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Recycling qubits for the generation of Bell nonlocality between independent sequential observers
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There is currently much interest in the recycling of entangled systems, for use in quantum information
protocols by sequential observers. In this work, we study the sequential generation of Bell nonlocality via
recycling one or both components of two-qubit states. We first give a description of two-valued qubit measure-
ments in terms of measurement bias, strength, and reversibility, and derive useful tradeoff relations between
them. Then, we derive one-sided monogamy relations for unbiased observables that strengthen the recent
conjecture by Cheng et al. [Phys. Rev. A 104, L060201 (2021)] that if the first pair of observers violate Bell
nonlocality then a subsequent independent pair cannot, and give semianalytic results for the best possible
monogamy relation. We also extend the construction by Brown and Colbeck [Phys. Rev. Lett. 125, 090401
(2020)] to obtain (i) a broader class of two-qubit states that allow the recycling of one qubit by a given number of
observers on one side and (ii) a scheme for generating Bell nonlocality between arbitrarily many independent ob-
servers on each side, via the two-sided recycling of multiqubit states. Our results are based on a formalism that is
applicable to more general problems in recycling entanglement and hence is expected to aid progress in this field.
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I. INTRODUCTION

Quantum entanglement is not only fundamental to un-
derstanding quantum mechanics but also is an indispensable
resource in various information tasks, such as quantum tele-
portation [1] and secure quantum key distribution [2]. Hence,
it is of importance to study how to efficiently use this entan-
glement resource. Recently, the possibility that entanglement
from the same source can be recycled multiple times, by
sequential pairs of independent observers, has been shown by
Silva et al. [3]. This has attracted great interest both theoreti-
cally [4-18] and experimentally [19-25].

As illustrated in Fig. 1, recycling entangled systems typ-
ically requires a first pair of observers, Alice 1 and Bob
1, passing their measured systems onto a second pair of
observers, Alice 2 and Bob 2, who then pass them onto a
third pair, etc. In this scenario, sufficient entanglement can
remain, following each measurement, to allow multiple pairs
of observers to sequentially implement quantum information
protocols such as quantum key distribution [2,26] and ran-
domness generation [24,27].

In this work, we consider the problem of recycling entan-
gled systems to generate sequential sharing of Bell nonlocality
[3]. For example, if an observer A on one side chooses be-
tween two-valued measurements X or X’ at random, and an
observer B on the other side similarly chooses between Y
or Y’, then Bell nonlocality can be revealed from the joint
measurement statistics via the Clauser-Horne-Shimony-Holt
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(CHSH) parameter [28,29]
S(A, B) := (XY) + (XYY + (X'Y) — (X'Y) (D)

with (XY) = Zx,yxyp(x,y|X, Y), where x,y € {—1, 1} label
the corresponding outcomes of measurements X, Y. Violation
of the Bell-CHSH inequality S(A, B) < 2 certifies the sharing
of Bell nonlocality between these two observers.

Notably, it was shown by Brown and Colbeck that, given
a pair of entangled qubits, a single observer is able to share
Bell nonlocality with each one of an arbitrarily long sequence
of independent observers on the other side [13]. Surprisingly,
however, we have recently found strong analytic and numer-
ical evidence that, under the same assumptions considered in
Ref. [13], it is impossible to recycle both qubits such that Bell
nonlocality is shared between sequential pairs of observers
on each side [18]. In particular, the evidence supports the
conjecture that observers Alice 1 and Bob 1 in Fig. 1 can
violate a CHSH inequality only if Alice 2 and Bob 2 cannot,
and similarly for the pairs (Alice 1, Bob 2) and (Alice 2,
Bob 1). This restriction of qubit recycling to one side may
be viewed as a type of sharing monogamy, and we have given
corresponding one-sided monogamy relations that are valid
for large classes of states and measurements [18].

In this paper, we continue to investigate the sequential
sharing of Bell nonlocality via recycling the components of
entangled systems, and in particular generalize several results
in Refs. [13,18]. We start with a brief review in Sec. II on

©2022 American Physical Society
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FIG. 1. Sequential sharing with multiple observers on each side. A source S generates two qubits on each run, which are received by
observers Alice 1 and Bob 1 (A; and B in the main text). They each make one of two local measurements on their qubit with equal probabilities;
record their result; and pass their qubit onto independent observers Alice 2 and Bob 2, respectively (A, and B, in the main text). It is known that
Alice 1 can demonstrate Bell nonlocality with each of an arbitrary number of Bobs in this way, by recycling the second qubit [13]. However,
we have recently given strong analytic and numerical evidence for the conjecture that Alice 1 and Bob 1 can demonstrate Bell nonlocality in
this manner only if Alice 2 and Bob 2 cannot, and vice versa [18]. A similar result holds for the pairs (Alice 1, Bob 2) and (Alice 2, Bob 1).

the characterization of general two-valued qubit observables
introduced in Ref. [18] and give a measurement model that
provides a simple interpretation of the strength and bias of
such observables. In Sec. III, we give a general formalism
for describing sequential scenarios, based on quantum instru-
ments [30,31], and review the optimal reversibility properties
of square-root measurements in this context. We also give
natural definitions of the maximum reversibility and minimum
decoherence of a qubit observable; tradeoff relations between
these quantities and the strength and bias of the observable;
and connections with the class of weak measurements consid-
ered by Silva et al. [3].

The above results provide the tools needed in Sec. IV
for obtaining several one-sided monogamy relations (only
proved for a special case in Ref. [18]), for the sequential
generation of Bell nonlocality via measurements of unbi-
ased observables. We also give numerical evidence that even
stronger monogamy relations hold for this case, and obtain
semianalytic forms for the best possible such relation. In
Sec. V, we apply our tools to scenarios in which recycling
is possible for arbitrary numbers of observers. First, if the
source is not restricted to generation and measurement of a
single qubit pair we show, by generalizing the construction by
Brown and Colbeck in Ref. [13], that Bell nonlocality can be
sequentially generated between arbitrarily many observers on
each side, via recycling multiqubit states. Second, a different
generalization of the Brown-Colbeck construction yields a
larger class of two-qubit states for which a single Alice can
share Bell nonlocality with a given number of Bobs. Conclu-
sions are given in Sec. VI.

II. TWO-VALUED QUBIT OBSERVABLES

In this section, we recap the description of general
two-valued qubit observables given in Ref. [18] (see also
Ref. [32]), and note several important properties for later use.
A simple measurement model for such observables is also
noted.

A. Strength and bias

We can label the outcomes of a general two-valued ob-
servable X by =£1. It is then described by a positive operator
valued measure (POVM) {X,,X_},with X, >0, X, +X_ =

1, and probability distribution p; = Tr[pX1]. The observable
is equivalently represented by the operator X = X, — X_,
where Xo = 3(1+X), —1 <X <1 and (X) =p, —p_.
This representation is particularly useful for the purposes of
the CHSH parameter (1), as the expectation value of the
product of two such observables X and Y, acting on respective
components of a quantum system, is given by

(XY):= )" xyplx,yIX,Y)

x,y=%1

Y wX. o)

x,y==1

14+xX 14yY
) 58—
x,y=%1

=(XQY). (2)

For a qubit, the operator X can be decomposed as
X=B1+S0-x 3)

with respect to the Pauli spin operator basis o = (01, 02, 03).
Here B defines the outcome bias of the observable; S > 0
denotes its strength [9] or sharpness [32-34] (and is also
called its information gain [3]); and x is a unit direction
associated with the observable, with |x| := (x - x)!/2 = 1. The
requirement —1 << X < 1 is equivalent to the constraint

S+1BI<1 4

on strength and bias.

It follows for the case of maximum strength, S = 1, that
the bias must vanish, i.e., X = o -x is the projective ob-
servable corresponding to spin in direction x. Conversely, a
minimum strength, S = 0, corresponds to the trivial observ-
able X = B1, equivalent to tossing a two-sided coin with
biased outcome probabilities py = %(1 =+ B) and average out-
come (X) = B.

