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Leggett-Garg tests for macrorealism in the quantum harmonic
oscillator and more general bound systems
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The Leggett-Garg (LG) inequalities were introduced to test for the possible presence of macroscopic quantum
coherence. Since such effects may be found in various types of macroscopic oscillators, we consider the
application of the LG approach to the one-dimensional quantum harmonic oscillator and also to more general
bound systems, using a single dichotomic variable Q given by the sign of the oscillator position. We present
a simple method to calculate the temporal correlation functions appearing in the LG inequalities for any
bound system for which the eigenspectrum is (exactly or numerically) known. We apply this result to the
quantum harmonic oscillator for a variety of experimentally accessible states, namely, energy eigenstates, and
superpositions thereof. For the subspace of states spanned by only the ground state and first excited state, we
readily find substantial regions of parameter space in which the LG inequalities at two, three, and four times can
each be independently violated or satisfied. We also find that the violations persist, although are reduced, when
the sign function defining Q is smeared to reflect experimental imprecision. For higher-energy eigenstates, we
find that LG violations diminish, showing the expected classicalization. With a Q defined using a more general
type of position coarse graining, we find two-time LG violations even in the ground state. We also show that
two-time LG violations in a Gaussian state are readily found if the dichotomic variable at one of the times is
taken to be the parity operator. To demonstrate the versatility of the approach, we repeat much of the LG analysis
for the Morse potential, finding qualitatively similar physical results.
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I. INTRODUCTION

Perhaps a great temptation within quantum mechanics is
to ascribe the spookier extrapolations of its mathematics to
phenomena which, although beyond our knowledge, are fun-
damentally classical in nature. This encourages us to try to
understand, and place constraints on, what the universe may
be doing in between the snapshots we take of it in the form
of measurements. This endeavor, although foundational in na-
ture, is becoming ever more relevant: Quantum technologies
rely upon nonclassical behavior and so tests which can verify
the presence of truly quantum behavior are very valuable.

One of the key open questions in this area is whether quan-
tum coherence may persist up to the macroscopic level, which
led to the introduction of the Leggett-Garg (LG) inequali-
ties [1–4]. These inequalities test a precise realist worldview
known as macrorealism (MR), which is defined by the con-
junction of three realist tenets: that a system at all instants of
time is definitely in one of the states available to it, that said
state may be measured without influencing future dynamics
of the system, and that future measurements do not affect past
ones. The violation of these inequalities implies a failure of
MR and thus, loosely speaking, a detection of nonclassical
behavior.

The LG inequalities are typically formulated for a di-
chotomic observable Q, with possible values si = ±1, which
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is measured at a sequence of times t1, t2, . . . , ti. From these
measurements, we can construct a data set consisting of the
single time averages 〈Qi〉 and the correlators Ci j , defined
through

Ci j = 〈QiQj〉 =
∑
i, j

sis j p(si, s j ), (1.1)

where Qi denotes Q(ti ).
In keeping with the tenets of MR, the correlator must be

measured in a noninvasive way, typically using ideal negative
measurements [5], but other methods are also used [6–8].
In Eq. (1.1), p(si, s j ) is the two-time probability describing
the likelihood of obtaining results si and s j and times ti and
t j . We then consider making measurements at times (t1, t2),
(t2, t3), and (t1, t3), which yields three two-time probabilities.
For systems which obey the assumptions of MR, these three
probabilities can always be matched as marginal probabilities
of an underlying joint probability p(s1, s2, s3) and the correla-
tors will obey the three-time LG inequalities (LG3)

L1 = 1 + C12 + C23 + C13 � 0, (1.2)

L2 = 1 − C12 − C23 + C13 � 0, (1.3)

L3 = 1 + C12 − C23 − C13 � 0, (1.4)

L4 = 1 − C12 + C23 − C13 � 0. (1.5)
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The same arguments can be made for measurements at just
two times t1 and t2, which leads to the two-time LG inequali-
ties (LG2) [9–12]

1 + s1〈Q1〉 + s2〈Q2〉 + s1s2C12 � 0. (1.6)

On their own, the LG3 inequalities (1.2)–(1.5) form a set of
necessary conditions for macrorealism; although their viola-
tion indicates a failure of macrorealism, if they are satisfied,
macrorealism does not necessary hold. It is only by augment-
ing them with the set of twelve LG2 inequalities that we reach
the complete set of necessary and sufficient conditions for
macrorealism [9–12]. The implications of this are twofold.
First, to test if a given data set admits a macrorealistic descrip-
tion, the entire set of LG2 and LG3 inequalities must be tested.
Second, a violation of just one LG2 inequality is sufficient to
show a failure of MR, which, involving just two measurement
times, may well be logistically simpler than testing the LG3
inequalities.

Although originally proposed within the context of macro-
scopic quantum coherence, experimental LG tests have been
nearly exclusively conducted on the discrete properties of
microscopic systems, such as photons, silicon impurities, nu-
clear magnetic resonance, neutrino oscillations, and position
superpositions in quantum random walks [5,7,13–15]. For a
thorough review of the LG inequalities, and experimental tests
thereof, see Ref. [4] and for a critique see Ref. [16]. Some LG
tests have come close to macroscopicity [17]. There have also
been some recent macroscopic nonclassicality tests based on
interferometric experiments, with quantum interference ob-
served in C60 and C70 molecules [18,19], and in large organic
molecules of masses up to 6910 amu [20]. These are not
specifically LG tests, but proposals have been made to adapt
them for this purpose [21,22].

Most macroscopic systems that have been investigated with
a view to exhibiting quantum coherence effects have the fea-
ture that they are described by continuous variables. Hence, to
approach LG tests in the macroscopic domain, it is natural to
develop such tests for continuous variables, using, for exam-
ple, a dichotomic variable Q defined by simple coarse graining
of position. In this work, we therefore pursue an investigation
into one of the most ubiquitous continuous-variable systems,
the quantum harmonic oscillator (QHO), and bound systems
more generally.

Our theoretical investigation is in part inspired by the
LG experiment proposed by Bose et al. [23]. They used
the dichotomic variable Q = sgn(x) and focused on a single
coherent state of the QHO. By contrast with other tests for
nonclassicality, this approach does not require the fabrication
of non-Gaussian states [24], nor the coupling to an ancillary
quantum system [25,26]. The work of Bose et al. suggests that
these quantum correlations persist and remain experimentally
feasible to detect at scales of up to 106−109 amu, meaning
LG tests on the QHO are likely to push the limits of our
observations of macroscopic coherence.

To further this program, we derive analytical results for
the temporal correlators for the QHO in a variety of exper-
imentally accessible states, primarily energy eigenstates and
superpositions thereof. We also derive an approximation for
the temporal correlation functions which is applicable to any

quantum system for which the energy eigenspectrum is (ex-
actly or numerically) known. We determine substantial areas
in the various parameter spaces in which combinations of
LG2, LG3, and LG4 inequalities are satisfied or violated,
thereby preparing the ground for experimental tests.

In Sec. II we set up the problem and calculate temporal
correlators working within the energy eigenbasis. We develop
a powerful technique for studying the partial overlap of energy
eigenfunctions, which enables us to calculate the temporal
correlators for any system with known energy eigenspectrum.
We apply this to the QHO, which yields a simple and useful
approximation for the temporal correlator in the first excited
state as a simple cosine (just like the simple spin model used
in LG tests). We also demonstrate a procedure to calculate
the exact temporal correlators for any energy eigenstate of the
QHO.

In Sec. III we explore the LG violations present in the
QHO. We find significant violations in the first excited state
and see that by creating superpositions of the ground state and
the first excited state, we can find substantial regimes where
the LG2s and LG3s are independently satisfied or violated. We
find that significant LG violations persist even with significant
smoothing of projectors.

In Sec. IV we analyze the LG inequalities in the higher
excited states of the QHO and observe the expected clas-
sicalization, with the magnitude of LG violations rapidly
decreasing as energy increases.

In Sec. V we use a more general dichotomic observable,
defined for arbitrary regions of space. Using this more general
variable, we find LG violations even in the ground state.

