
PHYSICAL REVIEW A 105, 022414 (2022)

Quantum matching pursuit: A quantum algorithm for sparse representations

Armando Bellante * and Stefano Zanero
Politecnico di Milano, DEIB, Via Ponzio 34/5 Building 20, 20133 Milan, Italy

(Received 10 August 2021; accepted 25 January 2022; published 11 February 2022)

Representing signals with sparse vectors has a wide spectrum of applications that ranges from image and
video coding to shape representation and health monitoring. In many applications with real-time requirements
or that deal with high-dimensional signals, the computational complexity of the encoder that finds the sparse
representation plays an important role. Quantum computing has recently shown promising speedups in many
representation learning tasks. In this work, we propose a quantum version of the well-known matching-pursuit
algorithm. Assuming the availability of a fault-tolerant quantum random access memory, our quantum matching
pursuit lowers the complexity of its classical counterpart by a polynomial factor, at the cost of some error in
the computation of the inner products, enabling the computation of sparse representations of high-dimensional
signals. Besides proving the computational complexity of our algorithm, we provide numerical experiments that
show that its error is negligible in practice. This work opens the path to further research on quantum algorithms
for finding sparse representations, showing suitable quantum computing applications in signal processing.

DOI: 10.1103/PhysRevA.105.022414

I. INTRODUCTION

Finding a sparse representation is the problem of repre-
senting a dense signal as a linear combination of a few unit
vectors, also referred to as atoms. Usually, the set of atoms is
larger than the space where the signal lies, as overcomplete
sets of atoms enable sparser representations [1]. Once a set of
atoms, or dictionary, is fixed, the sparse representation of the
signal is the set of coefficients of their linear combination.

Signals of the same type are likely to be represented
sparsely over the same dictionary. For instance, the widely
used JPEG algorithm exploits the fact that images are sparse
with respect to the discrete-cosine-transform basis to perform
compression [2]. Finding sparse representations is a subject
of interest in many fields, and its applications range from data
compression to denoising and anomaly detection [3,4].

When these applications have real-time requirements or
deal with high-dimensional signals, the computational cost of
finding the representation is crucial. Unfortunately, finding the
sparsest representation that approximates the signal is an NP-
hard problem and is intractable in practice. For this reason,
researchers have developed a series of greedy algorithms that,
through local optimizations, find approximate solutions in an
acceptable running time.

In recent years, the effectiveness of quantum computing
in representation learning has become increasingly evident.
Recent research has proven computational advantages for
algorithms such as principal component analysis [5], slow
feature analysis [6], and spectral clustering [7].

In this work, we propose an end-to-end quantum algorithm
for learning sparse representations using a matching-pursuit
approach. We develop a quantum version of the well-known

*armando.bellante@polimi.it

matching-pursuit algorithm [8], reducing its computational
cost by a polynomial factor. While there are some known
speedups in the case of specific analytical dictionaries [9], to
our knowledge, there are no classical algorithms that compare
with our run time over a general dictionary.

Besides thoroughly analyzing the running time and error
of our algorithm, we describe a suitable quantum processing
framework that can be used as a starting point to construct
other quantum pursuit algorithms.

The remainder of this paper is organized as follows.
In Sec. II, we discuss previous work that relates to ours.
Section III describes the classical matching-pursuit algorithm,
introducing the necessary notation for both the quantum and
classical versions. In Sec. IV, we briefly introduce the concept
of quantum computation and some subroutines that will serve
as a basis for the quantum algorithm. Section V presents the
quantum matching-pursuit algorithm, providing a thorough
run-time and error analysis. Finally, in Sec. VI, we run numer-
ical experiments to show that the quantum matching pursuit
can find representations that are as sparse as those of its
classical counterpart.

II. RELATED WORK

The matching-pursuit algorithm was first introduced by
Mallat and Zhang [8]. The original version of the algorithm
has a running time of O(knm), where k is the number of
optimization iterations, n is the length of the signal, and m
is the number of atoms in the dictionary.

Among the attempts to speed up the matching-pursuit al-
gorithm, the closest to ours is the one of Krstulovic and
Gribonval [9]. They exploited particular properties of some
analytic (nonlearned) dictionaries, like the multiscale time-
frequency Gabor dictionary [8], to reduce the run time of

2469-9926/2022/105(2)/022414(9) 022414-1 ©2022 American Physical Society

https://orcid.org/0000-0003-2132-5798
https://orcid.org/0000-0003-4710-5283
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.022414&domain=pdf&date_stamp=2022-02-11
https://doi.org/10.1103/PhysRevA.105.022414

ARMANDO BELLANTE AND STEFANO ZANERO PHYSICAL REVIEW A 105, 022414 (2022)

matching pursuit to O(kn log(n)). However, their algorithm is
still slow on nonanalytical dictionaries.

While some previous works suggest the use of matching
pursuit to simulate the dynamics of quantum-mechanical pro-
cesses [10–13], to our knowledge there is no previous work
that discusses quantum speedups for finding sparse represen-
tations of signals over large dictionaries.

III. CLASSICAL MATCHING PURSUIT

A. Notation

We denote matrices using capital letters and use lowercase
letters for vectors and scalars. Given a matrix A, its ith row
and column are denoted by ai,· and ai, respectively. The com-
ponent identified by the ith row and the jth column is denoted
ai j . We write the jth element of a vector u as u j .

Let x ∈ Cn be a unit vector. Using Dirac’s notation, we use
|x〉 to represent it as a column vector and 〈x| to denote its
complex-conjugate row vector. We use 〈ai, b j〉 to denote the
inner product between two vectors ai and b j .

