≈ |ψK〉 =
M−1∑
n=0

cne−inĤτ |φo〉 =
M−1∑
n=0

cn |φn〉 , (5)

where |φo〉 is the initial single-reference state. Using the
steps outlined above, the corresponding generalized eigen-
value problem may be written as FK (Ĥ )cK = f (Ek )SK cK ,
where the subscript K denotes the real-time Krylov basis
with the subspace matrix elements defined using Eq. (4).
We emphasize that this basis, specifically when f (Ĥ ) = Ĥ ,
which we refer to as the KDM H method, recovers the QFD
and MRSQK methods in the limit of a single reference state
[24,26]. Our contribution therefore corresponds to the KDM
method with f (Ĥ ) = e−iĤτ , which we refer to as the KDM
U method, which also coincides with the recent proposal by
Klymko et al. [38].

B. Filter diagonalization method

The filter diagonalization method, on the other hand, ap-
proximates |ψk〉 as a linear combination of time-evolved wave
functions that are Fourier transformed with respect to a set of
filter energies Ej ,

|ψk〉 ≈ |ψF 〉 =
J∑

j=1

M−1∑
n=0

c je
−in(Ĥ−Ej )τ |φo〉 =

J∑
j

c j |φ j〉 ,

(6)

resulting in the generalized eigenvalue problem, FJ (Ĥ )cJ =
f (Ek )SJcJ with matrix elements defined by the nonorthogonal
basis of filter energies. This type of basis has an interesting
property in that |φ j〉 will be dominated by eigenvectors the
eigenvalues of which are close to the filter energies Ej . If we
expand the starting state, |φo〉, in terms of the true eigenvectors
|ψk′ 〉 of the Hamiltonian, such that |φo〉 = ∑

k′ ck′ |ψk′ 〉, then
it is possible to show that

|φ j〉 =
∑

k′
ck′

1 − e−iM(Ek′ −Ej )τ

1 − e−i(Ek′ −Ej )τ
|ψk′ 〉 , (7)
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highlighting the fact that eigenvectors with eigenvalues Ek′

that are close to the filter energies Ej (Ek′ ∼ Ej) will have
the largest contribution. In total, the FDM method will give
rise to two quantum-classical algorithms which we refer to
as the FDM H method if f (Ĥ ) = Ĥ and FDM U method if
f (Ĥ ) = e−iĤτ .

C. Relationship between both nonorthogonal bases

Analyzing the two generalized eigenvalue problems, it is
possible to show that the two approaches are related by the
M × J transformation matrix,

W =

⎛
⎜⎜⎜⎜⎝

1 1 · · · 1
e−iE1τ e−iE2τ · · · e−iEJ τ

e−i2E1τ e−i2E2τ · · · e−i2EJ τ

...
...

. . .
...

e−i(M−1)E1τ e−i(M−1)E2τ · · · e−i(M−1)EJ τ

⎞
⎟⎟⎟⎟⎠,

resulting in the following relationship between the real-
time-evolution Krylov diagonalization method and the filter
diagonalization method:

W†FK (Ĥ )W = FJ (Ĥ ), (8)

W†SK W = SJ . (9)

In the case that the filter frequencies are chosen with an
equidistant grid, such that Ej = 2π

Mτ
j where j = 0, · · · , M −

1, then the transformation W becomes a unitary matrix up
to a normalization factor equivalent to the discrete Fourier-
transform matrix. It is important to emphasize, however,
that the total number of discrete energies J can be much
smaller than the total number of time steps, M, resulting in a
constant-time O(1) computational complexity for solving the
FDM-based generalized eigenvalue problem on the classical
computer, compared to the polynomial scaling O[poly(M )]
for the KDM method. Moreover, the choice of filter window
with a suitable number of filter energies can also stabilize the
generalized eigenvalue problem, resulting in smaller condition
numbers for the overlap matrix S. We provide evidence of this
result in the Numerical Experiments section of the paper.

D. Number of calls to the quantum computer

In the following, we provide an estimate of the number
of calls to the quantum computer, NK , required to construct
the Krylov subspace matrix elements defined by Eq. (4).
We assume that the subspace matrix elements are computed
with Hadamard-test quantum circuits, or equivalently, with
the multifidelity estimation protocol which we describe in the
following section. For the latter, our estimates are based on
single fidelity estimation circuits, such as a SWAP-test circuit
or a mirrorlike quantum circuit, as outlined in the Discussion
section below. In general, the estimation of these quantities
to precision ε will require 1/ε2 samples, which will result in
a 1/ε2 multiplicative factor for all of the cases we consider
below. Furthermore, we will restrict ourselves to the single-
reference Krylov subspace algorithm, though more general
estimates of the multireference case may be done with the
same arguments.

We first consider the estimation of the overlap matrix el-
ements in S, noting that they will be the same for all four
methods. These matrix elements are equivalent to correlation
functions of the form Cn(τ ) = 〈φo|e−inĤτ |φo〉. By assuming
that a single call to the quantum computer provides an esti-
mate of both the real and imaginary parts of the correlation
function Cn(τ ), then M − 1 calls to the quantum computer are
required to construct the overlap matrix S.

For f (Ĥ ) = Ĥ , the matrix elements of the subspace matrix
F(Ĥ ) may be written as 〈φn|Ĥ |φn′ 〉 = 〈φo|einĤτ Ĥe−in′Ĥτ |φo〉.
Here, the number of calls to the quantum computer will de-
pend on whether the Hamiltonian Ĥ and the quantum circuit
implementation of the time-evolution operator, e−inĤτ , com-
mute. If we assume that they commute, these elements may be
written as 〈φo|Ĥe−i(n′−n)Ĥτ |φo〉 = ∑L

i hi 〈φo|P̂ie−i(n′−n)Ĥτ |φo〉,
resulting in a Toeplitz matrix structure that requires O(LM )
calls to the quantum computer. However, in the case of Trot-
terized quantum circuits where the commutation relation does
not hold exactly, the total number of calls would scale as
O(LM2).

Methods using the real-time-evolution function, f (Ĥ ) =
e−iĤτ , will have a complexity that is substantially less. In
this case, the matrix elements will also correspond to corre-
lation functions, Cn(τ ). The matrix elements from the overlap
matrix, S, can therefore be used to construct the majority of
the matrix elements in F(Ĥ ). The off-diagonal elements in
the top-right and bottom-left corners, however, will require
an additional call to the quantum computer for the estimation
of the CM (τ ) correlation function. In total, the f (Ĥ ) = e−iĤτ

method will require M calls to the quantum computer. This,
however, comes at the cost of requiring a single quantum
circuit evaluation with an increased circuit depth equivalent
to a single time step (assuming a Trotterized time-evolution
circuit).