In Sec. VI, to demonstrate the versatility of the techniques
developed in Sec. II, we calculate temporal correlators for the
Morse potential and perform a brief LG analysis, finding sig-
nificant LG3 and LG4 violations. We summarize and conclude
in Sec. VII.

The fine details of the complicated machinery required to
calculate temporal correlators in the QHO are largely rele-
gated to a series of technical Appendixes.

II. TEMPORAL CORRELATORS IN BOUND SYSTEMS

A. Conventions and strategy

For most of this paper we work with the simplest choice of
the dichotomic variable Q = sgn(x); however, the method we
develop also gives the result for more general observables in-
volving arbitrary regions of space. This is investigated further
in Sec. V. We will work with a general bound one-dimensional
system with Hamiltonian Ĥ and energy eigenstates |n〉 with
corresponding eigenvalues En.

We now outline our strategy. We make use of the two-time
quasiprobability, introduced in Ref. [9], given by

q(s1, s2) = Re Tr[Ps2 (t2)Ps1 (t1)ρ], (2.1)

where s = ±1, and

Ps = 1
2 (1 + sQ̂) = θ (sx̂), (2.2)

where θ (x) is the Heaviside step function. The time depen-
dence is then handled in the Heisenberg picture.

We will use the quasiprobability in two ways. First, it is
proportional to the two-time LG inequalities, so negativity
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signifies an LG2 violation [9]. (The quasiprobability has a
maximum negative value of − 1

8 ). Second, it yields a simple
way to extract the temporal correlators needed for the three-
time LG inequalities, via its useful moment expansion

q(s1, s2) = 1
4 (1 + s1〈Q̂1〉 + s2〈Q̂2〉 + s1s2C12). (2.3)

We will hence first calculate the quasiprobability, and then go
on to extract the temporal correlators, which we can then use
in the LG inequalities (1.2)–(1.5). In contrast to the compu-
tation of correlators in simple spin models, these calculations
are quite nontrivial.

More detailed properties of the quasiprobability may be
found in Ref. [9], but we make a few brief comments here.
As indicated, it is used here purely as a mathematical tool
and has no particular conceptual role beyond the fact that it
is proportional to the two-time LG inequalities. It is clearly
non-negative for commuting pairs of projections, so any
negativity is associated with incompatibility of the pairs of
measurements. It can usefully be expressed in terms of the
Wigner-Weyl representation [27], from which one can see
that it can be negative even when the Wigner function of the
initial state is non-negative, as is the case for Gaussian initial
states. We will see an example of this later in this paper (see
also Refs. [22,27]). The quasiprobability is also very closely
related to the two-time sequential measurement formula

p(s1, s2) = Re Tr[Ps2 (t2)Ps1 (t1)ρPs1 (t1)]. (2.4)

This is always non-negative and has a moment expansion
similar in form to Eq. (2.3), with the only difference that
〈Q̂2〉 is replaced with 〈Q̂(1)

2 〉, the average of Q2 in the presence
of an earlier measurement at t1 which has been summed out
(see Ref. [9]). Note in particular that both the quasiprobability
and sequential two-time measurement formula have the same
correlator, which has the quantum-mechanical form

C12 = 1
2 〈Q̂1Q̂2 + Q̂2Q̂1〉. (2.5)

Physically, this corresponds to the fact that the same cor-
relator is obtained using a pair of measurements in which
the first measurement is projective or weak [9,28], or more
generally any one of a family of ambiguous measurements
intermediate between these two options (as can be seen in
Ref. [27]). The relevant noninvasive measurement protocols
for LG tests of these quantities are described in more detail in
Refs. [9–11,29].

B. Calculating the quasiprobability

Using the definition of the two-time quasiprobability (2.1)
and Eq. (2.2), we have

q(s1, s2) = Re Tr
[
eiHt2/h̄θ (s1x̂)e−iH (t2−t1 )/h̄θ (s2x̂)e−iHt1/h̄ρ

]
.

(2.6)
We will often work with the difference between measurement
times and so introduce the variable τ = t2 − t1.

Initially, we calculate one element of the quasiprobability
q(+,+), where the full quasiprobability q(s1, s2) may of-
ten be reconstructed through symmetry arguments. Working
within the energy eigenbasis, we write Eq. (2.1) as

q(+,+) = Re
∞∑

m=0,n=0

〈ψ |m〉 〈m|P+(t2)P+(t1)|n〉〈n|ψ〉 , (2.7)

which equals

q(+,+) = Re
∞∑

m=0,n=0

〈ψ |m〉 〈n|ψ〉 qmn, (2.8)

where

qmn = 〈m|eiHt2/h̄θ (x̂)e−iHτ/h̄θ (x̂)e−iHt1/h̄|n〉. (2.9)

Using the position representation for the step functions θ (x̂) =∫ ∞
0 |x〉〈x| dx, this may be written explicitly as

qmn = ei(Em/h̄)t2−i(En/h̄)t1

×
∫ ∞

0

∫ ∞

0
dx dy 〈m|x〉 〈x|e−iHτ/h̄|y〉〈y|n〉 , (2.10)

where from here the calculation forks, with two obvious ways
to proceed. One approach is to insert a resolution of unity in
the energy eigenbasis and truncate the infinite sum to yield an
approximation to the correlators, which we will proceed with
first. The second approach is to insert the expression for the
propagator, if known, which will allow us to calculate exact
expressions for the quasiprobability. The single time averages
are given by

〈Q̂〉 = 〈n|sgn(x̂)|n〉. (2.11)

In the special case of symmetric potentials, since sgn(x̂) flips
the parity of |n〉, this represents the overlap between an odd
and an even state. Hence, in this case, the single time aver-
ages in the moment expansion (2.3) are identically zero. This
yields a simple relationship between the correlator and the
quasiprobability,

q(+,+) = 1
4 (1 + C12). (2.12)

We adopt the notation C|n〉
12 to denote the temporal correlator

between times t1 and t2, for a given energy eigenstate |n〉.

C. Quasiprobability for energy eigenstates

We use the approximation approach first, whereupon in-
serting the resolution of unity, we have

qmn = ei(Em/h̄)t2−i(En/h̄)t1
∞∑

k=0

e−i(Ek/h̄)(t2−t1 )

×
∫ ∞

0

∫ ∞

0
dx dy 〈m|x〉〈x|k〉〈k|y〉〈y|n〉 . (2.13)

The integration is now separable into two integrals, the partial
overlap of energy eigenstates,

Jk� =
∫ ∞

0
dx 〈k|x〉 〈x|�〉 . (2.14)

Surprisingly, as detailed in Appendix A 1, these integrals can
be completed for generic potentials over arbitrary boundaries
x1 and x2, with the result

Jk�(x1, x2) = 1

2(ε� − εk )
[ψ ′

k (x2)ψ�(x2) − ψ ′
�(x2)ψk (x2)

− ψ ′
k (x1)ψ�(x1) + ψ ′

�(x1)ψk (x1)], (2.15)
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where ψk (x) = 〈x|k〉. Hence the matrix elements of the
quasiprobability are

qmn = ei(Em/h̄)t2−i(En/h̄)t1
∞∑

k=0

e−i(Ek/h̄)(t2−t1 )JmkJnk . (2.16)

The quasiprobability for a single energy eigenstate is the real
part of the diagonal elements,

qn(+,+) = Re ei(En/h̄)τ
∞∑

k=0

e−i(Ek/h̄)τ J2
nk . (2.17)

By truncating this sum, we are able to calculate the
quasiprobability for any coarse graining of space and for any
soluble bound system, purely in terms of the spectrum of its
Hamiltonian. We will primarily use this result with the QHO
in this work; however, in Sec. VI, we consider its application
to other systems. Further details about implementation of this
formula, including a truncation error estimate �n(m) defined
in Eq. (A12), are found in Appendix A 2.

We also note in passing that Eq. (2.15) unlocks the result
of several indefinite integrals in the form of partial spatial
overlaps of special functions, which we have not been able to
find in the literature. These include generalized Laguerre poly-
nomials (Morse potential [30]), Mathieu functions (quantum
pendulum [31]), Airy functions (triangular potential [32]), and
hypergeometric functions (transformation technique [33]),
with the exactly soluble potential leading to the result brack-
eted.