The notation ‖ · ‖2 indicates the Euclidean norm of a
vector. The pseudonorm ‖ · ‖0 is the number of nonzero com-
ponents of a vector. The symbol ‖ · ‖F indicates the Frobenius
norm of a matrix. For a matrix A ∈ Rn×m, the Frobenius norm
is defined as ‖A‖F = √∑n

i

∑m
j a2

i j .
When stating the complexity of an algorithm, the Õ(·)

notation omits polylogarithmic terms in the input data size
[e.g., if an algorithm uses a matrix A ∈ Rn×m, Õ(1) ≡
O(polylog(nm))].

B. Problem statement

We can represent a signal as a vector s ∈ Rn. We use
d j to denote the jth atom over which we search the sparse
representation. Each atom is a unit vector, meaning that for
every j we have ‖d j‖2 = 1. A dictionary is a matrix D ∈ Rn×m

whose columns are the atoms d j for j ∈ {0, . . . , m − 1}. In
most of the interesting cases, the dictionary is overcomplete
(i.e., m > n).

Formally, given a signal s ∈ Rn and a dictionary D ∈
Rn×m, the problem of finding a sparse representation x ∈ Rm

of the signal is known as Pε
0 .

Definition 1. Problem Pε
0 . Given s ∈ Rn, D ∈ Rn×m, and

ε ∈ R+, problem Pε
0 is defined as

arg min
x

‖x‖0 such that ‖Dx − s‖2 � ε. (1)

Finding the exact solution to problem Pε
0 is an NP-hard

task [14]. While quantum computers are not expected to solve
NP-hard problems in polynomial time (indeed, it is widely
believed that NP � BQP [15]), they can still provide speedups
of practical use on greedy algorithms that compute approxi-
mate solutions. In this paper we propose a quantum version of
the matching-pursuit algorithm, a greedy approach to approx-
imately solve the Pε

0 problem in polynomial time.

C. Algorithm

The strategy behind the matching-pursuit algorithm is
to face the problem through subsequent optimization steps.
Starting from an empty solution x = 0⊗m, the matching pur-
suit searches for the atom that best reduces the difference

between the representation Dx and the signal at each iter-
ation, updating the solution iteratively. We now discuss the
matching-pursuit algorithm in detail.

As an initialization step, we create a residual vector and an
empty solution

r = s, (2)

x = 0⊗m. (3)

Since we are at the beginning of the algorithm and s − Dx =
s, the residual is set equal to the signal.

Once the initialization is complete, the algorithm searches
for the atom closest to the residual by computing

j∗ = arg min
j

‖r − z jd j‖2, (4)

where z j ∈ R is the best scaling factor for the atom d j ,

z j = arg min
z

‖r − zd j‖. (5)

It is possible to show that z j = 〈r, d j〉 [8], from which we can
derive the following equivalence:

‖r − z jd j‖2
2 = ‖r‖2

2 − |〈r, d j〉|2. (6)

Because of Eq. (6), finding the best atom [Eq. (4)] is equiva-
lent to searching for the maximum absolute value of the inner
products between the current residual and the atoms

j∗ = arg max
j

| 〈r, d j〉 |. (7)

This step is known as the sweep stage, as we need to iterate
over all the atoms in the dictionary to compute the inner
products and choose the best one.

After selecting the best atom, both the solution and the
residual get updated,

x j∗ = x j∗ + z j∗ , (8)

r = r + z j∗d j∗ . (9)

Updating the residual makes it so that the algorithm does not
consider the part of the signal that has been modeled so far. At
each iteration, the residual is r = s − Dx.

The algorithm continuously searches for the best approx-
imating atom and performs the updates until the following
stopping condition is met:

‖x‖0 > L or ‖r‖2 � ε (10)

for a sparsity threshold L ∈ N+ and an error reconstruction
tolerance ε ∈ R+. We remark that, at each iteration, the norm
of the residual ‖r‖2 = ‖s − Dx‖2 expresses how well our
solution approximates the original signal.

We summarize this procedure in Algorithm 1.

D. Computational complexity

The analysis of the run time of the algorithm proceeds as
follows. The initialization step is linear in the length of the
residual O(n). The computation of the sweep stage (steps 3–5)
is the bottleneck of this algorithm. Indeed, the algorithm com-
putes m inner products of vectors of length n, which requires
time O(nm). Selecting the best atom has a negligible cost, as

022414-2

QUANTUM MATCHING PURSUIT: A QUANTUM ALGORITHM … PHYSICAL REVIEW A 105, 022414 (2022)

Algorithm 1. Matching pursuit.

1: Initialize r = s, x = 0⊗m.
2: while not (‖x‖0 > L or ‖r‖2 � ε) do
3: for all j ∈ [m] do
4: Compute 〈dj, r〉
5: end for
6: Select j∗ = argmax(| 〈dj, r〉 |)
7: Assign z = 〈dj∗ , r〉
8: Update the solution x j = x j + z
9: Update the residual r = r − zd j∗

10: end while
11: Output x.

it can be done during the computation of the inner products
without significant overhead. Updating the solution is O(1),
and the residual’s update is bounded by O(n).

