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Resolving correlated states of benzyne with an error-mitigated contracted quantum eigensolver
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The simulation of strongly correlated many-electron systems is one of the most promising applications for
near-term quantum devices. Here we use a class of eigenvalue solvers [presented in Smart and Mazziotti, Phys.
Rev. Lett. 126, 070504 (2021)] in which a contraction of the Schrödinger equation is solved for the two-electron
reduced density matrix (2-RDM) to resolve the energy splittings of the ortho-, meta-, and para-isomers of
benzyne C6H4. In contrast to the traditional variational quantum eigensolver, the contracted quantum eigensolver
can solve an integration (or contraction) of the many-electron Schrödinger equation onto the two-electron
space. The quantum solution of the anti-Hermitian part of the contracted Schrödinger equation provides a
scalable approach with few variational parameters that has its foundations in 2-RDM theory. Experimentally,
a variety of error-mitigation strategies enable the calculation, including a linear shift in the 2-RDM targeting
the iterative nature of the algorithm as well as a projection of the 2-RDM onto the convex set of approximately
N-representable 2-RDMs defined by the 2-positive N-representability conditions. The relative energies exhibit
single-digit millihartree errors, capturing a large part of the electron correlation energy, and the computed natural
orbital occupations reflect the significant differences in the electron correlation of the isomers.

DOI: 10.1103/PhysRevA.105.022405

I. INTRODUCTION

The simulation of many-body quantum systems is a key
application for near-term quantum computing [1–4]. The
complexity of these simulations is such that algorithms on
even moderately sized quantum devices, comprised of tens
of qubits, with sufficient error mitigation will likely be com-
petitive with existing classical methods [5–8]. A particular
instance is the simulation of strongly correlated molecular
systems, such as occur in many chemical reactions, transition-
metal complexes, energetically degenerate processes, and
solid-state materials [9–11]. These systems, which often can-
not be treated consistently with perturbative or polynomially
scaling approaches relying on a single determinant, are ideal
candidates for realizing an advantage from the use of quantum
computers in lieu of classical computers, known as quantum
advantage. Realizing such advantage, however, requires algo-
rithms that are optimal for quantum computers in terms of
state preparation, measurement, and error mitigation for the
noise present in near-to-intermediate-term devices [12,13].

Various variational quantum eigensolvers (VQE) for
molecular simulation exist [14–21], most of which attempt
to minimize the energy of a parametrizable Ansatz against
the Schrödinger equation. An alternative family of algorithms
known as contracted quantum eigensolvers (CQE) [22] in-
volves minimizing the residual of a projection (or contraction)
of the N-electron Schrödinger equation onto the space of
two electrons, known as the contracted Schrödinger equa-
tion (CSE) [23–30]. Closely connected to classical reduced
density matrix theory, the CQE has several key features
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that are favorable to efficient quantum molecular simula-
tions. First, the solution of the CSE, it has been shown,
produces an exact, rapidly convergent parametrization of the
wave function from a product of only two-body exponential
transformations [31,32]. Furthermore, solution of the anti-
Hermitian part of the CSE, known as the anti-Hermitian CSE
(ACSE) [33–36], can yield a parametrization of the wave
function in terms of two-body unitary transformations [33,35],
which is theoretically exact [37] and readily implementable
through unitary gates for state preparation on a quantum com-
puter. Second, the residual of the ACSE yields the gradient of
the energy with respect to two-body unitary transformations,
which allows for more efficient optimization on quantum
computers than derivative-free schemes [14,38–41] that could
be limited to hundreds of parameters. Indeed, recent work by
our group introduced a CQE algorithm which can solve the
ACSE efficiently on a quantum computer [22].

Solution of the ACSE for the two-electron reduced density
matrix (2-RDM) on classical computers has been applied to
treating both ground and excited states of strongly correlated
molecules including nontrivial conical intersections [35,42–
48]. The solution of the ACSE on quantum computers, a
CQE algorithm or quantum ACSE, can potentially avoid the
approximate reconstruction of the 3-electron reduced den-
sity matrix (3-RDM) from the 2-RDM through preparation
of the wave function on the quantum computer in poly-
nomial time [49]. The quantum ACSE also shares certain
similarities with the methods that attempt to decouple and
expand the single exponential unitary coupled cluster (UCC)
Ansatz [50,51], such as the adaptive derivative-assembled
pseudo-Trotterization VQE (ADAPT-VQE) method [52]. The
quantum ACSE circumvents issues of the Trotterization of the
Ansatz (necessary for an exact exponential expression) and
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FIG. 1. The quantum-ACSE algorithm. After initializing the state (0), we begin an iterative process of obtaining the 2A elements (1) using
a quantum (QPU) or classical (CPU) processor, which will have errors in the series expansion [O(δ2)], a higher measurement cost [O(r6)], or
errors from the three-electron reduced cumulant matrix ( 3�). After checking for convergence against a threshold x (2), we construct the next
Ansatz (3), and optionally perform a classical minimization against the step size. Finally, we measure the new 2-RDM (4), and proceed to (1)
until we converge or n = nmax.

high variational cost involved in an update step, and contains a
natural selection of a pool of unitary transformations through
the elements of the ACSE. Moreover, because the ACSE gen-
erates the 2-RDM, it is readily combined with error-mitigation
strategies that correct the N-representability of the 2-RDM.
With its theoretical advantages and promising computational
results, the ACSE method provides a potentially flexible
framework for molecular simulation on quantum computers.

In this work we apply the quantum ACSE solver to resolve
the relative ground-state energies of the correlated isomers of
benzyne on a superconducting quantum computer. The ortho-,
meta-, and para-benzyne (C6H4) isomers contain nontrivial
electron correlation, especially para-benzyne which is a bi-
radical [53–58]. The computed relative energies are accurate
to less than 0.005 hartrees, and the natural-orbital occupations
reflect the differences in electron correlation among the iso-
mers. The accuracy of the results demonstrates the benefits
of both the solver and the error-mitigation strategies. Because
these strategies are general, they can be applied to larger, more
correlated molecules and represent a step towards performing
strongly correlated calculations on a quantum computer

II. THEORY

In this section we review the theoretical framework for
the quantum ACSE algorithm [22], and explore the error-
mitigation schemes necessary for the calculation, including
the use of N-representability conditions for the purification
of the measured 2-RDM [59,60].

A. Quantum solver of the anti-Hermitian contracted
Schrödinger equation

For a many-electron system the two-electron contracted
Schrödinger equation [23–30] is

〈�|â†
i â†

j âl âkĤ |�〉 = E 2Di j
kl , (1)

where 2D is the 2-RDM, â†
i and âi are creation and annihila-

tion operators for a spin orbital i, and Ĥ is the Hamiltonian

operator that is given by

Ĥ =
∑
pqst

2K pq
st â†

pâ†
qât âs, (2)

in which 2K is the reduced Hamiltonian matrix containing
the one- and two-electron integrals. Taking the anti-Hermitian
part of Eq. (1) produces the ACSE [33–35,46,47]

〈�|[â†
i â†

j âl âk, Ĥ ]|�〉 = 0, (3)

which depends upon not only the 2-RDM but also the
three-electron RDM (3-RDM) (see Refs. [34,61,62] and Ap-
pendix B 4). The residual of the ACSE is equal to the gradient
of the energy with respect to two-body unitary transformations
and, hence, the residual of the ACSE vanishes if and only
if the gradient vanishes. Consequently, the ACSE provides a
framework for the iterative optimization of a product of two-
body unitary transformations on a reference wave function,
which leads to the quantum ACSE algorithm presented in
Fig. 1.