For later purposes, it is useful to note that any two-qubit
state p can be parameterized in the compact form

4
1 1 b
p=7 2 Owou®o, @:(aT T>, 5)

,v=0

with 09 = 1. Here a:= (0 ® 1) and b:= (1 ® o) refer
to Alice’s and Bob’s Bloch vectors, respectively, and
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T := (0 ® ') is the spin correlation matrix. Consequently,
Eq. (2) can be rewritten as

]
(XY) = (5 sXxU@ ”T)@Yy), ©)

for X = Bx1+Sxo-xand Y = Byl + Syo - y. In the case
of projective observables X = o -x and Y = o -y, the right-
hand side simplifies to the familiar expression x'Ty. In
contrast, for trivial observables X = Y = 1, the righthand side
simplifies to 1, implying that a corresponding CHSH param-
eter of S(A, B) =2 in Eq. (1) can be always be obtained via
trivial observables.

B. Simple measurement model

A simple interpretation of a general qubit observable X
as a noisy projective observable, with the strength, bias, and
post-measurement state having correspondingly simple inter-
pretations, is as follows.

In particular, suppose that one either (i) measures the pro-
jective observable o - x, with a “success” probability S, or
(ii) otherwise assigns outcomes *+1 by flipping a coin having
biased outcome probabilities g+ = %(1 = €), with probability
1 — S. The resulting measurement statistics are therefore gen-
erated by the POVM elements
l1+o-x 1+

> +(1-=95) >

This corresponds to the observable

Xe=8 ‘1. (7)

X=X,—-X =e(1-8)1+ S0 -x, )

having strength S and bias B = €(1 — §). Note that constraint
(4) is equivalent to the property |e] < 1.

There are many different ways to measure a given ob-
servable, and the post-measurement state depends on the
measurement details (see Sec. III A). However, it is of interest
to consider the post-measurement state for the simple imple-
mentation above if the projective measurement is assumed to
leave the qubit in the corresponding eigenstate of o - x, while
the coin flip leaves the qubit unchanged. It follows that if the
state prior to the measurement is described by density operator
0, then the post-measurement state is described by

rs ZS(Pxpr + P_ypP_y) + (1 —3),0
= PpPe + P_ypP_x + (1 = S)(PepP—x + P_xpPy), (9)

where P, := %(IL + o - x). Thus the diagonal elements of the
state with respect to the o - x basis are unchanged, while the
off-diagonal elements are scaled by a factor 1 — S, imply-
ing that the latter provides a measure of the reversibility of
the measurement. We will see in Sec. IIIC, however, that
measurement implementations having larger degrees of re-
versibility are possible forall0 < S < 1.

III. MEASUREMENTS AND REVERSIBILITY

In the context of sequential generation of entanglement, as
depicted in Fig. 1, the effect of a measurement on the subse-
quent state of a quantum system is critical. In this section, we
first consider the general form of the post-measurement states,

and then focus on the special case of square-root measure-
ments. The latter have been previously argued to correspond to
the maximally reversible measurements of any given observ-
able. For two-valued qubit observables, this leads to natural
measures of maximum reversibility and minimum decoher-
ence, which are completely determined by the strength and
bias of the observable.

A. General considerations

We briefly review measurements on general quantum sys-
tems here and specialize to the case of qubit systems in the
following sections.

A measurement on a quantum system described by density
operator p, with outcome x, will leave the system in some
corresponding state p, with probability p, (we do not restrict
to x = £1 here). The most general description of such a
measurement is an instrument [30,31], i.e., a set of completely
positive (CP) maps, {¢.}, satisfying ¢,(p0) = p.px. Taking the
trace of each side then yields

px = Trl¢:(p)] = Tr[1¢x(p)] = Trlg; (1)pl, (10)

where x* denotes the dual map of linear map x (defined
via Tr[Ax (B)] = Tr[x*(A)B] for all A, B). It follows that the
observable measured by the instrument is described by the
POVM {X,} with

X, = ¢;(1). (11)

Moreover, the density operator describing an ensemble of
such systems after measurement is given by the completely
positive trace-preserving (CPTP) map

$(p) =) pepr =Y _ e(p). (12)

X

In the simplest case,

¢x(p) = MypM], X, = M!M,, (13)

for a set of “measurement operators” {M,}, so that each post-
measurement state p, is pure when p is pure. More generally,
however, each ¢,(p) is a sum of such terms.

If a local measurement described by the CPTP map ¢
is made on the first component of an ensemble of bipar-
tite quantum systems described by p, it follows that the
post-measurement state of the ensemble is given by p’ =
(¢ ®I)(p). For the purpose of explicit calculations, it is
convenient to choose trace-orthogonal basis sets {5,} and
{f.} for the Hermitian operators of the first and second
components, respectively, such that Tr[6,64] = cdup and
Tr[%,%,] = dé,, for two constants ¢ and d. This gives the gen-
eralized Bloch representation p = (cd)™! > u @W&a ® 64,
with C:)W = (64 ® 6,), generalizing Eq. (5). Hence, a local
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measurement on the first component of the system, taking p
to o' = (¢ ® I)(p) with ¢ as in Eq. (12), takes ® to @ with

Oy, =Trl(p ® 1)(0) 64 ® 7]

1 -
== ﬂZ Op,Tr[(¢p @ 1)(65 ® T,) Gy ® T,]

I ~
=~ > Op Trl(64)5a @ T,7,]
B.v

1 ~
a Z ®ﬂvTr[¢(6ﬁ)6a] Tr[:’-:v%;/.]

B,v
1 N
== > 04, Tr[$(64)5a1. (14)
B
Thus
O =K0O, Kup:=c '"Tr[6,0(65)] (15)

and the effect of the measurement on an ensemble corresponds
to left multiplication of ® by the matrix /C. More generally,
if local measurements described by CPTP maps ¢ and yx
are made on the first and second components, respectively,
then the corresponding state p" = (¢ ® x)(p) corresponds to
transforming ® to

Q" =KOL", L, :=d '"Tr[t,x ()], (16)
similarly to Eq. (15) above. This easily generalizes to se-
quences of local measurements on each side (see Sec. V A).

B. Square-root measurements and maximum reversibility

There are many possible ways of measuring a general
POVM observable {X,}. For example, the square-root mea-
surement corresponds to the instrument {¢,} defined by
é.(p) := X2 pX 1/, with corresponding CPTP map

$iap) =Y ¢lp) =) X!Ppx!?. (1)

This example is of fundamental interest, as any instrument
{ngG } describing a measurement of the POVM {X,} has the
form ¢¢ = v, o ¢y, for suitable CPTP maps v, [13]. Thus
any measurement of X formally corresponds to first carrying
out the square-root measurement, and then applying a quan-
tum channel to the state depending on the result obtained.

It follows, noting that v, is reversible if and only if it is
unitary, that a general measurement of X can be no more
reversible than a square-root measurement of X. Moreover,
if the outcomes are not known (e.g., to a second observer
who receives the qubit in a sequential scenario), then a general
measurement can only be ‘reversed’ to the square-root mea-
surement if v/, (p) = U p U for some unitary transformation
U . In this sense the square-root measurement is the maximally
reversible measurement of X, up to a unitary transformation.

The above property of square-root measurements leads
to a natural measure of the maximum reversibility for any
measurement of a two-valued qubit observable. In particular,
the action of a square-root measurement of X = {X , X_}
on a qubit in state p may be calculated from Egs. (3) and (17)

as [18]
¢1/2(;0) = Pxpr + P—x;oP—x + R(PxpP—x + P—xpr)7 (18)

where P, = %(1 + o0 - x) and the parameter R is given by

R=3/U+BP-8+3/0-B? -8, (19

Thus R = 0 for projective measurements (S = 1, B = 0), and
R =1 for trivial measurements (S = 0). More generally, R
scales the off-diagonal elements of p, making it a suitable
measure of the reversibility of the square-root measurement.
Accordingly, it is also a measure of the maximum reversibility
of any measurement of X. We will often just refer to it as the
reversibility in what follows.