The complexity of the sweep stage dominates all the
other complexities in the loop. Therefore, assuming that the
matching pursuit converges after k iterations, its asymptotic
computational complexity scales as

O(knm). (11)

IV. QUANTUM COMPUTING BACKGROUND

A. Quantum computation

Just like a bit is the fundamental unit of information in clas-
sical computing, a qubit is the fundamental information unit in
quantum computing. A qubit is a mathematical representation
of a quantum-mechanical object and can be described as an
�2 normalized vector of C2. The state of an n-qubit system (a
register of a quantum computer) is the tensor product of single
qubits: a unitary vector |x〉 ∈ H⊗n
 C2n

. In other words, with
|i〉 ∈ H⊗n we denote a quantum register that contains the bi-
nary expansion of number i. Its corresponding complex vector
is a vector of length 2n, full of zeros, with the ith element equal
to one. For instance,

|3〉 ∈ H⊗2 = |1〉 |1〉 =

⎡⎢⎣0
0
0
1

⎤⎥⎦. (12)

Given a basis {|i〉}n−1
0 for H⊗ log2(n), with log2(n) qubits, we

can describe a quantum state |ψ〉 = ∑n
i αi |i〉 with

∑n
i |αi|2 =

1. The values αi ∈ C are called amplitudes of the quantum
states |i〉 for state |ψ〉.

The evolution of a quantum system is described by unitary
matrices U . Unitary matrices are norm preserving and thus
can be used as a suitable mathematical description of pure
quantum evolutions. Any quantum algorithm that does not
perform measurements can be represented by a unitary matrix.

Quantum states can be measured, but measurements alter
the state. In this work, measurements are performed with
respect to the computational basis {|i〉}n−1

0 of H⊗ log2(n). This
means that if we measure a quantum register |ψ〉 = ∑n

i αi |i〉,
it can collapse to any state |i〉, each with probability |αi|2. It
is important to recall that no quantum algorithm can create a
copy of a generic quantum state. Therefore, to measure a state

multiple times, it is necessary to create it again from scratch
every time.

For a deeper introduction to the subject, we encourage the
reader to consult Nielsen and Chuang [16].

B. Quantum random access memory

A QRAM, or quantum random access memory (RAM), is
a device that, given a list of n bit strings xi ∈ {0, 1}m of length
m, performs the following mapping in time O(polylog(n)):

n∑
i

αi |i〉 |0〉 �→
n∑
i

αi |i〉 |xi〉 , (13)

where αi � 0 and |xi〉 ∈ H⊗m is the state of the computational
basis that corresponds to the bit string xi.

The reader can think of it as a quantum equivalent of the
classical RAM. In a classical RAM, we can store n values
and query any of those in time O(1), considering it can access
the m bits in parallel. The main difference from a classical
RAM is that a quantum RAM needs to perform queries in
superposition.

As explained in the next section, our quantum algorithm,
like many previous ones, assumes the availability of such a
device to encode scalars, matrices, and vectors in quantum
states efficiently.

Building a fault-tolerant, hardware-efficient QRAM is not
an easy task. One of the most promising proposals to structure
the quantum random access memory is the bucket-brigade
architecture. First presented in Giovannetti et al. [17], this
architecture is composed of O(n) gates, while its circuit is
only O(log(n)) deep. Current error-analysis research claims
that algorithms that query the bucket-brigade QRAM a super-
polylogarithmic number of times (e.g., Grover’s search and,
consequently, ours) likely require the bucket-brigade QRAM
to be error corrected [18,19]. This requires additional hard-
ware and created skepticism of the effective speedup of this
class of algorithms in this input model [18]. Recently, Hann
et al. [19] showed that the bucket-brigade architecture is
highly resilient to generic errors and that its architectural ad-
vantage persists even in the case of error correction, contrary
to what was previously believed. At the same time, a recent
work showed how to build a fault-tolerant bucket-brigade
QRAM by parallelizing Clifford + T gates [20], at the cost
of using O(n) ancillary qubits.

In this work, we will perform our analysis assuming access
to a fault-tolerant QRAM, capable of performing queries in
time O(polylog(n)) ∼ Õ(1), with n being the number of en-
tries stored in the QRAM. With this assumption in mind, we
can explain our data-access model.

C. Quantum data access

We can encode a scalar a ∈ R in a quantum register |a〉
using its binary encoding and retrieve it by measuring the
register in the computational basis, just as discussed in the
previous section. To encode a scalar, we need as many qubits
as the classical bits that store it. For more detailed informa-
tion on how to encode a real number in a quantum register,
we suggest reading Nielsen and Chuang [16] (see Chap. 5,
Secs. 5.1 and 5.2) to see how phase angles are encoded in a

022414-3

ARMANDO BELLANTE AND STEFANO ZANERO PHYSICAL REVIEW A 105, 022414 (2022)

state and Rebentrost et al. [21] for a more formal definition of
a quantum arithmetic model with fixed point precision.

On the other hand, the components of a vector a ∈ Rm can
be encoded with fewer qubits than classical bits, using the
amplitudes of a quantum state. When measured, the quantum
state collapses to an index of the vector with probability pro-
portional to the magnitude of the indexed component. We call
this representation state vector.

Definition 2. State vector. Given a vector x ∈ Rn, the cor-
responding state vector is the following quantum state: |x〉 =

1
‖x‖2

∑n
i xi |i〉, which is encoded in �log n� qubits.

We say we have quantum access to a classical vector
x ∈ Rn if we have access to a unitary operator that performs
the mapping Ux : |0〉 �→ |x〉 in time O(log(n)). Similarly, we
define the concept of quantum access to a matrix.

Definition 3. Quantum access to a matrix. We say we have
quantum access to a matrix A ∈ Rn×m if we can perform the
following mappings in time O(polylog(nm)):

U : |i〉 |0〉 �→ |i〉 |ai,·〉 = |i〉 1

||ai,·||
m∑
j

ai j | j〉

for i ∈ Rn;

V : |0〉 �→ 1

‖A‖F

n∑
i

‖ai,·‖ |i〉 .