Let |�n〉 be the nth iteration of the wave function, where
2D0 is the 2-RDM of the initial Hartree-Fock state |�0〉. The
2-RDM of the (n + 1)th iteration is

2Dpq;st
n+1 = 〈�n|e−εnÂn â†

pâ†
qât âse

εnÂn |�n〉, (4)

where εn is theoretically an infinitesimal step and Ân is an anti-
Hermitian operator

Ân =
∑
i jkl

2Ai j:kl
n â†

i â†
j âl âk . (5)

The energy at each iteration is computable from the 2-RDM

En+1 =
∑
pqst

2K pq
st

2Dpq;st
n+1 . (6)

Elements of the 2An matrix can be selected [34] as the residual
of the ACSE:

2Ai j;kl
n = 〈�n|[â†

i â†
j âl âk, Ĥ ]|�n〉, (7)
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which is effective because the ACSE’s residual is related to
the gradient of the energy with respect to the elements of 2An:

〈�n|[â†
i â†

j âl âk, Ĥ ]|�n〉 = − 1

εn

∂En+1

∂ 2A
i j;kl
n

+ O(εn). (8)

Hence, by using the residual, we are choosing a search di-
rection that maximizes the change in the energy for small
εn. The ACSE can be expressed in terms of the 2- and 3-
RDMs and can be evaluated classically with an O(r6) cost
using a reconstructed 3-RDM in which r is the rank of the
one-electron basis set. On a quantum computer, we can obtain
elements of 2An in a potentially more efficient manner without
the reconstructed 3-RDM. Define an auxiliary 2-RDM:

2
±�i j;kl

n = 〈�n|e∓iδĤ â†
i â†

j âl âke±iδĤ |�n〉, (9)

in which the nth wave function is propagated through a time-
like step δ in the forward or reverse direction. Then, we can
obtain elements of the residual from tomography of these
auxiliary RDMs with O(r4) scaling:

2Ai j;kl
n = 1

2iδ

(
2
+�i j;kl

n − 2
−�i j;kl

n

) + O(δ2). (10)

These equations suggest an iterative approach to finding a
solution of the ACSE, which is depicted in Fig. 1. After
initializing the wave function and 2-RDM, for a given iteration
we construct the matrix 2An through classical or quantum ap-
proaches, prepare and measure 2Dn+1 (possibly optimizing εn

and carefully selecting elements of 2An to include in the wave
function), and iterate between 2Dn+1 and 2An until || 2An || is
less than a certain threshold.

In the classical-computing algorithm the solution of the
ACSE requires an approximate reconstruction of the 3-RDM
from the 2-RDM through a cumulant expansion [61,63,64]
to compute the 2-RDM without the wave function. In the
quantum-computing algorithm, in contrast, the wave function
is prepared with polynomial scaling and, hence, approxi-
mate reconstruction of the 3-RDM is not necessary. A hybrid
quantum-classical approach exists as well, where we prepare
the wave function and measure the RDMs on the quantum
computer but evaluate the ACSE for the residual (gradient) on
the classical computer. In the noiseless limit the ACSE can be
solved by the quantum-computing algorithm to an arbitrary
level of accuracy. The errors arising from the expansion in
Eq. (6) are controllable with respect to δ. Computationally,
we find in the noiseless limit that the solution of the ACSE
yields a wave function, parametrized by two-body unitary
transformations, that solves not only the ACSE but also the
N-electron Schrödinger equation.

Finally, several variations of the algorithm are possible for
practical implementations on quantum computers. For exam-
ple, a limited portion of 2An, such as its largest terms, can
be used; a stochastic gradient or reduced gradient sampling
technique can be implemented, lowering the measurement
cost of 2�n at each step. The quantum and classical methods
can be combined where direct quantum tomography is only
employed for the parts of the 2-RDM that are strongly corre-
lated.

B. Quantum computation

In this work we utilize the QACSE method and generate
2Dn on the quantum computer, and obtain elements of 2An

on the quantum computer for the smaller qubit calculations
[Eq. (10)], and classically with a reconstructed 3-RDM for
the larger qubit calculations [Eq. (8)]. Figure 2 provides an
overview of the process to obtain a fully error mitigated 2Dn.
We also include details related to the specific techniques and
other aspects of the calculation in Appendix B.

To obtain 2Dn, at a given step, we first transform the
Ân operator into a suitable form for the quantum computer
(including our qubit reduction scheme). Explicitly, this is
done through a first-order Trotterization of the exponential
of Eq. (5), where each element of the 2An matrix is imple-
mented separately. However, because we would like to avoid
implementing all the operators at once, we use an element
threshold to determine inclusion in the Ansatz. To imple-
ment the gate sequence, we prepare and manually simplify
the set of 2-RDM operators corresponding with possible ele-
ments of 2An. These are assembled according to our inclusion
criteria, and then the circuits are run. After measurement,
we apply a filter (via construction and inversion of a state
transition matrix, referred to as SPAM) and then apply a
projection into the proper number and projected spin space
(N ∈ {2, 4}, Sz = 0) for measurements which commutes with
these operators (which are Zi-type measurements). In some
cases we then apply our limit-preserving correction �n to the
Ansatz (see below), followed by an optional purification of the
2-RDM.

To our knowledge, the penultimate error-mitigation tech-
nique has not been used elsewhere, and the final technique was
recently introduced for quantum simulations [60] but not yet
demonstrated experimentally, and so we briefly detail them
here. The first is a correction targeting errors in an iterative
Ansatz that arise simply from adding extra gates, whereas the
second is an expansion of techniques related to ensuring the
physicality of the measured RDM through N-representability
constraints.

C. Limit-preserving correction for an iterative Ansatz

To compensate for errors which occur at each step due to
the increasing number of gates in an iterative scheme, we
present an error-mitigation strategy which we call a limit-
preserving correction or a 2� correction. Consider the nth
iteration of the QACSE algorithm. Given the elements of 2An,
we can consider the (n + 1)th 2-RDM as a function of εn as it
approaches 0 from the positive direction:

2Dpq;st
n+1 (0+) = lim

εn→0+
2Dpq;st

n+1 (εn) (11)

= 2Dpq;st
n (εn−1)

+ lim
εn→0+

εn〈�n|[a†
pa†

qat as,
2Ân]|�n〉. (12)

While this quantity theoretically approaches 2Dn(εn−1) as
εn → 0+, in practice the discrete unitary gates are subject
to substantial noise on current-to-intermediate-term quantum
computers and, hence, do not collapse to the identity operator
for any actual gate sequence. The noise channels in general
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FIG. 2. Error-mitigation scheme to obtain corrected 2-RDMs. We first take a set of instructions, and construct the appropriate circuit
design. We run these on the quantum computer to obtain a set of measurement results which are then corrected through the inversion of a state
preparation matrix (SPAM, small hatched rectangle). Measurements corresponding to diagonal elements of the 2-RDM (Mc

i ) will commute
with the N̂ and Ŝz symmetries, and so are projected onto the proper operator space. We then apply our shift correction, �n, which also preserves
trace but can introduce negative eigenvalues, and optionally, a purification of the 2-RDM.

will contract the set of possible 2-RDMs (e.g., for systems
with strong depolarizing errors this is to a fully depolarized
2-RDM). For our system, this can lead to a result that any
energy obtained will be higher than the energy of the previous
step (see Appendix C 3 for an example). In these instances,
the change in energy due to noise is greater than any change
from the optimization.

Let 2�n be a matrix of the same rank as the 2-RDM, and
2D̃n(εn) be the corrected 2-RDM. Then, we define a correction
by the following system of equations:

2D̃n+1(εn) = 2Dn+1(εn) +
n∑

i=0

2�i, (13)

2�n = 2Dn(εn−1) − 2Dn+1(0+), (14)

2D0 = 2DHF. (15)

Equation (13) defines the error-mitigated 2-RDM at each step.
The 2�n in Eq. (14) is the difference between the new state
with εn = 0+ and the previous state. Equation (15) gives
the initial condition of the system. The correction helps to
avoid noise-related barriers in the optimization surface [as
2D̃n+1(0+) = 2Dn(εn−1)], allowing us to reach 2-RDMs that
are normally inaccessible due to the noise. For a noise-free
simulation, we also have that 2�n = 0 for all n, ensuring that
we would maintain the exact result on a perfect quantum
computer. We use the corrected 2-RDM 2D̃n+1 throughout the
optimization in evaluating the energy as well as choosing the
elements of 2An+1. While the gradient information reflected in
2A around 2D and 2D̃ will not be the same when 2� is large,
because we are optimizing E [2D̃n], and because we generate
2An with Eq. (8), this is the appropriate choice. If we were to
use Eq. (10) instead, then we would obtain information around
2Dn, and would have to correct 2A as well.

