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The development of novel neutron optics devices that rely on perfect crystals and nanoscale features are usher-
ing in a new generation of neutron science experiments, from fundamental physics to material characterization of
emerging quantum materials. However, the standard theory of dynamical diffraction (DD) that analyzes neutron
propagation through perfect crystals does not consider complex geometries, deformations, and/or imperfections,
which are now becoming a relevant systematic effect in high-precision interferometric experiments. In this work,
we expand upon a quantum information (QI) model of DD that is based on propagating a particle through a
lattice of unitary quantum gates. We show that the model output is mathematically equivalent to the spherical
wave solution of the Takagi-Taupin equations when in the appropriate limit, and that the model can be extended
to the Bragg as well as the Laue-Bragg geometry where it is consistent with experimental data. The presented
results demonstrate the universality of the QI model and its potential for modeling scenarios that are beyond the
scope of the standard theory of DD.
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I. INTRODUCTION

Many thermal and cold neutron instruments and experi-
mental methods rely on Bragg diffraction from nearly perfect
crystals. These include neutron interferometers [1–5], Bonse-
Hart double crystal diffractometers [6,7], storage cavities
[8], spin-rotating channels [9], spin rotation in noncen-
trosymmetric crystals [10], and high-precision structure factor
measurements [11–13]. The theory of dynamical diffraction
was originally developed for electron propagation through the
work of Cowley and Moodie [14], Zachariasen [15], Kato
[16], and others. It can be adapted to neutron diffraction, and
is used to describe the behavior of neutrons inside perfect
crystals and must be used over the kinematic theory when
the crystal thickness or mosaic block size is larger than the
extinction length [17–20]. However, use of the standard theory
can only reasonably accommodate relatively-simple crystal
geometries [21], strain fields [22,23], and incoming beam
phase spaces [24,25], factors that impact device design and
can bias experimental results [7,9,11,26,27].

Nsofini et al. [28–30] demonstrated that many of the results
of dynamical diffraction can be reproduced in the Laue case
using a quantum information (QI) model, in which neutrons
travel through a quantum Galton board where every peg corre-
sponds to the application of a unitary operator on the neutron
state. The intensity profiles predicted by the standard results
of dynamical diffraction were reproduced with accuracy de-
pending on the amount of layers used to model the crystal
thickness. In this work we show that in the Laue case the
model output reduces exactly to the form predicted by dy-
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namic diffraction theory in the spherical incident wave case
when the model parameters are taken to their appropriate lim-
its. Additionally, we show and discuss how the model can be
extended to the Bragg geometry, and that it is consistent with
experimental data in complex mixed Laue-Bragg geometries
where dynamic diffraction is not able to provide an analytical
solution. This adaptation to new geometries is a proof of
concept that this computational method is a promising ap-
proach to accurately describe complex dynamical diffraction
problems. Hence, the QI model shows promise to become
indispensable for the design of novel neutron optical elements,
which promise to push the current limits of neutron science.

II. DYNAMICAL DIFFRACTION: LAUE CASE

A. Takagi-Taupin equations

An alternative approach to solving problems involving dy-
namical diffraction effects in lightly distorted crystals was
developed for x-rays by Takagi and Taupin in 1962 [22]. In
this work, we will show the equivalence between this model
and the QI model. The principal results are stated in this
section while a full derivation is shown in Appendix. The
coordinate system used is shown in Fig. 1.