Finally, it is worth noting that for fixed f (Ĥ ), the KDM and
FDM methods will have an equivalent number of calls to the
quantum computer because they are related by Eqs. (8) and
(9). This highlights the fact that both methods only differ in
the postprocessing methodology used to estimate the ground-
and excited-state energies and, as a result, both methods can
be carried out in parallel on a classical computer. A summary
of these results is shown in TableI, underlining how each of
these four methods carries different complexities due to quan-
tum and classical computational resources. Here, we wrote the
scaling of the number of calls NK for f (Ĥ ) = Ĥ as O(LM p)
where p = 1 if the Hamiltonian and time-evolution unitary
circuit commutes and p = 2 otherwise.

III. MULTIFIDELITY ESTIMATION PROTOCOL

We now consider the evaluation of the complex-valued
matrix elements (4), equivalent to a single call to the quantum
computer as defined above. The Hadamard test is the stan-
dard method used for estimating these types of non-Hermitian
quantities (see Appendix D for more details), which originates
from the single-ancilla-based quantum phase estimation al-
gorithm from Kitaev. This approach requires an ancilla qubit
with controlled unitary operations that substantially increases
the total number of multiqubit gates in the overall circuit.
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TABLE I. Summary of results. NK is equal to the number of measurements or calls to the quantum computer required to construct the
Krylov subspace matrix elements. L is equal to the total number of terms in the Hamiltonian Ĥ . M is equal to the order of real-time evolved
Krylov subspace. The exponent p is equal to 1 if the Hamiltonian, Ĥ , perfectly commutes with the quantum circuit unitary which approximates
the time-evolution operator, e−iτ Ĥ , otherwise it is equal to 2.

f (Ĥ ) Nonorthogonal basis NK Classical complexity

Ĥ Real-time dynamics O(LM p/ε2) O[poly(M )]
e−iĤτ Real-time dynamics O(M/ε2) O[poly(M )]
Ĥ Fourier filter energies O(LM p/ε2) O(1)
e−iĤτ Fourier filter energies O(M/ε2) O(1)

In the near term, multiqubit gates, e.g., controlled-NOT (CNOT)
gates, represent an expensive resource. In the following, we
propose a method that avoids the Hadamard test, thereby
making a wide variety of quantum Krylov subspace diago-
nalization methods more amenable to near-term devices.

The motivation for our proposed method stems from the
field of interferometry which aims to measure a target phase
θt that encodes a physical parameter of interest. Interference
pattern measurements can only provide information about the
phase difference, �θ = θr − θt . A reference laser is typically
used to provide a controllable reference phase θr , allowing for
the proper estimation of θt . While the Hadamard test provides
a reference phase through use of the ancilla qubit, the MFE
protocol generates the reference phase through the superposi-
tion state 1√

2
(|R〉 + |φk〉), where the reference state |R〉 and the

target state |φk〉 originate from different symmetry sectors of
the Hamiltonian. If the time evolution of the reference state is
classically simulatable, it will be possible to have a reference
phase without an ancilla qubit. Below, we provide a more
detailed mathematical description.

The proposed approach assumes that the Hamiltonian con-
tains a symmetry Ŝ such that [Ĥ , Ŝ] = 0, with quantum states
|φk〉 that have a definite symmetry, such that 〈φk|Ŝ|φk〉 = sk ,
where sk corresponds to an eigenvalue of the symmetry op-
erator Ŝ. We also assume that there exists a reference state
|R〉 where 〈R|e−inτ Ĥ |R〉 is efficient to calculate on the clas-
sical computer. We emphasize that the reference and target
states, |R〉 and |φk〉, are not required to be eigenstates of
the Hamiltonian, but they do need to originate from differ-
ent symmetry sectors such that 〈R|φk〉 = 0. If all of these
conditions hold, then it will be possible to implement the
multifidelity estimation protocol as shown below. For many
nuclear physics, quantum chemistry, and condensed-matter
physics applications, the particle number, total spin, and spin
projection symmetries may be applicable and can be used
in this approach due to the fact that they contain symmetry
sectors that are classically tractable.

As a concrete example, we consider the quantum chem-
istry Hamiltonian which conserves the electron number N̂ =∑

i â†
i âi. We assume that the quantum states |φk〉 have a

definite electron number, 〈φk|N̂ |φk〉 = nk , that is not equal
to zero. To estimate the most general off-diagonal element,
〈φi|e−inĤτ |φ j〉, as required by multireference Krylov-based
methods, the MFE protocol requires measuring the following
state fidelities on the quantum computer:

F1 = |〈φi|e−inĤτ |φ j〉|2, (10)

F2 = 1
4 |(〈φi| + 〈R|)|e−inĤτ |(|R〉 + |φ j〉)|2. (11)

Combining both results yields the magnitude and phase of the
off-diagonal matrix element 〈φi|e−inĤτ |φ j〉 = reiθ , written in
complex polar coordinates:

r = √
F1, (12)

θ = cos−1

(
4F2 − F1 − r2

R

2rR
√

F1

)
+ θR (13)

where rR and θR represent the reference amplitude and phase
defined as 〈R|e−inĤτ |R〉 = rReiθR . If we take the reference state
as the zero particle number (vacuum) state, |R〉 ≡ |0〉⊗N , then
the reference amplitude rR will be equal to 1 while the refer-
ence phase will be equal to θR = −nτ 〈0|Ĥ |0〉, where 〈0|Ĥ |0〉
denotes the expectation value of the Hamiltonian with respect
to the vacuum state which can be evaluated efficiently on a
classical computer.

A. Preparation of 1√
2
(|R〉 + |φk〉)

One of the key requirements of this protocol is the prepa-
ration of the state 1√

2
(|R〉 + |φk〉) on the quantum computer.

Note that because we have imposed the requirement that |R〉
and |φk〉 belong to different symmetry sectors (e.g., contain
different particle numbers), it is possible to prepare such
states using Greenberger-Horne-Zeilinger state preparation
circuits. For instance, we consider the preparation of the state

1√
2
(|R〉 + |φHF〉) where |R〉 is the vacuum state and |φHF〉 is the

Hartree-Fock (HF) state for a system of N spin orbitals (rep-
resented by N qubits) and η electrons. In the Jordan-Wigner
basis, the Hartree-Fock state takes the simple product-state
form, |φHF〉 = |0〉⊗N−η ⊗ |1〉⊗η, where the first η qubits are
prepared in the 1 state and the rest of the qubits remain
in the zero state. To prepare the target superposition state,

1√
2
(|0〉⊗N + |φHF〉), a Hadamard gate is applied to the first

qubit, followed by a ladder of CNOT gates applied up to the
ηth qubit, resulting in a total of η − 1 CNOT gate operations.
More general states can also be prepared by subsequently
applying a symmetry-conserving quantum circuit US [41],
which could in principle represent a parametrized quantum
circuit originating from a VQE preprocessing step. As an
example, we provide the quantum circuit that prepares the
state, 1√