D. Application to the QHO

The results so far have been general to any bound poten-
tial. We now apply them to the systems defined exactly (or
approximately) by the harmonic-oscillator Hamiltonian

Ĥ = p̂2
phys

2m
+ 1

2
mω2x̂2

phys, (2.18)

with physical position and momentum, xphys and pphys. We
continue to denote energy eigenstates by |n〉 and use natural
units, so we work with dimensionless position and momen-
tum, x and p, defined by

√
h̄/mωx = xphys and p

√
mω/h̄ =

pphys. We will similarly write energy in terms of h̄ω, with
En = (n + 1

2 )h̄ω = εnh̄ω. The energy eigenstates within the
position basis are then given by

〈n|x〉 = 1√
2nn!

π−1/4 exp

(
−1

2
x2

)
Hn(x), (2.19)

where Hn(x) are the Hermite polynomials.
For the ground state, the infinite series needs many terms

to reach good convergence, and so we instead turn to q11,
whereupon taking the real part, we have the quasiproba-
bility q(+,+), for the first excited state. We calculate the
first few Jnm using Eq. (A9). We find J2

1,0 = 1
2π

, J2
1,1 = 1

4 ,
J2

1,2 = 1
4π

, J2
1,3 = 0, and J2

1,4 = 1
48π

. Using just the first three
terms leads to a very good approximation to the correlator,
with �1(2) = 0.011. The sum may be explicitly written as
q11 = 1

4 + 1
4π

e−iωτ + 1
2π

eiωτ . Taking the real part, we find

q(+,+) = 1

4
+ 3

4π
cos ωτ. (2.20)

By comparing Eq. (2.20) to the expression for the quasiproba-
bility of a pure eigenstate (2.12), we can identify the correlator
as

C|1〉
i j ≈ cos ωτ, (2.21)

where we have dropped the coefficient of 3
π

≈ 0.955, by the
requirement that Ci j → 1 as τ → 0.

This approximation is interesting since it says that for
the first excited state, the QHO to a good approximation
behaves just like the canonical simple spin- 1

2 example used
in much LG research. We hence may borrow intuition from
this simpler system and we know to expect LG violations.
This similarity can be understood by explicitly calculating
the temporal correlator using the three-term approximation
to the postmeasurement state. The temporal correlator here is
defined as

C|1〉
12 = Re〈1|Q̂2Q̂1|1〉. (2.22)

From Eq. (2.2) we have Q̂ = 2θ (x̂) − 1, so using the three-
term approximation and taking t1 = 0, we find

Q̂1 |1〉 ≈ 2√
2π

|0〉 + 1√
π

|2〉 . (2.23)

Similarly, taking t2 = τ , we find

〈1| Q̂2 ≈ eiωτ

(
2√
2π

〈0| + e−2iωτ 1√
π

〈2|
)

. (2.24)

Hence, like the spin- 1
2 case, it is essentially just two states.

Contracting these results and taking the real part yields

C|1〉
12 = 3

π
cos(ωτ ) ≈ cos(ωτ ). (2.25)

We note that taking the next order of approximation, we
have �1(4) = 0.005, and clearly a much better approxima-
tion. The expression for the correlator (again normalized to 1
as τ → 0) is then

C|1〉
12 ≈ 36

37 cos ωτ + 1
37 cos 3ωτ. (2.26)

E. Exact correlators for the QHO

For the QHO, we are also able to calculate exact expres-
sions for the correlators, whereupon inserting the expression
for the QHO propagator into Eq. (2.10), we find

qmn = Nmn(τ )ei(Em/h̄)t2−i(En/h̄)t1

×
∫ ∞

0

∫ ∞

0
dr ds Hm(r)Hn(s)e−r2/2e−s2/2

× exp

(
i

1

2 tan(ωτ )
(r2 + s2) − i

1

sin(ωτ )
rs

)
, (2.27)

where Nmn(τ ) is a dimensionless normalization factor, de-
fined by

Nmn(τ ) = 1

π

1√
2nn!

1√
2mm!

1√
2i sin(ωτ )

. (2.28)

This integral can be completed, via a generating integral ap-
proach, which is detailed in Appendix B. Using this result, we
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FIG. 1. (a) Plot of the temporal correlator for the ground state of
the QHO (2.30) alongside the classical analog (2.41) (dashed line).
(b) Plot of the temporal correlator for the first excited state (2.31)
alongside the correlator for the simple spin case, showing the close
similarity mentioned in the text. The classical analog is again shown
(dashed line).

are able to write the exact results for the temporal correlators.
To do so, it is helpful to introduce the function

f (τ ) = −ie−i(ωτ/2)
√

2i sin ωτ. (2.29)

The correlators for the ground state and first excited state may
then be written as

C|0〉
i j = 2

π
Re arctan

(
1

f (τ )

)
, (2.30)

C|1〉
i j = 2

π
Re

[
arctan

(
1

f (τ )

)
+ f (τ )

]
. (2.31)

These two rather nonintuitive expressions are plotted in Fig. 1,
where they are easily seen to have the broadly expected physi-
cal behaviors. The expressions for the first nine correlators are
included in Appendix B 4.

F. Matrix elements for a two-state oscillator

It will turn out that very much can be studied in the QHO,
with initial superposition states of just the ground state and
first excited state, that is, working with states of the form

|ψ〉 = a |0〉 + b |1〉 . (2.32)

To determine the off-diagonal elements of qmn defined in
Eq. (2.9), it is simplest to do so term by term in the moment
expansion Eq. (2.3).

The quantum-mechanical temporal correlator is given by
Eq. (2.5), with matrix elements

〈m|Ĉi j |n〉 = 1
2 〈m|Q̂1Q̂2 + Q̂2Q̂1|n〉. (2.33)

We now note that Q̂1Q̂2 + Q̂2Q̂1 is invariant under reflections.
This means that (Q̂1Q̂2 + Q̂2Q̂1) |n〉 must have the same parity
as |n〉. Hence, in cases where m is odd and n even, or vice
versa, the correlator represents the overlap of an even state
with an odd state, and is therefore zero in these cases. Hence,
for the general state Eq. (2.32), the correlator is simply given
as the mixture

Ci j = |a|2C|0〉
i j + |b|2C|1〉

i j . (2.34)

We now determine the matrix elements of the quasiprobabil-
ity. Owing to the argument preceding Eq. (2.12), the diagonal
elements take the simple form

qnn(s1, s2) = 1
4

(
1 + s1s2C

|n〉
i j

)
. (2.35)

Similarly, with the vanishing of the correlators on the off-
diagonals, we see that

q01(s1, s2) = 1
4 〈0|s1Q̂1 + s2Q̂2|1〉. (2.36)

As these averages involve only a single time each, the time
dependence is trivial and we just require the value of

〈Q̂〉 = 〈0|sgn(x̂)|1〉, (2.37)

which is readily calculated using Eq. (A9) as 〈Q̂〉 =
√

2
π

.
We hence find the two-time quasiprobability for the state
Eq. (2.32) to be

q(s1, s2) = 1

4

[
1 + s1

(
2

√
2

π
Re a∗beiωt1

)

+ s2

(
2

√
2

π
Re a∗beiωt2

)

+s1s2
(|a|2C|0〉

i j + |b|2C|1〉
i j

)]
. (2.38)

G. Classical analog

It is useful in many of these calculations to compare the
correlators obtained with their classical analog. This is read-
ily found from the classical analog of the quasiprobability,
namely, 〈θ (x)θ (x(τ ))〉, with phase-space initial state f (x2 +
p2) which is normalized to 2π

∫ ∞
0 dr r f (r) = 1. This choice

covers fixed energy states and mixtures thereof. We then have

q(0, τ ) =
∫ ∞

−∞

∫ ∞

−∞
dx d p f (x2 + p2)θ (x)

× θ (x cos ωτ + p sin ωτ ). (2.39)

The step functions are most easily handled in polar coordi-
nates as

q(0, τ ) =
∫ |π−ωτ |

0
dθ

∫ ∞

0
dr r f (r), (2.40)

where inserting the normalization condition on f (r) yields

q(0, τ ) = |π − ωτ |
2π

, (2.41)

which has the corresponding classical correlator of C12 =
−1 + 2

π
|π − ωτ |.