The Takagi-Taupin equations provide an expression for
the neutron wave function at any location inside the crys-
tal. The neutron wave function is bound inside the triangle
ABC (the Bormann triangle), where the intensity is being
shifted back and forth between the transmitted and diffracted
direction. As the neutron progresses along the x axis, the
phase difference between the paths creates self-interference,
which produces a beating of the intensity, most noticeably at
the center of the Bormann triangle. This beating is known
as Pendellösung oscillations, and occurs with spatial period
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FIG. 1. A side-to-side comparison of the Laue diffraction geometry in crystals with the mechanism behind the QI model for DD, in the
Laue case. (a) The real-space coordinates used in the Takagi-Taupin equations. An incident neutron with wave vector K0 hits the crystal at
a slight deviation from Bragg angle θB + �θ . The coordinates Ŝ0, ŜH are unit vectors in the incident and diffracted directions, respectively.
(b) The individual nodes act as a quantum unitary gate, which splits the incident beam according to the model parameter γ . (c) The diffracted
amplitude at a given node is composed of the summed amplitudes of all the paths, which end in the diffracted direction at that node. The
widths �x, �z correspond to the size of the lattice spacing in simulations. Illustrated in blue (dashed) is a sample path through the lattice,
which undergoes two reflections.

�H . This period can be expressed in terms of the neutron and
crystal properties:

�H = πVcell cos θB

λ|FH | , (1)

where Vcell is the volume of a crystal unit cell, θB is the
Bragg angle, λ is the neutron wavelength and FH is the crystal
structure factor.

We are interested in finding the position-dependent inten-
sity at the exit face of the crystal. From an experimental point
of view, the position intensity can be measured directly by
scanning the crystal surface with a narrow slit, and recording
the intensity at every slit position z. Defining the relative
transverse coordinate:

� = z

D tan θB
, (2)

where D is the crystal thickness, the intensity of the diffracted
and transmitted beams at the output of the crystal are found to
be, respectively,

IH (�) = ν2|A0|2J2
0

(
π

D

�H

√
1 − �2

)
(3)

I0(�) = ν2|A0|2 1 − �

1 + �
J2

1

(
π

D

�H

√
1 − �2

)
, (4)

where A0 is the amplitude of the incident beam, and J0, J1 are
the zeroth and first ordinary Bessel functions of the first kind.
The variable ν is related to the definition of the potential inside
the crystal, and is defined more rigorously in Appendix.

B. Quantum information (QI) model

In the model developed in Ref. [28], a perfect crystal is
represented as a two-dimensional lattice of nodes, through
which the incident neutron travels column by column. As
shown in Figs. 1(b) and 1(c), each node acts as a unitary
operator on one part of the neutron’s state, which is composed
of a superposition of upwards and downwards paths at every
position in the lattice. Each node corresponds to the action of

one or many lattice planes upon an incident neutron, with the
physical size of the node being determined by the choice of
parameters. The input state to a node at position i is repre-
sented by

αi |ai〉 + βi |bi〉 or

(
αi

βi

)
, (5)

where |a〉 and |b〉 are the states of the neutron going upwards
(transmitted) and downwards (reflected), respectively. Evo-
lution of the initial state is performed via the unitary time
evolution operator in the interaction picture U = e−i

∫
V (r)dt/h̄,

where V (r) is the interaction potential representing the lattice
(see Appendix). The potential integrated over the time it takes
a neutron to pass through a single node is

〈a|V (r)|b〉�t

h̄
= π/2

�x

�H
eiH ·r = γ ieiζ , (6)

where �x = 2m �t/(h̄Kx ) is twice the distance between
nodes along the Bragg planes [Figs. 1(c) and 2] with Kx =
(2π/λ) cos θB the component of internal neutron wave vector
also along the Bragg planes; and the phase factor encodes
the global translation of the lattice. The extra factor of i
is inserted for convenience and corresponds to translating
the lattice by one-fourth of the Bragg plane spacing. Noting
that 〈a|V (r)|b〉 = 〈b|V (r)|a〉∗, the full time-evolution opera-
tor over one node Ui = e−i

∫
Hdt/h̄ is

Ui =
∞∑

n=0

1

n!

(
0 γ eiζ

−γ e−iζ 0

)n

Ui =
(

cos γ eiζ sin γ

−e−iζ sin γ cos γ

)
.