2
(|000000〉 + |000111〉), where the Hartree-Fock state
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represents a system of six spin orbitals with three electrons:

|0〉 H •

US

|0〉 •

|0〉

|0〉

|0〉

|0〉
1√
2
( 00000 + 000111 )

B. Circuit depth estimate

In principle, it is possible to roughly quantify the total gate
depth reduction afforded by the multifidelity estimation proto-
col as follows. We first assume that the unitary time evolution,
U = e−iĤt acting on N qubits, is decomposed into a quantum
circuit consisting of p CNOT gates and q single-qubit gates.
The corresponding controlled-unitary gate required for the
Hadamard test would require p Toffoli gates and q two-qubit
gates in the worst case with completely unstructured quantum
circuits (structured circuits would require further analysis, see
[26]). The Toffoli gates may be further decomposed into CNOT

gates and would require somewhere in between 3p and 6p
total CNOT gates with additional single-qubit gates [42–44].
As discussed in Ref. [44], the controlled unitary gate will
have between (3p + q) CNOT gates and (6p + 2q) CNOT gates
with some additional single-qubit gates. Comparatively, the
multifidelity estimation protocol will only require (p + r)
CNOT gates where r corresponds to the number of CNOT gates
required to implement the superposition state, 1√

2
(|R〉 + |φk〉).

Assuming that a single time step requires 6p CNOT gates (p �
q, r), then the multifidelity estimation protocol would allow
between three and six more time steps than the Hadamard
test approach. On the other hand, the additive factor q and r
can have vastly different scalings. As mentioned previously,
for the case of a Hartree-Fock target state prepared in the
Jordan-Wigner basis, the total number of CNOT gates would
correspond to r = η, where η is equal to the total number of
particles (e.g., electrons) in the number-conserving Hamilto-
nian. This number will be always be smaller than or equal to
the total number of qubits and will be substantially smaller
than q which has an upper bound proportional to the total
number of Hamiltonian terms O(N4). The additive factor q
may therefore have a large contribution on the total circuit
depth.

In addition, it is worth noting that connectivity could also
play a role in the total gate depth reduction afforded by the
MFE protocol compared to the Hadamard test. The connec-
tivity between qubits affects the total circuit depth of the
controlled unitary gate operation since limited connectivity
implies that additional CNOT gates would be required to swap
information between nonconnected qubits. Therefore, quan-
tum hardware with limited connectivity could suffer from

longer circuit depth requirements, which can be especially
detrimental for the controlled multiqubit operations required
for the Hadamard test. This could be countered, however, by
advanced compilation techniques as well as richer native gate
sets that could also decrease the gate depth. As a result, there
exist additional hardware-specific constraints which might in-
crease or decrease the total estimated gate count and would
have to be accounted for accordingly.

We finalize this section by noting that the multifidelity es-
timation protocol proposed in this paper, which avoids the use
of an auxiliary qubit with controlled multiqubit operations, is
similar in nature to the protocols proposed in Refs. [45–47].
In particular, Lu et al. [45] suggest the preparation of catlike
states that avoid the use of an auxiliary qubit where one of the
cat states corresponds to an eigenvector of the Hamiltonian
and the second state corresponds to the target state (not nec-
essarily an eigenstate). References [46,47] also demonstrate
ancilla-free approaches for robust phase estimation. Reference
[46] outlines a methodology that achieves a shot-noise-limited
scaling with the number of samples [Ns ∼ O(1/ε2)], while
Ref. [47] demonstrates Heisenberg-limited scaling with re-
spect to the total number of time steps M, which they illustrate
for a superposition state consisting of a reference state and
target state that are both eigenstates of the Hamiltonian. Our
approach closely coincides with these methodologies; how-
ever, we have also shown how Hamiltonian symmetries can
be exploited to ensure that both states remain orthogonal to
one another after time evolution. We have also suggested the
use of a reference state that belongs to a symmetry sector
with small Hilbert-space dimension, e.g., dim(HS ) scaling at
most polynomially with the number of qubits. This latter point
makes the time evolution of the reference state classically
simulatable, and therefore relaxes the eigenstate condition
mentioned in Refs. [45,47]. We also presented an explicit
quantum circuit that prepares such superposition states, high-
lighting the fact that the MFE protocol is highly scalable with
low circuit depth compared to nonancilla based approaches.
It will be interesting to explore, in future work, whether
quantum Krylov-based algorithms can also take advantage of
Heisenberg-limited scaling with respect to the total number of
samples, i.e., Ns ∼ O(1/ε).

IV. NUMERICAL EXPERIMENTS

In Fig. 2, we compare these four methods for the esti-
mation of the ground-state energy curves for three different
molecular systems: (a) a one-dimensional H6 chain, (b) an
H2O molecule with fixed bond angle φ = 104.45◦, and (c) a
BeH2 molecule. The energy curves are plotted as a function of
interatomic distance R labeled in the insets. See Appendix A
for a discussion of the various levels of electronic structure
theory used in these examples. In all cases, we numerically
simulate the hybrid quantum-classical algorithm as described
in Fig. 1 using the HF state as the initial single-reference state
|φo〉 and an ideal time-evolution quantum circuit U (nτ ) =
e−inĤτ where the time-step size, τ = 0.1 a.u., is used for all
of the simulations. The choice of time step is very important
but can be a subtle issue and is discussed in Appendix B. It
should be noted that the probabilities required for the multi-
fidelity estimation protocol were computed directly from the
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FIG. 1. Overview of quantum Krylov subspace algorithms.

state vector simulation. We have confirmed that the quantum
Krylov-based methods presented herein also work well with
the inclusion of sample or shot noise and have noticed that
the FDM method is more susceptible to sample noise when
compared to the KDM method. A quantitative exploration of
sample noise, Trotter-Suzuki error, and other effects is beyond
the scope of the current paper and will be the subject of future
work, though we refer the reader to recent work by Klymko
et al. for some preliminary discussions on this topic [38].

In the top row of Fig. 2, we plot the absolute energy scale
measured in hartrees while the bottom two rows show the en-
ergy error �E = |EFCI − Eapprox|. We also compare the FDM
method with a small frequency window [EHF − 0.3Eh, EHF +
0.2Eh] in the second row and a large frequency window
[EHF − 20Eh, EHF + 20Eh] in the third row. The conventional
implementation of the FDM method uses a narrow frequency
window to select the filter energies Ej [36], corresponding to
the methodology used in the second row. Using this approach,
we find that the FDM method converges much more slowly
than the equivalent KDM method, thereby requiring more
time steps to achieve similar accuracy. Instead we found that
by using large frequency windows to choose the filter energies
Ej , it is possible to improve the convergence rate of the FDM
method so that it is comparable to the KDM method. This
is shown by the nearly overlapping energy error curves in
the third row. In the latter case, we find that we are able
to achieve chemical accuracy within three to six time steps
for all three molecular systems. While we do not consider
Trotter error in this paper, it is worth noting that previous work
[24,26] has shown that Trotterized quantum circuits provide
an additional error, �t , that increases the energy error �E of
the ground-state energy estimate. We expect similar behavior
for the quantum-classical algorithms that we have proposed in
this paper, but will leave such studies for future work.