We now plot two of the QHO correlators, alongside the
classical analog, in Fig. 1. We also plot the correlator for
the first excited state, alongside the approximation Eq. (2.21),
which also serves to compare the behavior of the first excited
state of the QHO with the canonical simple spin model typi-
cally used in LG research.

III. LEGGETT-GARG VIOLATIONS IN THE
TWO-STATE QHO

A. Four regimes

In this section we study the LG inequalities in the scenario
where we have access only to the ground state and the first
excited state, the two-state oscillator. This allows us to take

022221-5



C. MAWBY AND J. J. HALLIWELL PHYSICAL REVIEW A 105, 022221 (2022)

TABLE I. The four regimes testable with the LG2 and LG3
inequalities. A check mark denotes that the complete set of inequal-
ities is satisfied, whereas a cross indicates that one or more of the
inequalities in that set are violated.

Regime LG3s LG2s

I

II

III

IV

full advantage of the simplicity of the expression for the cor-
relator in this two-state superposition Eq. (2.34). We will find
that even in this state space, we have access to four regimes of
interest, which are laid out in Table I.

These four regimes take their importance from the fact
that, for the data set consisting of the three 〈Qi〉 and three
correlators, the LG inequalities form necessary and suffi-
cient conditions for MR only when all the LG2 and LG3
inequalities are satisfied. This has a couple of interesting con-
sequences in cases where the LG3 inequalities are satisfied.
From the sufficiency aspect, although typically just LG3s are
experimentally tested, their being satisfied does not in fact
indicate the system behaves macrorealistically, since the LG2s
must also be verified as satisfied. This means that using solely
the LG3s to test for MR leaves space open for false positives.
From the necessity aspect, since all conditions must be sat-
isfied, it means the violation of one or more of the LG2s is
enough to indicate the failure of MR, which, since it involves
just two times, may be easier to implement experimentally.
These four regimes have previously been explored both ex-
perimentally and theoretically in simple spin models [34].

The QHO limited to the superpositions of the |0〉 and |1〉
states makes a complete playground for the experimentalist,
exhibiting all variants of MR tested by the LG inequalities.
We analyze and provide examples of each of the regimes in
Table I. In what follows, we survey the parameter space of
these two-state superpositions to determine where each of the
four regimes lies.

B. LG inequalities for pure eigenstates

We first consider initial states which are energy eigenstates.
The LG2s are trivially satisfied for these states since 〈Qi〉 = 0,
so we can only access regimes I and II in Table I. This is not
the case for superpositions.

Consider now the LG3s L|n〉
i , where i indexes one of the

four LG3 kernels (1.2)–(1.5), with the initial state |n〉. For
example,

L|0〉
1 = 1 + C|0〉

12 + C|0〉
13 + C|0〉

23 . (3.1)

These four inequalities are plotted in Fig. 2 (although two
of them coincide). For the ground state, the LG3 inequalities
are satisfied always. Since the LG2 inequalities are trivially
satisfied as well, this means that for the ground state lies
in regime I of Table I. For the first excited state, we see
the LG3s are violated always (except at points of measure
zero). The magnitude of the violation is significant, reaching

FIG. 2. (a) Plot of the three-time LG inequalities for the ground
state of the QHO, where they are satisfied at all times. (b) Plot of the
same inequalities for the first excited state, where they are violated
everywhere, except for points of measure zero. These violations
come close to the maximal violation, the Lüders bound of − 1

2 .

approximately 73% of the Lüders bound of − 1
2 . This means

that the first excited state corresponds to regime II.

C. LG inequalities for superposition states

Since the matrix elements of the correlator are diagonal
for superpositions of |0〉 and |1〉, the LG3s will simply be
a convex sum of L|0〉

i and L|1〉
i . We can hence continuously

transition between states with no LG3 violation and those
with LG3 violation everywhere. We begin by parametrizing
the two-state superpositions as

|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉 , (3.2)

where 0 � θ � π and 0 � φ � 2π .
Since the LG3 inequalities are constructed purely from

correlators, using Eq. (2.34), we find

Li(θ ) = cos2 θ

2
L|0〉

i + sin2 θ

2
L|1〉

i , (3.3)

and so a two-dimensional space of θ and τ defines whether
the LG3 inequalities for the superposition are satisfied. This
space is plotted in Fig. 3, where for a given θ there are three
possible cases: The LG3 are violated for all τ , the LG3 are
satisfied for all τ , or a nontrivial mixture of the two, where
they are satisfied for some ranges of τ and violated for others.

We now analyze the behavior of the two-time LG inequal-
ities. Due to interference terms, the averages 〈Qi〉 are nonzero

FIG. 3. Regions where at least one of the LG3 inequalities is
violated are shown as a function of time between measurements, and
superposition coefficients. The shading corresponds to the magnitude
of the LG3 violation.
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FIG. 4. (a) Plot of the behavior of the LG2 and LG3 inequalities
for all possible superpositions of |0〉 and |1〉. Within the orange
(nonmeshed) region, at least one of the four LG3 inequalities is
violated, and within the blue (meshed) region, at least one of the
twelve LG2 inequalities is violated. (b) Slice of this parameter space
at φ = π .

for superposition states, which can produce LG2 violations.
Using the parametrization Eq. (3.2) in the expression for the
quasiprobability Eq. (2.38), we find

q(s1, s2) = 1

4

[
1 + s1

(√
2

π
sin θ cos(φ + ωt1)

)

+ s2

(√
2

π
sin θ cos(φ + ωt2)

)

+s1s2

(
cos2 θ

2
C|0〉

i j + sin2 θ

2
C|1〉

i j

)]
. (3.4)

Without loss of generality, we set t1 = 0, and in Fig. 4,
we present the full parameter space for the two-state su-
perpositions, showing where the LG3 and LG2 inequalities
are violated. Hence, with superposition states, we can reach
regimes III and IV from Table I.

FIG. 5. Plot of the complete set of (a)–(c) two- and (d) three-time
LG inequalities for the state θ = 1.4 and φ = π . For this state, the
LG3 (d) inequalities are always satisfied; however, there is still an
LG violation present, at the level of two times, seen by the violation
of the LG2 between τ and 2τ in (b).

FIG. 6. (a) Plot of the LG4 inequalities for the ground state,
where they are satisfied for all times. (b) Plot of the inequalities
for the first excited state, showing some regions of violation. The
maximal violation is approximately 2.615, which represents around
92% of the maximal violation of 2

√
2.

In Fig. 5 the complete set of LG2 and LG3 inequalities is
plotted for the state θ = 0.7 and φ = π . This state has been
chosen to represent the important regime III, where the only
violation occurs in the LG2 inequalities between t2 and t3,
despite the LG3s being satisfied.

D. LG4s and higher

We now consider the behavior of the LG inequalities when
more measurements are made. We consider the case of the
LG4 inequalities and higher-order n-time LG inequalities
[12]. Constructed purely from sums of correlators, it is appar-
ent that the LGn for two-state superpositions will again just
be mixtures of the |0〉 and |1〉 cases, and for n > 2 we have

Li(n) = cos2 θ

2
L|0〉

i (n) + sin2 θ

2
L|1〉

i (n). (3.5)

The LG4 inequalities take the form

−2 � C12 + C23 + C34 − C14 � 2, (3.6)

together with the six more inequalities obtained by moving
the minus sign to the other three locations. The necessary and
sufficient conditions for MR at four times consist of these
eight LG4 inequalities, together with the set of sixteen LG2s
for the four time pairs [9–12]. We plot the LG4 inequalities in
Fig. 6. We again have the property that the LG4 inequalities
are always satisfied for the ground state and are violated
for the first excited state. However, in contrast to the LG3
inequalities, the LG4 inequalities are not violated everywhere
and have large regions of parameter space where they are
satisfied. They allow access to interesting combinations of
MR violations while maintaining the experimental simplicity
of working with a single energy eigenstate.

For the LGn case, we found no violations for the ground
state. Since the excited-state correlator Eq. (2.21) is very
similar to the simple spin case, the asymptotic behavior for
large n is the same as that of the example analyzed in our
earlier paper [12].