(7)

The unitary describing neutron propagation to the next
layer of nodes

Ui = |ai+1〉 (ta 〈ai| + rb 〈bi|) + |bi−1〉 (ra 〈ai| + tb 〈bi|) (8)
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FIG. 2. A lattice as it is used in the model in the Bragg case. The
nodes in the lattice are functionally identical to the one presented in
Fig. 1(b). The reflected intensity at node n is a sum of the contribu-
tions from all the paths, which leave the crystal from the edge at node
n. The widths �x, �z once again correspond to the lattice spacing
in simulations. The height of the neutron paths through the crystal
cannot exceed height h, which corresponds to the crystal thickness in
simulation space. Illustrated in blue (dashed) is a Dyck path of length
6, bound by height 2 and containing two peaks. The points A and B
correspond to the points of geometric reflection from the front and
back face of the crystal, respectively, where the reflected intensity is
typically the highest.

then has coefficients

ta = eiξ cos γ , rb = eiζ sin γ

ra = −e−iζ sin γ , tb = e−iξ cos γ , (9)

which necessarily adhere to the required normalization condi-
tions of a unitary matrix

|ta|2 + |ra|2 = 1, |tb|2 + |rb|2 = 1, tarb + ratb = 0. (10)

The phase ξ on the diagonals is not physical and thus set
to zero. The off-diagonal phase ζ associated with a global
lattice translation is important to interferometer simulations
[29], where a relative translation of one of the diffracting
optics shifts the phase of the measured interference pattern,
but it is of no consequence to the simulations presented here
and also set to zero.

The input to one column containing h nodes is

ψin =
(

αi

βi

)⊗h

, (11)

where αi, βi are the inputs in the transmitted and reflected
direction to the ith node. For calculation purposes, this is
written as

ψin =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...

αi

βi

αi+1

βi+1
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

The column operator U ⊗h
i is represented as a matrix, where

every node has matrix representation

Mi =

⎛
⎜⎝

ta rb

0 0
0 0
ra tb

⎞
⎟⎠ (13)

and the full column operator is written as:

C =

ta rb 0 0
0 0 0 0
0 0 ta rb . . .
ra tb 0 0
0 0 0 0
0 0 ra tb

...
. . .

(14)

For a crystal with a thickness of N nodes, the output ψout

is equal to CNψin, where the odd entries of ψout correspond
to the transmitted beam at each node and the even entries to
the reflected beam. The beam profiles are given by discrete
functions of the node height j:

IH ( j) = |ψout(2 j)|2 (15)

I0( j) = |ψout(2 j − 1)|2. (16)

C. Generalization of QI model to arbitrary parameters

It has been shown previously in Ref. [28] that propagating
a neutron inside a lattice by exciting a single node at the
entrance yielded intensity profiles consistent with dynamic
diffraction theory, with accuracy for a specific choice of γ

depending on the number of layers used in the simulation.
Here, we generalize this theory to any value of γ , and show
that one has a degree of freedom when choosing a combina-
tion of γ and the number of iterations in the simulation (n).
Furthermore, we show that the intensity profiles generated by
the model exactly reduce to the spherical wave solutions of
the T-T equations, Eqs. (3) and (4), in the appropriate limit.

To demonstrate this, we determine analytically the inten-
sity profiles predicted by the model at the exit face of the
crystal. In Fig. 1(c), in blue, a path is shown through a lattice
of width n = 2, starting at p = 0 (by definition) and ending
on node p = 1. The total neutron amplitude at p = 1 will be
a sum of the contributions from all the paths ending on that
node, and thus the problem of calculating intensity profiles
can be reduced to counting lattice paths. We will start by
noting that counting the number of paths of half-length n end-
ing at node p is equivalent to counting the number of binary
words of length 2n with exactly n − p zeros and n + p ones,
where these numbers represent an up or down movement, re-
spectively (for example, the aforementioned path corresponds
to the string 0010). Since there are n + p choices for the
positions of the ones, there are 2n choose n + p

