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Experimental demonstration of the violation of the temporal Peres-Mermin inequality
using contextual temporal correlations and noninvasive measurements
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We present a generalized quantum scattering circuit which can be used to perform a noninvasive quantum
measurement and implement it on NMR qubits. Such a measurement is a key requirement for testing temporal
noncontextual inequalities. We use this circuit to experimentally demonstrate the violation of the Peres-Mermin
inequality on a three-qubit NMR quantum information processor. Further, we experimentally construct a Bell-
type inequality corresponding to the temporal Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequality, and
demonstrate that the maximum quantum correlation is achieved for four two-point correlation functions involved
in this inequality. The experimental violation of all the inequalities matches well with the theoretically predicted
values, within experimental errors.
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I. INTRODUCTION

Intrinsic quantum correlations are used to distinguish be-
tween the quantum and classical realms and are an important
resource for quantum information processing [1]. The Bell in-
equality was proposed in 1964, to provide bounds on classical
correlations, and its violation implies inconsistency of locally
realistic hidden variable models with quantum mechanics
[2]. In a different direction to identify intrinsic quantumness,
Kochen and Specker showed that quantum mechanics is con-
textual in the sense that it does not come under the purview
of noncontextual hidden variable theories [3]. The concept of
quantum contextuality was later extended to nonideal situa-
tions by including probabilistic hidden-variable models [4].
Hidden-variable theorems were derived to be applicable to
real experimental situations with finite errors [5]. It was shown
that the Hardy-type and GHZ-type proofs of the KS theo-
rem involves a minimum of 18 vectors for any dimension,
thereby verifying an old conjecture by Peres [6]. Recently,
a noncontextual hidden variable model consistent with the
kinematic predictions of quantum mechanics was proposed
[7]; the set of quantum correlations that are possible for ev-
ery Bell and Kochen-Specker type contextuality was derived
using graph theory [8], and the role of contextuality in quan-
tum key distribution (QKD) was explored [9]. Proofs of the
Kochen-Specker theorem, developments in the area including
experimental tests of quantum contextuality, and its connec-
tions with nonlocality, have been recently reviewed [10].

Klyachko-Can-Binicioglu-Shumovsky (KCBS) first pro-
posed a state-dependent inequality to test noncontextuality of
quantum correlations on a single qutrit (three-level indivisible
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quantum system) [11]. Since then there have been several state
dependent and state independent proposals to test contextu-
ality [9,12–14]. Experimental tests of quantum contextuality
have been performed using photons [15], trapped ions [16,17],
and nuclear spin qubits [18,19]. The lack of perfect compat-
ibility due to errors in experiments that rely on sequential
measurements to test noncontextual hidden variable models
and methods to experimentally rule out certain hidden variable
models which obey a generalized notion of noncontextuality
are discussed in [20]. The original KS theorem was further
extended to state independent inequalities and three experi-
mentally testable inequalities were given which are valid for
any noncontextual hidden variable theory and can be violated
by any quantum state [21]. A twin KCBS inequality was
also constructed to identify and characterize fully contextual
quantum correlations [22]. An inequality, which used a set of
nine dichotomic observables and involved compatible mea-
surements on them, called the Peres-Mermin (PM) inequality,
is considered the simplest proof of the KS theorem for a
four-dimensional Hilbert space and relies on the construction
of a Peres-Mermin square with elements of the square being
combinations of Pauli measurements [23,24].