E. Smoothed projectors

A natural question that arises is whether the observed
LG violations are an artifact of using sharp projectors, that
may fade when physically realizable measurements are used.
To provide an indication that this is not the case, in Ap-
pendix C 1 we repeat the calculation of C|1〉

12 , but with a
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FIG. 7. (a) Plot of the maximal violation for a given energy
eigenstate as a fraction of the Lüders bound. The odd eigenstates are
represented by the dashed line (circles) and always have significantly
more violation than the even states represented by the dotted line
(squares). (b) Plot of the average magnitude of difference between
the quantum correlators and the classical correlator, showing ex-
pected classicalization for large n.

spatially smoothed projector. We find violations persist while
the projector smoothing is less than the characteristic length
scale of the oscillator.

IV. HIGHER STATES

Following Sec. III, it is natural to ask whether the LG
inequalities behave significantly differently when including
more of the energy eigenstate spectrum. By two methods, we
establish that for large n, the predictions of the QHO tend
towards classical statistics.

Firstly, by plotting the higher eigenstate correlators, we
can visually see that they tend toward the classical correla-
tor Eq. (2.41). To make this exact, we calculate the average
distance from the classical correlator, as a function of n. For
this we define

�(n) = 1

2π

∫ 2π/ω

0
dt

∣∣C12 − C|n〉
12

∣∣, (4.1)

which we plot up to n = 50 in Fig. 7, where we see that the
quantum temporal correlators very rapidly match the classical
correlator.

Secondly, with details in Appendix C 2, we perform an
asymptotic analysis on the infinite sum representation of the
quasiprobability and show that for large n, this series tends
towards the Fourier series of a triangle wave, matching the
classical result.

V. DIFFERENT CHOICES OF DICHOTOMIC VARIABLES

We have so far worked with the simplest choice of di-
chotomic variable, Q = sgn(x). We now consider what new
effects may be discovered using different choices. We first
consider a Q defined using coarse grainings over more general
spatial regions. Second, we consider a more novel choice of
Q, namely, the parity operator, which does not necessarily
have a macrorealistic description but reveals some interesting
features.

A. Quasiprobability for arbitrary regions in the ground state

We now demonstrate how to calculate the quasiprobability
where each measurement is taken over an arbitrary coarse
graining of space. In this work we consider just a pair of

FIG. 8. (a) Plot of the result of the first integration in Eq. (5.3)
over [0, ∞], which serves as a rough map to choosing a second mea-
surement which will lead to a negative quasiprobability. (b) Plot of
the quasiprobability for ωt = 2.77, with the first measurement over
[0, ∞] and the second over the interval [c, d]. The quasiprobability
reaches around 20% of the maximal violation of −0.125.

dichotomic variables; however, the techniques presented are
readily applied to a full many-valued variable LG analysis as
introduced in Ref. [35].

We define projectors over arbitrary regions of space as

E (α) =
∫

�(α)
dx |x〉〈x|, (5.1)

where �(α), with α = ±, is a set of intervals which partition
the real line, which may be chosen to be different for each
measurement time. The dichotomic variable Q is then defined
by Q = 2E (+) − 1 and discerns whether a particle is within
a given region of space (+) or outside of it (−). The two-time
quasiprobability is then given by

q(+,+) = Re〈E2(+)E1(+)〉, (5.2)

and the LG2 inequalities are then simply q(+,+) � 0.
Remarkably, by using these more general dichotomic vari-

ables we can find LG2 violations in the ground state of the
QHO. To demonstrate this, we write the quasiprobability
using the QHO propagator Eq. (2.27), with the projectors
Eq. (5.1) for the special case of the ground state,

q(+,+) = ReN00(τ )
∫ b

a

∫ d

c
dr ds e−r2/2e−s2/2

× exp

(
i

1

2 tan(ωτ )
(r2 + s2) − i

1

sin(ωτ )
rs

)
.

(5.3)

Since the real part of the integrand oscillates around zero,
negative values of q(+,+) can clearly by achieved by suitable
choice of the spatial intervals [a, b] and [c, d].

In Fig. 8(a) we plot the result of the integration, with the
first interval �(+) = [0,∞), and then plot the remaining
integrand of the second integral, in the regions where it is
negative. This indicates the region in which to make a second
measurement, which will lead to negativity of the quasiprob-
ability, and hence LG2 violations.

To calculate the quasiprobability with arbitrary coarse
grainings, it is most efficient to use the techniques in Sec. II C
since this approach already encapsulates these more gen-
eral projectors. The details of this calculation are found in
Appendix C 3.
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In Fig. 8(b) we plot the quasiprobability for ωτ = 2.77,
over a range of possible second measurement windows. From
this we observe that there is a wide range of choices for the
second measurement which lead to an LG2 violation, which
can reach 20% of the maximum possible violation. We also
observe that these measurements do not not need to be over
particularly small regions of space and that simply shifting the
axis of the second measurement from [0,∞) to [c,∞), com-
pared to the usual choice of dichotomic variable, is sufficient
for a good LG2 violation in the ground state.

The ground-state wave function has a positive Wigner
function and from a macrorealistic point of view is sometimes
thought of as a “classical” state describing a particle localized
at a phase-space point, yet we see here that an LG2 violation
is possible. A similar phenomenon was noted in Ref. [22],
which used a coherent state with 〈x〉 = 0. The origin of this
effect is beyond the scope of the present paper. We have also
looked for LG3 and LG4 violations in the ground state, but an
extensive parameter search yielded no result.

B. LG violations using the parity operator

Our second choice of different dichotomic operator arises
from the observation that the variables Q1, Q2, etc., used
in LG inequalities do not necessarily have to be the time
evolution of a given dichotomic variable Q, but could be a
set of any dichotomic variables. The derivation of the LG
inequalities still holds, so an LG test is still possible as long
as the variables can be measured. Such an approach has been
used in some experiments [13]. Note at this point that we are
now departing from the quantum harmonic oscillator, at least
in terms of time evolution, as the physical system of interest
(although the QHO is still the natural arena in which to create
the Gaussian state used below).

Two interesting variables to use in this context are the
parity operator

 =
∫ ∞

−∞
dx|x〉〈−x|, (5.4)

and the parity inversion operator

R = i
∫ ∞

−∞
dx sgn(x)|x〉〈−x|. (5.5)

These two operators, taken together with the usual choice Q =
sgn(x), have the interesting property that they obey the same
algebra as the Pauli matrices; [Q, R] = 2i, etc., and they
also all anticommute with each other. By comparison with
the spin- 1

2 model, this is a clear suggestion that LG violations
are readily possible with such variables. These variables were
previously used in Ref. [36] to demonstrate a Bell inequality
violation for a Gaussian two-particle entangled state of the
Einstein-Podolsky-Rosen type.

We consider the LG2

1 − 〈Q1〉 − 〈Q2〉 + C12 � 0 (5.6)

and we take Q1 = Q = sgn(x̂) and Q2 = . Since these oper-
ators anticommute the correlator is zero and the LG2 is then

1 − 〈Q〉 − 〈〉 � 0. (5.7)

We take a Gaussian state of width σ , 〈x〉 = q, and 〈p〉 = 0 and
readily find that the LG2 inequality is

1 − erf

(
q√
2σ

)
− exp

(
− q2

2σ 2

)
� 0. (5.8)

The left-hand side is readily shown to take its minimum value
of approximately −0.3024 at q/σ = √

2/π ; hence there is a
clear LG2 violation.

Although the parity operator is measurable for some
systems and therefore the above inequality can be tested
experimentally, it has no macrorealistic counterpart [unlike
Q = sgn(x)]. Still, the fact that LG2 violations are obtained
so easily with these variables could give interesting clues to
understand violations in more physical cases

VI. LEGGETT-GARG VIOLATIONS IN THE MORSE
POTENTIAL

In Sec. II C we laid out a general technique to calcu-
late temporal correlators, when the energy eigenspectrum is
known. As a demonstration, we now apply this result to a
different exactly soluble potential, the Morse potential [37],
an asymmetric potential with minimum at rc, which combines
a short-range repulsion with a long-range attraction. The po-
tential is defined by

V (r) = De
(
e−2a(r−re ) − 2e−a(r−re )

)
, (6.1)

where De corresponds to the well depth and a to its width.
The details and results of applying our method to the

Morse potential may be found in Appendix D, where we
find qualitatively similar behavior to the QHO and observe
significant LG3 and LG4 violations in the |1〉 state. There are
several other systems for which the Schrödinger equation may
be solved exactly, including the hydrogenlike atom [38], the
linear potential [32], and the quantum pendulum [31]. The
result presented in Sec. II C hence allows future exploration of
the behavior of the LG inequalities in several bound systems.