Figure 2 demonstrates the dependence of the energy error
of the FDM method as a function of the hyperparameters Emin,
Emax, and J which define the energy window [Emin, Emax] as
well as the total number of filter energies, J . The choice of
energy window and number of filter energies affects the con-
vergence rate of the FDM method quite dramatically, which
is also illustrated clearly in Fig. 3. In practice, a hyperpa-
rameter optimization loop can be added to the conventional
hybrid quantum-classical algorithm depicted in Fig. 1, which

would be performed on the classical computer exclusively
without any additional calls to the quantum computer. For
instance, this loop may consist of an exhaustive grid search
of the parameters Emin, Emax, and J while monitoring either
the ground-state energy estimate or the variance of the func-
tion f (Ĥ ) as a function of the FDM wave function, |ψF 〉 =∑J

j c j |φ j〉. For the ground-state energy estimation problem,
c j would correspond to the eigenvector coefficients from the
generalized eigenvalue Eq. (3) with the smallest eigenvalue.
Explicitly, the hyperparameter optimization loop for the FDM
U method would monitor the variance of the function, f (Ĥ ) =
e−iĤτ , written as

Var[e−iĤτ ] = 1 − |〈ψF |e−iĤτ |ψF 〉|2, (14)

where we have assumed that the function |ψF 〉 has been
normalized, such that 〈ψF |ψF 〉 = 1. This definition of the
variance has a maximum value of 1 and minimum value of
zero when |ψF 〉 is an eigenstate of the Hamiltonian, Ĥ . It is
important to note that the second term on the right-hand side
of Eq. (14) may be written as a sum of the matrix elements
defined by Eq. (4), 〈φn|e−iĤτ |φn′ 〉, highlighting the fact that
the variance is easily calculated on the classical computer with
no additional calls to the quantum computer.

To better compare the KDM- and FDM-based algorithms,
we plot the energy error, condition number, and variance in
Fig. 3 as a function of total number of time steps. We only
plot the results for the water molecule case from Fig. 1(b)
at the long interatomic distance of R = 2.8 a.u. because it
represents the toughest point with the largest energy error
for both methods. In general, we found similar behavior for
the other two molecules for different interatomic distances.
In the figure, we only plot the f (Ĥ ) = e−iĤτ operator case,
though similar behavior is seen for the Hamiltonian case,
f (Ĥ ) = Ĥ . In the top row, we present the result for the
narrow filter frequency window, [EHF − 0.3Eh, EHF + 0.2Eh],
while the bottom row presents the results for the large fre-
quency window, [EHF − 20Eh, EHF + 20Eh]. We emphasize
that we have not performed the hyperparameter optimization
loop as discussed above, but chose the appropriate frequency
window and total number of filter energies J for illustration
purposes. We first analyze the KDM U method results, which
are the same for the top and bottom rows. We find that the
KDM U method reaches chemical accuracy within four time
steps while also reaching the minimum variance of 2 × 10−6

within eight time steps. The condition number of the KDM
method, however, displays a troubling increasing trend as a
function of time steps. We highlight this point by controlling
the transparency of the KDM curve based on the threshold
value, κth = 1 × 1017, where the dark blue lines correspond to
κ < κth. In general, we find that the KDM method becomes
unstable as the number of time steps increases, as shown
by the fluctuating energy error (light blue lines) and rela-
tively large variance values ≈10−2. Comparatively, the FDM
method displays drastically different behavior based on the
chosen frequency window. While the small frequency win-
dow stabilizes the FDM method quite well, as shown by the
decreasing condition numbers in the top row of Fig. 3(b), the
corresponding energy error [Fig. 3(a)] and variance [Fig. 3(c)]
decrease much more slowly, never quite reaching the mini-
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FIG. 2. Comparison of KDM and FDM methods for predicting the ground-state potential-energy curves of a (a) six-site linear hydrogen
chain, (b) H2O molecule, and (c) BeH2 molecule. The top row plots the absolute energy scale measured in hartrees. The second and third rows
plot the energy error �E = |EFCI − Eapprox| between the full configuration-interaction calculation and the proposed approximate methods,
where the second row uses a narrow frequency window, [EHF − 0.3Eh, EHF + 0.2Eh] for the FDM method, while the third row uses a large
frequency window, [EHF − 20Eh, EHF + 20Eh].

FIG. 3. (a) Energy error �E , (b) condition number of the overlap
matrix S, and (c) variance of the approximate wave function as
a function of time steps, n. The results are shown for the water
molecule for the extended bond length, R = 2.8 a.u., from Fig. 1(b).
The operator, f (Ĥ ) = e−iĤτ , was used for the KDM method (blue)
and FDM method (red). The FDM results are decomposed in terms
of various total number of filter energies (J = 3, 4, 5) for the small
frequency window and J = 6, 7, 8 for the large frequency window.
The transparency of the KDM curve is determined by a threshold
value, κth = 1 × 1017, for illustration purposes, where the dark blue
lines correspond to κ < κth.

mum energy error and variance values of the KDM method. It
is also worth noting the convergence behavior for the different
numbers of filter energies (J = 3, 4, 5). The overall condition
number for the J = 3 FDM method is much smaller than the
J = 5 case, though for a large number of time steps the energy
error for the latter is over two orders of magnitude smaller. On
the other hand, the FDM method, based on the large frequency
window, is able to achieve fast convergence comparable to the
KDM method. As the total number of time steps increases, the
FDM method displays a much smaller energy error, condition
number, and variance compared to the KDM method. These
results highlight the fact that for certain problems of interest,
where a large number of time steps are required to estimate
the ground-state (or excited-state) energies, the FDM method
might be preferable when compared to the KDM method,
resulting in much smaller energy errors even within 10 to 20
time steps.