Bell-type inequalities are violated by quantum correla-
tions that exist between spatially separated subsystems. An
inequality to identify the intrinsic quantumness of temporal
correlations, known as the Leggett-Garg (LG) inequality, as-
suming macroscopic realism and noninvasive measurements
was constructed [25]. Such temporal quantum correlations
can be revealed via noncommuting sequential measurements
on the same system at different times. Later, generalized
multiple-measurement LG inequalities were constructed and
were interpreted using graph theory [26]. Temporal quantum
correlations have also been posited to be a useful resource
for quantum information processing protocols and recently
a theoretical framework for unifying spatial and temporal
correlations has been developed [27]. Extensions of LG-type
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nonlocal realistic inequalities have been studied in the context
of unsharp measurements [28,29]. A recent scheme demon-
strated that temporal contextuality which is generated from
sequential projective measurements, can be tested by viola-
tion of the KCBS inequality [30]. The structure of temporal
correlations for a single-qubit system was characterized and
experimental implementations on nitrogen-vacancy centers in
diamond were explored [31]. The genuine multipartite nature
of temporal correlations was confirmed by their simultaneous
violation of pairwise temporal Clauser-Horne-Shimony-Holt
(CHSH) inequalities [32]. The Tsirelson bound refers to the
maximum degree up to which a Bell inequality can be violated
[33] and is always less than the algebraic bound [34,35].
Tsirelson-type bounds provide maximal possible violation of
Bell-type inequalities and such bounds have also been stud-
ied in the context of LG-type inequalities [36]. Achieving
Tsirelson-type bounds in real experiments can be linked to the
characterization of quantum devices via self-testing protocols.
In this context, a self-testing protocol has been designed to
certify Pauli measurements via the violation of an LG in-
equality [37]. Surprisingly for LG-type inequalities, it was
found that the maximum degree to which the inequality can be
violated is greater than the Tsirelson bound, and the violation
increases with system size [38]. While the Bell theorem, the
KS theorem and the LG inequality make different assump-
tions about physical reality, they all subscribe to the same
underlying hypothesis, namely, that measurement outcomes
in quantum mechanics are context independent. A framework
was developed to convert a contextual scenario into equivalent
temporal LG-type and spatial Bell-type inequalities [39].

Temporal noncontextuality inequalities typically require
noninvasive measurements to capture temporal quantum
correlations, a task not easy to perform experimentally. State-
independent temporal noncontextuality inequalities were
constructed and used to obtain lower bounds on the quan-
tum dimension available to the measuring device [40]. It was
shown that for measurements of dichotomous variables, the
three-time LG inequalities cannot be violated beyond the Lud-
ers bound, which is numerically the same as the Tsirelson
bound obeyed by Bell-type inequalities [41]. Violations of
LG inequalities have been experimentally demonstrated using
polarized photons [42,43], atomic ensembles [44], a hybrid
optomechanical system [45], NMR systems [46–49], and su-
perconducting qubits [50]. Recently, two- and three-time LG
inequalities were experimentally implemented on an NMR
system, using continuous in time velocity measurement and
ideal negative measurement protocols [51]. Generalizations of
LG tests have been proposed for Bose-Einstein condensates
and atom interferometers [52].

In this work, we experimentally demonstrate the viola-
tion of a temporal contextuality PM inequality on an NMR
quantum information processor, using three spin qubits. We
generalize the quantum scattering circuit for two-point cor-
relation functions given in Ref. [46] to measure n-point
correlation functions, wherein an observable is measured se-
quentially in time. Performing n successive measurements
allowed us to achieve a noninvasive measurement, without
disturbing the subsequent evolution of the system. Unlike
other measurement protocols, our circuit is able to measure
the desired temporal correlations in a single experimental run

and does not require additional CNOT and anti-CNOT gates. The
violation of the temporal noncontextual inequality demon-
strates the contextual nature of a particular quantum state
during its time evolution. State-independent contextuality was
tested via the violation of the temporal PM inequality, which
was experimentally demonstrated by sequentially measuring
the three-point correlation function and determining the ex-
pectation values of joint probabilities. We also experimentally
explored the maximal violation of a Bell-type inequality cor-
responding to the temporal KCBS inequality, and demonstrate
that the maximum possible quantum correlations are achieved
for four two-point correlation functions. The measured ex-
perimental violation of the inequalities match well with the
theoretically predicted bounds, within experimental errors.