N (p) =
(

2n

n + p

)
(17)

such paths.
However, not all paths contribute equally to the final am-

plitude, and a given path’s weight will depend on the number

022403-3



O. NAHMAN-LÉVESQUE et al. PHYSICAL REVIEW A 105, 022403 (2022)

of reflections that it undergoes. Instead of simply counting
the paths, which end on a specific node, we must additionally
keep track of their number of reflections. Applying a similar
logic as in the simpler case, we can derive the number of paths
ending on node p of length 2n with k reflections N (n, k, p):

N (n, k, p) =
{(n−p−1

k/2−1

)(n+p
k/2

)
k even( n−p−1

(k−1)/2

)( n+p
(k−1)/2

)
k odd

(18)

or, alternatively, for arbitrary k

N (n, 2k, p) =
(

n − p − 1

k − 1

)(
n + p

k

)
(19)

N (n, 2k + 1, p) =
(

n − p − 1

k

)(
n + p

k

)
. (20)

Summing over all the paths ending at node p and giving
every path the appropriate amplitudes from Eq. (9) gives us
the expression for the neutron amplitude profile at the exit
face of the crystal. The same paths contribute to the diffracted
and transmitted intensities, up to one final reflection on the
last layer. The diffracted and transmitted amplitude profile are
found to be

ψH (p, n) =
n−|p|∑
k=0

(−1)k+1 sin2k+1 γ cos2(n−k) γ

×
(

n + p

k

)(
n − p

k

)
(21)

ψ0(p, n) =
n−|p|∑
k=0

(−1)k sin2k γ cos2(n−k)+1 γ

×
(

n − p − 1

k − 1

)(
n + p + 1

k

)
(22)

ψ (p) ranges from p = −n to p = n. For small n, ψ (p) has a
low resolution and is a poor match to the theoretical predic-
tions. To increase the resolution of ψ while keeping the crystal
thickness finite, it is necessary to ensure that the scale of
the interactions decreases proportionally, so that the effective
thickness of the crystal remains constant. This can be achieved
by considering the limit where γ → 0 and nγ is kept constant,
where we are able to show that the intensities I0,H = ψ0,Hψ∗

0,H
take the form

IH (p) = γ 2J2
0 (2nγ

√
1 − p2/n2) (23)

I0(p) = γ 2 n + p

n − p
J2

1 (2nγ
√

1 − p2/n2). (24)

Comparing Eqs. (23) and (24) to Eqs. (3) and (4) we can
note that they are equivalent when we set � = p/n (from its
definition), |A2

0| = 1 and n · γ = (π/2) D
�H

, as expected from
Eq. (6).

D. Determining simulation parameters from
experimental variables

Since γ and the number of simulation bilayers n are related
to the crystal parameters by

nγ = π/2
D

�H
(25)

there is a degree of freedom when choosing the parameters
when simulating a given experiment. One can sacrifice accu-
racy for speed by decreasing the number of layers n, as long as
γ is adjusted such that the relation in Eq. (25) is maintained.
Changing γ changes the resolution of the simulation, and
as γ → π/2 the intensity profiles become coarser. In this
scenario, the QI model does not provide sufficient accuracy
to capture small-scale oscillations. Conversely, the exactness
of the model output increases as γ → 0 and n → ∞, and
results are already an excellent match to Eqs. (23) and (24)
when γ is on the order of π/100. In this case, a crystal
with a Pendellösung thickness D/�H of 100 would be com-
posed of 5000 lattice columns, which corresponds to 10000
(10000 × 10000) sparse matrix multiplications, which is a
simple task for a modern computer. The simulation output
must also be interpreted differently depending on the choice
of parameters. The effective size of a simulation layer de-
pends on the crystal thickness D, as well as the number of
bilayers n

�xn = D (26)

and the lattice spacings in both axes are related through the
Bragg angle

�z

�x
= tan θB (27)

Since the simulated intensity is specified at each node,
the spatial coordinate must be scaled by a factor of �z.
By substituting the definition of �H into Eq. (25), we
obtain an expression for γ and �x in terms of crystal
characteristics