By combining the two unitaries above, it is possible to
represent a matrix in a quantum state

|A〉 = U (V ⊗ I) |0〉 |0〉 = 1

‖A‖F

n∑
i

m∑
j

ai j |i〉 | j〉 (14)

= 1

‖A‖F

n∑
i

‖ai,·‖ |i〉 |ai,·〉 (15)

using two registers of �log(n)� + �log(m)� qubits.
The Appendix of Kerenidis and Prakash [22] shows in

detail how to construct a classical data structure that en-
ables efficient computation of the unitary matrices that give
quantum access to vectors and matrices. This classical data
structure can be created in O(nm log2(nm)) for an n × m ma-
trix and in O(n log(n)) for a vector of length n. Assuming the
ability to perform quantum queries on the entries of this data
structure in superposition (i.e., assuming the availability of a
QRAM that stores the entries of these trees), the authors show
how to provide quantum access to a vector or matrix in time
Õ(1).

In practice, in this input model, at the cost of some classical
preprocessing, it is possible to encode vectors and matrices in
quantum states using a small number of qubits in time Õ(1).

D. Relevant quantum subroutines

We now introduce two quantum subroutines that are par-
ticularly important to our work. By slightly modifying these
two results, we introduce two new corollaries that are more
suitable to our needs.

Lemma 1. Inner product estimation [23]. Let there
be quantum access to the matrices V ∈ Rn×m and C ∈
Rk×m, through the unitaries Uv : |i〉 |0〉 �→ |i〉 |vi,·〉 and Uc :

| j〉 |0〉 �→ | j〉 |c j,·〉, that run in time T . Then, for any δ >

0 and ε > 0, there exists a quantum algorithm that com-
putes |i〉 | j〉 |0〉 �→ |i〉 | j〉 |〈vi,·, c j,·〉〉, such that |〈vi,·, c j,·〉 −
〈vi,·, c j,·〉 | � ε, with probability greater than 1 − 2δ in time
Õ(T log(1/δ)

ε
).

In our quantum matching pursuit we will need to perform
inner products between the columns of a matrix and a vector. It
is possible to use this result to prepare a state that stores the in-
ner products between the columns of a matrix A and a column
vector x. Indeed, we need quantum access only to the matrix’s
transpose AT and to the vector x via unitaries UA and Ux. If
we have that, the two unitaries that prepare the states trivially
become Uv = UAT and Uc = (I ⊗ Ux), and we can ignore the
second register. We also stress that having quantum access to a
matrix is equivalent to having access to its transpose. Indeed,
if we swap the first and the second registers of Eq. (14), we
have a quantum state that represents the transposed matrix.
Finally, using consistent phase estimation from Ta-Shma [24],
it is possible to modify the algorithm above so that the error
across several runs is consistent.

Corollary 1. Matrix-vector product estimation. Let there
be quantum access to a matrix A ∈ Rn×m and to a unit vector
x ∈ Rm, through the unitaries UA : |0〉 |0〉 �→ 1

‖A‖F

∑n
i |i〉 |ai,·〉

and Ux : |0〉 �→ 1
‖x‖2

∑m
i xi |i〉, that run in time less than T .

Then, for any δ > 0 and ε > 0, there exists a quantum algo-
rithm that computes |0〉 |0〉 �→ 1

‖A‖F

∑n
i |i〉 |〈ai,·, x〉〉, such that

|〈ai,·, x〉 − 〈ai,·, x〉 | � ε consistently across multiple runs,
with probability greater than 1 − 2δ in time Õ(T log(m/δ)

ε
).

To prove the bound on the success probability of the corol-
lary above, we can exploit the union bound, also known as
Boole’s inequality,

P
(∪m

i p f (i)
)

�
m∑
i

p f (i). (16)

The union bound states that, given a set of likely events, the
probability that any one of them happens is lower than the sum
of their individual probabilities.

The run-time overhead of Lemma 1 to bound the fail-
ure probability of one inner product with p f (i) � 2δ is
O(log(1/δ)). Bounding the failure probability of one product
by p f (i) � 2δ′, the probability Pf that one of the m inner
products will fail can be bounded by

Pf �
m∑
i

p f (i) � 2mδ′. (17)

Choosing δ′ = δ
m , we have that the algorithm succeeds with

probability 1 − 2δ with a run-time overhead of O(log(m
δ

)).
Finally, if x is not a unit vector, we can multiply the result

by ‖x‖2 to get an estimate within ε‖x‖2 error.
The second algorithm that we introduce enables searching

for the minimum value of an unsorted array quadratically
faster than what we can do classically.

Lemma 2. Finding the minimum [25]. Let there be quantum
access to a vector u ∈ [0, 1]N via the operation | j〉 |0〉 →
| j〉 |u j〉 in time T . Then, we can find the minimum umin =
min j∈[N] u j and its index jmin = arg min j∈[N]u j with success

probability 1 − δ in time O(T
√

N log(1
δ
)).

022414-4

QUANTUM MATCHING PURSUIT: A QUANTUM ALGORITHM … PHYSICAL REVIEW A 105, 022414 (2022)

This algorithm is built around the famous Grover’s search
algorithm [26]. Grover’s algorithm takes advantage of an ora-
cle to mark the elements of the superposition that satisfy the
search conditions. An oracle is a function f : R �→ {0, 1}. The
“finding the minimum” routine uses Grover’s search many
times, using oracles of the type

fi(j) =
{

1 if u j < ui,

0 otherwise. (18)

By using the same algorithm described in Durr and Hoyer [25]
with oracles

f ′
i (j) =

{
1 if |u j | > |ui|,
0 otherwise, (19)

it is possible to find the maximum absolute value of an array
in the same running time.