This paper is organized as follows: The generalized quan-
tum scattering circuit and its deployment in generating n-point
time correlation functions is described in Sec. II. Section III A
contains details of the NMR system and experimental pa-
rameters used for the implementation of the scattering
circuit, while Sec. III B describes time correlation functions.
Section III C describes the experimental demonstration of the
violation of the temporal PM inequality, while Sec. III D
contains details of the maximal experimental violation of a
Bell-type inequality corresponding to the temporal KCBS
inequality. Section III E contains a classical description of
the experimental setup. Section IV offers a few concluding
remarks about the scope and relevance of our work.

II. GENERALIZED QUANTUM SCATTERING CIRCUIT
TO GENERATE TEMPORAL CORRELATIONS

Noninvasive measurements which do not disturb the sub-
sequent evolution of a system are in general not possible in
quantum mechanics. Several noncontextual inequalities such
as the LG inequality or the temporal Bell-type inequalities
require expectation values of the product of an observable
at different times, to capture temporal quantum correlations.
Ideally, one would imagine that noninvasive measurements
would be required to compute such quantities. Experiments
to carry out such noninvasive measurements are typically
nontrivial to design and implement. We are able to use a
generalized quantum scattering circuit to measure an n-time
correlation function, which is equivalent to measuring the
same observable at several different time points and taking
the expectation value of the product, and with no interference
produced by a measurement on subsequent measurements. It
should be noted that if these individual measurements were to
be carried out one by one, they would not be noninvasive in
nature. While this equivalence is true according to a quantum
mechanical description, it no longer holds if one assumes a
nonclassical hidden variable description, and one would need
to associate a measurement procedure with classical variables
using the same experimental setup. We will take up a classical
description of the experimental setup later on in this paper.
Simulating the noninvasive measurement of the expectation
value of the product of the same observable at different times
via a single overall measurement is achieved via this gen-
eralized scattering circuit. We now describe our generalized
quantum scattering circuit aimed at carrying out noninvasive
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FIG. 1. (a) Generalized quantum scattering circuit to measure
the n-point time correlation function 〈[O1(t1) ⊗ O2(t1) · · · ⊗ ON (t1)]
[O1(t2) ⊗ O2(t2) · · · ⊗ ON (t2)] . . . [O1(tn) ⊗ O2(tn) · · · ⊗ ON (tn)]〉,
where each observable is a tensor product of N operators,

U ∓
1 = e± iHt1

h̄ ,... U ∓
n−1 = e± iHtn−1

h̄ , U ∓
n = e± iHtn

h̄ . The “probe” (ancilla)
qubit is initially in the state |0〉 and the system qubit is in the
state |ψ〉. The correlation function is obtained by measuring the
expectation value 〈σz〉 of the ancilla qubit. (b) Expanded schematic
of the circuit between dotted lines in (a), showing the decomposition
of the correlation function 〈[O1(tn) ⊗ O2(tn) · · · ⊗ ON (tn)]〉, where
Oi(tn) is measured on the ith qubit (i = 1...N) and |ψ〉 refers

to the initial state of all the system qubits and U ∓
n1 = e± iHtn1

h̄ ,

U ∓
n2 = e± iHtn2

h̄ ..., U ∓
nN = e± iHtnN

h̄ .

measurements which we will use to investigate the violation
of temporal contextuality inequalities.

The standard quantum scattering circuit consists of a
probe qubit (ancillary) and the system qubit(s). The gener-
alized quantum scattering circuit which we have designed
to compute n-point correlation functions involves perform-
ing n successive noninvasive measurements on an N-qubit
quantum system, using only one ancilla qubit as the probe
qubit. The circuit measures the n-point correlation function
〈O(t1)O(t2)...O(tn)〉, wherein an observable is measured se-
quentially at time instants t1, t2, ...tn.

Figure 1 depicts a schematic diagram of the generalized
quantum scattering circuit to generate temporal correlations
and demonstrate violation of temporal noncontextuality. The
system is prepared in a known initial state, which interacts
with the ancilla in such a way that a measurement over its
state after the interaction, brings out the information about the
system state. The “probe qubit” (ancillary qubit) is prepared
in a known initial state and the “system qubit” is prepared in
the state for which the observables are to be measured. The
system is initially in the state |ψ〉, and is brought in contact
with an ancilla qubit prepared in the state |0〉. This ancilla
acts as a “probe particle” in the quantum scattering circuit.
The circuit is implemented in three steps.