The interpretation of R as a measure of maximum re-
versibility may also be more directly justified in some cases.
For example, Silva et al. introduced a class of weak mea-
surements of unbiased qubit observables, i.e., with B =0 in
Eq. (3), for which the post-measurement state has the form [3]

PF ‘= Pxpr + P—xpP—x + F(PxpP—x + P—xpr)a (20)

where F is a “quality factor” that depends on the properties
of the pointer state used in the measurement. Comparing
Egs. (18) and (20), it is seen that F is a measure of the
reversibility of such a weak measurement. However, as shown
in Ref. [18],

F <R, 21

with equality holding for a set of optimal pointer states.
Thus the reversibility of such weak measurements is explic-
itly bounded above by the maximum reversibility R. It will
be shown in the next section that R also explicitly upper
bounds the reversibility of the simple measurement protocol
in Eq. (9), for both biased and unbiased observables.

Moreover, as noted in Ref. [18], if the measurement of a
general qubit observable X = {X;, X_} is implemented with
Kraus operators My as in Eq. (13), then the average state
disturbance, as quantified by the fidelity F in Ref. [35], is
upper bounded by

F<(R+2)/3, (22)

where the equality is saturated for the square-root measure-
ment with M =Xi1/ *. Thus there is a direct connection
between maximum reversibility and maximum fidelity for this
case.

Finally, for the purposes of applying the Horodecki cri-
terion [36] to the post-measurement state of a two-qubit
ensemble, we also need to determine how the spin matrix T
transforms under local measurements. For the case of a local
measurement on the first qubit, one finds from Egs. (5) and
(15) (with 6, = T, = 0, and ¢ = d = 2) that T is mapped to

T' = ITr[¢(1)olb" + KT, (23)

where K is the 3 x 3 matrix with coefficients Ky = KCj. It
follows that T transforms most simply when the first term van-
ishes, i.e., when (i) b = 0 or (ii) ¢(1) = 1. Note that condition
(ii) is equivalent to the map ¢ being unital. More generally, if
¢ and x are unital, or if the local states are maximally mixed,
then Eq. (16) yields the simple transformation law

T" =KTL" (24)
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for the spin correlation matrix, following local measurements
on each side, with Lj; := L.

In particular, noting from Eq. (17) that square-root mea-
surements are unital, i.e., ¢1,(1) = 1, it follows that local
square-root measurements of the qubit observables X =
Bx1+ Sxo-xandY = Byl + Syo -y result in a spin corre-
lation matrix of the form given in Eq. (24). Explicit calculation
of K and L, from Eq. (18) and K and £ in Egs. (15) and (16),
then gives [18]

T = KXTK', KX :=RxL+(1—Rxxx', (25)

where I3 is the 3 x 3 identity matrix, and Ry, Ry label the
maximum reversibilities of observables X, Y, respectively.
This result will be used in obtaining the one-sided monogamy
relations in Sec. I'V.

C. Tradeoffs between strength, reversibility, and decoherence

It has been shown previously that the strength and max-
imum reversibility of a qubit observable X = B1 4 So - x
satisfy the tradeoff relation [18]

R+ 82< 1, (26)

with equality for the case B = 0. Thus the greater the strength
or sharpness of the observable, the less reversibly it can be
measured, and vice versa. This tradeoff is closely related to
the information-disturbance relation of Banaszek [35], for the
case of qubit measurements [18], and will be crucial to the
derivation of one-sided monogamy relations in Sec. IV.

Here we briefly note several further connections between
strength, reversibility, bias and information-disturbance; com-
pare the maximum reversibility to that of the simple measure-
ment protocol in Eq. (9); and introduce a natural measure of
the minimum decoherence of a qubit measurement.

First, we extend tradeoff relation (26) to the inequality
chain

1-S<R*<1-8% 27)

Thus a given strength sets both upper and lower bounds on the
maximum reversibility. To obtain these bounds, note first from
Eq. (19) that R = 0 is only possible if S = 1 + 15, yielding
inturn B =0 and § = 1, and that R = 1 is only possible if
S = 0, since otherwise Eq. (19) gives R < %(1 + B)+ %(1 —
B) = 1. Hence, Eq. (27) is certainly valid for R =0 or 1.
Moreover, for 0 < R < 1 it follows directly from Eq. (19) that
(18]

R*2+8*=1-B*(1/R* - 1), (28)

immediately implying the right-hand inequality of Eq. (27).
Further, rewriting the above equality as

S?
1Bl =R =17 (29)

and substituting into Eq. (19) gives

R=max{R,,/[]l — ——
1 -R?

2
° } (30)

which immediately implies the left-hand inequality of
Eq. (27).

The lower bound in Eq. (27) has several applications. For
example, it implies that the reversibility of the simple mea-
surement protocol in Eq. (9), i.e., Rgmp = 1 — S, is always
upper bounded by the maximum reversibility R. In particular,
we have

Remp =1 -S < VT-S <R, 31)

with strict inequality for 0 < & < 1. This result also im-
plies that the lower bound in Eq. (27) is stronger than the
“disturbance-reversibility” relation given in theorem 2 of
Ref. [37], for the case of qubit measurements, as the latter
relation reduces to R + S < 1 for this case. Lastly, combining
constraint (4) with the lower bound in Eq. (27) gives

IB] < R?, (32)

i.e., the outcome bias sets a lower bound on the maximum
reversibility of the measurement.

Noting that the maximum reversibility R in Eq. (18) scales
the off-diagonal elements of the square-root measurement, it
is natural to define a corresponding “minimal decoherence”
by [18]

D=+1-"R2. (33)

Equation (27) is then equivalent to
D>S =D (34)

In particular, the minimal decoherence of any qubit measure-
ment is at least as large as the strength of the observable being
measured.

Finally, we note that the strength and bias of a given ob-
servable can be simply parameterized in terms of its maximum
reversibility via

la| <sin"!'R,

S=+v1—-R%cosa,
(35)

as can be checked by direct substitution into Eq. (19). This
parametrization is useful for numerical searches over general
observables, and for deriving further tradeoff relations such as
the lower bound

B =TRsina,

R*+8*=1-(1-RYsina>1-(1-RHR* > 3,
(36)
complementary to Eq. (26).

IV. ONE-SIDED MONOGAMY RELATIONS FOR
UNBIASED OBSERVABLES

A. Overview

We now consider the scenario in Fig. 1, in which observers
A and B; make measurements on a pair of entangled qubits
and pass them on to observers A, and B, respectively. As
discussed in Introduction, we have previously given strong
support for the conjecture that, in the scenario where A; and
By each choose between two observables with equal proba-
bilities, they can violate the CHSH inequality if and only if
A and B, cannot [18]. Here we numerically and analytically
investigate this conjecture further, for the particular case of
unbiased observables, including strengthening it and proving
several one-sided monogamy relations for this case.
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In the light of the discussion in Sec. III B, we limit our
consideration to the scenario where A; and B; make square-
root measurements of their observables, i.e., to maximally
reversible measurements [13]. Hence, if A; measures either
X or X’ with equal probability, and B; measures Y or Y’
with equal probability, it follows via Eq. (25) that the spin
correlation matrix 7' of the initial shared state is transformed
to KT L, where

1 ,
K = E(KX +K*)

Rx+Rxy  1-R 1 — Ry
= N T T LT 3
2 2 2
and
Loy
L:=§(K +K")
Ry + Ry 1-R 1-Ry ,,
= Yz "L+ 5 Tyy™ + ZYny- (38)

This transformation rule allows us to avoid having to explic-
itly optimize over the set of observables that can be measured
by A; and B, [18]. In particular, we can apply the Horodecki
criterion to the post-measurement state [36], to conclude that
A, and B, can violate the CHSH inequality if and only if

S*(Az, B) = 2/s1(KTL)? + so(KTL)? > 2. (39)

In previous work, a search over the possible values of
S(A1, By) and S*(A;, B,) strongly supported the conjecture
that the pairs (A}, B;) and (A;, By) cannot both violate the
CHSH inequality [18] (see also Fig. 2 below). It was further
shown, analytically, that for the case of unbiased observables
X, X', Y, Y’ satisfying the assumptions of equal strengths
Sx = Sx/, Sy = Sy and orthogonal relative angles x - x’ =
0 =y-y on each side, one has the one-sided monogamy
relation [18]

\ 82
IS(A1, B1)| + S*(Az, By) < -5 < 4. (40)

It immediately follows from this relation that the quantities
S(Ay, By) and S*(A,, By) cannot both be greater than 2, thus
proving the conjecture under these assumptions. A numerical
search and quadratic one-sided monogamy relations also sup-
ported a similar conjecture for the pairs (A}, B;) and (A;, By)
[18], but the latter case will not be considered further here.