There are a number of practical considerations in the
implementation of the 2� correction such as the potential
variability of the noise. Because we are adding RDMs with
separate uncertainties, the uncertainty in the result increases
(if we assumed independent 2�i with equal standard devia-
tions σ , this would be

√
nσ after n iterations), which may

require us to increase the sampling of 2�i. The errors affecting
the quantum computer may exhibit a time dependence on the

order of the run time. To avoid this possibility, we run the
results as contiguously as possible with the total number of
iterations n being kept relatively low (for all instances n � 6).
Additionally, the 2-RDM is purified in some cases to ensure
that the negative eigenvalues of the 2-RDM and the related
two-hole and particle-hole RDMs (see next section) are elim-
inated. Regardless, we find this error-mitigation strategy to be
necessary to obtain meaningful results within the context of
an iterative Ansatz.

D. Purification of the 2-RDM

As mentioned above, the effect of noise in a quantum
simulation is that the measured quantum state might no longer
represent a physical system. While we cannot directly assess
the purity or fidelity of an RDM, we can “purify” the 2-RDM
to ensure that the eigenvalues of the various permutations of
the particle- and hole-reduced density matrices are positive
semidefinite, which are necessary criteria for a pure-state or
ensemble N-representable 2-RDM [65]. A matrix is positive
semidefinite if and only if its eigenvalues are non-negative.
For instance, for the 2-RDM, the two-particle (2D), two-hole
(2Q), and particle-hole (2G) matrices must have non-negative
probabilities and, hence, must be positive semidefinite in a
set of conditions known as the 2-positivity (or DQG) condi-
tions [59,66–68]

2D � 0, (16)

2Q � 0, (17)

2G � 0, (18)

where the elements of these metric matrices are given by

2Di j
kl = 〈�|â†

i â†
j âl âk|�〉, (19)

2Qkl
i j = 〈�|âk âl â

†
j â

†
i |�〉, (20)

2Gil
k j = 〈�|â†

i âl â
†
j âk|�〉. (21)

We accomplish the purification by semidefinite programming,
which allows us to minimize an function of a matrix subject
to linear constraints while ensuring that the matrix remains
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FIG. 3. Molecular-orbital diagram and natural-orbital occupations of the highest and occupied lowest natural orbitals for ortho-, meta-,
and para-benzyne. Geometries for the ortho- and meta- isomers were obtained from [80] and optimized with spin-flip time-dependent density
functional theory (SF-TDDFT), and the para-isomer was obtained from [81] and optimized with spin-flip coupled cluster with singles and
doubles (SF-CCSD).

positive semidefinite [69–71]. The general method was devel-
oped by one of the authors for reconstructing noisy processes
for quantum tomography [59], and was more recently applied
in the context of quantum simulation by Rubin et al. [60].

The objective in this work is to create a purified 2-RDM,
2DSDP, which minimizes the norm of the error matrix E =
2D −2DSDP, subject to the DQG constraints ensuring that
2DSDP represents a physical system. To express this as a
semidefinite program, we take F to be a matrix of free vari-
ables, and then minimize the trace of the following block
matrix: (

I E
E† F

)
� 0. (22)

Taking the determinant of the 2 × 2 block matrix allows us
to relate the trace of F to the Frobenius norm, providing
a semidefinite relaxation for the minimization problem. The
DQG constraints can be expressed in a block-diagonal form⎛

⎝
2D 0 0
0 2Q 0
0 0 2G

⎞
⎠ � 0. (23)

These semidefinite conditions, the linear mappings between
the metric matrices, and the trace of the 2-RDM define the
constraints in the SDP. To solve the SDP, we use a boundary-
point algorithm for the direct variational calculation of the 2-
RDM [71–74]. The algorithm for purification of the 2-RDM
with the DQG conditions has a scaling of O(r6).

III. BENZYNE CALCULATIONS

In this work we use the QACSE method to investigate the
ortho-, meta-, and para-isomers of benzyne, which may be
obtained via the elimination of two substituents in the relevant
positions of the benzene ring. Owing to their versatility as
reactive intermediates in biological processes, derivatives of
the isomeric benzynes have been the subject of a growing in-

terest in the synthetic research community in the development
of biomimetic reactions [75], such as the Diels-Alder reac-
tion [76] and in so-called “click chemistry” [77], with a wide
range of applications to the synthesis of heterocycles [78] and
natural products [76]. Even though biradicals such as ben-
zyne play key roles across synthetic and materials chemistry,
making their accurate theoretical description quintessential to
the understanding of chemical processes, their exact treat-
ment continues to pose a challenge to electronic structure
theory [53,54]. Details regarding the electronic structure treat-
ment of these systems are included in Appendix A.

Figure 3 shows the structures for each of the three iso-
mers, as well as the occupations of the highest and lowest
occupied natural orbitals. The energetic ordering of the three
isomers follows their degree of diradical character, with
experimental gas phase heats of formation showing ortho-
isomer as the energetically lowest isomer, followed by the
meta- and then para-isomers, at energies of 10 ± 3 kcal/mol
and 22 ± 3/kcal/mol relative to the ortho reference, respec-
tively [79]. The variations in ground-state energy and diradical
character are driven by the degree to which the geometric
constraints of the given isomer allow for overlap between the
singly occupied carbon-p orbitals, which is demonstrated by
the electron densities of the highest occupied natural orbital
(HONO) and the lowest unoccupied natural orbital (LUNO),
shown in Fig. 3. In the ortho-isomer, adjacency of the singly
occupied orbitals allows for good overlap and energetically
favorable formation of a bond with significant π character,
giving this isomer C-C triple bond character. While somewhat
compensated by geometric distortion, driven by the greater
C-C radical distance the magnitude of this bonding interaction
is reduced in the meta-isomer, and essentially diminished in
the para geometry, where no overlap between the lobes of the
carbon-based radical orbitals is geometrically feasible.

Aside from the relative ground-state energies, the singlet-
triplet gaps of these isomers are well documented experimen-
tally and are used for benchmarking multireference electronic
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TABLE I. Relative energies between the configurations of ben-
zyne with classical CASSCF and QACSE methods for differing
active spaces and levels of error mitigation, in kcal/mol. [0,0] active
space refers to the initial Hartree-Fock calculation. M refers to a
state preparation and measurement error, P to the application of the
number projection, L to the use of the 2�n correction, and + to the
SDP corrected state.

Eisomer − Eortho

Number Error (kcal/mol)

Method [X,Y] qubits mitigation meta para

CASSCF [0,0] 27.3 94.2
[2,2] 15.2 23.4
[4,4] 16.5 29.5

QACSE [2,2] 1 M 13.4 21.7
[4,4] 3 MP 19.6 15.4
[4,4] 3 MPL 32.5 55.7
[4,4] 3 MPL+ 18.1 31.0
[4,4] 4 MPL 27.1 23.6
[4,4] 4 MPL+ 17.6 27.5

Expt. [79] 10 ± 3 22 ± 3

structure methods [53,54,57]. In this work we focus on resolv-
ing the differing degrees of correlation present solely in the
ground-state 2-RDMs. As the radical electrons are localized in
orbitals perpendicular to the π system, a minimal [2,2] active
space is sufficient to describe the multireference correlation
in these systems and the inclusion of additional orbitals solely
results in the recovery of additional dynamic correlation. A
recently published companion work utilizes these results as
the kernel for a classical calculation that includes dynamic
correlation effects from orbitals beyond the active space [82].
The inclusion of these orbitals as well as larger basis sets is
necessary for more rigorous experimental comparisons. An
exploration of the singlet-triplet gaps is the goal of future
work.