(1) A Hadamard gate is applied on the ancilla qubit.
(2) A “Controlled–U” operator is then applied (does noth-

ing if the state of the ancilla is |0〉).

(3) A Hadamard gate is once again applied on the ancilla
qubit and a measurement is performed on this qubit to detect
its polarization (corresponding to measuring the expectation
values of Pauli operators σz).

For noninvasive measurements, the input state of the sys-
tem qubit has to be prepared in such a way that it is not
affected by the application of the “Controlled-U” operator.
This is achieved as follows.

The initial state is |0〉 ⊗ |ψ〉. After applying Hadamard
on ancilla qubit, the state is transformed to 1√

2
(|0〉 +

|1〉) ⊗ |ψ〉. Application of the Controlled-U operation
changes the state to 1√

2
(|0〉 ⊗ |ψ〉 + |1〉 ⊗ U |ψ〉) with U =

e−iHt1 OeiHt1 e−iHt2 OeiHt2 · · · . Finally, the state after applica-
tion of the second Hadamard gate on the ancilla qubit turns
out to be

(|0〉 + |1〉) ⊗ |ψ〉 + (|0〉 − |1〉) ⊗ U |ψ〉
2

= |0〉 ⊗ (I + U )|ψ〉 + |1〉 ⊗ (I − U )|ψ〉
2

.

Thus, if a measurement of the ancilla qubit in the computa-
tional basis yields the result |0〉, the state of the system qubit is
(I + U )|ψ〉; however, if the measurement yields the result |1〉,
the state of the system qubit is (I − U )|ψ〉. We note here that
in this case, the operator U is a unitary because the observable
O is a unitary (having only eigenvalues +1 or −1); however,
this is in general not true for an arbitrary observable.

Consider the input state:

ρin = ρprobe ⊗ ρsys = |0〉〈0| ⊗ |ψ〉〈ψ |, (1)

where the “probe qubit” is prepared in the |0〉 state and the
“system qubit” is prepared in the state |ψ〉. After applying the
unitary transformation shown in Fig. 1, the output is given by

ρout = |ψout〉〈ψout|, with

|ψout〉 = |0〉 ⊗ (I + U )|ψ〉 + |1〉 ⊗ (I − U )|ψ〉, and

U = e
iHt1

h̄ Oe− iHt1
h̄ e

iHt2
h̄ Oe− iHt2

h̄ · · · e
iHtn

h̄ Oe− iHtn
h̄ . (2)

The expectation of any operator A is given by
∑

i piλi,
where pi is the probability to get the eigenvalue λi. Hence

〈σz〉 = p0 − p1, (3)

where p0 and p1 are the probabilities to measure |0〉 with
eigenvalue 1 and |1〉 eigenvalue −1, respectively. However, p0

and p1 are also equal to the probabilities of having the state of
the system in (I + U )|ψ〉 with eigenvalue 1, and (I − U )|ψ〉
with eigenvalue −1, respectively.

Hence,

〈σz〉 = 〈U 〉 = Tr(ρsysU )

= 〈ψ |e−iHt1 OeiHt1 e−iHt2 OeiHt2 · · · |ψ〉
= 〈O(t1).O(t2)...〉, (4)

where the operators O(t1), O(t2).... commute. Therefore, the
real part of the expectation value of the z component of the
spin angular momentum of the “probe” qubit turns out to be
related to the expectation values of the desired observables of
the original state.
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The generalized quantum scattering circuit can be used
to experimentally demonstrate those inequalities which in-
volve temporal correlation functions, such as the temporal PM
noncontextual inequality and the temporal KCBS inequality.
While the ideal negative measurement (INM) protocol de-
scribed in Ref. [51] is similar to our measurement scheme,
in the INM protocol the ancilla is coupled to only one of the
two measurement outcomes and the protocol hence requires
two experimental runs: with a CNOT gate as well as with an
anti-CNOT gate. Our circuit, on the other hand, requires only a
single experimental run and does not require additional CNOT

and anti-CNOT gates for its implementation.