In the remainder of this section, we will strengthen the
above results in several ways. First, we will give numerical
evidence for the following.

Conjecture for unbiased observables: For arbitrary un-
biased observables X, X’ and Y,Y’, that are independently
measured by A; and B, with equal respective probabilities,
the one-sided monogamy relation

IS(A1, B1)| + $*(A2, By) < 4 (41)

is always satisfied.

This conjecture immediately implies that the pairs (A, By)
and (A,, By) cannot both violate the CHSH inequality, for any
measurements of unbiased observables by the first pair, with-
out any assumptions on their strengths and relative angles.
The numerical evidence further shows that stronger one-sided
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FIG. 2. One-sided monogamy relations for biased and unbiased
observables. For general biased observables, a global optimization
algorithm was employed in Ref. [18] to determine the joint range
of possible values of S(A,, By) and S*(A,, B,), the results of which
are reproduced here as the blue dots. When restricted to unbiased
observables, new numerical results are displayed as the solid orange
curve, which lies strictly below the dashed red line corresponding
to the conjectured monogamy relation (41), and which completely
coincides with the blue dots for the case |S(A;, B;)| = 2. We have
further verified that the solid orange curve can be achieved by mea-
suring unbiased observables on a singlet state. The detailed form of
the solid orange curve is discussed in Sec. IV C.

monogamy relations must exist, and we obtain some semi-
analytic results for the form of the optimal such relation.

We will also analytically support the above conjecture
by (i) proving that the monogamy relation (41) holds for
all unbiased observables with equal strengths on each side
(irrespective of the relative angles) and (ii) proving that
the stronger monogamy relation (40) holds for all unbiased
observables with orthogonal relative angles on each side (irre-
spective of their strengths).

B. Numerical evidence for the conjecture

The joint range of achievable values of S(A;, B;) and
S*(A;, By) can be numerically determined via a global nu-
merical optimization algorithm, as described in Ref. [18].
The algorithm searches over all two-valued observables
X, X', Y, Y’ that can be measured by A; and By, and over all
pure states (convexity implies that only pure states need be
considered), i.e., over a total of 17 free parameters [18]. More
precisely, a differential evolution optimizer is implemented to
seek solutions to the problem

max S*(Az, Bz)
o, X, XYY

s.t. S(A;, By) =5, (42)
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for fixed values of s € [0, 2\/5]. The codes used in the simu-
lations reported here are freely available at Ref. [38].

The results of this search are reproduced here as the blue
dots in Fig. 2, which plots the numerically determined maxi-
mum value of S*(A,, B) for each possible value of S(A;, By)
(only a subset of points is plotted, for ease of viewing). It is
seen that S*(A,, B,) can reach the maximum value of 24/2,
and thus allow the pair (A, B») to violate the CHSH inequal-
ity, for any value |S(A, By)| < 2 (e.g., via A| and B; making
nondisturbing trivial measurements X = X' =Y =Y’ = B1
on a singlet state and A, and B, making the optimal CHSH
measurements). In contrast, for |S(A;, By)| > 2, i.e., when
the pair (A, By) can violate the CHSH inequality, the results
show that S*(A,, B,) is strictly less than 2. Thus the dotted
blue curve confirms the general conjecture in Ref. [18] that it
is impossible for both pairs to violate the CHSH inequality.

Figure 2 also presents new numerical results, for the case
where (A, By) are restricted to measurements of unbiased
observables, corresponding to the solid orange curve. These
results were generated by the same method described above
but with the biases of the observables set equal to zero. Noting
that the dashed red line in Fig. 2 corresponds to equality in
Eq. (41), these numerical results therefore strongly support
the above conjecture that the one-sided monogamy relation
(41) holds for measurements of unbiased observables. We
have also numerically verified that for this case the same solid
orange curve is obtained under the restriction to a singlet state,
in agreement with the reasoning given [18], and that it is also
obtained under a further restriction of measurement directions
to the equatorial plane.

It is of interest that the dotted blue and solid orange curves
are the same, up to numerical error, for any given violation
of the CHSH inequality by A; and By, i.e., the corresponding
maximum possible value of $*(A,, B,) can be achieved even
if A; and B; are restricted to measure unbiased observables.

C. Semianalytic optimal monogamy relations

The numerical results depicted in Fig. 2 support the con-
jectured one-sided monogamy relation in Eq. (41), but they
also indicate that this relation is not optimal. In particular, an
optimal monogamy relation for unbiased observables would
reproduce the numerically generated orange boundary curve
in Fig. 2. It is therefore of interest to probe the numerical
results more closely, to gain information about the possible
analytic form of this curve. Some success in this direction is
achieved below for several portions of the boundary curve,
and we refer to the results, guided by both numerical and
analytic analysis, as “semi-analytic” monogamy relations.
Strictly analytic but less general relations will be derived in
Sec. IVD.

To find suitable ansatzes for the optimal measurement
strengths and directions that generate the orange boundary
curve in Fig. 2, we begin from the observation in Sec. IVB
that the same curve is numerically generated under the re-
strictions that (i) the initially shared state is a singlet state
(T = —bh) and (ii)) A; and Bjs observables are confined to
the equatorial plane of the Bloch sphere (henceforth setting
the z component of all measurement Bloch vectors to zero).

Noting that the singlet state is rotationally invariant, we
choose x = (0, 1,0)" without loss of generality.

The numerical results indicate that the optimal measure-
ment parameters under the above restrictions take different
forms in three piecewise regions of the orange boundary curve
in Fig. 2, given by |S(A1, B1)| <2, 2 < |S(A4y,By)| $2.72
and |S(Ay, By)| 2 2.72. These regions are therefore consid-
ered in turn below.

1. First region of the optimal boundary curve

For the first region, i.e., |S(A;, By)| < 2, the numerical re-
sults suggest the ansatz Syy = 0,Sy = Sy andx =x' =y =
=(0,1,0)" for the measurement parameters that generate
corresponding section of the orange curve in Fig. 2. This
implies via Egs. (37) and (38) that K7L is diagonal, with

largest singular values
LS i—s

(43)

sIKTL) =1, sy(KTL)=1(1+

Now, since S*(A,, By) in Eq. (39) is an increasing func-
tion of s,(KTL), we therefore seek to find the strengths Sy
and Sy which maximize the latter. To this end, noting that
S(A1, B1) = 25xSy under our ansatz, we introduce the La-
grangian objective function

Hi+y1-8)y(1-8})

—§Q25xSy —5), (44)

‘C(SXs SY? 5) =

where & is a Lagrange multiplier. The stationary points of the
Lagrangian, VL = 0, occur when

‘/1—52 o

J1 = 82
y(1+,/1—83)
4£Sx + 0, (46)
J1— 82
2SXSY =3S. (47)

Rewriting the first two of the Lagrangian equations in terms
of the maximum reversibilities Ry = v 1 — S)% and Ry =
V1 — &2 and equating £ in these equations yields Ry =
/Ry, and the corresponding CHSH parameters evaluate to

S(Ay,By) =2(1 — Rx)v/' 1+ Rx, (48)
$*(Ag, By) = V4 + (1 + Rx)* Ry, (49)

in terms of Ry. Plotting the parameters as Ry varies over
[0,1] then gives the black dotted curve in Fig. 3, which is seen
to perfectly match the orange boundary curve of Fig. 2, up
to numerical error, for the region |S(A;, B;)| < 2. We hence
propose these expressions parameterize the exact form of the
boundary curve for this region.

The Lagrangian equations can also be solved algebraically
by Mathematica, to give the optimal value of S*(A;, By) as
an explicit function of s := |S(Ay, By)|. In particular, if A(s)
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FIG. 3. Semianalytic monogamy relations for unbiased observ-
ables. The orange solid curve reproduces the numerically generated
optimal curve in Fig. 2. The black dotted and dashed curves match
the optimal curve in the regions |S(A;, By) € [0, 2] and |S(A;, By) 2
2.72, respectively. These curves are defined in Eqgs. (52) and (54),
found by numerically motivated ansatzes for the optimal observables
measured by A; and B, (see main text).

denotes the smallest real root of the cubic polynomial

p(2) = (s* — )z — (35> — 16)22 + (35> — 16)z + 5°,
(50)

then the solution for Sy can be written as the square root of
the largest root of the quadratic polynomial

q(z) := 4h($)z* + s*[1 — h($))z — 5°. 51)

Denoting this solution by Sy (s) (which we do not give explic-
itly in terms of s here, due to its complicated form), and using
Sx = s/(2S8y) and Eq. (43), we arrive at the function

1 — Sy(s)? 52
44 T(2+‘/4— W) (52)

directly relating the two CHSH parameters. This function
again corresponds to the black dotted line in Fig. 3, and
replacing equality by < yields our proposed optimal one-sided
monogamy relation for this region.