Corollary 2. Finding the maximum absolute value. Let
there be quantum access to a vector u ∈ [0, 1]N via the op-
eration | j〉 |0〉 → | j〉 |u j〉 in time T . Then, we can find the
maximum absolute value umax = max j∈[N] |u j | and its index
jmin = arg min j∈[N]u j with success probability 1 − δ in time

O(T
√

N log(1
δ
)).

V. QUANTUM MATCHING PURSUIT

Now that we have introduced the necessary quantum back-
ground, we show how to construct the quantum matching-
pursuit algorithm. The proposed algorithm closely follows its
classical counterpart, but it takes advantage of the quantum
routines presented in Sec. IV D. The main idea is to exploit
the quantum regime to speed up the sweep stage.

A. Data access

First, we need quantum access to the dictionary D. We
recall that, without loss of generality, we can consider the
columns of D to be �2 normalized vectors, meaning that the
Frobenius norm of D is ‖D‖F = √

m. Recall that, with a pre-
processing time of O(nm log2(nm)), we can create quantum
access to the following quantum state in time Õ(1):

|D〉 = 1√
m

m∑
j

| j〉 |d j〉 , (20)

where d j is the jth column of D and |d j〉 is a state vector.
This preprocessing cost needs to be paid only once and allows
applying the quantum matching pursuit on any signal s ∈ Rn

that is sparse over D. For this reason, we will not include this
cost in our run-time analysis.

Similarly, we can create quantum access to the residual r ∈
Rn by using a tree data structure. For the sake of clarity, we
report the data structure in Fig. 1. This data structure can be
created in time O(n log(n)) for a vector with n components
and enables quantum access to the following quantum state in
time Õ(1) [22,27]:

|r〉 = 1

‖r‖2

n∑
i

ri |i〉 . (21)

Preparing access to |r〉 and |D〉 means implementing the
circuits described by the unitaries discussed in Sec. IV C.

‖r‖2
2

. . .

r2
0 + r2

1

r0 r1

. . .

.

FIG. 1. The tree structure that enables efficient quantum access
to the vector of the residuals. Each node stores the sum of squares of
the leaves that descend from that node.

Finally, both the signal s ∈ Rn and its sparse representation
x ∈ Rm are represented as classical arrays, as they will not
be encoded in quantum states. To further lower the memory
complexity, it is possible to exploit the sparseness of x and
store it in a data structure which uses O(‖x‖0) space (e.g., a
hash table). This will not affect the overall time complexity
as long as the data structure has a constant time insertion or
update cost.

B. Quantum algorithm

We start by initiating the residual structure with the signal
components. Since we have quantum access to the residual
and to the dictionary as in Eqs. (21) and (20), we can use the
matrix-vector product estimation procedure from Corollary 1
to produce the state

|ϕ〉 = 1√
m

m∑
j

| j〉 |z j〉 . (22)

We recall that z j = 〈d j, r〉 and that the procedure computes z j

such that

|z j − z j | � ξ‖r‖2, (23)

where ξ ∈ R+ is a parameter of arbitrary choice and ‖r‖2 is
the residual’s �2 norm at the current iteration.

Once we have a quantum register |ϕ〉 with a superposition
of all the inner products, we can perform the “finding the
maximum absolute value” routine from Corollary 2 to find j∗
and z j∗ . With the best j and z j , we can proceed to update the
solution x ∈ Rm and the residual r ∈ Rn.

Just like in the classical algorithm, we repeat this procedure
until the norm of the residual is lower than a threshold ε or the
solution is such that ‖x‖0 > L for a threshold L ∈ N+.

Algorithm. 2 concisely summarizes the quantum matching-
pursuit procedure.

It is important to remark that the error in the inner products
can introduce convergence issues and could lead to worse
solutions than the ones provided by the classical algorithm.
We have identified two alternative versions of the quantum
matching-pursuit algorithm.

(1) Single error. The error affects only the computation of
j∗. We recompute z j∗ classically after the finding procedure
outputs the atom’s index.

022414-5

ARMANDO BELLANTE AND STEFANO ZANERO PHYSICAL REVIEW A 105, 022414 (2022)

Algorithm 2. Quantum matching pursuit.

1: Initialize r = s, x = 0⊗m.
2: while not (‖x‖0 > L or ‖r‖2 � ε) do
3: Prepare |r〉 = 1

‖r‖2

∑n
i ri |i〉

4: Prepare |D〉 = 1√
m

∑m
j | j〉 |dj〉

5: Use inner product estimation to create |ϕ〉 =
1√
m

∑m
j | j〉 |z j〉, where z j = 〈dj, r〉 and |z j − z j | � ξ‖r‖2

6: Apply finding the maximum absolute value to |ϕ〉 to
obtain j∗ and z j∗

7: Update the solution x j∗ = x j∗ + z j∗

8: Update quantum access to the residual r = r − z j∗ dj∗

9: end while
10: Output x.

(2) Double error. The error affects the computation of
both j∗ and z j∗ , which are retrieved quantumly by the finding
procedure.

While the asymptotic complexity of the algorithm does not
change between the two versions, the second one is slightly
faster to compute. In Sec. VI A, we provide experimental
evidence that the two versions of the algorithm do not signifi-
cantly affect the performance of the quantum matching pursuit
in practice, supporting the use of the second version. We also
provide numerical experiments to check whether the quantum
algorithm can find representations of the same quality as its
classical counterpart.