γ

�x
= d|FH |

Vcell
, (28)

where d is the distance between Bragg planes and Vcell is the
volume of a unit cell in the crystal. From this expression,
we can observe that in the small γ limit, variations in the
value of γ are analogous to variations in the Bragg plane
distance inside the crystal, such as those resulting from strains
or deformations. These effects are a computational challenge
in the standard theory of dynamic diffraction, while this model
offers an approach to solve these problems without the need
for complex calculations. Depending on one’s choices for the
model parameters, the simulated profiles can often be pro-
duced very quickly, with high accuracy, and without the need
for complex analytical calculations. It must be noted that these
equivalences are independent of any assumption about the
material, other than that it induces dynamical diffraction. The
simulation nodes must be thought of as theoretical diffrac-
tion sites inside the crystal, whose separation depends on the
choice of γ and ranges between the size of one crystal unit
cell to one Pendellösung length. The angle between the nodes
is set by the Bragg angle. The dependence on the structure
factor FH accounts for differences in the crystal structure, and
thus the model is not limited to a specific atom arrangement
in the unit cell.
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III. QI MODEL: BRAGG CASE

To extend the model to the Bragg case, we introduce empty
nodes, consisting of the transmission matrix

T =

⎛
⎜⎝

1 0
0 0
0 0
0 1

⎞
⎟⎠ (29)

to create regions of the simulation environment where the
neutron is propagating through empty space. It then becomes
possible to simulate Bragg diffraction by filling only a seg-
ment of the simulation space with crystal nodes, and the rest
with empty space in which we place a detector to keep track of
the intensity being reflected from the crystal. More generally,
any node can be removed by replacing the appropriate block
in one of the column matrices C [Eq. (14)] by the matrix
T to simulate a crystal sample of any shape. The nodes can
also be modified individually to model the presence of strains
or defects. To demonstrate that the parameter definitions are
consistent between the Laue and Bragg geometries, we would
like to obtain an analytical expression for the reflected in-
tensity in the Bragg case as we did for the Laue case. Since
the neutron never reenters the crystal after leaving it, we can
see that this problem is equivalent to counting the number
of Dyck paths [31] with some length n, a fixed number of
peaks k and a maximal height h. A Dyck path is a lattice walk
starting at (0,0), which only allows movements of (+1,+1)
and (+1,−1), and never drops below the x axis. In Fig. 2,
we illustrate in blue that a path through a lattice in the Bragg
geometry is equivalent to a Dyck path.

The total number of Dyck paths of length 2n is given by
the Catalan numbers

Cn = 1

n + 1

(
2n

n

)
. (30)

However, similar to the Laue case, the weight associated
with each path depends on the number of reflections it has
undergone. Because the paths must leave from the same face
through which they entered, the number of reflections is al-
ways odd and we can simply count the number of peaks k of
each path, defined as a local maximum in path height. The
number of Dyck paths of length 2n with exactly k peaks is
given by

N (n, k) = 1

n

(
n

k

)(
n

k − 1

)
, (31)

which correspond to the Narayana numbers. If the crystal
thickness was infinite, this would be enough to derive an
expression for the reflected intensity everywhere. However, in
the finite crystal case, starting at n = h, some of the fewer-
peaked paths will leave the crystal through the top edge.
These paths generally have a higher weight in the small γ

limit due to the factor of sin γ introduced on a reflection,
and therefore cannot be neglected. For a complete description,
we require an expression for the number of Dyck paths of
length 2n, with exactly k peaks and which are bound above
by height h, which we will denote H (n, k, h). Unfortunately,
there is no known closed form for these numbers, but it is
possible to derive a recursion relation, which allows for any

one of them to be computed. We divide a path from (0,0) to
(2n + 2, 0) into two sections, from 0 to 2i and 2i to 2n + 2,
where (2i, 0) is the last point at which the path returns to the x
axis before it ends. There are n possibilities for i, where i = 0
means the path does not return to the x axis between the first
and last point. There are

∑i
j=0 H (i, j, h) such possible paths.