The relative energies from the complete active space self-
consistent field method (CASSCF) and from the quantum
calculations are listed in Table I and Fig. 4 for the [2,2] and
[4,4] active spaces where the notation [X,Y] denotes X elec-
trons in Y orbitals. The CASSCF calculations optimize the
active electrons and orbitals in the mean field of the remaining
electrons and orbitals. The target CASSCF results yield the
correct ordering, although each gap is slightly higher than
experimental values. For the [2,2] case, the meta and para
energies relative to ortho are 15 and 23 kcal/mol, respec-
tively. For the [4,4] active space, the meta and para energies
relative to the ortho configuration are 13 and 29 kcal/mol,
respectively. The [2,2] active space corresponds with a one-
qubit quantum calculation, whereas the [4,4] calculation was
performed with four and three qubits, representing exact and
near-exact symmetries, respectively (see Appendices B 2, B 1,
and B 3). The error mitigation ranges from a simple measure-
ment correction to our full scheme of corrections (denoted
L+, or MPL+). M refers to a state preparation and measure-
ment, P to the application of the number projection, L to the
use of the 2� correction, and + to the SDP corrected state.
The error in the obtained relative energies on the quantum

FIG. 4. Overview of results shows active space calculations for
the different configurations of benzyne across several methods, in-
cluding Hartree-Fock, CASSCF, and QACSE for [2,2] and [4,4]
active spaces. The three- and four-qubit results utilize the limit-
preserving correction (L) and purification (+) schemes of error
mitigation. The data correspond with results taken in Table I.

computer in the [4,4] case is 1.6 kcal/mol (2.6 mhartree) for
both the three-qubit (3Q) and four-qubit (4Q) cases, whereas
for the [2,2] space, we obtain a result within 2 kcal/mol
(3 mhartree). The number of unique iterations is between 3
and 6, depending on the Ansatz developed. The operators in
the qubit basis (see Appendix B 6) for the three-qubit cal-
culations have 0–8 controlled NOT (CNOT) gates, while the
pool of operators for the four-qubit operators each have 8–12
CNOT gates.

Another comparison between the error-mitigation schemes
is seen in the target energies for each calculation relative to the
classical CASSCF result. These errors are listed in Table II. In
particular, despite having differences between configurations
of only a few kcal/mol, the difference from the CASSCF
results for results without the 2� correction is around 20 to
30 kcal/mol higher than the target energies across the con-
figurations. These results are more common for what might
be expected from noisy quantum devices, as often the lowest-
energy states are not the final state of the optimization. The
2�-corrected results on the other hand in some instances can

TABLE II. Difference in energy between the QACSE methods
including various error-mitigation schemes and the CASSCF result
in millihartrees (mhartree).

Error relative to
Number Error CASSCF (mhartree)

[X,Y] qubits mitigation ortho meta para

[2,2] 1 M 4.8 1.9 1.9
[4,4] 3 MP 51.9 43.2 29.5
[4,4] 3 MPL −53.6 −28.1 −11.8
[4,4] 3 MPL+ 2.1 4.6 4.5
[4,4] 4 MPL −25.9 −9.0 −35.3
[4,4] 4 MPL+ 20.2 21.9 17.0
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TABLE III. Largest natural-orbital occupation numbers for the
CASSCF results and the purified, 2�-corrected results for the [2,2]
and [4,4] active spaces on the quantum computer. In each case,
the para-benzyne solution exhibits biradical character in the highest
occupied and lowest unoccupied natural orbitals, though to differing
degrees based on the method.

Number Orbital occupations

Method [X,Y] qubits Orbital ortho meta para

CASSCF [2,2] HONO 1.811 1.712 1.232
[2,2] LUNO 0.189 0.288 0.768

QACSE [2,2] 1 HONO 1.695 1.604 1.127
[2,2] 1 LUNO 0.305 0.396 0.873

CASSCF [4,4] HONO − 1 1.947 1.977 1.981
[4,4] HONO 1.813 1.756 1.235
[4,4] LUNO 0.187 0.244 0.765
[4,4] LUNO + 1 0.053 0.023 0.019

QACSE [4,4] 3 HONO − 1 1.956 1.976 1.992
[4,4] 3 HONO 1.851 1.761 1.148
[4,4] 3 LUNO 0.149 0.239 0.852
[4,4] 3 LUNO + 1 0.045 0.012 0.008

QACSE [4,4] 4 HONO − 1 1.973 1.985 1.956
[4,4] 4 HONO 1.938 1.570 1.200
[4,4] 4 LUNO 0.054 0.433 0.790
[4,4] 4 LUNO + 1 0.036 0.012 0.055

be below the variational CI bound, highlighting the need for
purification. Comparisons with ideal results in Appendix B 5
show that the ideal QACSE essentially achieves the CASSCF
result, while the ideal reconstructed 3-RDM-based approach
yields errors on the order of millihartrees with the largest error
for meta-benzyne. While the error from the reconstruction
might seem significant, it is an order of magnitude smaller
than the error from the noise on the quantum devices..

Finally, the natural-orbital occupation numbers, which are
the eigenvalues of the 1-RDM, can help infer the nature and
degree of electron correlation in the system. The Hartree-Fock
state, corresponding with a single determinant, has eigenval-
ues of 2 or 0 across all (spatial) orbitals, while a biradical
system would exhibit equal occupations of 1 in the highest
occupied and lowest unoccupied natural orbitals. We report
the natural orbital occupations for the CASSCF and purified
results in Table III for the one-, three-, and four-qubit QACSE
calculations. In each case, we see significant differences be-
tween the para-isomer and the other two isomers (ortho and
meta) on the quantum computer. The para-benzene, which
does not have any overlapping density between the carbon
p orbitals (see Fig. 3), exhibits biradical character, whereas
the other two configurations exhibit more single-reference
character. This is also reflected in the amount of correlation
energy recovered (ECASSCF − EHF) for each configuration (see
Fig. 4). When compared to the CASSCF occupations, the
results for the three-qubit case were all within 0.09 of the
target occupations. In the four-qubit case the ortho (0.14)
and meta (0.19) HONO and LUNO occupations have more
significant errors, which could be expected from the increased
absolute energies seen for each of these isomers. By looking
at the HONO−1 and LUNO+1 orbitals in the [4,4] space,

we also see that the fractional occupations of the HONO and
LUNO are not an artifact of error on the quantum computer,
as the closeness of the HONO−1 and LUNO+1 occupations
to 2 and 0 is maintained.

IV. DISCUSSION

The results of these benzyne calculations highlight the
potential for quantum simulation on near-term devices, partic-
ularly with quantum RDM methods and error-mitigation tools
designed for RDMs. Although work in our group and else-
where has investigated and obtained highly accurate results
for small systems or particular configurations of electrons
(namely, in taking advantage of pure N-representability con-
straints) [4,20,83], this work represents a step towards more
general quantum computing algorithms based on RDM the-
ory. Indeed, the [4,4] active space represents an important step
from model systems and minimal cases towards the end goal
of robustly treating strongly correlated many-body systems.
These results also demonstrate a useful classical-quantum hy-
brid approach, incorporating elements from both classical and
quantum techniques.

With regards to the number of iterations and the variational
cost, for many systems, including the benzyne isomers, the
QACSE method is consistently able to recover a large part
of the correlation energy within a few iterations. While we
also evaluated derivative-free one-dimensional optimizers that
might be able to help in a noisy landscape [14,20,39], practi-
cally, the trust-region optimization combined with a rejection
criteria provides a reliable way of choosing a step size for
Eq. (4), and making sure that convergence progresses as a
whole. The rejection criteria in particular eliminate iterations
which do not contribute to the Ansatz properly with an op-
tional reevaluation of the last 2An step. This helps in particular
with overcoming instances where the errors in the gradient are
too large to take a meaningful step. It is also worth mention-
ing that the experimental requirements for convergence and
termination of the method are different from ideal conditions.
While lowering the residuals of the ACSE is ideal, and ensures
a properly converged state, noise will decrease the likelihood
of reaching a meaningful RDM. Because of the limitations
of noise, in the present multiqubit examples the 2A matrix is
updated by a classical algorithm with reconstruction of the
3-RDM rather than the quantum algorithm shown in Eq. (10).
In these instances, error from reconstruction of the 3-RDM is
lower than the error from the noise on the quantum devices.
Importantly, the classical and quantum algorithms can be in-
terchanged depending upon the complexity of the circuit and
the level of noise on a given device.

These results highlight the necessity of different error-
mitigation schemes. The qubit reduction technique allows for
significant simplification of the problem (although not to a
trivial degree for the [4,4] case), as well as different thresholds
of accuracy. It is somewhat known that with the Jordan-
Wigner transformation and r spatial orbitals, for molecular
systems one can always find two Z symmetries of length r,
corresponding to the constant parity of the α and β sets of
orbitals in a N- and Sz-preserving simulation, which reduces
the number of qubits to 2r − 2 (similar to ideas covered
elsewhere [3,84]). Applying additional symmetries from the
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Hamiltonian is exact, with the limitation that the final and
initial states share the same symmetries. For systems with near
symmetries (symmetries existing in a modified Hamiltonian),
elimination of small nonzero elements can help to find these
symmetries (see Appendix B 3). In general, further tapering
of a state to a symmetry that does not exactly commute with
the Hamiltonian will constrain the state space, yielding an
approximation to the eigenstate.