In Fig. 4, we numerically simulate the estimation of the
first four singlet excited-state energies for the water molecule
as a function of interatomic distance R. It is important to
emphasize that the excited-state energy estimation problem
has a wide variety of important applications across physics
and chemistry, where classical algorithms are often much less
developed than the corresponding ground-state energy estima-
tion algorithms. For illustration purposes, we only consider
the singlet (S = 0) excited-state energy levels, and use singlet
states with zero total angular momentum as the initial starting
states (see Appendix E for more details) where a time-step
size of τ = 0.1 a.u. is used for all of the simulations. We
emphasize that our approach does not require knowledge of
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FIG. 4. Comparison of KDM and FDM methods for the first four
singlet excited-state energies of H2O as a function of interatomic
distance R between the oxygen and hydrogen atoms. (a) Absolute
energy scale (measured in hartrees) as a function of interatomic
distance. (b) Energy error of the nth excited state, �En = |E (n)

FCI −
E (n)

approx|, as a function of interatomic distance.

the ground-state wave function (or any other eigenfunction),
making this approach distinct from conventional excited-state
energy estimation algorithms, specifically within the scope
of variational quantum algorithms, which typically use the
ground-state wave function as a prerequisite. Here, we present
the results for the FDM method with a large frequency win-
dow. We found that a small frequency window did not give
very good results for the FDM method. We find that both
the KDM (blue) and FDM (red) methods perform compara-
bly well for the first three excited states. For the first two
excited-state energy levels, both methods achieve chemical
accuracy within four time steps across all interatomic dis-
tances. The third and fourth excited-state energy curves are
quite challenging due to an avoided crossing at approximately
R = 2.6 a.u. which results in nearly degenerate energy curves
for the last four data points. We find that both the KDM
and FDM methods achieve chemical accuracy for the third
excited-state energy curve for nearly all of the interatomic
distances, all within three time steps. On the other hand, the
fourth excited-state energy curve estimation was particularly
challenging for both methods. Although it is not shown here,
we found that the KDM method only remained stable up to
the fifth time step. However, even within five time steps it was
unable to reach chemical accuracy for any of the interatomic
distances. For this reason, we present the excited-state energy
predictions for the tenth time step, where the KDM U method
reaches chemical accuracy for nine out of the 20 data points.
Furthermore, as evidenced by Figs. 4(a) and 4(b), the KDM H
method, denoted by the blue crosses, displays a large amount
of instability where it is only able to reach chemical accuracy
for four out of the 20 data points. For the fourth excited-state
energy curve, the FDM U method outperforms all of the other
methods, achieving chemical accuracy for 17 out of the 20
data points within ten time steps. The FDM H method is only
able to reach chemical accuracy for nine out of the 20 data
points within ten time steps.

Finally, it is worth emphasizing that increasing the total
number of time steps does not help improve the convergence
of the KDM method due to the large condition numbers; how-
ever, using step sizes that are much larger (e.g., τ = 0.5 a.u.)
does improve the performance of the KDM method quite dra-
matically. This, however, comes at a cost of requiring larger
Trotter circuits for a single time step to maintain an equivalent
Trotter error. Alternatively, Klymko et al. [38] have shown
that singular value decomposition [31] applied to the overlap
matrix with small singular values neglected can be used to
stabilize the KDM time iterations. We should also point out
that within all of the numerical experiments, the presented
results correspond to a fixed number of time steps across
all interatomic distances. In practice, the quantum-classical
algorithm could have a predetermined stopping criterion, as
illustrated in Fig. 1, which would imply that every distance
point could terminate with a different number of time steps.
This would also hold for the hyperparameter optimization
loop, which may be implemented independently for every
time step and distance point. In summary, while both methods
provide adequate excited-state energy estimation, the FDM
method might be the preferable choice and perhaps even the
only option for reaching a high level of accuracy based on
these numerical simulations.

V. DISCUSSION

A. Single fidelity estimation protocols

In the following, we discuss various single fidelity estima-
tion protocols that are relevant to the MFE protocol presented
above. Over the past few years, there have been a wide range
of resource-efficient fidelity estimation protocols that have
been developed for the problem of measuring the state fidelity
between two pure states |φi〉 and |φ j〉. Here, we highlight
a few of these methods which could be used to provide a
substantial reduction in the overall circuit depth in conjunction
with the multifidelity estimation protocol, specifically when
compared to the standard Hadamard test. Before discussing
modern approaches, it is worth noting that in the context of
fault-tolerant quantum computing, it is sufficient to use the
SWAP test to estimate the state fidelity |〈φi|φ j〉|2, to precision
ε with O(1/ε2) repeated measurements. However, the origi-
nal implementation of the SWAP test requires a 2N + 1 qubit
circuit, where two N-qubit registers are used for storing |φi〉
and |φ j〉 with a controlled-SWAP gate that uses an additional
ancilla qubit.

B. Destructive SWAP test

As shown in Refs. [48,49], the destructive SWAP test
achieves the same outcome as the original SWAP test but
without the use of an ancilla qubit. This approach uses a set
of parallel Bell measurements and classical postprocessing to
achieve the same result as the original SWAP test with constant
depth, O(1). As a concrete example, we provide the quantum
circuit that implements the destructive SWAP test for two three-
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qubit registers:

These Bell measurements only require one-to-one connectiv-
ity between each of the qubits in each of the two registers (as
shown above). In principle, this might be a more hardware-
friendly connectivity compared to the Hadamard test quantum
circuit which requires one-to-all connectivity between the an-
cilla qubit and the rest of the N-qubit register. In addition, the
destructive SWAP test also allows for an additional reduction in
the gate depth by allowing the implementation of Trotterized
quantum circuits where only n/2 time steps are implemented
on each register. Overall, the destructive SWAP test avoids
the use of controlled multiqubit unitaries, and reduces the
depth of the time-stepping circuits by one-half, resulting in a
substantial reduction in overall circuit depth compared to the
original Hadamard test.

C. Mirror-type quantum circuits

As discussed in Ref. [50], it is also possible to estimate
pure-state fidelities by using the following mirror-type quan-
tum circuits (shown for a three-qubit register):

By assuming that the all-zero state |0〉⊗N is the initial state
of the quantum circuit, it is then possible to estimate F1 by
measuring the transition probability of returning to the same
state at the output, i.e., measuring F1 = |〈0|U †

i Uj |0〉|2. The
same type of circuit can be used to measure the second fidelity
F2; however, Ui and Uj must be replaced with the appropriate
circuits that prepare 1√

2
(|0〉⊗N + |φi〉) and 1√

2
(|0〉⊗N + |φ j〉),

respectively. While this approach requires higher depth quan-
tum circuits, it does not require a second qubit register as in
the destructive SWAP test.

D. Randomized measurements

Fidelity estimation protocols involving randomized mea-
surements [51–55] may also be used for the proposed quantum
Krylov subspace algorithms. These types of protocols sim-
ply require preparing the quantum state |φk〉 = Uk |0〉⊗N

(k = i, j), and applying a randomized measurement quantum

circuit at the output, labeled Umeas, as shown below for a
three-qubit register:

The choice of measurement quantum circuit will result in
different approximate classical descriptions of the quantum
state |φk〉, a so-called classical shadow, which can be used
to estimate an exponential number of local observables as
well as state fidelities with a small number of measurements
[55]. For instance, it was shown in Ref. [55] that N-qubit
Clifford circuits achieve a precision ε with 1/ε2 measure-
ments, while a measurement circuit consisting of randomized
single-qubit Pauli gates achieves a precision ε with 4k/ε2

measurements, i.e., scaling exponentially with the locality k of
the observable which is relevant for fidelity estimation. While
the Clifford circuit approach is the most powerful, it comes
with increased depth requirements, making it less desirable for
near-term quantum computing applications. In principle, this
randomized measurement approach can reduce the number of
calls or measurements NK even further from the estimate that
we provided in Table I, though a more careful analysis of
the tradeoff between the circuit depth (required for Clifford
circuits) and exponential number of samples (as required by
the Pauli circuits) would need to be performed in order to
understand the benefits of this approach in the near term.