After the path touches the x axis at x = 2i, the next movement
is necessarily upwards, and the final movement from (2n, 1)
to (2n + 2, 0) is necessarily downwards. Furthermore, this
second path will never touch the x axis again, and will never
go above height h: we can therefore describe it as a path of
half-length n − i and bounded by height h − 1. Because the
number of peaks of both halves must add up to k, and there
are n choices for i, the total number of paths H (n + 1, k, h) is
given by

H (n + 1, k, h + 1) =
n∑

i=0

i∑
j=0

H (i, j, h)H (n−i, k − j, h − 1)

(32)

with initial conditions
(1) H (0, k, h) = δk0

(2) H (n, 0, h) = δn0

(3) H (n, k, 0) = δn0δk0.
Using the aforementioned Narayana numbers and the same

definitions as in the Laue case, we can find the reflected
amplitude inside the AB region (Fig. 2) where it is unaffected
by reflections off of the back face of the crystal

ψH (n) =
n∑

k=1

(−1)k−1 sin2k−1 γ cos2(n−k+1) γ

× 1

n

(
n

k

)(
n

k − 1

)
. (33)

Once again, we consider the limiting case γ → 0 with γ n kept
constant. Here, we find the that reflected intensity is of the
form

IH (n) = 1

n2
J2

1 (2γ n). (34)

Note that in this geometry, n being the path length corresponds
to the position variable on the detector. Consequently, we
now define h as number of nodes in the direction of the
Bragg planes. It has been shown experimentally that there
is a secondary reflection peak on the point of geometrical
reflection n = h. However, the intensity for n < h is inde-
pendent of h since the outgoing paths have not yet had the
chance to reach the top of the crystal. In this sense, Eq. (34)
is a good match for experimental data when simply looking
at the primary reflection peak. Furthermore, it is equivalent
to the analytical solution found in Ref. [18] for the same
region.

Although we do not have a general analytical expression
for the intensity in the Bragg case, we are still able to obtain
an intensity profile for any shape through numerical computa-
tion. The similarities and differences of dynamical diffraction
in the Laue case and Bragg case can be contrasted by ex-
amining the intensity inside the crystals. Figure 3 shows the
intensities inside the crystal on the transmitted path or the
reflected path. One can observe the oscillation pattern inside
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FIG. 3. The intensity distributions inside the crystal for the Laue case (left) and Bragg case (right). The top row figures are for the
transmitted path (postselected on +kz momentum) and the bottom row figures are for the reflected path (post selected on −kz momentum). For
each case we plot the output intensity profiles corresponding to the intensity at the end nodes. Lastly, the integrated intensities for the Laue
case are plotted under the crystal figures showing the Pendellösung oscillations with period �H .

the crystal that leads to the Pendellösung oscillations as well
as the output intensity profiles corresponding to the intensity
at the last node.

The diffracted neutron intensity in the Bragg case was
measured by Shull and colleagues [11] using a scanning
slit to determine the beam profile exiting a crystal. In DD
theory the Bragg case has 100% reflectivity for neutrons
falling within a narrow angular range called the Darwin

width

θD = λ2|FH |
πVcell sin2(2θB)

, (35)

which is typically on the order of an arcsecond. Neutrons
outside this range propagate through the crystal and can reflect
off the back face ultimately exiting from the front. Those
neutrons exiting the crystal in this way are spatially displaced
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FIG. 4. In red, full line: A Bragg-reflected intensity distribution
measured at the exit face of a crystal by use of a scanning slit,
from Ref. [11]. In black, dotted line: A simulated intensity profile in
the Bragg case, where we have chosen the parameters according to
Eq. (25) and Shull’s experimental parameters. The simulation output
was convolved with the shape of the A peak to account for experi-
mental effects such as slit width and beam momentum distribution.
The points A, B, C, and D correspond to the geometric reflection
points as shown in the inset diagram.

from the primary diffraction peak by an amount 2t/ tan(θB).
In Ref. [11], neutrons (λ = 4.43) were directed at a silicon
crystal with θB = 44.9◦. The results from Ref. [11] are shown
in Fig. 4. The primary peak (labeled A) was measured to
have approximately ten times the intensity of the secondary
peak (labeled B). Two additional small peaks were observed
in locations corresponding to neutrons exiting the corners of
the crystal.