S*(Az, By) =

2. Second region of the optimal boundary curve

For the intermediate region 2 < |[S(Ay, By)| < 2.72, the
numerical results indicate that the orange boundary curve in
Fig. 2, i.e., the solution to Eq. (42), occurs when Sy = Sy, Bs
measurement directions are determined by a single angle 6 via
y = (sin@, cos0,0)",y = (—sinh, cos0,0)" and Als mea-
surement directions are determined by either choosing x' =
(1,0,0)T or x’ = (sin26, cos26,0)". However, although
this ansatz for the measurement parameters reduces the
optimization problem to only four unknown variables,

Sx, Sx/, Sy, and 6, we have not been able to solve it by the
same methods as the previous case to obtain an explicit form
for the orange boundary curve in Fig. 2 in this region.

3. Third region of the optimal boundary curve

For the final region of the orange curve, 2.72 <
|S(A1, By)| < 2\/5, the numerics indicate that S*(A,, B,)
obtains its extreme values when A; and B; measure ob-
servables of equal strength with orthogonal relative an-
gles, corresponding to the ansatz Sy = Sy =Sy = Sy =:' S
and x =(0,1,0)",x' =(1,0,0)",y =2"12(1,1,0)",y' =
2712(—~1,1,0)7 (note these directions are the optimal CHSH
directions for projective measurements [29]). Under this
ansatz the two largest singular values of KT L are identical,
and evaluate to $(S? — 2(v/1 — 8% + 1)), so that

S?-2(1+/1-8?)
V2 ’
which depends on only S, which is uniquely determined

by the constraint in Eq. (42), whence S(A, B;) = 45?/ V2.
Upon rearranging and substituting, we find

S*(Az, By) = (53)

_ S(A1,By) 4 e S(AI:BI).

4 V2
This is plotted as the black dashed curve in Fig. 3, and is
seen to be indistinguishable from the numerically generated
orange optimal curve in Fig. 2 for this region (and is also
a good approximation to the optimal curve for small values
of |S(A1, B1)|). Hence, replacing equality by < yields our
proposed optimal one-sided monogamy relation for this re-
gion. Note that since this region of the orange curve matches
the optimal curve for the general case of biased observables,
Eq. (54) also applies to the general case.

Finally, it is straightforward to show analytically that the
proposed form in Eq. (54) is indeed optimal for the case
S(A1, By) = 2«/5, i.e., that the maximum possible value of
S*(A,, B>) for this case is 1 /«/5. In particular, it is known
that it is possible to obtain a value of S(A(, B)) = 24/2 for
a two-qubit state only if the state is maximally entangled
and if projective measurements having orthogonal relative an-
gles are made on each side [39,40]. Hence, 51(T) = 52(T) =
1, the reversibilities vanish, and K =L = diag[%, %, 0] via
Egs. (25), (37), and (38), and substituting in Eq. (39)
then gives S* (A2, B) = 2[s1(3T)* + s2(3T)*]'* = 1/v/2 as
claimed. This analytic result also shows the conjectured one-
sided monogamy relation (41) cannot be strengthened to the
form |S(A;, B))|? 4+ $*(A,, Bo)? < (24/2)? for d > 1.76. In
particular, we need the point (2,2) on or below any bounding
curve (to imply the conjecture), implying the upper bound for
x? 4+ y¢ can be no greater than 2¢ 4+ 2¢ = 2¢+! Hence, to en-
sure the point (Zﬁ, 1/ ﬁ) is also on or below the curve, we
require (2+/2)¢ + (1/+/2)? < 24+, which gives d < 1.758.

S*(As, By) = V2 (54)

D. Analytic monogamy relations

Here we prove the one-sided monogamy relations (40)
and (41) for unbiased observables, for the respective cases of
orthogonal directions and equal strengths on each side. We
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begin by showing that it is sufficient to prove them for the
singlet state.

1. Only the singlet state need be considered

Note first, for unbiased observables, that S(A;, B;) is linear
in the spin correlation matrix 7 of the initial state, while
Eq. (39) can be rewritten as

S*(As, By) = 2||KTLI|(3), (55)

where ||M||Ef1’; = [27:1 5;(M)P]/P is the singular-value ma-
trix norm defined as per Eq. (IV.19) of [41]. Second, any spin
correlation matrix 7' can be represented as a convex mixture,
T =", piTx, of at most four spin correlation matrices of
maximally entangled states (corresponding to the four Bell
states defined by the local bases in which T is diagonal)
[42]. Hence, indicating the dependence on T explicitly and
noting that the triangle inequality holds for absolute values
and norms, we have

IS(A1, Bi|T)| + §*(A2, B2|T)

< Y pilISWAy, BUTOL + 57 (As, B[ To)]
k

S max[|S(Ar, Bi|Tme)l + §*(A2, B2|Te)]

< max [[S(Ar, Bi|To)| + S™(A2, B2| To)]. (56)
XXYY'
Here, the maximum in the third line is over the spin correlation
matrices of maximally entangled two-qubit states; Ty := —I3
is the spin correlation matrix of the singlet state; and the
maximum in the last line is over the (compact) set of unbiased
observables. The last line follows since all maximally entan-
gled states differ from the singlet state only by local rotations,
implying that maximizing over a rotationally invariant set of
local observables (such as the set of unbiased observables),
for a given maximally entangled state, is equivalent to maxi-
mizing over the same set for the singlet state. It follows that
only the singlet state need be considered for the purposes of
proving the monogamy relations, as claimed.

2. Upper bounds for the CHSH parameters

The final ingredients required for deriving our analytic
monogamy relations are upper bounds for the CHSH param-
eters S(A1, B1|Ty) and S(A,, B2|Tp) appearing in Eq. (56), for
the case of unbiased observables.

First, for zero bias observables X, X’,Y,Y’ with fixed
strengths Sy, Sx/, Sy, Sy: and relative measurement angles
cosd =x-x/, cos¢p =y ~y’, measured on a singlet state, we
have the tight upper bound

IS(A1, B1|To)! < So, (57
with
(S0)* := (S + Sy)(Sy + S7) +285xSx/(Sy — S7) cos 6
+ 28y Sy (Sy — S3/) cos ¢
+ 485 Sy Sy Sy’ sin 6 sin ¢. (58)

This upper bound is proved in Appendix A, and will be gener-
alized elsewhere [43]. Note that it simplifies to the maximum

quantum value of 2+/2 for the case of unit strengths and
orthogonal measurement directions.
Second, from Eq. (39) above, noting Ty = —I3, we have

S*(A2, B2o|Ty) = 2/51(KL)? + 52(KL)?

< 2Vs1(K)2s1(L)? + 52(K 2so(L)?,  (59)

where the last line follows from Theorem IV.2.5 of [41]. Our
strategy for obtaining analytic one-sided monogamy relations
is to find upper bounds for the sums of these inequalities, that
are independent of X, X', Y, and Y’, under suitable assump-
tions.

3. Monogamy for orthogonal directions on each side

We now have the tools to prove the following result.

Theorem 1: For square root measurements of arbitrary un-
biased observables X, X’ and Y, Y/, made by A; and B; with
equal respective probabilities, with orthogonal angles x - x’ =
0 =y -y’ on each side, the one-sided monogamy relation

8v2
IS(A1, By)| + S*(A2, By) < =5~ 3.77 (60)

is always satisfied.

This theorem strengthens the result proved in Ref. [18],
which required a further assumption of equal strengths on
each side, and supports the Conjecture for unbiased observ-
ables in Sec. IV A. We outline its proof below, with the details
left to Appendix B 1.