C. Success probability

Different from its classical counterpart, the quantum al-
gorithm that we propose has a probability of failing. In this
section, we discuss the success probability of our algorithm,
showing that we can arbitrarily bound its failure probability
with little running-time overhead.

The probability of failure is due to the computation of the
inner products at step 5 and the search at step 6. In particular,
Corollaries 1 and 2 fail with a probability smaller than 2δ′

1 and
δ′

2, with run-time overheads of O(log(m
δ′

1
)) and O(log(1

δ′
2
)),

respectively.
Let us denote the probability of failure of the ith loop

iteration by p f (i) and consider δ′
1 = δ′

2 = δ′. The probability
of success of the ith loop iteration is

1 − p f (i) � (1 − 2δ′)(1 − δ′) = 1 − 3δ′ + 2δ′2 � 1 − 3δ′,

(24)

with a run-time overhead of O(log(m
δ′) log(1

δ′)) =
O(log(m+1

δ′)). So the probability of failure of the ith loop
iteration is bounded by 3δ′.

Given that the loop is executed k times, by union bound,
we can bound the total probability of failure as

p
(∪k

i p(i)
)

�
k∑
i

p(i) � 3kδ′. (25)

It follows that the success probability of our algorithm is 1 −
3kδ′ with a run-time overhead of O(log(m+1

δ′)).

By choosing δ′ = δ
3k , we can affirm that our algorithm

succeeds with probability greater than 1 − δ with a run-time
overhead of O(log(3k(m+1)

δ
)) ∼ O(log(3km

δ
)).

Using the same proof technique, we could choose two
different probabilities of failure δ′

1 and δ′
2 and further reduce

the overhead by a constant factor. For instance, by choosing
δ′

1 = δ
2k and δ′

2 = δ
2km , we can bound the run-time overhead

with O(2km
δ

). Finally, note that even if the exact value of k
is not known beforehand, we can find suitable δ′

1 and δ′
2 by

considering k ∼ O(L).

D. Running time

Finally, we provide a thorough analysis of the run time of
the proposed algorithm, proving its computational complex-
ity. As already stated, we assume that the dictionary has been
stored in an appropriate data structure, and we analyze the
time to compute the sparse representation of a signal over that
dictionary.

The first step of the algorithm consists of initializing the
residual. This can be done by building the data structure in
Fig. 1, and it requires time O(n log(n)). Since the residual
and the dictionary are stored in adequate data structures, the
preparation of states |D〉 and |r〉 at steps 3 and 4 is Õ(1), as
discussed in Sec. IV C.

Given that the cost of preparing the two quantum states is
Õ(1), from Corollary 1, we know that the cost of step 5 is
Õ(1

ξ
) and that it encodes in the register values z j , with error

|z j − z j | � ξ‖r‖2. Therefore, we can prepare the state

|ϕ〉 = 1√
m

m∑
j

| j〉 |z j〉 (26)

in time Õ(1
ξ

).
We can ignore the run-time terms that depend on δ as they

are related to the success probability studied in the previous
section. We will include this overhead in the run time at the
end of this section.

Recall that the state above is the superposition of m inner
products, among which we need to identify the one with the
greatest maximum absolute value. Using Corollary 2, we can
find the value z j∗ and its index j∗ in time O(

√
m
ξ

).
Once these values are computed, we need to update the

solution and the residual. To update the solution, we need to
add z j∗ to one component of the solution vector. We can do it
in time O(1). On the other hand, updating the residual is more
demanding, as we need to modify the tree data structure. Each
element update costs O(log(n)), as we need to update one leaf
and all its parent nodes. Since the update is r = r + z j∗d j∗ , we
need to update ‖d j∗‖0 elements of the residual. This step costs
O(‖d j∗‖0 log(n)).

Let us denote by d (i)
j∗ the best atom at iteration i. The cost

of the ith iteration of the loop results in

Õ

(∥∥d (i)
j∗

∥∥
0 log(n) +

√
m

ξ

)
. (27)

022414-6

QUANTUM MATCHING PURSUIT: A QUANTUM ALGORITHM … PHYSICAL REVIEW A 105, 022414 (2022)

By assuming that we perform k iterations of the loop, consid-
ering the initial cost of initiating the residual and introducing
the term that accounts for the success probability, the total
complexity of our algorithm is

Õ

(
n log n +

k∑
i

∥∥d (i)
j∗

∥∥
0 log(n) + k

√
m

ξ
log

(
3km

δ

))
. (28)

If the atoms of our dictionary are not sparse, we can write
the run time in a more compact way by observing that ∀ j,
‖d j‖0 � n,

Õ

(
kn log n + k

√
m

ξ
log

(
3km

δ

))
. (29)

We can concisely summarize our result in the following
theorem.

Theorem 1. Quantum matching pursuit. Let there be quan-
tum access to a dictionary D ∈ Rn×m and to a vector s ∈
Rn. Let ξ, δ ∈ R>0 be precision parameters. There exists a
quantum algorithm that simulates the matching pursuit algo-
rithm, with error |z(i)

j − z(i)
j | � ξ‖r (i)‖2 on the inner product

estimation at each ith iteration, in running time Õ(kn log n +
k

√
m
ξ

log(3km
δ

)), where k is the total number of iterations. The
algorithm succeeds with probability greater than 1 − δ.