VI. CONCLUDING REMARKS

Building on important previous work on the eigenpair
problem on quantum computers [24,26], and the classical
filter diagonalization method [35–37], we have presented a
unified view of quantum subspace diagonalization methods
including the introduction of three generalized eigenvalue
problems that can be used to estimate the ground- and
excited-state energies of quantum many-body Hamiltonians.
Numerical illustrations of the approaches were carried out for
three quantum chemistry problems. Each of these methods
provides various advantages and disadvantages in terms of
number of calls to the quantum computer, gate depth, classical
complexity, and numerical stability on the classical computer
portion of the algorithms. A key aspect of our approach is
a multifidelity estimation protocol that avoids the use of the
Hadamard test to estimate the off-diagonal subspace matrix
elements, which allows for a substantial reduction in gate
depth.

Overall, we observed that all of the methods, when tuned
properly, converged to the correct eigenstate and provided
excellent estimates of the energy eigenvalues with a small
number of time steps for both the ground- and excited-state
energy estimation problems. While the KDM H and FDM
H methods require less circuit depth (equivalent to a single
Trotter time step), the KDM U and FDM U methods require a
lot less calls to the quantum computer, scaling as O(M/ε2)
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compared to the O(LM p/ε2) scaling. This difference is
particularly striking for quantum chemistry Hamiltonians in
a localized basis where L scales as O(N4) where N is equal
to the total number of spin orbitals. For instance, a 50 spin-
orbital problem may have approximately 106 terms in the
Hamiltonian, which is substantial. This not only increases the
total time to solution, but also increases the overall cost of
the algorithm when the quantum computer requires a per-shot
fee.

We also found that by properly tuning the FDM hyper-
parameters, both FDM methods converged as quickly as the
KDM methods while also remaining much more stable over a
large number of time steps. As a result, we found that the FDM
algorithms achieved a much smaller energy error and variance
magnitude compared to the KDM methods as the number of
time steps increased. The FDM methods also provide a clear
advantage in their classical complexity which might make
them more appealing for much larger problems. For example,
it is quite possible that a multireference method with tens of
thousands of (or over 1 × 106) initial reference states could
be used to ensure that the initial wave function has a strong
overlap with the true ground-state wave function. In such a
case, the classical cost of solving the generalized eigenvalue
problem would become a severe limitation for the KDM meth-
ods, while the FDM methods would be able to alleviate this
problem if a large number of time steps are required such that
M � J . The FDM method should also provide an advantage
in finding interior excited-state energies (eigenvalues) where a
large number of time steps would be required and the filtering
technique becomes more important.

It should be noted that the QKSD algorithms, and in par-
ticular the ones we introduced based on diagonalization of
the time-evolution propagator (the “U” forms), share some
commonalities with the QPE algorithm, as also noted by
Klymko et al. [38]. QPE is similar in spirit to Fourier analysis
of a correlation function and as a consequence one often sees
arguments that the maximum propagation times (equivalent to
maximum circuit depth) must be on the order of of O(1/ε) to
achieve an eigenvalue estimation accurate to ε [56,57]. This
would suggest propagation times several orders of magnitude
greater would be required for QPE algorithms compared to
the short propagation times shown here for QKSD algorithms,
which was also confirmed in Ref. [38]. Variations on QPE
that use more sophisticated signal processing ideas [58,59]
could potentially overcome the O(1/ε) limit. Such methods
effectively use prior knowledge about the form of the cor-
relation function or related quantities and, as a result, the
QKSD approaches discussed here could also be put in this
class.

Lastly, it is worth mentioning that the proposed algorithms
can also be used in conjunction with variational quantum algo-
rithms that use parametrized quantum circuits. This approach
would use the final optimized quantum circuit, obtained from
a specific variational quantum algorithm, as the initial state
|φo〉 and would subsequently build a Krylov basis to im-
prove the energy or cost function estimate. A more detailed
analysis of the effect of Trotter error, noise, as well as the
development of algorithmic-specific error mitigation strate-
gies might also represent important next steps for future
work.
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APPENDIX A: QUANTUM CHEMISTRY AND
MOLECULAR SYSTEMS STUDIED

Within the Born-Oppenheimer approximation, a molecule
is composed of η electrons interacting within a potential
produced by nuclei at fixed positions. Using the second quan-
tization formalism, the problem may be cast in terms of N
single-particle spin orbitals that can be occupied or empty.
In the absence of external fields, the nonrelativistic molecular
Hamiltonian is written as

H = hnuc +
∑

pq

hpqa†
paq + 1

2

∑
pqrs

hpqrsa
†
pa†

qaras (A1)

where ap and a†
p correspond to fermionic annihilation and

creation operators that obey the anticommutation relations,
{a j, ak} = 0, {a†

j , a†
k} = 0, and {a j, a†

k} = δ jk . hnuc corre-
sponds to the classical electrostatic repulsion between nuclei,
while hpq and hpqrs correspond to one- and two-electron inte-
grals and are written explicitly as

hnuc = 1

2

∑
i 
= j

ZiZ j

|Ri − R j | , (A2)

hpq =
∫

dσ φ∗
p(σ )

(
−∇2

r

2
−

∑
i

Zi

|Ri − r|

)
φq(σ ), (A3)

hpqrs =
∫

dσ1dσ2
φ∗

p(σ1)φ∗
q (σ2)φr (σ1)φs(σ2)

|ri − r j | , (A4)

where the summations run over all nuclei. Zi represents the
nuclear charge, r and R denote electronic and nuclear spatial
coordinates, and σ is a generalized coordinate consisting of
the spatial and spin degrees of freedom, σi = (ri, si ). The
function φ(σ ) represents a one-electron spin orbital. In the
main text, we calculate the potential-energy surface E (R),
which can be used to describe a wide range of processes such
as reaction dynamics, bond breaking, and chemical dynamics.
In order to predict thermochemical properties accurately at
room temperature and atmospheric pressure, we require an
estimate of the potential-energy surface within a chemical
accuracy of 1 kcal/mol or equivalently 1.59 × 10−3 hartree
or 43.4 meV, represented by the horizontal lines in the energy
error plots in the paper.