VII. CONCLUSION

We have presented an analytic investigation of the LG
approach to macrorealism in bound systems with an in-depth
study of the QHO. For a dichotomic variable given by the sign
of the oscillator position, we developed a method to calculate
the temporal correlators for energy eigenstates of any bound
system with a known energy eigenspectrum.

We found that all the interesting variants of MR condi-
tions tested for by combinations of the LG2, LG3, and LG4
inequalities can be observed in states of the QHO involving
superpositions of only the |0〉 and |1〉 states. Intriguingly, the
temporal correlator of the |1〉 state was shown to be, to a very
good approximation, a cosine, like the temporal correlators in
the canonical simple spin systems used in much LG research.
We also found that the higher-energy eigenstates rapidly begin
to exhibit statistics in line with a classical model.

We found that LG violations persist even with a significant
amount of smoothing of the projectors. This is important,
since it means the LG violations are not just an artifact of
nonphysical sharp projectors, and therefore the LG violations
described here should be directly observable in experiment.
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Although the bulk of the work in this paper has been
conducted using the simplest dichotomic variable Q = sgn(x),
all the results presented are general enough to also allow for
dichotomic variables defined on arbitrary regions of space. We
briefly investigated the effect of using a different variable, and
found it provides a richer and more powerful test of MR, with
two-time LG violations even in the |0〉 state, despite being a
state with a positive Wigner function (see also Ref. [22]). In
addition, we found LG2 violations if one of the dichotomic
variables at one of the times is taken to be the parity operator.
To demonstrate the method, we calculated the temporal corre-
lators for another exactly soluble system, the Morse potential,
where we found significant LG3 and LG4 violations for the
first excited state.

In conclusion, we have derived a number of results on
LG inequalities for coarse-grained position measurements in
bound systems. These results provide indications as to what
sort of states to create in experiments on macroscopic systems
in order to find evidence of macroscopic coherence.

Future work should explore in more depth the phenomenon
of LG violations in these systems for initial states with a
positive Wigner function. We also propose the development of
noninvasive measurement protocols suitable for continuous-
variable systems by adapting the continuous in time velocity
measurement scheme proposed and utilized in Refs. [6,7].
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APPENDIX A: QUASIPROBABILITY FOR GENERIC
BOUND POTENTIALS

1. Partial overlap integrals

To calculate the quasiprobability most generally, we need
the integrals

Jk�(x1, x2) =
∫ x2

x1

dx 〈k|x〉 〈x|�〉 , (A1)

where we adopt the notation that when Jk� appears without
an argument, Jk� = Jk�(0,∞). It is possible to compute these
integrals, by expanding a result found in Ref. [39], which
bears resemblance to Abel’s identity. We first define energy
eigenstates in position space as

ψn(x) = 〈x|n〉 . (A2)

We then construct the Wronskian between the two states k and
�,

W (x) = ψ ′
kψ� − ψ ′

�ψk . (A3)

Differentiating the Wronskian, we find

W ′(x) = ψ ′′
k ψ� − ψ ′′

� ψk . (A4)

Since we are working with energy eigenstates, from the
Schrödinger equation we have

ψ ′′
n = 2(V − εn)ψn, (A5)

where εn are the dimensionless energy eigenvalues. Substitut-
ing this into Eq. (A4), we find

W ′(x) = 2(ε� − εk )ψkψ�, (A6)

where any dependence on the form of the potential has dis-
appeared from this equation, being contained implicitly in the
spectrum of the Hamiltonian. We are now free to integrate
both sides over any given region of space, which yields

1

2(ε� − εk )
W (x)

∣∣x2

x1
=

∫ x2

x1

dx ψkψ�. (A7)

The right-hand side of the equation is exactly the matrix
elements Jk�, and so completing the integration, we find

Jk� = 1

2(ε� − εk )
[ψ ′

k (x2)ψ�(x2) − ψ ′
�(x2)ψk (x2)

− ψ ′
k (x1)ψ�(x1) + ψ ′

�(x1)ψk (x1)]. (A8)

2. Calculational details

We continue the analysis coarse graining onto the left- and
right-hand sides of the axis, in the important special case of
symmetric potentials. In this case, we have

Ji j =
∫ ∞

0
dx ψiψ j = 1

2(ε j − εi )
[ψ ′

j (0)ψi(0) − ψ ′
i (0)ψ j (0)],

(A9)
since wave functions must vanish at infinity. With a symmetric
potential, we have, for n odd, ψn(0) = 0, and for n even
we have ψ ′

n(0) = 0. Equation (A4) is not defined for i = j;
however, for a symmetric potential, we know Jii = 1

2 , and so
the k = n term contributes 1

4 to both results. Hence, if n is odd,
we have

q(n) = 1

4
+ Re ei(En/h̄)τψ ′

n(0)2
∞∑

k=0,k 
=n

e−i(Ek/h̄)τ

× 1

4(εk − εn)2
ψk (0)ψk (0). (A10)

If n is even, we have

q(n) = 1

4
+ Re ei(En/h̄)τψn(0)2

∞∑
k=0,k 
=n

e−i(Ek/h̄)τ

× 1

4(εk − εn)2
ψ ′

k (0)ψ ′
k (0). (A11)

To be computationally feasible, we must truncate this sum
for some m. To estimate the error involved with a given
truncation, we note that the Jk� form the coefficients of the ex-
pansion of θ (x̂) |k〉. This represents the probability of finding
the particle on either side of the axis. In the case of symmetric
potentials, these are (anti-)symmetric states and so have norm
1
2 . Hence this gives us the truncation error

�n(m) = 1

2
−

m∑
k=0

J2
nk . (A12)
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APPENDIX B: EXACT QUASIPROBABILITY IN THE QHO

1. Strategy

To calculate the quasiprobability exactly, we begin by writ-
ing Eq. (2.27) as

qmn = N ei(Em/h̄)t2−i(En/h̄)t1

∫ ∞

0

∫ ∞

0
dr ds Hm(r)Hn(s)

× exp(αr2 + βs2 + iγ rs), (B1)

where we have introduced the variables

α = β = i

2 tan(ωτ )
− 1

2
, (B2)

γ = − 1

sin(ωτ )
. (B3)

We now note that as a product of Hermite polynomials, the
term Hm(r)Hn(s) will itself just be a polynomial involving
powers of r and s. Hence qmn may be broken up into a sum
of terms of the form

Xk� =
∫ ∞

0

∫ ∞

0
dr ds rks� exp(αr2 + βs2 + iγ rs). (B4)

To calculate these terms, we consider the generating integrals

I (α, β, γ ) =
∫ ∞

0

∫ ∞

0
dr ds exp(αr2 + βs2 + iγ rs), (B5)

J (α, β, γ ) =
∫ ∞

0

∫ ∞

0
dr ds r exp(αr2 + βs2 + iγ rs).

(B6)

We may then calculate any of the Xk� integrals through re-
peated use of partial differentiation. In particular, if k and �

are both even, we have

Xk� = ∂

∂αk/2

∂

∂β�/2
I (α, β, γ ). (B7)

Similarly, if k and � are both odd, we have

Xk� = −i
∂

∂γ

∂

∂α(k−1)/2

∂

∂β (�−1)/2
I (α, β, γ ). (B8)

Finally, for the case where, say, k is odd and � is even, we have

Xk� = ∂

∂α(k−1)/2

∂

∂β�/2
J (α, β, γ ), (B9)

and vice versa for � odd and k even. This approach, although
complicated on paper, is simple to implement using computer
algebra software.

2. Generating integrals

We now proceed with calculating I (α, β, γ ) Eq. (B5) by
completing the square in the exponential function. This yields

I (α, β, γ ) =
∫ ∞

0

∫ ∞

0
dr ds

× exp

(
r2(4αβ + γ 2)

4β

)
exp

(
βs + i

γ r

2
√

β

)
.