First, from Eq. (58) and the orthogonality assumption,

55 = (S§ + Sy)(Sy + S7/) + 4Sx Sy Sy Sy
<2(Sy +S3)(S7+S7)
=2(2- R} - R:)(2-R: - RE), (61)
where the inequality follows using ab < §(a® + b?) and the
last line using the identity S = 1 — R? for unbiased observ-
ables as per Eq. (19).
Second, again under the orthogonality assumption, the sin-

gular values of the matrices K and L in Egs. (37) and (38) can
be calculated (see Appendix B 1), and Eq. (59) applied to give

5*(A2, Bo|Ty)* < (1 4+ Rx)* (1 + Ry)?
FLA+RPA+ Ry (62)

Finally, Eqgs. (56), (57), (61), and (62) may be shown to
lead to (see Appendix B 1)

IS(A1, B1)| + S*(A2, By)

1
< mﬁ)xl]\/i(z 2=y + 5\/(1 +x)* 4+ (1 +y)*
x,y€[0,

= 8v2/3, (63)

as claimed. Note that this bound coincides with the one
derived in Ref. [18], which requires the equal strength
assumption. Hence, the above inequality is achieved for
Sy =Sy =24/2/3 ~0.943, Ry = Ry = 1/3, and the opti-
mal CHSH directions.
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4. Monogamy for equal strengths on each side

We can also use the above tools to prove a further one-sided
monogamy relation.

Theorem 2: For square root measurements of arbitrary un-
biased observables X, X’ and Y, Y’, made by A; and B; with
equal respective probabilities, with equal strengths Sy = Sx/
and Sy = Sy’ on each side, the one-sided monogamy relation

IS(Ay, B)| + S*(A2, By) < 4 (64)

is always satisfied.

This theorem similarly strengthens the result proved in
Ref. [18], which required a further assumption of orthogonal
directions on each side, and again supports the Conjecture for
unbiased observables in Sec. IV A. Its proof is outlined below,
with details given in Appendix B 1.

First, it follows from Eq. (58) and the equal strengths
assumption that

S2 = 48:SE(1 +sin 6 sing)

< 45§5;\/(1 + sin? 6)(1 + sin” ¢)

=4(1 - RE)(1 = Ry)’V 2 —ex)2—cyr),  (65)

where the second line follows via the Schwarz inequality for
the vectors (1, sin#), (1, sin ¢), and the third line using R? =
1 — S? for unbiased observables as per Eq. (19) and defining
cx = cos20, ¢y := cos’ ¢.

Second, again under the equal strengths assumption, the
singular values of the matrices K and L in Egs. (37) and (38)
can be calculated (see Appendix B 2), and Eq. (59) applied to
give
28(A2, Bo|Tp)* = [(1 4+ Ryx)* + (1 = Rx)* cos” 0]

x [(1+Ry)’ + (1 = Ry)’ cos’ ¢]

+4[(1 — Ryl cosO]][(1 — R})Icos ¢l].
(66)

Finally, Eqgs. (56), (57), (65), and (66) may be shown to
lead to (see Appendix B 2)

IS(A1, B1)| + S*(A2, By)
<2 m?ggl][«/z —c(1=x%
x,c€|0,

+VIA 4202+ (1 —x)2%cl? + 4(1 — x2)2¢/+/8]
<4, (67)

as claimed in theorem 2. Particularly, it follows from Egs. (65)
and (66) the first inequality is achieved by A; and B, per-
forming measurements with the same strength and relative
angle, i.e., Sy = Sy and sin6 = sin ¢, while the second is
further saturated with x = 0 and ¢ = 1, or equivalently, Sx =
1 and sinf = 0, implying that parallel directions and zero
reversibilities are optimal for this case.

5. Generalization to a class of weak measurements

The above analytic monogamy relations are proved for the
case of square-root measurements. However, it is expected,
from the argument given in Sec. IIIB (see also Ref. [13]),
that they also hold for arbitrary measurements, similarly to

the conjectured monogamy relation (41) for unbiased observ-
ables. In this regard, it is worth noting that theorems 1 and 2
indeed hold for the class of weak measurements introduced by
Silva et al. [3].

In particular, for this class of measurements, the re-
versibilities Ry, Rx/, Ry, and Ry of the post-measurement
state are replaced by corresponding “quality factors”
Fx, Fy,Fy, and Fyr as per Eq. (20). Further, inequalities
(61) and (65) remain valid under this replacement, since
S? =1-R? < 1 —F?as per Eq. (21), and the proofs of the
theorems then follow exactly as for the case of square-root
measurements.

Likewise, noting Eq. (31), theorems 1 and 2 also hold for
the case of unbiased observables measured as per the simple
measurement protocol in Eq. (9). Similar generalizations ap-
ply to the one-sided monogamy relations in Ref. [18].

V. QUBIT RECYCLING FOR MULTIPLE OBSERVERS

In this section, we use the techniques developed in Sec. III
to study the problem of generating Bell nonlocality between
multiple pairs of independent observers. We show that this
is possible for the case of multiple observers on both sides,
if they share sufficiently many pairs of qubits, via a simple
extension of a construction by Brown and Colbeck for the
case of a single Alice and many Bobs [13]. We also give an
alternative extension of this construction that allows a single
Alice to generate Bell nonlocality with many Bobs for a larger
class of single two-qubit states.

A. Arbitrarily many Alices and Bobs

Assume now that there are M Alices on one side and N
Bobs on the other in Fig. 1, where each observer indepen-
dently chooses between a set of two or more measurements to
make on their component of a general bipartite state p. We
will denote the mth Alice and the nth Bob by A,, and B,,
respectively.

It follows that if ¢,, and yx, are the CPTP maps describing
the effect of local measurements made by each A,, and B,,
on an ensemble initially described by state p, then the post-
measurement state of the ensemble shared by A,, and B, is
given by

P/ =(@mo...0200)® (Xuo...x20x1)(P).  (68)

Using the notation developed in Sec. I A, this post-
measurement state is equivalently described by the matrix

Q' =K,...Ki0L] ...L], (69)

with ICmaﬂzzc_lTr[éaqﬁm(&,g)] and E,,M,,:zd_lTr[fux,,(%v)],
generalizing Eq. (16). It further follows, for the case of a
shared two-qubit state, that if either the local Bloch vectors
vanish or the CPTP maps are unital, the corresponding spin
correlation matrix 7 is transformed to
T"=K,...Ki\TL] ...L]

n

(70)

generalizing Eq. (24).

Now, the validity of the conjectures made in Ref. [18]
would imply that for M, N > 1 it is not possible for all
pairs (A,,, B,) to generate Bell nonlocality if each observer is
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restricted to choosing between two equally likely measure-
ments on a single two-qubit state. However, this does not
preclude the possibility that each pair can generate Bell non-
locality via making a greater number of measurements on
higher-dimensional quantum systems, as demonstrated by the
simple example below.

In particular, suppose that the observers share M two-qubit
states, and that for their local component of the gth two-qubit
state A,, and B, independently choose between equally likely
measurements of unbiased qubit observables qu,X,;q and
Yigs Yn’q, respectively. For each pair (A4,,, B,), there is then a
corresponding Bell inequality

Son 1= max{Sq(Am’ Bn)} <2, (71)
q

where  S,(An. B) = (Xug¥ug) + Xug¥y) + (i Yog) —
(X, an/ o) denotes the CHSH parameter corresponding to their
measurements on the gth two-qubit state. For square-root
measurements the local measurement operations are unital,
so that the values of each S,,, can be calculated via Eqgs. (1),
(24), and (70).

To show that every one of the above Bell inequalities can
be violated, with Sj; > 2, we extend a construction given by
Brown and Colbeck that allows a single Alice to violate the
CHSH inequality with each Bob via recycling a single shared
qubit state [13]. The idea is to apply this construction to the
m-th qubit pair, to ensure that S,,(A,,, B,) > 2 for each n.
First, label the measured observables in the Brown-Colbeck
construction by X, X’ for the single Alice, A, and by Y,,, ¥, for
the nth Bob, B,,, so that

SA,B,)>2, n=1,2,...,N (72)

by construction. Second, choose the observables measured by
A,, and B, on the gth qubit pair to be

. X, m=gq ;o X, m= q
qu T {]1’ m 5& q» qu T { Jl’ m # qv (73)
Yyg=Ys, Y, =Y, (74)

Since square-root measurements of the identity operator do
not disturb the system, it immediately follows that

Sm(Am» Bn) = S(Aa Bn) > 27 (75)

and hence that S,,,, > 2 as required.