For our illustrative calculations, we consider (i) a six-atom
linear hydrogen chain H6, (ii) the bent H2O molecule, and
(iii) the linear BeH2 molecule. We employ minimal STO-3G
bases such that there are six spatial molecular orbitals for
H6, and seven molecular orbitals each for H2O and BeH2.
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The number of qubits, after performing the Jordan-Wigner
transformation, is equal to the number of (active) spin orbitals
being treated. The hydrogen chain can thus be treated with
12 qubits corresponding to the total number of spin orbitals
and within the full configuration interaction. For H2O and
BeH2 we employ a complete active space approach wherein
there are n active electrons distributed in m spatial orbitals
with a full configuration interaction being carried out only
among the active electrons and orbitals, sometimes denoted as
CASCI(n, m). Generally the m orbitals are the highest-energy
ones and the remaining electrons are effectively frozen in the
lower, inactive orbitals. In the case of H2O we use CASCI(8,6)
and for BeH2 we use CASCI(6,6), both corresponding to 12
qubit Hamiltonians in both cases. Of course the levels of
theory here, in particular the use of STO-3G basis sets, is
quite crude by computational chemistry standards, but it is
sufficient to illustrate and compare the various diagonalization
procedures of interest to us.

To obtain the coefficients of the second quantized Hamil-
tonian, we defined the structure of the molecule by its
constituent elements and nuclear coordinates of the atoms.
The initial basis of single-particle states was obtained via the
Hartree-Fock method where each electron is treated as an
independent particle that moves under the influence of the
Coulomb potential due to the nuclei as well as a mean field
generated by all of the other electrons. We used the quan-
tum chemistry package PYSCF [60] to obtain the optimized
coefficients of the linear combination of the atomic orbitals,
obtained via the Hartree-Fock method. To map the fermionic
second quantization Hamiltonian to a qubit basis, it is possible
to use the Jordan-Wigner, parity, or Bravyi-Kitaev transfor-
mations. We used the OpenFermion PYTHON package [61]
to obtain the qubit representation of the Hamiltonian, where
the Jordan-Wigner basis was chosen for all of the numerical
simulations. All of these packages can also be found within
the Pennylane cross-platform PYTHON library [62].

APPENDIX B: CHOICE OF TIME STEP

First we consider the case that the generalized eigenvalue
problem involves f (Ĥ ) = Ĥ . If an absolute energy scale is
used for the corresponding Hamiltonian matrix such that the
energy eigenvalues of interest could be large in magnitude, the
time step τ should ideally be equal to or smaller than π/�E
where �E is an upper bound to the spectral range (difference
between maximum and minimum eigenvalues) and atomic
units (h̄ = 1) are assumed. This parallels considerations of
discrete Fourier transforms wherein the possible range of
eigenvalues is determined from the Nyquist interval (in terms
of angular frequencies or energies), −π/τ to +π/τ [63]. Note
that it is generally not difficult to make such an upper limit
estimate to the spectral range given some knowledge of the
problem, e.g., the Hartree-Fock and molecular orbital energies
in the case of the electronic structure problem.

If sufficient accuracy can still be achieved with the cor-
responding Trotter time steps, however, one can actually use
larger τ values than π/�E if the energy zero of the Hamilto-
nian is simply shifted to be in the center of the desired energy
range, i.e., the Hamiltonian in all equations is taken to be
the energy-shifted one. Aliasing, i.e., mapping of eigenvalues

outside the corresponding Nyquist interval into it, can be
easily and cheaply monitored; a slightly different τ will yield
the same “true” eigenvalues but the aliased ones will shift.
Actually, in the three chemical systems considered in this
paper there were no issues with aliasing at all because even
with the energy shifting permitting the larger τ values, the
Nyquist interval was still tens of hartrees wide and sufficient
to capture all relevant eigenvalues present.

Similar considerations to the above apply when the gener-
alized eigenvalue problem involves f (Ĥ ) = exp(−iĤτ ). That
is, ideally τ � π/�E where �E is an upper bound to the
Hamiltonian’s spectral range, but with appropriate recogni-
tion of aliasing issues larger τ could be used. We note that
in this case the eigenvalues f (Ek ) are complex and lie on
the unit circle. Let θk = tan−1[−Im f (Ek )/Re f (Ek )] be the
angle between −π and π that results from typical numerical
arctangent function [“atan2(y, x)”] calls. The possible energy
eigenvalues are Ek = (θk + j2π )/τ , where j = 0, ±1, ±2, etc.
If some absolute energy scale that leads to large magnitude
physical energy eigenvalues is used, then the | j| � 1 value
may have to be used to obtain energy eigenvalues in the
desired physical range. The Hamiltonian energy shifting noted
above is particularly convenient for this case because then,
typically, it is not necessary to shift the eigenvalues and j = 0
suffices. Finally, it is worth noting that the ill conditioning that
can occur in KDM and to a somewhat lesser extent in FDM
might be avoided through the use of unequal and more largely
spaced time steps as, for example, are used in quantum phase
estimation, and this is another avenue worth investigating in
future work.

APPENDIX C: NUMERICAL SOLUTION OF THE
GENERALIZED EIGENVALUE PROBLEM

The numerical simulations shown in Figs. 2– 4 were per-
formed with an in-house PYTHON code using standard NUMPY

and SCIPY numerical linear algebra packages. The classical
solution of the complex generalized eigenvalue problem, Fc
= f Sc, was performed using the QZ algorithm or generalized
Schur decomposition [31] of the complex matrices F and S,
which we found to be much more stable compared to conven-
tional generalized eigenvalue solvers.

An alternative, more “hands on” approach to solving the
generalized eigenvalue problem is to carry out singular value
decomposition [31,38] of the overlap matrix, S, thereby allow-
ing construction of its inverse and turning the problem into an
eigenvalue problem for a complex matrix of the form, e.g.,
S−1Fc = f c. The latter problem can be numerically solved
with standard numerical software but may require appropriate
zeroing of some of the singular values when the inverse is
constructed.

APPENDIX D: OVERVIEW OF THE HADAMARD TEST

In the following, we describe the Hadamard test used for
estimating the matrix element, 〈φi|U |φi〉. This method uses
an ancilla qubit initially prepared in the |0〉 state, with the rest
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of the quantum circuit shown below:

This type of approach will effectively require an ancilla with
one-to-all connectivity in order to keep the circuit gate depth
as short as possible. The real and imaginary parts of the
matrix element are obtained by measuring the ancilla qubit
in the X and Y Pauli basis, where it can be shown that
〈σx + iσy〉 = 〈φi|U |φi〉. This type of Hadamard quantum cir-
cuit is sufficient for single-reference-based Krylov subspace
algorithms. For more general off-diagonal matrix elements of
the form 〈φ j |φi〉 = 〈0|U †

j Ui|0〉, as required by multireference
Krylov subspace algorithms [26], the following quantum cir-
cuit would be used:

where Ui and Uj correspond to the quantum circuits that pre-
pare |φi〉 and |φ j〉, defined through the relations |φi〉 = Ui |0〉
and |φ j〉 = Uj |0〉, respectively. The real and imaginary parts
are obtained through the measurement of the ancilla qubit in
the X and Y Pauli basis as before.