(B10)

We introduce the shorthand δ = 4αβ+γ 2

4β
. The s integral may

now be completed in terms of the error function as

I (α, β, γ ) =
√

π

2
√−β

∫ ∞

0
dr exp(δr2)

[
1 + ierfi

(
γ r

2
√−β

)]
.

(B11)

For simplicity of presentation, we separate the integral into
two parts

I1(α, β, γ ) =
√

π

2
√−β

∫ ∞

0
dr exp(δr2), (B12)

I2(α, β, γ ) = i
√

π

2
√−β

∫ ∞

0
dr exp(δr2)erfi

(
γ r

2
√−β

)
.

(B13)

The first integral is simply the Gaussian integral on the half
plane, which has the result

I1(α, β, γ ) = π

4
√−β

√
−1

δ
. (B14)

To proceed with I2(α, β, γ ), we rescale the variables to u =
γ r

2
√−β

, leading to

I2(α, β, γ ) = i
√

π

γ

∫ ∞

0
du exp

(
− u2 4αβ + γ 2

γ 2

)
erf (u).

(B15)
This integral takes the form∫ ∞

0
du e−cu2

erfu = 1√
π

√
c

arctan

(
1√
c

)
, (B16)

which is convergent for Re(c) > 0, which may be confirmed
for the case with c = 4αβ+γ 2

γ 2 . Overall, this gives the result

I2(α, β, γ ) = 1√
4αβ + γ 2

arctan

(
iγ√

4αβ + γ 2

)
. (B17)

Hence the complete result is

I (α, β, γ ) = π

4
√−β

√
−1

δ

[
1 + 2

π
arctan

(
iγ√

4αβ + γ 2

)]
.

(B18)
To calculate J (α, β, γ ), we pick up the calculation from

Eq. (B11), with

J (α, β, γ ) =
√

π

2
√−β

∫ ∞

0
dr r exp

(
δr2

)

×
[

1 + ierfi

(
γ r

2
√−β

)]
, (B19)

which for clarity we again separate into two parts

J1(α, β, γ ) =
√

π

2
√−β

∫ ∞

0
dr r exp(δr2), (B20)

J2(α, β, γ ) = i
√

π

2
√−β

∫ ∞

0
dr r exp(δr2)erfi

(
γ r

2
√−β

)
.

(B21)

These integrals are all simpler to compute, owing to the pres-
ence of the factor of r. The first integral is easily calculated
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using ∂
∂r ear2 = 2arear2

and is

J1(α, β, γ ) = −
√

π

4
√−β

1

δ
. (B22)

The second integral is favorable to integration by parts, where
we find the result

J2(α, β, γ ) = − i
√

πγ

2β

√
αβ

4αβ+γ 2

(− 4αβ+γ 2

β

)3/2
. (B23)

In total, this gives the result

J (α, β, γ ) =
√

π

2
√−β

⎛
⎝− 2β

4αβ + γ 2

+i
γ

√−β

√
αβ

4αβ+γ 2

( − 4αβ+γ 2

β

)3/2

⎞
⎠. (B24)

3. Example calculations

With the generating integrals completed, we can find
the expressions for correlators using the approach in
Appendix B 1. The final results are significantly simplified by
the identity

β

4αβ + γ 2
= −1

4
, (B25)

which is simple to prove, by substituting in the definitions for
α, β, and γ as

β

4αβ + γ 2
= 1

2

−1 + i cot ωτ

1 − 2i cot ωτ − cot2 ωτ + csc2 ωτ
, (B26)

where using the identity csc2 x − cot2 x = 1 yields the re-
quired result. It is important that this identity only be applied
after completing all the differentiation steps of the algorithm
in Appendix B 1. We also note the use of the factor of 1√−β

,

1√
2i sin ωτ

= e−i(ωτ/2)
√

−β, (B27)

which allows us to take care of the time dependence of the
propagator prefactor.

To, for example, calculate the correlator for the ground
state, we find

q00 = 1

π
e−i(ωτ/2)

√
−βei(ωt2/2)−i(ωt1/2)I (α, β, γ ). (B28)

Making the appropriate cancellations and substitutions, we
find

q00 =
√

− β

4αβ + γ 2
+ 2

π

√
− β

4αβ + γ 2

× arctan

(
iγ√

4αβ + γ 2

)
. (B29)

Making use of the identity (B25), we find

q00 = 1

4

[
1 + 2

π
arctan

(
γ√

−4αβ − γ 2

)]
, (B30)

whereupon back substitution of the α, β, and γ and taking the
real part, we find

q|0〉(+,+) = 1

4

[
1 + 2

π
Re arctan

(
iei(ωτ/2)

√
2i sin ωτ

)]
. (B31)

Care must be taken with the branch cut of the square-root
function, and the results presented here are consistent with the
choice of taking the branch cut along the negative real axis.

4. Temporal correlators

We tabulate the exact correlators for the first nine energy
eigenstates of the QHO. We again rely on the function f (τ ) =
−ie−i(ωτ/2)

√
2i sin ωτ :

C|0〉
i j = 2

π
Re

[
arctan

(
1

f (τ )

)]
, (B32)

C|1〉
i j = 2

π
Re

[
arctan

(
1

f (τ )

)
+ f (τ )

]
, (B33)

C|2〉
i j = 2

π
Re

[
arctan

(
1

f (τ )

)
+ 1

2
f (τ )

]
, (B34)

C|3〉
i j = 2

π
Re

[
arctan

(
1

f (τ )

)
+ 5 + e−2iωτ

6
f (τ )

]
, (B35)

C|4〉
i j = 2

π
Re

[
arctan

(
1

f (τ )

)
+ 14 + e−2iωτ

24
f (τ )

]
, (B36)

C|5〉
i j = 2

π
Re

[
arctan

(
1

f (τ )

)

+94 + 17e−2iωτ + 9e−4iωτ

120
f (τ )

]
, (B37)

C|6〉
i j = 2

π
Re

[
arctan

(
1

f (τ )

)

+148 + 14e−2iωτ + 3e−4iωτ

240
f (τ )

]
, (B38)

C|7〉
i j = 2

π
Re

[
arctan

(
1

f (τ )

)

+1276 + 218−2iωτ + 111e−4iωτ + 75e−6iωτ

1680
f (τ )

]
,

(B39)

C|8〉
i j = 2

π
Re

[
arctan

(
1

f (τ )

)

+8528 + 904e−2iωτ + 258e−4iωτ + 75e−6iωτ

13 440
f (τ )

]
.

(B40)

APPENDIX C: QHO RESULTS

1. Smoothed projectors

It is simplest to calculate the effect of smoothed projectors,
working with the quasiprobability expressed as a truncated

022221-12



LEGGETT-GARG TESTS FOR MACROREALISM IN THE … PHYSICAL REVIEW A 105, 022221 (2022)

FIG. 9. (a) Plot of one of the LG3s for different values of a,
showing the qualitative effect of projector smoothing. (b) Plot of the
minimum value taken by the LG3 inequalities for a given value of a.

infinite sum. To do this, we switch from using θ (x̂) as our
projector to the continuous 1

2 [1 + erf (
√mω

h̄
x̂
a )], where a is a

dimensionless parameter characterizing the degree of smooth-
ing. For small a, we expect to recover the sharp projector
result, and a = 1 corresponds to a smoothing on the charac-
teristic length scale of the QHO,

√mω
h̄ . This adjusts the matrix

elements to be

Jk� = 1√
π2k+�k!�!

∫ ∞

−∞
dr Hk (r)H�(r)e−r2 1 + erf

(
r
a

)
2

.

(C1)
We compute these integrals numerically and then investi-

gate the LG violations possible with different values of a. In
Fig. 9(a) we plot one of the LG3 inequalities, varying the value
of a. The smoothed projectors result in a similar (although not
identical) shape, but with a reduced amplitude. In Fig. 9(b) we
plot the minimal value taken by the LG3 inequalities for each
value of a, where we can see that once the smoothing reaches
the characteristic length scale of the QHO, LG violations
vanish.