To further motivate this, we can consider the symmetry
constrained state as an approximation to the full state. Within
quantum chemistry numerous approximations are commonly
made based on available computational resources, such as the
use of finite basis sets, the separation of nuclear and electronic
motion, and the truncation of the manifold of excitations [9].
On a quantum computer a significant consideration is the
level of noise generated in a preparation and measurement
from the complexity of the circuits. In the context of NISQ
systems, a theoretically lower-quality Ansatz can produce a
better result than a higher-quality, or even exact, Ansatz if
the added noise offsets the improvement in accuracy from the
theoretically superior Ansatz. Additionally, the combination
of noise and error-mitigation techniques can result in 2-RDMs
whose energies are below those from noiseless simulations
but above those from an exact calculation in the given basis
set. For these reasons, it is not surprising that the three-qubit
case can produce results that are superior to the four-qubit case
with approximate symmetries.

We did not explicitly identify the effect of the measure-
ment errors involving the inversion of the state transition
matrix, although these have been documented elsewhere to
help improve results on the order of the measurement error.
Because incorrectly measured states can easily lead to dif-
ferent particle states, this can lead to large differences in the
obtained energies. However, regardless of the measurement
error, the projection of the RDM onto the correct particle
number space in the diagonal entries is a critical step. The
energetic effect of this correction is system dependent, but can
easily be on the order of hartrees. Quite simply put, the results
are often not meaningful without this correction, which can
also be seen in its success in other work [4,83]. While it is
preferable in theory to correct the diagonal and off-diagonal
elements of the 2-RDM, for the latter instances, a measure-
ment sequence which commutes with the particle-number
operator must be developed. Additionally, this greatly changes
the tomography requirements of the 2-RDM, rendering use-
less the advantages of local measurement commutation. The
incremental improvements in the quantum devices over the
last few years are also critically important, as other devices
were tested that did not achieve the same level of results (not
reported).

The 2� correction serves indirectly to expand the set of
accessible 2-RDMs while preserving the integrity of the iter-
ative optimization. While the application here to an iterative
Ansatz is unique, the idea at each iteration could be seen as
a zeroth-order extrapolative procedure, like the Richardson
extrapolation, repeated at each iteration [17,85]. Instead of
attempting a linear or higher-order fit to a variable noise
strength, we simply add a correction RDM. As a result, we
do not have to deal with adjusting how noise is applied in the
underlying pulse, and the cost of the mitigation procedure is

kept low. Even if at each step we recalculated 2�, the number
of evaluations would be linear with respect to n. While the
implementation here is straightforward, it is likely that this
method or variations on it could be applied to other iterative
methods in a straightforward manner. In terms of the set of
possible RDMs that can be measured, this approach slowly
shifts our corrected RDM by 2� through the set of all possible
RDMs. Qualitatively, the effect of this strategy on the obtained
benzyne energies is to improve the result usually by tens of
mhartrees, and in some instances up to 0.1 Hartree. However,
as it is possible to move beyond the boundary of the set of
physical RDMs, purification of the RDM is a necessary step,
albeit with approximate N-representability conditions. The
distance between the 2�-corrected 2-RDM and the purified
2-RDM, can be used as an exclusionary criterion in the opti-
mization.

Both QACSE and ADAPT-VQE use the ACSE wave-
function Ansatz [31–34] that was developed in the ACSE
literature [33–36] (for example, see Sec. II E of Ref. [34]).
The structure of this wave function, a product of unitary
two-body exponential operators on a reference wave func-
tion, has the ACSE as its stationary equation [31,34]. The
ACSE Ansatz is related to the single-term two-body exponen-
tial Ansätze [86–93] and the two-body exponential product
Ansätze [31,32], which were investigated in the context of
the contracted Schrödinger equation (CSE) [23–30]. Notably,
while this wave function has been stated heuristically and
called an adaptive generalized unitary coupled-cluster singles
and doubles wave function in the ADAPT-VQE literature,
its stationary equation is not a coupled-cluster equation, and
its definition in the ACSE literature significantly predates
its recent discussion. In fact, Grimsley et al. [52] describe
ADAPT-VQE as “not so much an approximation to UCC
(unitary coupled cluster) as it is a wholly unique Ansatz. From
this perspective, by minimizing the ACSE wave function, both
QACSE and ADAPT-VQE are seeking solutions of the ACSE,
rather than a direct solution of the Schrödinger equation as
in VQE, and, hence, both can be understood as types of
contracted quantum eigensolvers. The distinction between the
VQE and CQE is important because the CQE framework in-
forms both the structure of the wave function and its stationary
condition.

Although both QACSE and ADAPT-VQE can be viewed
as quantum solutions of the ACSE, their motivations and
initial implementations have significant differences. Unlike
the ADAPT-VQE which optimizes all parameters in the wave
function simultaneously in the spirit of the variational prin-
ciple of the wave function governing VQE, the ACSE takes
a greedy, iterative approach in which the wave function is
optimized only with respect to the two-body exponential
transformation of the current iteration. This more targeted
optimization leads to a contracted stationary condition, the
solution of the ACSE, which is a hallmark of the ACSE
theory [31–34].

Specifically, the ADAPT-VQE [52] defines a predefined
pool of parametrized unitary two-body exponential operators
from which the ACSE wave function can potentially be con-
structed from the reference (Hartree-Fock) wave function. The
algorithm improves the trial ACSE wave function at the nth
iteration by (i) multiplying the (n − 1)th ACSE wave function
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by the operator from the pool with the largest energy gradient
and (ii) reoptimizing the energy with respect to all parameters
in the pool operators. In contrast, the QACSE does not use a
predefined pool of operators but rather computes the residual
of the ACSE either from an efficient quantum measurement
of an effective 2-RDM as shown in Eq. (10) or a classical
evaluation where the 3-RDM is approximately reconstructed.
This generality gives the QACSE additional flexibility, which
may become increasingly important in the treatment of larger,
more correlated atoms and molecules where a limited oper-
ator pool may miss significant correlation effects. Perhaps
most importantly, because the QACSE is aiming to satisfy
the ACSE rather than the standard variational principle for the
wave function, the QACSE does not reoptimize its parameters
in previous steps as in part (ii) of the ADAPT-VQE algorithm.
While a reoptimization phase decreases circuit depth, espe-
cially for small molecules, it is not necessary for converging
to a solution of the ACSE, and it may require a significantly
larger number of energy function and gradient evaluations for
larger molecules.

V. CONCLUSIONS

Molecular simulations on quantum computers have the
potential to treat strongly correlated problems that are cur-
rently intractable on conventional computers. The practical
realization of such simulations, however, requires quantum
molecular algorithms that are mappable to transformations,
such as products of unitary transformations, that are natural
for quantum computers. Here we implement a contracted
quantum eigensolver (CQE) from a contraction of the
Schrödinger equation onto the space of only two electrons,
known as the anti-Hermitian contracted Schrödinger equa-
tion (ACSE). To make the solution of the ACSE more practical
for more realistic chemical problems on quantum comput-
ers, we utilize robust error-mitigation techniques, including
techniques based on N-representability constraints. The so-
lution of the anti-Hermitian CSE (ACSE) through iterative
minimization of its residual generates a rapidly convergent
product of two-body unitary transformations that is natural for
implementation on quantum computers. Furthermore, unlike
the solution of the ACSE on the classical computer, the con-
tracted Schrödinger solver on quantum computers can fully
or partially remove approximate reconstructions of higher
RDMs and, hence, can potentially achieve exact results with-
out the exponential complexity of the many-electron wave
function.