In the same figure, we have overlaid the output of our
simulation model (dashed black curve). The model parameters
such as γ and the number of nodes were calculated from the
experimental parameters found in Ref. [11] using the relation-
ship presented in Eq. (25) and by setting γ to π

50 . The model is
able to accurately simulate the features observed in the experi-
mental intensity, such as the presence of a primary peak at the
first geometrical reflection point, as well smaller secondary
peaks, which appear where the neutron has reflected off of the
back face and corners of the crystal. To obtain a proper inten-
sity profile from the simulations, it is necessary to account for
the shape of the incoming beam. This can be accomplished
by convolving the simulation output with the experimentally
obtained shape of the first (A) peak. The QI model enables
one to easily vary the geometry of the crystal that is being
analyzed. It is possible to vary the angle of the CD side of the
crystal in the simulations. By performing a least-squares fit,
it is found that good agreement is obtained when the CD side
of the crystal is at an angle of 91.35◦ ± 0.07◦ relative to the
AC side. The QI model can also be applied to the simulate the
data from the corner of a Bragg crystal as shown in Fig. 17 of
Ref. [11]. The same crystal geometry, parameters (including
the 91.35◦ corner angle) and beam characteristics as that of
our Fig. 4 were used. Here it was required to estimate for the
physical location of the beam entrance point with respect to
the corner of the crystal (the “m/c” parameter) as it was not
specified in Ref. [11]. We find good agreement when the beam
is set to enter the crystal 6.2 mm away from the corner point.
The results displayed in Fig. 5 once again demonstrate that

FIG. 5. In red, full line: The neutron intensity profile reflected
from the corner of a Bragg crystal, from Ref. [11]. The profile calcu-
lated by Shull is displayed as a full red line, and the corresponding
experimental data points are showed. m/c is a parameter describing
the position of the scanning slit [11]. In black, dotted line: The QI
model simulation where the parameters were varied to obtain a good
match with the experimental data. The output intensity profile was
convoluted with the same profile as in Fig. 4.

the model is a good match for experimental data in the mixed
Laue-Bragg case.

IV. CONCLUSION

We have shown that the quantum information model for
dynamical diffraction developed by Nsofini et al. exactly re-
duces to the spherical wave solutions of the Takagi-Taupin
equations in the Laue case, in the limit where the density
of nodes in the simulation environment approaches infinity.
However, even with a relatively small number of nodes the
model is in excellent agreement with the existing results of
DD theory. Furthermore, we have shown that the model can
be extended successfully to incorporate the Bragg geome-
try, either in the pure Bragg or the mixed Laue-Bragg case,
where it is a good match for existing experimental data. This
demonstrates that this model is a useful tool to approach
complex diffraction problems where the theory might not
allow for a full description, such as when designing novel
optical elements with complex shapes or accounting for strain
and incoming beam phase space considerations in precision
experiment.
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APPENDIX: TAKAGI-TAUPIN EQUATIONS

For this derivation, we follow Ref. [3]. Inside the crystal,
the neutron wavefield can be presented in the form of a sum
of plane waves (wave packet)

ψ (r) =
∑

h

ψheKh·r, (A1)
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where the sum runs over the reciprocal lattice vectors h, Kh

are the wave vectors Kh = K0 + h and K0 is the central wave
vector of the incident beam. In the principal case of interest
where the wave field is composed of two strong waves in the
incident and diffracted direction, Eq. (A1) becomes