The above example, and its converse with M Alices and
one Bob, show that each pair can independently generate Bell
nonlocality by each observer choosing between suitable local
measurements on a shared 4™"™-V} dimensional quantum
system. Note that a related example by Cabello [44], based
sharing only two qubit pairs, is unsuitable in this context, as
the observers do not make independent measurements (all en-
tanglement in the first and second qubit pairs in this example
is destroyed by the projective measurements made by B; and
A)), respectively, implying that no later pair of observers can
independently generate Bell nonlocality).

It would be of interest to find examples requiring less
measurements and/or dimensions. For example, it is known
for M = N = 2 that each of two Alices can steer each of two
Bobs, and vice versa, via recycling of a single qubit pair [25].

B. Multiple Bobs

The problem of one-sided qubit recycling, with one Alice
and N > 1 Bobs, has been well studied in previous work
[3-16]. In particular, theorem 2 of Ref. [13] shows that it
is possible to generate CHSH Bell nonlocality between one
Alice and arbitrarily many Bobs via recycling of a two-qubit
state and unbiased observables, under the condition that two
largest singular values of the initial spin correlation matrix 7
satisfy

si(T)=1, s:(T)> 0. (76)

Brown and Colbeck raised the interesting question of whether
this condition was necessary as well as sufficient [13]. Here
we answer the simpler but related question, of whether this
condition is necessary and sufficient for the case of a fixed
number of Bobs. We show that it is only sufficient for this
case, by constructing suitable two-qubit states with s;(7") < 1.

First, for a fixed number N of Bobs, consider an initial
two-qubit state p satisfying the Brown-Colbeck condition (76)
above, so that Eq. (72) is satisfied for suitable unbiased ob-
servables X, X’ measured by Alice and Y,,, Y, measured by the
nth Bob. Further, define the class of states

l—p
pp:=pp+T]1®]l,

corresponding to adding isotropic noise to p. The associated
correlation matrix is then 7, = p T, with singular values

siTp) =psi(T) =p, (Tp) =ps(T)>0.  (78)

Further, if Alice and each Bob choose the same measurement
strategy as for p, then it follows (recalling that the observables
are unbiased) that the corresponding CHSH parameters are
given by

pe(0,1), (77)

Sy(A,B,) =pS(A, B,). (79)
Finally, defining
Smin := min{S(A, By), S(A, B2), ..., S(A, By)} > 2, (80)
where the upper bound follows from Eq. (72), and

<1, &1

Pmin ‘=

S, min

we have
Sp(A7 Bn) 2 pSmin > 2(p/pmm) >2 fOI' P > Pmin- (82)

Thus Alice can violate the CHSH inequality with each of the
N Bobs for p € [pmin, 1) in Eq. (78), implying that condition
(76) is not necessary, as claimed. The original question posed
by Brown and Colbeck, however, as to whether condition (76)
is necessary for states suitable for sharing Bell nonlocality for
all values of N, remains open.

VI. CONCLUSIONS

We have studied the sequential generation of Bell non-
locality between independent observers via recycling the
components of entangled systems. First, general two-valued
qubit observables are characterized in Eq. (3) via the outcome
bias, strength, and measurement direction, and a measure-
ment model is provided to interpret these parameters for such
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observables. Based on quantum instruments, we then intro-
duced a general formalism for measurements to describe the
sequential scenarios, and reviewed the optimal reversibility
properties of square-root measurements. For measurements
of a given qubit observable, the maximum reversibility and
minimum decoherence are naturally defined in Eqgs. (19) and
(33) respectively. Moreover, we obtained tradeoff relations
(27) and (34) between these quantities and the strength and
bias of the observable. Further, using these relations for the
case of unbiased observables, we analytically obtained the
strong one-sided monogamy relations in Theorems 1 and 2,
as per Eqgs. (60) and (64). We also provided compelling nu-
merical evidence as displayed in Fig. 2 to support the more
general conjecture in Eq. (41) for the sequential generation
of Bell nonlocality and to obtain semi-analytic results for
the best possible monogamy relation as displayed in Fig. 3.
Finally, we applied our tools to scenarios of arbitrary numbers
of observers on one and/or two sides. We generalized the
construction in Ref. [13] to show that if sufficiently many pairs
of entangled qubits and measurements are allowed, then arbi-
trarily many pairs of observers on each side can sequentially
share Bell nonlocality. Moreover, a larger class of two-qubit
states than in Ref. [13] was shown to allow a single Alice to
share Bell nonlocality with a given number of Bobs, implying
that the conditions discussed in Ref. [13] are sufficient but not
necessary when the number of Bobs is fixed.

There are many interesting questions left open for future
work. For example, is it possible to further pin down the form
of the numerically optimal orange curve in Figs. 2 and 37 Are
there more efficient numerical and analytical tools to prove
or disprove the one-sided monogamy conjectures in this work
and Ref. [18]? Can Bell nonlocality be generated by recycling
two qubits if more than two measurements are allowed per
observer? (as is the case for Einstein-Podolsky-Rosen steering
[25]).

It will be shown elsewhere that the bound in Eq. (57) can be
extended to a generalized Horodecki criterion for nonprojec-
tive observables [43]. Finally, we note that since our approach
is based on an instrumental formalism which can incorporate
the most general measurements, our analysis can be applied
to similar problems in the sequential sharing of other quantum
properties, such as EPR-steering and entanglement, including
for cases in which more measurement settings as per observer
are allowed. It would also be worth investigating if our results
and methods are applicable to sequential sharing of random
access codes [45—47] and preparation-contextuality [48], par-
ticularly if observer A; in such scenarios prepares states for
observer B; via measurements on an entangled state (and/or
vice versa).
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APPENDIX A: DERIVATION OF THE UPPER BOUND (58)

First, for general qubit observables X, X', Y, Y’, with X =
Bx1 + Sxo - x, etc., define the unit vectors

x+x x—x
X]=——, Xo= ——, X3=2X] XX2, (A1)
lx + x| lx — x|
y+y y-y
n= — Yo =T, Y3 =Y X Y. (A2)
Yy yl T =y R
It follows that
0 L 0 , . (A3)
X = Cos —Xx] +sin =x,, x’' = cos —x; — sin —x;,
2! 272 2! 277
y = cos ?y1+sin ?yz, Yy =cos =y, —sin=y,, (A4)
2 2 2 2

where cosf =x-x andcos¢p =y -y, ie, 0 <0 < 7 is the
angle between x and x” and 0 < ¢ < 7 is the angle between y
andy'.

Second, for unbiased observables measured on a singlet
state we have B =0 and T = Ty = —I;, and the CHSH pa-
rameter reduces via Eqgs. (1) and (6) to

S(A1, Bi|Ty) < —SxSyx -y — SxSyx -y’
— erSyx/ -y + SX'Ser/ 'y/

== YWy
J.k

= —Tr[WR'], (A5)
where W is the 3 x 3-matrix
[ ] 0 in @
Acosicosi Bcosismi 0
o ] 9 0o @
W:=|Csinfcos? —Dsingsing 0 (A6)
0 0 0
with
A = 5xSy + Sx Sy + Sy Sy — Sy Sy,
B = SxSy — SxSy + Sy Sy + Sx' Sy,
C= sty + sty/ - SX’SY + SX’SYH
D = —SxSy + SxSy' + Sy Sy + Sy Sy, (A7)
and R is the 3 x 3 matrix with coefficients
Rjx :=x; - y;. (AB)

Note that W contains information about the local measure-
ment strengths and relative measurement directions for each
side, while R contains information about the relative measure-
ment directions between the two sides.
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Third, note that

(RRT)je =D () ¥,) Xk - 3)

=@(zpwgn=&b

using the orthonormal basis properties of {x;} and {y,}, and so
R is an orthogonal matrix, i.e., a rotation or reflection (indeed,
since the basis sets are right-handed by construction, R is a
rotation). Hence,