VI. NUMERICAL EXPERIMENTS

The quantum algorithm that we propose executes the ex-
act steps of its classical counterpart, but it introduces some
random error along the computation, possibly affecting the
quality of the representation. We present numerical simula-
tions on synthetic data to better study the run-time advantage
and the convergence properties of the quantum matching
pursuit. We study whether the single-error and double-error
versions of the algorithm, introduced in Sec. V B, actually
affect the algorithm’s correctness. Our numerical simulations
are performed on a classical computer by introducing artifi-
cial errors ξ ∈ [−0.01, 0.01] in the computation of the inner
products.

A. Single- and double-error versions and representation quality

We run experiments to test whether the two implemen-
tations of the quantum matching pursuit algorithm produce
different results and whether the representation quality is dif-
ferent from the one obtained by the classical matching pursuit.

To do so, we proceed by creating 100 batches, each of
which composed of (1) a random dictionary D ∈ R100×512,
with unit columns, (2) 100 sparse vectors x ∈ Rm, with
‖x‖0 = 17, and (3) 100 signals of the form s = Dx + ε, where
ε is a vector containing Gaussian truncated noise. The dic-
tionary, the signals, and the sparse vectors are provided by
SCIKIT-LEARN’s [28] MAKE_SPARSE_CODED_SIGNAL function.
We add the ε noise artificially.

We simulate the two versions of the quantum matching-
pursuit algorithm and the classical one for each batch to
compare the sparse representations of the same data. In or-
der to assess the convergence properties, we do not set any
threshold L that limits the sparsity of the solution.

Classical
Quantum

R
un

ni
ng

 ti
m

e
(s

te
ps

)

0

1 109

2 109

3 109

4 109

5 109

Number of signal components

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5 108

600 800

FIG. 2. Running times for classical and quantum matching pur-
suits. Each point is the average number of operations required to find
the sparse representation of a signal s ∈ Rn. We report the standard
deviation with red bars.

We observe that all three versions represent the signals
with 18 components on average. For both the single-error and
the double-error versions, we compute, for each batch, the
average sparsity of the solution for that batch, divided by the
one obtained using the classical version. The average values
for this metric are, respectively, 1.0048 and 1.0060, indicating
that the quantum and classical algorithms compute solutions
with similar sparsity and also that the two quantum versions
do not differ much.

To better prove the latter point, we run a statistical test.
First, we check whether the metric values obtained for each
quantum algorithm version are normally distributed, using a
Shapiro-Wilk normality test.

The resulting p values are, respectively, 0.37490 for the
double-error version and 0.07854 for the single-error one.
Since the single-error results are not normally distributed and
the experiments were conducted on the same batches of data,
we run a Wilcoxon signed-rank test to determine whether the
performances are different. The test outcome is a p value of
0.34790, which does not allow us to reject the hypothesis that
the two algorithms perform similarly.

B. Run-time simulation

While it is true that the classical complexity of the
matching pursuit, in the general case, scales as O(knm)
and that the quantum version scales as O(kn log(n) +
k

√
m
ξ

log(3km
δ

)polylog(nm)), it is legitimate to wonder whether
the number of iterations k is the same for both the classical and
quantum versions.

To analyze the run time of the algorithms, we compare
the classical matching pursuit with the double-error quantum
matching pursuit for the same data set.

We generate data sets in the same way as discussed in the
previous section, with the difference that we study the run time
as the length n of the signal increases. For each batch, the
number of atoms m is set to twice the length of the signal,
while the solution is five times sparser than the original signal.

Experimentally, we see that there is not a significant differ-
ence in the number of iterations required to converge. Indeed,
the two algorithms produce solutions of the same sparsity.
Figure 2 illustrates the run times of the classical and quan-
tum algorithms, considering a probability of failure δ = 0.01.

022414-7

ARMANDO BELLANTE AND STEFANO ZANERO PHYSICAL REVIEW A 105, 022414 (2022)

Each point represents the average number of operations re-
quired to find the sparse representation of the signal, while
the red bars show the standard deviation.

We notice that the quantum algorithm is not advantageous
until a certain number of signal components. While the exact
signal length for quantum advantage depends on the char-
acteristics of the problem (e.g., number of atoms, expected
sparsity), this experiment shows that the quantum matching
algorithm provides a substantial speedup over its classical
counterpart for high-dimensional signals.

VII. CONCLUSIONS

In this work, we have presented a quantum algorithm to
find sparse representations of signals in the QRAM input
model. This algorithm is a quantum version of the classi-
cal matching-pursuit algorithm. We have leveraged, modified,

and combined two quantum subroutines to speed up the sweep
stage of the matching pursuit. The result is a routine with
a polynomial advantage over its classical counterpart while
retrieving solutions of the same quality.

This work shows that quantum computing can impact
learning sparse representation and opens the path to further
research on other quantum pursuit algorithms.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Alessandro Luongo
for his valuable advice and Prof. Ferruccio Resta and Prof.
Donatella Sciuto for their support. The authors are particularly
grateful to Prof. Giacomo Boracchi for his inspiring lectures
on sparse representations and to Prof. Timothy J. Sluckin for
his precious feedback on the first draft of this paper.

[1] H. Rauhut, K. Schnass, and P. Vandergheynst, Compressed
sensing and redundant dictionaries, IEEE Trans. Inf. Theory 54,
2210 (2008).

[2] W. B. Pennebaker and J. L. Mitchell, JPEG: Still Image
Data Compression Standard (Kluwer Academic Publishers,
Assinippi Park, Norwell, MA, 1992).

[3] M. Elad and M. Aharon, Image denoising via sparse and re-
dundant representations over learned dictionaries, IEEE Trans.
Image Process. 15, 3736 (2006).