APPENDIX E: DETAILS OF EXCITED-STATE ENERGY
CALCULATIONS

In the main paper, we performed excited-state energy cal-
culations for a water molecule as a function of the bond
length R between the oxygen and hydrogen atoms. We only
considered the singlet excited-state energies where the total

angular momentum is zero. In principle, it is possible to
use the Hartree-Fock state as the initial starting state |φo〉
since it corresponds to a singlet state and, by symmetry, it
will be connected to the excited singlet states. However, the
convergence towards the excited-state energies will be slow
because the Hartree-Fock state is nearly orthogonal to the
desired excited-state wave functions. Here, we propose the
use of physically motivated ansatz states to find the first four
singlet excited-state energies of water. The ansatz consists of
the following four states:

|�0〉 = 1√
2

(|000110111111〉 − |001001111111〉), (E1)

|�1〉 = 1√
2

(|000111101111〉 − |001011011111〉), (E2)

|�2〉 = 1√
2

(|010010111111〉 − |100001111111〉), (E3)

|�3〉 = 1√
2

(|010011101111〉 − |100011011111〉), (E4)

where we use an alternating alpha (spin-up) beta (spin-down)
ordering for the spin orbitals with increasing energies from
right to left. Note that each of these states has zero total
angular momentum; therefore, they will be decoupled from
any triplet states that might otherwise slow down the con-
vergence of the Krylov-based algorithm. For the calculations,
we used states (E1)–(E4) as the initial single-reference start-
ing state |φo〉. All of the calculations are independent from
one another. To perform the multifidelity estimation protocol
from the main paper, each of these four states would re-
quire a state preparation step that initializes the superposition
state, 1√

2
(|0〉⊗N + |�k〉), where k = 0, 1, 2, 3, on the quantum

computer.
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[50] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A.
Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning
with quantum-enhanced feature spaces, Nature (London) 567,
209 (2019).

[51] S. T. Flammia and Y.-K. Liu, Direct Fidelity Estimation from
Few Pauli Measurements, Phys. Rev. Lett. 106, 230501 (2011).

[52] A. Elben, B. Vermersch, C. F. Roos, and P. Zoller, Statistical
correlations between locally randomized measurements: A tool-
box for probing entanglement in many-body quantum states,
Phys. Rev. A 99, 052323 (2019).

[53] A. Elben, B. Vermersch, R. van Bijnen, C. Kokail, T. Brydges,
C. Maier, M. K. Joshi, R. Blatt, C. F. Roos, and P. Zoller, Cross-

022417-14

https://doi.org/10.22331/q-2019-07-01-156
https://doi.org/10.1103/Physics.11.14
https://doi.org/10.1103/PhysRevLett.127.120502
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.22331/q-2021-10-05-558
https://doi.org/10.1088/1367-2630/ab867b
http://arxiv.org/abs/arXiv:1909.08925
https://doi.org/10.1103/PRXQuantum.2.010333
https://doi.org/10.1021/acs.jctc.9b01125
https://doi.org/10.1103/PhysRevA.95.042308
https://doi.org/10.1103/PhysRevX.8.011021
https://doi.org/10.1103/PhysRevA.104.L050401
https://doi.org/10.1103/PhysRevA.104.042418
https://doi.org/10.1103/PRXQuantum.2.030318
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.1063/1.468999
https://doi.org/10.1063/1.473554
https://doi.org/10.1016/S0079-6565(00)00032-7
http://arxiv.org/abs/arXiv:2103.08563
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1103/PhysRevLett.121.010501
https://doi.org/10.1038/s41534-019-0240-1
https://doi.org/10.1038/ncomms1392
https://doi.org/10.1103/PRXQuantum.2.020321
https://doi.org/10.1103/PRXQuantum.2.020317
https://doi.org/10.1103/PhysRevLett.126.210501
https://doi.org/10.1103/PhysRevA.87.052330
https://doi.org/10.1088/1367-2630/aae94a
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1103/PhysRevLett.106.230501
https://doi.org/10.1103/PhysRevA.99.052323


QUANTUM KRYLOV SUBSPACE ALGORITHMS FOR … PHYSICAL REVIEW A 105, 022417 (2022)

Platform Verification of Intermediate Scale Quantum Devices,
Phys. Rev. Lett. 124, 010504 (2020).

[54] D. Zhu, Z.-P. Cian, C. Noel, A. Risinger, D. Biswas, L.
Egan, Y. Zhu, A. M. Green, A. Maksymov, Y. Nam et al.,
Cross-platform comparison of arbitrary quantum computations,
arXiv:2107.11387 (2021).

[55] H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many prop-
erties of a quantum system from very few measurements, Nat.
Phys. 16, 1050 (2020).

[56] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X.
Yuan, Quantum computational chemistry, Rev. Mod. Phys. 92,
015003 (2020).

[57] B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan, Quantum
algorithms for quantum chemistry and quantum materials sci-
ence, Chem. Rev. 120, 12685 (2020).

[58] T. E. O’Brien, B. Tarasinski, and B. M. Terhal,
Quantum phase estimation of multiple eigenvalues for
small-scale (noisy) experiments, New J. Phys. 21, 023022
(2019).

[59] R. D. Somma, Quantum eigenvalue estimation via time series
analysis, New J. Phys. 21, 123025 (2019).

[60] Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z.
Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma et al.,
PySCF: The python-based simulations of chemistry framework,
Wiley Interdisciplinary Rev.: Comput. Mole. Sci. 8, e1340
(2018).

[61] J. R. McClean, N. C. Rubin, K. J. Sung, I. D. Kivlichan,
X. Bonet-Monroig, Y. Cao, C. Dai, E. S. Fried, C. Gidney,
B. Gimby et al., OpenFermion: The electronic structure pack-
age for quantum computers, Quantum Sci. Technol. 5, 034014
(2020).

[62] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam,
S. Ahmed, J. M. Arrazola, C. Blank, A. Delgado, S. Jahangiri
et al., Pennylane: Automatic differentiation of hybrid quantum-
classical computations, arXiv:1811.04968 (2018).

[63] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes: The Art of Scientific Computing,
3rd ed. (Cambridge University, Cambridge, England, 2007).

022417-15

https://doi.org/10.1103/PhysRevLett.124.010504
http://arxiv.org/abs/arXiv:2107.11387
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1021/acs.chemrev.9b00829
https://doi.org/10.1088/1367-2630/aafb8e
https://doi.org/10.1088/1367-2630/ab5c60
https://doi.org/10.1002/wcms.1340
https://doi.org/10.1088/2058-9565/ab8ebc
http://arxiv.org/abs/arXiv:1811.04968