(A9)

IS(A1, B)ITo)| < max ITe[WR']], (A10)
where the maximum is over all orthogonal matrices R.
Fourth, suppose that W = R'DR” is a singular value
decomposition of W, for orthogonal matrices R’, R” and di-
agonal matrix D = diag[s; (W), s2(W), s3(W)] with singular
values s; (W) = s,(W) = s3(W) > 0. Substitution then gives

IS(A1, B1)| < max |Tr[DR"RT R

= max |Tr[DR]|
R

= max > s (Wi - §,

J

< max Y0 (W - )|
J

< So =) si(W),

J

(Al1)

where R := R’RTR’ is an orthogonal matrix, implying there
are local coordinate systems {¥;} and {y;} such that R=% IR
V1> and we have used ¥; -y; < 1 with equality for ¥; = ,.
Note that the upper bound is achievable by construction.
Finally, to show that Sy above has the explicit formula
given in Eq. (58) of the main text, let W denote the upper
2 x 2 submatrix of W, and wy denote the eigenvalues of
WTW (i.e., the nonzero eigenvalues of W TW). It follows that

So = J/wi + ~/w—. The identities
wy +w_ = Tr[W W], wyw_ = det(W'W) = det(W)?,
then imply that

§2 = (Jws + Jw_)?
=ws +w_ +2/wiw_

= Tr[W W] + 2| det(W)). (A12)

Explicit calculation of the trace and determinant yields
Eq. (58), as desired.

APPENDIX B: DERIVATION OF ONE-SIDED
MONOGAMY RELATIONS

1. Proof of theorem 1

First, as already noted in Eq. (61) of the main text,
it follows from Eq. (58) and the orthogonality assumption

x-xX =0=y-y that
S2 = (S +S3) (St + SE) + 4Sx Sy Sy Sy
<28} +83)(53 +57)
=2(2- Ry —Ry)(2— Ry —R}).

Further, again using the orthogonality assumption, one has

(BI)

L=xxT +xxT +x"x"T, withx” := x x x/, and Eq. (37) for
the matrix K simplifies to
K = 1+Rx/xxT+ 1+Rxx/x/T RX+RX'x//x//T.

2 2 2

Hence, assuming Ry < Ry without any loss of generality,
the first two singular values of K can be directly read off as

SK)=L1+Ry), 9K)=11+Rx). (B2

Similarly, assuming Ry: < Ry without any loss of generality,
we find via Eq. (38) that

si(L) = 3(1+Ry), s:(L) = 5(1+ Ry). (B3)
Using Eq. (59) then gives
§*(A2, BoTp)* < 3(1+ Ry)* (1 + Ry )?
+ 11+ Ry ) (1 + Ry )?
<IVA+R) 4+ (1+ Ry )
x VI +Ry)*+(1+Ry)*, (B4

usinga - b < |a||b| fora = ((1 + Rx)*, (1 + Ri,)), etc.
Now, defining the functions

gi(x,y) =242 —x2 —y2,
g6, 7) =271+ 0" + (1 + )1,

for x, y € [0, 1], it immediately follows from Egs. (57), (B1),
and (B4) that

IS(A1, BDITy| + S* (A2, B>|Th)
< 81(Rx. Rx)g1(Ry. Ry') + g2(Rx. Rx)g2(Ry, Ry)
< V81(Rx, Ry')> + g2(Rx, Ry )
x Vg1(Ry. Ry)* + g2(Ry, Ry )2

< max {g1(x, )" + g (x,y)*}
x,y€[0,1]

= max G(x,y),

x,y€[0,1] (BS)

where the third line follows from a-b < |a||b| for a =
(81(Rx, Rx'), 82(Rx, Rx)), etc., and

G, y) =vV22 -2 =)+ /A + 04+ (1 + )

B6
as per the second line of Eq. (63) of the main text. ®o
Solving dG/dx = 0 = dG/dy yields the conditions
1
=80 = e B
for a local extremum of G(x, y), where
X
80 1= (BS)
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Now, it is easy to check that g(x) = g(y) has one solution,

y=ux, for x < xg:= V5 — 2; two solutions, y = x and y =
x*, for xo < x # %; and one solution, y = x = %, for x = %

(corresponding to the maximum of g(x)). For the solution y =
x*, conditions (B7) simplify to

X 1
= , B9
A+x)P% 22/ +x)*+ (1 +x%)* B9
yielding
o= (x+ 1)«/x(x+4)—x(x+3)’ (B10)

2x

However, substituting this into the righthand side of Eq. (B7),
and plotting both sides over the range [xg, 1] leadstoy = x* =
%, and hence via g(x) = g(y) that x =y = % Hence only the
universal solution y = x can generate local extrema. However,
for this solution, the above conditions simplify to 1 4+ x = 4x,
yielding a local maximum value of Gatx =y = %, with
G(l/3,1/3):%§. BI11)
To show that this is the global maximum of G(x, y), one needs
to check its values on the boundaries of the domain. One
finds that f(x, 1) = f(1,x) < 3.49 < G(, 1) and f(x,0) =
f0,x) <3.71 < G(3,}) for x € [0, 1]. Hence, G(3, 1) is
indeed the global maximum.
Hence, combining Egs. (56), (B5), and (B11), we have the
additive monogamy relation

IS(A1, B1)| + S*(A2, B2) <

¥ (B12)

for unbiased observables with orthogonal measurement direc-
tions on each side, as claimed in theorem 1.

2. Proof of theorem 2

First, as per Eq. (65) of the main text, it follows from
Eq. (58) and the equal strengths assumption that

S(% = 48)2(8}%(1 + sin 0 sin¢)

< 43,2(5%\/(1 + sin® 6)(1 + sin” ¢)

=4(1 - Ry)(1 —Ry)*V(2 — cx)2 —cy).

Hence, taking square roots and recalling that the geometric
mean is never greater than the arithmetic mean,

So < 2\/‘/2 —ox(1=R%)V2—cy (1 — Ry)?
SV2—cex [1 =R+ V2 -y [1 =R}

(B13)

(B14)

Second, substituting Eq. (A3) of Appendix A into Eq. (37),
we have
0
K=RxL+ (1 — RX)<COS2 ExlxlT + sin® %xzsz

(B15)
for equal reversibilities, in terms of the orthogonal unit vectors
x; and x;. Since K is a symmetric matrix, this immediately
allows us to read off the two largest singular values of K as

the corresponding two largest eigenvalues of K,
A+ (K) = %(1+Rx)j:%(1—72x)|cosel. (B16)

Similarly, the two largest singular values of L follow from
Egs. (38) and (A4) as

Ai(L) = 3(1+Ry) £ 5(1 — Ry)| cos @|. (B17)

Hence, using (a + b)(c + d) + (a — b)(c — d) = 2(ac + bd),
the bound in Eq. (59) simplifies to

25(A2, By|Tp)* < 2A4 (K)* A (L) + 22 (K’ A_ (LY
=[(14+Rx)* + (1 — Ry)*cos> 0]
x [(14+Ry)* + (1 — Ry)* cos® ¢]
+4[(1 = Ry)lcos 0] [(1 — RF )| cos ]
= PQ+4MN = (P,2M) - (Q, 2N)

< VP2 +4M2\/Q? + 4N?
= f(Rx,cx) f(Ry, ey )

< Gf Ry, ex? + f(Ry, ey, (BIY)
where
fe, ot =10 +x)?*+ 1A —x)*c)? +40 — x*)*c. (B19)
Finally, combining Egs. (B14) and (B18) gives
So + S*(A2, B>) < g(Rx, cx) + g(Ry, cy)
<2 max ]g(x, c), (B20)

x,c€[0,1

where the righthand side corresponds to the first upper bound
in Eq. (67), with

g(x,0) =2 —c(1 = x>+ f(x, c)* /3.

Numerically maximizing g(x, c) over x and ¢ gives gmax = 2,
corresponding to x = 0 and ¢ = 1. This implies that parallel
directions and zero reversibilities are optimal for this case,
and yields, via Eqs. (56) and (57), the one-sided monogamy
relation

(B21)

IS(A1, B1)| +[S(A2, By)| < 4 (B22)

for unbiased observables with equal strengths on each side, as
claimed in theorem 2.
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