III. VIOLATION OF TEMPORAL PM AND TEMPORAL
BELL-TYPE INEQUALITIES

A. The NMR system

We used the molecule of 13C-labeled diethyl fluoroma-
lonate dissolved in acetone-D6 as a three-qubit system, with
the 1H, 19F, and 13C spin-1/2 nuclei being encoded as “qubit
one,” “qubit two,” and “qubit three,” respectively. The NMR
Hamiltonian for a three-qubit system in the rotating frame
is [53]

H = −
3∑

i=1

viI
i
z +

3∑

i> j,i=1

Ji j I
i
z I j

z , (5)

where the indices i, j = 1, 2, or 3 label the qubit, νi is the
chemical shift of the ith qubit in the rotating frame, Ji j is
the scalar coupling interaction strength, and I i

z is z compo-
nent of the spin angular momentum operator of the ith qubit.
The system was initialized in a pseudopure state (PPS), i.e.,
|000〉, using the spatial averaging technique [54]. The fidelity
of the experimentally prepared PPS state was computed to
be 0.964 ± 0.004 using the Uhlmann-Jozsa fidelity measure
[55,56]. Quantum state tomography was performed to exper-
imentally reconstruct the density operator using a reduced
tomography protocol [57]. The T1 and T2 relaxation times for
all three qubits range between 3.7 s and 6.8 s and 1.0 s and
2.8 s, respectively. Nonlocal unitary operations were achieved
by free evolution under the system Hamiltonian, of suitable
duration under the desired scalar coupling with the help of
embedded π refocusing pulses. The durations of the π

2 pulses
for 1H, 19F, and 13C nuclei were 9.55 μs at 18.14-W power
level, 23.00 μs at a power level of 42.27 W, and 15.75 μs at a
power level of 179.47 W, respectively.

B. Time-correlation functions

Consider performing a set of five dichotomic (i.e., the
measurement outcomes are ±1) measurements of variables
Xj, j = 1, ...5 on a single system. Each measurement Xj is
compatible with the preceding and succeeding measurements
and the sums are modulo 5. Compatible measurements im-
plies that the joint or sequential measurements of the variables
Xj do not affect each other, which basically ensures that the
measurements are noninvasive. We note here in passing that
compatibility of the measurements must be verified classi-
cally as well, and one cannot assume the quantum mechanical
properties (such as commutativity of operators) to justify

noninvasive measurability from a classical perspective. The
existence of a joint probability distribution for all the mea-
surement outcomes can be tested by constructing the KCBS
inequality [39]:

4∑

j=0

〈XjXj+1〉 � −3, (6)

where −3 is the minimum value for an NCHV model. Non-
contextual in this sense implies that the NCHV theory assigns
a value to an observable which is independent of other
compatible observables being measured along with it. By
definition each correlation function is given by [39]

〈XiXj〉 =
∑

xi,x j=±1

xix j p(xi, x j ). (7)

A “pentagon LG” inequality was constructed wherein [26]
∑

1�i< j�5

〈XiXj〉 + 2 � 0. (8)

This inequality has 10 two-time correlation functions which
can be computed from one single experiment, wherein the
measurements are performed in a manner such that the mea-
surement of Xj does not affect the measurement outcome
of Xi (noninvasive measurements). The two-time correlation
function turns out to be [35]

〈XiXj〉 = 1
2 Tr[ρ{Xi, Xj}] (9)

for a density matrix ρ. The five measurable observables were
chosen to be [40]

X1 ≡ σz, X2 ≡ σθ , X3 ≡ σz, X4 ≡ σθ , X5 ≡ σz, (10)

where σx, σz are the Pauli operators and σθ ≡ cos θ σz +
sin θ σx. For this set of chosen observables and with θ chosen
such that cos θ = −3/4, the correlation function takes the
value [26],

∑

1�i< j�5

〈XiXj〉 = −9/4, (11)

which is the smallest possible value and violates the “pen-
tagon” LG inequality given in Eq. (8).