The combination of the ACSE solver with robust error mit-
igation provides a scalable approach to molecular simulations
on quantum computers with low circuit depth and few vari-
ational parameters. We apply the algorithm to the resolution
of the ortho-, meta-, and para-isomers of benzyne C6H4. The
relative energies exhibit single-digit millihartree errors, and
the computed natural-orbital occupations capture the biradical
nature of the para-isomer. The molecular simulation of the
benzyne isomers represents an important step in eigensolver
and error-mitigation technologies towards the practical sim-
ulation of larger, even more complex molecules on quantum
computers.
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APPENDIX A: ELECTRONIC STRUCTURE
CALCULATION

Complete active state self-consistent field (CASSCF) cal-
culations were performed as implemented in the Maple
Quantum Chemistry Package [94–96] using [2,2] and [4,4]
active spaces with the correlation-consistent valence double-
zeta (cc-pVDZ) basis set [97]. Following convergence of the
CASSCF procedure, effective active space electron integrals
for the quantum ACSE calculation were obtained via the fold-
ing of the core-active cross terms into the active space, such
that the effective active space energy is given by

Ẽact = 1

2

∑
pqst

2K̃ pq
st

2Dpq
st , (A1)

where 2K̃ pq
st are the active space electron integrals containing

the core-active cross terms. The elements of the effective
active space integral matrix 2K̃ pq

st are constructed from the
one- and two-electron integrals as follows:

2K̃ pq
st = 1

N − 1

(
1K̃ p

s δ
q
t + 1K̃q

t δp
s

) + 2K pq
st , (A2)

where
1K̃ p

s = 1K p
s +

∑
i

(
2 2K pi

si − 2K pi
is

)
, (A3)

and p, q, s, t runs over all active orbitals and i runs over all
core orbitals.

While we could also include number-excitation terms,
because we start with a multireference guess solution, the
number-excitation terms are small, even after a few iterations,
and can be mostly ignored. Using solely double excitations
allows for sufficient quality results convergence. Part of the
difficulty in describing the meta-benzyne configuration is that
the solution could be described as more single reference, and
requires more than a few excitation terms with small coeffi-
cients to be described properly.

APPENDIX B: QUANTUM CALCULATION

Using the electron integrals for the active space from
above, we perform a quantum calculation on different IBMQ
devices. In particular, we perform [2,2] and [4,4] calculations
under the Jordan-Wigner transformation. Different IBMQ de-
vices were utilized through the IBM Quantum Experience.
These devices utilize fixed-frequency transmon qubits with
coplanar waveguide resonators [98,99]. We use the PYTHON

3 package QISKIT (v 0.15.0) [100] to interface with the device.
The calculations themselves are multifaceted, with nonstan-
dard approaches taken in a number of different areas. We
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document these in subsequent sections. Each measurement
was performed with 213 shots. Stochastic effects were on the
order of mhartree, though are affected in a substantial way
through the purification scheme. For the collection of all 2-
RDMs we utilized a symmetry-projected operator basis using
the N̂ and Ŝz symmetries [101].

For the one-qubit calculations, we utilized IBMQ-Rome,
while for the three- and four-qubit calculations, we utilized
IBMQ-Bogota and IBMQ-Santiago. QISKIT was used to inter-
face with the IBMQ devices.

1. Quantum [2,2] active space calculations

Using the Jordan-Wigner transformation, the [2,2] case
with four spin orbitals maps to four qubits. The [2,2] calcu-
lations contain two Pauli symmetries related to the parities
of the total number of electrons and the number of electrons
in a subset of spin orbitals (either α or β), and a further
symmetry is found for most molecular systems, allowing the
[2,2] system to be represented with a single qubit. These can
be expressed as

S1 = {Z1Z2, Z1Z3, Z1Z4}. (B1)

The elements of 2A were determined through the quantum
ACSE method, with Euler’s method being used to propagate
the Ansatz. An l2 norm of 2A below 0.01 was used as the stop-
ping criterion, which was usually reached in 10–12 iterations.
The exact exponential of any combination of Pauli operators
is well known for the single-qubit case, and so we are able to
exactly express U = ∏

i eAi as well as U ′ = eiHδ
∏

i eAi . For
these runs, we chose δ = 0.25.

2. Quantum [4,4] active space calculations

The Jordan-Wigner representation maps the [4,4] case with
eight spin orbitals to eight qubits. Again, two symmetries
related to fermionic parity can be utilized, and then depending
on the Hamiltonian we can find additional symmetries. For
these particular integrals, we find two additional symmetries
across all configurations, and then an additional symmetry for
the para-configurations, which can be applied to the ortho-
and meta-configurations as approximate symmetries. A more
detailed discussion on the process of finding these symmetries
is included in the next section. While we can also find approx-
imate symmetries through truncation of the Hamiltonian, the
application of this additional symmetry from the para-isomer
yielded sufficient results for the ortho-isomer case, with a
difference from the target (CASSCF) energy of 9.2 × 10−4 H.
For the meta case, we found an additional symmetry with
approximately 0.6 × 10−3 H error from the CASSCF. The
solutions are exact for the three-qubit para, and all of the
four-qubit cases. We show the effects of some approximate
tapering schemes in the next section.

The symmetries are listed in the following set for the four-
and five-symmetry cases, respectively:

S4 = {Z1Z2Z3Z4, Z1Z2Z5Z6, Z1Z3Z5Z6, Z2Z3Z5Z8}, (B2)

Sp/q
3 = {Z1Z2Z3Z4, Z1Z5, Z2Z6, Z3Z7, Z1Z2Z3Z8}, (B3)

Sm
3 = {Z1Z4, Z2Z3, Z1Z2Z5Z6, Z1Z2Z5Z7, Z5Z8}. (B4)

As a result, we are able to perform three- and four-qubit simu-
lations of these systems on the five-qubit linearly connected
IBMQ-Bogota device, and IBMQ-Santiago. When tapering
off qubits, we use eigenvalues which match the eigenval-
ues of the initial Hartree-Fock determinant. While the initial
determinant in this paper is consistently a closed-shell config-
uration, it can also represent an open-shell configuration for
an extension of the procedure to open-shell systems.

The calculations themselves utilized a one-dimensional
model trust-region Newton’s method, where the initial trust
region was taken to be 2, and the quadratic fit was taken from
εn = ±1. Additionally, we used a threshold of 0.75 × amax

where amax indicated the largest magnitude term in the 2A
for a given iteration. The convergence criteria were taken to
be 0.02–0.03 in the trust-region criteria (or in the norm of
2A), and we used five-to-six iterations. Instances of the runs
themselves are included in the open-source HQCA software
package [102].

3. Qubit reduction by tapering and Hamiltonian truncation

The qubit-reduction scheme follows previous work by
Bravyi et al. and expanded by Setia et al. for applications
to point-group symmetries [84,103]. In particular, we express
the Hamiltonian in the Pauli basis and then put these terms
in a check sum representation to construct the generator and
parity check matrices from the field of quantum error correc-
tion [104]. By performing Gaussian elimination on the parity
check matrix, we can find generators of the Hamiltonian,
which in turn allow us to select a basis for the corresponding
null space. Elements of the null space will commute with
every term in the Hamiltonian, and thus are symmetries of
H . Thus, the nullity of this matrix is the number of symmetry
elements, and thus the number of qubits which we can taper.
By using a particular unitary transformation

Ui = 1√
2

(Xj + si ), (B5)

where Xj is selected so that Xj anticommutes with si, and
commutes with all other si, ı 	= j, we transform the Hamil-
tonian so that qubits j have only X or I in each term. By
selecting an appropriate eigenvalue of X , we can taper off
these terms, resulting in a modified fermionic transformation.
We use eigenvalues which agree with the eigenvalues of the
initial closed-shell singlet Hartree-Fock determinant.

For a general N̂- and Ŝz-preserving state, there exist two
symmetries related to the parities of the α or β electrons. One
can see this simply by noting that there exist two Pauli strings
of length r, over the α and β electrons, respectively, which can
be selected. These symmetries preserve the commuting and
anticommuting relations described in Bravyi et al. [84] and,
hence, can be tapered as symmetries of the Hamiltonian (or
more generally, the set of all 2-RDM operators). While map-
pings such as the parity or Bravyi-Kitaev mapping explicitly
assign these symmetries to qubits, we still can identify and
utilize these symmetries with the Jordan-Wigner transforma-
tion.