2. Classicalization

To understand the classicalization of the QHO, we look at
the large-n asymptotic behavior of the quasiprobability, using
the original sharp projectors. Using Eq. (A10) for the QHO,
we find

q(n) = 1

4
+ Reψ ′

n(0)2
∞∑

k=0

e−i(k−n)τ 1

4(k − n)2
ψk (0)2, (C2)

where the sum is over even k. We first relabel the sum to
simplify the denominator,

q(n) = 1

4
+ Reψ ′

n(0)2
∞∑

k=−n

e−ikτ 1

4k2
ψk+n(0)2, (C3)

which also shifts it to a sum over only odd k. We now make the
first of two observations relevant in the large-n regime. Since
the Hermite functions evaluated at 0 remain finite and of order
of magnitude 1, the magnitude of the terms of this sum will fit
into the envelope given by 1

k2 and so for large n we can safely
extend the lower limit of the sum to −∞, yielding

q(n) = 1

4
+ Reψ ′

n(0)2
∞∑

k=−∞
e−ikτ 1

4k2
ψk+n(0)2. (C4)

Using the standard recurrence relations of the Hermite func-
tions, we find that at the origin we have

ψn+1(0)

ψn−1(0)
=

√
n

n + 1
. (C5)

This leads to the second observation, that in the large-n
regime, the rate at which ψn+k (0) changes is negligible com-
pared to the rate of change of 1

k2 and hence may be considered
approximately constant in the sum, and so we have

q(n) ≈ 1

4
+ Reψ ′

n(0)2ψn+1(0)2
∞∑

k=−∞
e−ikτ 1

4k2
. (C6)

To proceed, we look at the generating function of the Hermite
polynomials,

e2xt−t2 =
∞∑

n=0

Hn(x)
t n

n!
. (C7)

Evaluating at x = 0 and using the Taylor series for the Gaus-
sian, we find

∞∑
k=0

(−1)k t2k

k!
=

∞∑
n=0

Hn(0)
t n

n!
, (C8)

whereby comparing powers of t , we find for even n, |Hn(0)| =
n!

( n
2 )! . Performing a similar analysis for the derivative term, we

find that for odd n, |H ′
n(0)| = (n+1)!

( n+1
2 )!

. The product term, with

normalization reincluded, is then

ψ ′
n(0)ψn+1(0) = (n!)2

2n−1
√

2n(n − 1)!
(

n
2 !

)2 , (C9)

which through computer algebra software is found to have the
limit

lim
n→∞ ψ ′

n(0)ψn+1(0) = 2

π
. (C10)

Using this in Eq. (C6), we find

q(n) ≈ 1

4
+ Re

∞∑
k=−∞

e−ikτ 1

π2k2
. (C11)

We can now identify the sum as the exponential Fourier series
for a symmetric triangle wave, with amplitude 1

4 , which is
exactly the classical correlator. This represents the classical-
ization of the QHO, as n becomes large.

3. QHO quasiprobability with arbitrary coarse grainings

To calculate the quasiprobability in the QHO with arbitrary
coarse grainings, we apply the method in Appendix A, using
the integrals Jk�(a, b).

We first note that Eq. (2.15) is undefined for k = l and must
be calculated by hand as

Jkk (a, b) =
∫ b

a
dx ψk (x)ψk (x). (C12)

The quasiprobability is then calculated through Eq. (2.17) as

qnn(+,+) = ei(Enτ/h̄)
∞∑

k=0

e−i(Ekτ/h̄)Jnk (a, b)Jnk (c, d ). (C13)
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We note again that these ψk (x) and Ek are not yet the QHO
eigenstates and energies and that this result is generic.

To make things concrete, we will now calculate this for the
ground state of the QHO. We take the first pair of intervals
�(α1) to be �(+) = [0,∞) and �(−) = (−∞, 0]. The sec-
ond pair of intervals �(α2) is taken to be �(+) = [c, d], and
�(−) its complement. The quasiprobability for the ground
state is

q(+,+) = 1

2
J00(c, d ) + Re

∞∑
k=0

e−iωτkJ0k (0,∞)J0k (c, d ).

(C14)
Again, due to it being a symmetric potential, we have
J00(0,∞) = 1

2 as before. Doing the integral manually for the
ground state, we find

J00(c, d ) = 1
2 [erf (d ) − erf (c)]. (C15)

Using this result and the QHO eigenspectrum in Eq. (A8), we
are able to calculate the quasiprobability using Eq. (C14).

APPENDIX D: MORSE POTENTIAL

The Morse potential is an asymmetric potential with a
minimum at rc, which combines a short-range repulsion with
a long-range attraction. The potential is defined by

V (r) = De
(
e−2a(r−re ) − 2e−a(r−re )

)
, (D1)

where De corresponds to the well depth and a to its width.
The Morse potential supports up to �λ − 1

2� bound states

[30], where λ =
√

2mDe

ah̄ and �x� is the floor function. The
eigenstates and energies are

εn = − 1
2

(
λ − n − 1

2

)2
, (D2)

ψn(z) = Nnzλ−n−1/2e−(1/2)zL2λ−n−1
n (z), (D3)

where L(α)
n (z) are the generalized Laguerre polynomials and z

is a scaled spatial coordinate defined as z = 2λe−a(r−rc ). In
the standard nondimensionalization, physical energy eigen-
values relate to dimensionless ones as En = 2h̄ω0

λ
εn, where

ω0 = a
√

2De
m is the frequency of small oscillations in the po-

tential. Normalization is given by

Nn =
(

n!(2λ − 2n − 1)

�(2λ − n)

)
. (D4)

In the Morse potential, states are constrained to r > 0; how-
ever, we can still consider coarse graining onto the left and
right halves of the well. The energy eigenstates similarly
still vanish at r = 0 and r → ∞, so many of the terms in
Eq. (2.15) still vanish. Filling out Eq. (2.17), we find

qnn = J2
nn + ei(εn/λ)ω0τ

�λ−1/2�∑
k=0,k 
=n

e−i(εk/λ)ω0τ

× 1

(εn − εk )2
[ψ ′

n(xc)ψk (xc) − ψ ′
k (xc)ψn(xc)]2. (D5)

Although this sum is finite, by choosing a large enough λ

and just looking at low-energy states we can approximate it
well. Physically, this corresponds to measurements in shal-
lower wells being likely to eject the particle from the well,

FIG. 10. (a) Temporal correlator in the |1〉 state for the Morse
potential over time interval ω0τ = 2π . It is not quite periodic over
this time interval but becomes exactly periodic over a much longer
period of time, as shown in (b).

where we would then have to consider the continuous positive
energy solutions as well. We can again estimate the error for
particular n and λ as

�(n, λ) = Jnn −
�λ−1/2�∑

k=0

J2
nk . (D6)

Owing to the fact the Morse potential is nonsymmetric, we
must calculate the terms Jnn by hand, which for low n is a
simple integration. The truncation error for the first excited
state reaches 0.01 for λ = 15 and, similar to the QHO, remains
higher for the ground state. For accuracy, we hence calcu-
late just the |1〉 state and choose λ = 50, yielding �(n, λ) =
0.001.

We extract temporal correlators from Eq. (D5) using the
moment expansion Eq. (2.3), which we plot in Fig. 10(a).
At first glance, this correlator is qualitatively very similar
to the |1〉 correlator for the QHO and hence similar to the
simple cosine correlator for spin- 1

2 models. However, owing
to the asymmetry of the Morse potential, the correlator never
reaches the value −1, and due to the anharmonicity, the corre-
lator is periodic over a much longer timescale, which is shown
in Fig. 10(b).

In Fig. 11(a) we plot the LG3 inequalities for the first ex-
cited state of the Morse potential, where there are significant
violations, reaching 70% of the Lüders bound. The LG4 in-
equalities are plotted in Fig. 11(b), with significant violations
reaching 92% of the Lüders bound. Violations diminish in
magnitude for the large-time behavior, but remain present for
nearly all intervals of ω0τ .

FIG. 11. (a) Plot of the LG3 inequalities for the |1〉 state of the
Morse potential with λ = 50. (b) Plot of the LG4 inequalities. There
are significant violations for both, reaching 70% and 92% of their
maximal violations, respectively.
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