C. Experimental violation of the temporal
Peres-Mermin inequality

A temporal equivalent of the KCBS inequality can be
constructed similarly to the “pentagon LG” inequality by
considering a set of nine dichotomic variables, and three suc-
cessive measurements at two sequential times from the set of
time points t = {t1, t2, ..t5}. The observable set chosen is the
“PM square” of nine dichotomous and mutually compatible
observables A, B,C, a, b, c, α, β, γ [40]:

A = σz ⊗ I, B = I ⊗ σz, C = σz ⊗ σz,

a = I ⊗ σx, b = σx ⊗ I, c = σx ⊗ σx,

α = σz ⊗ σx, β = σx ⊗ σz, γ = σy ⊗ σy. (12)
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Consider the combination of expectation values defined as
follows:

〈XPM〉 = 〈ABC〉+〈bca〉+〈γαβ〉+〈Aαa〉+〈bBβ〉−〈γ cC〉.
(13)

If we make noncontextual assignments of values we get the
inequality,

〈XPM〉 � 4, (14)

which is satisfied by all NCHV theories. This is the tem-
poral PM inequality (XPM) [40]. It has been shown that for
a four-dimensional quantum system and a particular set of
observables, a value of 〈XPM〉 = 6 is obtained for any quantum
state, demonstrating state-independent contextuality [21].

We note here in passing that in this “PM square” set of
measurements, each observable always occurs either in the
first place or the second place or the third place in the se-
quential mean value. This inequality is violated whenever a
joint probability distribution cannot be found which assigns
predetermined outcomes to the measurements Xi at all times
t1...t5, and this violation is termed contextual in time. The
system evolves under the action of a time-independent Hamil-
tonian H = h̄ωσx,y, which can be implemented in NMR using
suitable rf pulses applied on the qubits. After state preparation,
the probe qubit interacts with the system qubit via suitable
unitaries. The temporal correlation functions are obtained by
measuring the real part of the expectation value of the z
component of the spin angular momentum of the probe qubit.

Our experimental task is to measure the expectation values
of joint probabilities which are measured sequentially. To
violate the temporal PM inequality we need to measure the
three observables sequentially for any two-qubit state. We ex-
perimentally violated the PM inequality by measuring the six
correlation functions using the generalized quantum scattering
circuit. Figure 2 shows the quantum scattering circuit, the
operator decomposition, and the corresponding NMR pulse
sequence, to calculate the correlation function 〈Aαa〉 which is
one of the six correlation functions used in the PM temporal
inequality. The PM temporal inequality is violated for any
two-qubit state. The probe qubit is prepared in the known
|0〉 state and the system qubit is prepared in the |φ〉 = |00〉
state. We apply the transformation given in Fig. 2(a), with suit-
able values of O = σz and θ = π/2. The correlation function
〈Aαa〉 for the |φ〉 = |00〉 state can be obtained by measuring
the real part of the expected value of the z component of
the spin for the probe qubit. The other correlation functions
involved in the PM temporal inequality are measured in a
similar fashion.

Since the temporal PM inequality is violated for any two-
qubit state, we chose to prepare the probe qubit in a known
|0〉 state and the system qubits were prepared in the |φ〉 =
|00〉 state. The experimental tomograph of the state prepared
in ρ = |0〉〈0| ⊗ |00〉〈00| is given in Fig. 3, achieved with a
fidelity of 0.964 ± 0.004. We applied the unitary transforma-
tions given in Fig. 2 with values of O = σz and θ = π/2.
The correlation function 〈Aαa〉 for the |φ〉 = |00〉 state can be
obtained by measuring the real part of the expected value of
the spin z component of the probe qubit. The other correlation
functions involved in the temporal PM inequality are calcu-
lated in a similar fashion. The mean value of the correlation