As mentioned in the Discussion section, we can exploit
approximate symmetries for a decrease in circuit complex-
ity by either projecting the state onto a nearby symmetry
or truncating the Hamiltonian. To show the effect of using
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FIG. 5. Comparison of the lowest energy following truncation of the reduced Hamiltonian 2K matrix (left) and the transformed set of Pauli
operators T (2K ) (right) for ortho-, meta-, and para-benzyne, with respect to the CASSCF results. The number of symmetries found (i.e. the
nullity of the generator) is reported below, to the right, and to the left of the marker for the ortho-, meta- and para-benzyne isomers respectively.

approximate symmetries through tapering Hamiltonian ele-
ments, Fig. 5 shows the accuracy and potential symmetries
that can be found for a given truncation of elements of either
the reduced Hamiltonian or the transformed Hamiltonian in
the Pauli string basis. In particular, we are interested in finding
the highest-symmetry state, the state whose generator matrix
has the largest null space that is consistent with energy errors
below a given threshold. For these instances, the ortho-, meta-,
and para-isomers all have exact representations with four sym-
metries (and five for the para-isomer). The meta-isomer has
the highest-error three-qubit representation, which we safely
assume to be less than contributions of noise in this work.

4. Classical solution to the ACSE

In the fully quantum algorithm, the quantum computer is
used in both the calculation of the 2A and 2D matrices. For
the [4,4] cases we used a classical approach in solving for
elements of 2A, which reduces the computational demands on
the quantum computer and yields sufficient accuracy in this
case. This can be found by calculating elements of 2A from

2Ai,k
j,l = 〈�|[â†

i â†
k âl â j, Ĥ ]|�〉. (B6)

More specifically, for a molecular system, the reduced Hamil-
tonian 2K can be written as

2K p,r
q,s = 1

2(N − 1)

[
δp

q
1Kr

s + δr
s

1K p
q + 2V p,r

q,s (N − 1)
]
, (B7)

and we define an operator W p,r
q,s = 2K p,r

q,s − 2K p,r
s,q , which then

leads to an expression for the total ACSE equation as [33,34]

2Ai,k
j,l =

∑
p,q

(2Dp,q
i,k W p,q

j,l − 2Dp,q
j,l W p,q

i,k

)

+
∑
pqr

(
3Dp,r,k

j,l,qW p,r
i,q − 3Dp,r,i

j,l,qW p,r
k,q − 3Di,k,p

r,q, jW
p,l

r,q

+ 3Di,k,p
r,q,l W

p, j
r,q

)
. (B8)

Notably, this expression involves the 3-RDM, which can be
reconstructed from its cumulant expansion [61]

3Di, j,k
p,q,s = 6 1Di

p ∧ 1D j
q ∧ 1Dk

s + 9 2�i, j
p,q ∧ 1Dk

s +3 �i, j,k
p,q,s.

(B9)

Here, the wedge product denotes the Grassmannian operator,
combining antisymmetric permutations of upper and lower
indices and dividing by the total number of permutations,

TABLE IV. Energetic error results (millihartrees) for different convergence thresholds and qubit representations for the QACSE with a
quantum solution of the ACSE (or measured 3-RDM) for the ortho-, meta-, and para-benzyne configurations. The number of qubits refers to
the qubit representation and related symmetries utilized, which for ortho and meta have nonzero errors. Values of ||2A|| refer to the convergence
criteria, which is the norm of the 2A matrix.

Energy error relative to CASSCF (mhartree)

ortho meta para

Qubits/|| 2A || 0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001

3 1.393 1.393 0.916 11.197 1.108 0.869 0.284 0.284 0.003
4 2.957 0.033 0.006 10.563 0.363 0.115 0.284 0.284 0.003
8 13.634 0.200 0.008 14.042 0.240 0.101 5.711 0.042 0.005
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TABLE V. Error in energy results (millihartree) for different
convergence thresholds and qubit representations for the QACSE
algorithm with a reconstructed 3-RDM. The number of qubits refers
to the qubit representation and related symmetries utilized. Instead
of the norm of the 2A matrix, we use a trust region and energetic
increase stopping criteria. We also indicate whether or not all of the
elements of the 2A matrix are implemented.

Energy error relative
to CASSCF (mhartree)

Trust ortho meta para

criterion Entire 2A 3Q 4Q 3Q 4Q 3Q 4Q

5 × 10−2 No 1.113 1.112 4.913 4.174 5.675 5.675
1 × 10−3 No 1.113 1.112 2.975 2.077 1.231 1.234
1 × 10−6 No 1.113 1.112 2.976 2.077 0.267 0.269
1 × 10−6 Yes 1.126 0.181 3.687 3.002 0.182 0.182

n� represents the nth-order reduced cumulant matrix, and we
assume that 3� = 0.

5. Simulated quantum results

Using the above schemes, we can provide simulated re-
sults without noise of the different benzyne isomers. Table IV
shows simulated results with the quantum solution of the
ACSE at different convergence criteria and number of qubits.
Table V shows similar results where the evaluation of the
ACSE residual on the quantum computer is replaced by a
classical evaluation including classical reconstruction of the
3-RDM from the 2-RDM by a cumulant expansion.

In Table IV, we can see that with more strict convergence
criteria, we are able to obtain highly accurate results for our
given representation. Because there is error in the three- and
four-qubit simulations, given a low norm in 2A (which is taken
relative to the truncated Hamiltonian operator and not the
reduced Hamiltonian matrix 2K), these results return essen-
tially the approximation in the ortho and meta cases (0.92 and
0.87 mhartree, respectively). Additionally, these results show
the most ideal case for the QACSE algorithm with the current
choice of tapering, highlighting its potential on beyond-NISQ
devices.

If we consider the systems with a reconstructed 3-RDM,
as seen in Table V, we note several differences. Because the
2A matrix from the reconstructed 3-RDM does not repre-
sent the true gradient, we use one-dimensional trust-region
convergence criteria for our convergence threshold as in previ-

ous work. The criteria are (1) the quadratic model of the trust
region, and (2) the error in the energy. In some cases we also
trim the 2A matrix in generating the Ansatz: discard elements
in our current iteration that are below a given threshold (in this
case, 0.5). If we do not trim the operator, then all of the terms
are utilized.

These results are not unexpected, as errors from cumulant
reconstruction in the literature are often in the single mhartree
region. It also is possible that on a quantum computer the dis-
connect between an exact 2-RDM and inexact 2A leads to an
increase in errors. Unlike the quantum ACSE, here the four-
qubit results match the full-qubit result for each instance, and
so the latter are not reported. The ortho and para calculations
achieve good accuracy, while the meta appears to have slightly
more error. Despite this, the results recover the majority of
the correlation energy, demonstrating that the reconstructed
approach is not unsuitable for noisy simulations where errors
are generally much larger than 1 mhartree.

6. Circuit implementations

Once the 2A matrix is obtained for each step, we use a
threshold to truncate the operator, and at each step add only
one or two additional fermionic terms. As mentioned in the
main text, the circuits are constructed by expressing eεnAn as a
first-order Trotterization, resulting in products of exponentials
Pauli strings which can be realized generally with CNOT
gates and single-qubit rotations. In some instances we see
a reduction in the number of two-qubit gates by using the
following single-qubit identity:

eiπU †σ jU =
⎧⎨
⎩

σx if j = x,
σy if j = z,
σz if j = y,

(B10)

where U = S†HS. This can just as easily be applied to ex-
ponential transformations as well, and with this, we can
transform an operator such as eα(X1X2+Y1Y2 ), which is expressed
in three or four CNOT gates, to U †eα(X1X2+Z1Z2 )U which can
be expressed with only two CNOT gates. In general, we uti-
lize straightforward concatenation techniques which possibly
reduced the CNOT gates while preserving the connectivity of
the device (which is linear).

While performing simulations under noiseless, stochastic,
and simulated devicelike noise, we examined the pool of
required operators, and then performed simplifications to re-
duce the number of CNOT gates that were involved. While
in general this is not required, for optimal performance on
near-term devices circuit simplifications are critical. Different

TABLE VI. Calibration data for the IBMQ-Rome device taken on November 9th, 2020, from randomized benchmarking of the qubit gates.
The gate lengths for the U2 and U3 gates were 35 and 71 ns, respectively.