[4] A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, Sparse cod-
ing with anomaly detection, J. Signal Process. Syst. 79, 179
(2015).

[5] A. Bellante, A. Luongo, and S. Zanero, Quantum algorithms for
data representation and analysis, arXiv:2104.08987.

[6] I. Kerenidis and A. Luongo, Classification of the MNIST data
set with quantum slow feature analysis, Phys. Rev. A 101,
062327 (2020).

[7] I. Kerenidis and J. Landman, Quantum spectral clustering,
Phys. Rev. A 103, 042415 (2021).

[8] S. G. Mallat and Z. Zhang, Matching pursuits with time-
frequency dictionaries, IEEE Trans. Signal Process. 41, 3397
(1993).

[9] S. Krstulovic and R. Gribonval, Mptk: Matching pursuit made
tractable, in 2006 IEEE International Conference on Acoustics
Speech and Signal Processing Proceedings (IEEE, Piscataway,
NJ, 2006), Vol. 3, pp. III-496–III-499.

[10] Y. Wu and V. S. Batista, Matching-pursuit for simulations of
quantum processes, J. Chem. Phys. 118, 6720 (2003).

[11] Y. Wu and V. S. Batista, Quantum tunneling dynamics in multi-
dimensional systems: A matching-pursuit description, J. Chem.
Phys. 121, 1676 (2004).

[12] X. Chen and V. S. Batista, Matching-pursuit/split-operator-
Fourier-transform simulations of excited-state nonadiabatic
quantum dynamics in pyrazine, J. Chem. Phys. 125, 124313
(2006).

[13] Y. Wu, M. F. Herman, and V. S. Batista, Matching-
pursuit/ split-operator Fourier-transform simulations of nona-
diabatic quantum dynamics, J. Chem. Phys. 122, 114114
(2005).

[14] B. K. Natarajan, Sparse approximate solutions to linear sys-
tems, SIAM J. Comput. 24, 227 (1995).

[15] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani,
Strengths and weaknesses of quantum computing, SIAM J.
Comput. 26, 1510 (1997).

[16] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information (Cambridge University Press,
Cambridge, 2010).

[17] V. Giovannetti, S. Lloyd, and L. Maccone, Architectures for
a quantum random access memory, Phys. Rev. A 78, 052310
(2008).

[18] S. Arunachalam, V. Gheorghiu, T. Jochym-O’Connor, M.
Mosca, and P. V. Srinivasan, On the robustness of bucket
brigade quantum ram, New J. Phys. 17, 123010 (2015).

[19] C. T. Hann, G. Lee, S. M. Girvin, and L. Jiang, Resilience
of quantum random access memory to generic noise, PRX
Quantum 2, 020311 (2021).

[20] A. Paler, O. Oumarou, and R. Basmadjian, Parallelizing the
queries in a bucket-brigade quantum random access memory,
Phys. Rev. A 102, 032608 (2020).

[21] P. Rebentrost, M. Santha, and S. Yang, Quantum alphatron,
arXiv:2108.11670.

[22] I. Kerenidis and A. Prakash, Quantum recommendation sys-
tems, in 8th Innovations in Theoretical Computer Science
Conference (ITCS 2017) (Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 2017), pp. 49-1–49-21.

[23] I. Kerenidis, J. Landman, A. Luongo, and A. Prakash, q-means:
A quantum algorithm for unsupervised machine learning, in
Advances in Neural Information Processing Systems, edited by
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, and R. Garnett (Curran Associates, Inc., 2019), Vol. 32.

[24] A. Ta-Shma, Inverting well conditioned matrices in quantum
logspace, in Proceedings of the Forty-Fifth Annual ACM Sym-
posium on Theory of Computing (Association for Computing
Machinery, New York, 2013), pp. 881–890.

[25] C. Durr and P. Hoyer, A quantum algorithm for finding the
minimum, arXiv:quant-ph/9607014.

[26] L. K. Grover, A fast quantum mechanical algorithm for
database search, in Proceedings of the Twenty-Eighth Annual

022414-8

https://doi.org/10.1109/TIT.2008.920190
https://doi.org/10.1109/TIP.2006.881969
https://doi.org/10.1007/s11265-014-0913-0
http://arxiv.org/abs/arXiv:2104.08987
https://doi.org/10.1103/PhysRevA.101.062327
https://doi.org/10.1103/PhysRevA.103.042415
https://doi.org/10.1109/78.258082
https://doi.org/10.1063/1.1560636
https://doi.org/10.1063/1.1766298
https://doi.org/10.1063/1.2356477
https://doi.org/10.1063/1.1881132
https://doi.org/10.1137/S0097539792240406
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1103/PhysRevA.78.052310
https://doi.org/10.1088/1367-2630/17/12/123010
https://doi.org/10.1103/PRXQuantum.2.020311
https://doi.org/10.1103/PhysRevA.102.032608
http://arxiv.org/abs/arXiv:2108.11670
http://arxiv.org/abs/arXiv:quant-ph/9607014

QUANTUM MATCHING PURSUIT: A QUANTUM ALGORITHM … PHYSICAL REVIEW A 105, 022414 (2022)

ACM Symposium on Theory of Computing (Association for
Computing Machinery, New York, 1996), pp. 212–219.

[27] L. Grover and T. Rudolph, Creating superpositions that
correspond to efficiently integrable probability distributions,
arXiv:quant-ph/0208112.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and É. Duchesnay, Scikit-learn: Machine learning in
python, J. Mach. Learn. Res. 12, 2825 (2011).

022414-9

http://arxiv.org/abs/arXiv:quant-ph/0208112