ψ (r) = ψ0eK0·r + ψH eKH ·r, (A2)

where H is the reciprocal lattice vector normal to the Bragg
planes. In contrast to standard dynamic diffraction theory, we
now let ψ0 and ψH be slowly varying functions of position
inside the crystal. ψ (r) must obey the Schrödinger equation

(∇2 + k0)2ψ (r) = ν(r)ψ (r), (A3)

where ν(r) is the normalized potential ν(r) = 2mV (r)/h̄2.
The potential may also be written in terms of the mean po-
tential ν0 as well as its Fourier components corresponding to
±H

ν(r) = ν0 + ν ′
H eiH ·r + ν ′

−H e−iH ·r . (A4)

We define the coordinate vectors S0, SH as shown in Fig. 1

S0 = 1

2

( x

cos θB
+ z

sin θB

)
(A5)

SH = 1

2

( x

cos θB
− z

sin θB

)
(A6)

as the spatial coordinates parallel to the direction of K0, KH ,
and note that the magnitude of KH can be expressed in terms
of the (small) misset angle of the incident wave with respect
to the Bragg angle

K2
H ≈ K2

0 [1 − 2�θ sin(2θB)]. (A7)

Furthermore, we define β = K0�θ sin(2θB) as a function
of the misset angle, as well as the reduced Fourier components

of the potential: νH,−H = ν ′
H,−H

2k0
. We now make an ansatz on the

amplitudes ψ0,H

ψ0(S0, SH ) = e−iν0(S0+SH )+iβSH U0(S0, SH ) (A8)

ψH (S0, SH ) = e−iν0(S0+SH )+iβSH UH (S0, SH ), (A9)

where the functions U0,H are simply the transmitted and
diffracted amplitudes, up to a position-dependant phase. Sub-
stituting Eqs. (A8) and (A9) into (A3) yields a pair of
differential equations for the amplitudes

∂U0

∂S0
= −iν−HUH (A10)

∂UH

∂SH
= −iνHU0. (A11)

This pair of differential equations describes the amplitude
current between the two principal waves inside the crystal
as they are continuously scattered back into each other. It is

already somewhat intuitive that these equations are in effect
the continuous case of the quantum information model. One
could imagine that to solve these equations numerically, we
would determine some initial conditions on U0,H and keep
track of their value while proceeding in small increments of
position.

These equations were solved by Werner et al. in 1986 [32].
The general solution for UH is

UH (S0, SH ) =
∞∑

n=−∞
an(

S0

SH
)n/2Jn(2ν

√
S0SH ), (A12)

where Jn is the nth Bessel function of the first kind, ν2 =
νHν−H , and the coefficients an are determined by the initial
conditions. In the case where the incident beam is confined to
a very narrow slit close to the entrance edge of the crystal, the
incident beam can be described by the wave function

ψi(r) = A0δ(SH )eiK0·r, (A13)

where δ is the Dirac delta function. Using this function as
an initial condition, the solution to Eqs. (A10) and (A11)
becomes

UH (S0, SH ) = −iνH J0(2ν
√

S0SH ) (A14)

U0(S0, SH ) = ν

√
S0

SH
J1(2ν

√
S0SH ). (A15)

The intensity profile of the neutron after being diffracted
through a crystal was measured by Shull [33] by scanning the
edge with a narrow slit and counting them as a function of
position. To determine what one could measure with such a
setup in the case of our incident beam, we must determine the
intensity at x = D, the crystal thickness. Rather than express
the intensity as a function of z, it is more convenient to define
the parameter

� = z

D tan θB
(A16)

and the intensities at x = D are found to be

IH (�) = ν2|A0|2J0

(
π

D

�H

√
1 − �2

)2

(A17)

I0(�) = ν2|A0|2 1 − �

1 + �
J1

(
π

D

�H

√
1 − �2

)2

, (A18)

where the constant �H is the period of the Pendellösung
interference effects inside the crystal, and can be expressed
in terms of experimental variables as follows:

�H = πVcell cos θB

λ|FH | . (A19)
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