Qubit Frequency U2 U3 RO0|1 RO1|0 T1 T2 [ j] CNOT j
i (gate length)

i (GHz) 10−4 10−4 10−2 10−2 (μs) (μs) 10−2 (ns)

0 4.969 2.4 4.7 2.0 0.6 92.0 66.3 [1] 0.7 (320)
1 4.770 2.9 5.7 4.9 3.4 104.1 68.3 [0] 0.7 (356) [2] 2.0 (1109)
2 5.015 3.5 7.1 7.0 2.2 74.3 155.0 [1] 2.0 (1145) [3] 1.0 (377)
3 5.259 5.8 11.7 3.2 1.0 67.7 101.1 [2] 1.0 (341) [4] 1.6 (476)
4 4.997 2.7 5.3 1.6 0.7 50.1 103.0 [3] 1.6 (512)
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TABLE VII. Calibration data taken for IBMQ-Bogota from December 4th to 7th, 2020, from benchmarking. See Table VI for descriptions.
The gate lengths for the U2 and U3 gates were 35 and 71 ns, respectively.

Qubit Frequency U2 U3 RO0|1 RO1|0 T1 T2 [ j] CNOT j
i (gate length)

i (GHz) 10−4 10−4 10−2 10−2 (μs) (μs) 10−2 (ns)

12 − 04 − 20
0 5.000 4.8 9.6 4.0 1.4 93.5 141.4 [1] 1.7 (690)
1 4.845 2.2 4.4 4.4 2.9 134.4 76.1 [0] 1.7 (654) [2] 0.7 (498)
2 4.783 1.7 3.4 4.9 1.5 128.2 206.2 [1] 0.7 (533) [3] 3.3 (626)
3 4.858 15.7 31.3 4.6 1.2 84.6 36.8 [2] 3.3 (590) [4] 2.5 (370)
4 4.978 4.2 8.3 4.9 1.6 50.9 87.1 [3] 2.5 (334)

12 − 05 − 20
0 5.000 3.0 6.1 3.7 1.3 91.5 119.8 [1] 1.7 (690)
1 4.845 2.6 5.2 4.3 3.3 137.4 75.4 [0] 1.7 (654) [2] 0.8 (498)
2 4.783 1.5 3.0 3.3 1.3 133.0 226.5 [1] 0.8 (533) [3] 0.6 (626)
3 4.858 1.6 3.3 3.4 0.6 159.7 244.4 [2] 0.6 (590) [4] 0.8 (370)
4 4.978 1.9 3.9 2.8 1.0 107.3 146.1 [3] 0.8 (334)

12 − 06 − 20
0 5.000 3.5 7.0 5.3 1.6 88.2 107.7 [1] 1.8 (690)
1 4.845 2.4 4.9 3.8 2.2 145.0 95.8 [0] 1.8 (654) [2] 0.7 (498)
2 4.783 1.8 3.6 4.7 1.4 165.0 211.2 [1] 0.7 (533) [3] 0.6 (626)
3 4.858 2.6 5.2 1.9 0.7 160.2 311.7 [2] 0.6 (590) [4] 0.7 (370)
4 4.978 1.9 3.8 3.6 1.2 126.0 149.4 [3] 0.7 (334)

12 − 07 − 20
0 5.000 3.5 7.0 8.2 1.6 44.8 55.7 [1] 1.8 (690)
1 4.845 2.4 4.9 4.7 2.6 178.2 98.8 [0] 1.8 (654) [2] 0.8 (498)
2 4.783 1.8 3.6 3.9 0.9 126.0 231.0 [1] 0.8 (533) [3] 0.8 (626)
3 4.858 2.6 5.2 2.8 0.4 124.0 168.6 [2] 0.8 (590) [4] 0.9 (370)
4 4.978 1.9 3.8 3.9 1.3 93.5 188.0 [3] 0.9 (334)

compilation methods were attempted, but ultimately (likely
due to the connectivity constraints of the devices), manual
simplifications yielded lower CNOT counts. The symmetries
have the effect of reducing the number of nonzero excitation
operators, as certain excitation sequences act outside the sym-
metry state. Acting on the imaginary elements of the 2-RDM,
we can find the nonzero elements and then prepare circuits
accordingly. For the three-qubit case this resulted in six unique
Pauli strings. A similar procedure was carried out with the
four-qubit case, although we found that we did not have to
prepare the entire pool of operators.

7. Quantum device specifications

For the quantum computation we used three different
quantum devices. For the single-qubit simulation, we used
IBMQ-Rome (five-qubit device), whereas for the three- and
four-qubit calculations we used IBMQ-Bogota as well as
IBMQ-Santiago, which are same generation linearly con-

nected five-qubit devices. These were accessed through
the IBM Quantum Experience. The quantum devices use
fixed-frequency transmon qubits with coplanar waveguide
resonators [98,99]. The Python package QISKIT(v 0.15.0,
0.17.1) [100] was used to interface with the device. Device
properties can be found in Tables VI–VIII.

U2 and U3 represent single-qubit gate errors containing
one and two Xπ/2 pulses and two and three frame changes
respectively. Newer devices (see Table VIII) directly express
these as rotations using the

√
X and X gates with intermediate

frame changes representing rotations along the z axis. ROi| j

represents the probability of measuring the state i given a
prepared state j. T1 and T2 are the given thermal relaxation
times for each qubit. Frequency refers to the qubits opera-
tional frequency, and influences the excited-state population
based on the device temperature. [ j] specifies the target qubit
with control qubit i, and the number in parentheses after each
entry in the CNOT column indicates the gate length. The

TABLE VIII. Calibration data taken for IBMQ-Santiago from August 24th. The gate lengths for the
√

X and X gates are both 35 ns.
Santiago was used to calculate the three-qubit meta-isomer calculation.

Qubit Frequency
√

X X RO0|1 RO1|0 T1 T2 [ j] CNOT j
i (gate length)

i (GHz) 10−4 10−4 10−2 10−2 (μs) (μs) 10−2 (ns)

2 4.821 2.0 2.0 1.5 0.5 99.0 89.8 [3] 0.7 (377)
3 4.742 3.0 3.0 1.4 0.5 75.7 67.4 [2] 0.7 (412) [4] 0.7 (377)
4 4.816 1.6 1.6 2.2 1.0 99.5 155.1 [3] 0.7 (341)
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gate lengths for the U2 and U3 gates were 35 and 71 ns,
respectively.

APPENDIX C: ERROR-MITIGATION METHODS

To directly mitigate the effects of noise on the quantum
computer, we use a variety of techniques in addition to the
ones listed in the main text (limit-preserving correction and
the purification of the 2-RDM).

1. Number-preserving projection to diagonal
elements of the 2-RDM

The most effective error correction comes by filtering di-
agonal elements of the 2-RDM, of the form 2Dp,q

p,q, so that the
number operator is preserved. Because these elements com-
mute with single-qubit measurements that are performed, they
can be filtered according to the measurement result. Counts
that have differing values of N or Sz are rejected, and so
we are filtered to a set of RDMs with the proper trace and
projected spin properties [i.e., Tr 2D = N (N − 1)]. While
heavily erroneous off-diagonal elements can also lead to non-
physical eigenvalues [4], correcting for these in the 2-RDM
case is not straightforward and likely would not reduce the
overall errors.

2. Measurement correction of prepared states (SPAM)

Finally, the state preparation and measurement, which in-
volves preparing all possible quantum states for some qubit
space, and constructing a transition matrix with the associated
inverse, was utilized to mitigate measurement errors. We ap-
plied this to local qubits, and so did not correct for correlated
measurement errors. This procedure has been documented
in many places [105,106] and can be implemented through
QISKIT.

3. Limit-preserving correction for an iterative Ansatz

In the main text we described our error-mitigation strategy
which we denoted as a limit-preserving correction for an
iterative Ansatz, and described the framework or context in

FIG. 6. Two optimization attempts for (a) ortho-, (b) meta-, and
(c) para-benzyne configurations with and without the 2�-preserving
correction showing the first five iterations. In the meta-isomer case
without the 2� correction, unfavorable steps in choosing εn are re-
jected and so the run plateaus after the first step.

which it could be useful. To illustrate these points, Figure 6
highlights the effect of performing a traditional (three-qubit)
calculation with an iterative design, versus a 2�-corrected
result. The increasing energy can be seen in each iteration with
the standard result. For each isomer, only 1 step can be taken
before the Ansatz is too corrupted to provide a reasonable
ground state. However, though the optimization with the 2�

correction is still noisy, and not always smooth, we are able
to keep or improve upon the energy gains in each case, and
achieve results closer to the true ground state.
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