FIG. 2. (a) Quantum scattering circuit for measuring the corre-
lation function 〈Aαa〉 involved in the PM inequality, where O = σz

and U ±
1,2 = e∓iσyθ/2 with θ = π/2. (b) Decomposition of the quantum

scattering circuit in terms of rotation operators where R±
1,2 correspond

to ( π

2 )±y, H are Hadamard gates, and Z are rotations about the z axis.
(c) NMR pulse sequence corresponding to the quantum scattering
circuit, where filled and unfilled rectangles correspond to π/2 and
π pulses, respectively. The bar over a phase denotes negative phase.
The time intervals τ12, τ13 are set to 1

2JHF
and 1

2JHC
, respectively.

functions and their error bars were calculated by repeating
the experiment three times and the theoretically expected and
experimentally calculated values are given in Table I. The the-
oretically computed and experimentally measured values of
the correlation functions agree well to within experimental er-
rors. We experimentally violated the temporal PM inequality,
obtaining 〈XPM〉Expt = 4.667 ± 0.013, showing the contextual
nature of the measured expectation values.

FIG. 3. Real (left) and imaginary (right) parts of the theoreti-
cal and experimental tomographs of the input ρ = |0〉〈0| ⊗ |00〉〈00|
state in the eight-dimensional Hilbert space, prepared with an exper-
imental state fidelity of 0.964 ± 0.004.
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TABLE I. Theoretically computed and experimentally measured
values of correlation functions corresponding to the PM inequality.

Observables Theoretical Experimental

〈ABC〉 1 0.928 ± 0.017
〈bca〉 1 0.706 ± 0.012
〈γαβ〉 1 0.817 ± 0.010
〈Aαa〉 1 0.685 ± 0.008
〈bBβ〉 1 0.755 ± 0.011
〈γ cC〉 −1 −0.784 ± 0.019

D. Maximal experimental violation of a Bell-type inequality
corresponding to the temporal KCBS inequality

While it is clear that quantum correlations can violate
spatial Bell-type and temporal LG-type inequalities, they do
not go all the way to the values allowed by the no-signaling
condition, and thus satisfy a bound called the Tsirelson’s
bound [33]. The reasons for the existence of such a bound
which limits the algebraic values of the correlations between
the measurement outcomes over and above the no-signaling
condition, is still a matter of debate [34,35]. We construct
here an experimental situation where the maximum possible
quantum correlation is achieved for four two-point correlation
functions involved in the temporal KCBS inequality when it
is re-interpreted as a Bell-type inequality [39].

The temporal KCBS noncontextual inequality can be
constructed by considering a dichotomic variable Xt with
successive measurements performed at two sequential times
drawn from the time instants t = {t0, t1, ...., t4}. The two-point
temporal correlations thus obtained lead to the corresponding
temporal KCBS inequality [39]:

4∑

i=0

〈Xti Xti+1〉 � −3. (15)

The violation of this inequality can be termed as contextuality
in time. The temporal KCBS inequality can be transformed
into a Bell-type inequality which tests the existence of a
joint probability distribution for measurements on dichotomic
variables, performed on subsystems A and B. The Bell-type
inequality is given by [39]

〈A0B1〉 + 〈A1B2〉 + 〈A2B3〉 + 〈A3B4〉 + 〈A4B0〉 � −3, (16)

where Ai and Bj are measured on the subsystems with the
additional constraint that

〈AiBi〉 = 1 for all i, (17)

which implies that the outcomes of pairs of measurements are
the same. Violation of this inequality shows the nonexistence
of joint probability distribution for this scenario.

We experimentally demonstrated the violation of the Bell-
type inequality given in Eq. (16) using the quantum scattering
circuit on the same three-qubit system. Figure 4(a) shows
the quantum scattering circuit to calculate the correlation
function 〈ArBq〉, involved in the Bell-type inequality on an
eight-dimensional quantum system. For the violation of the
Bell-type inequality, we used the 1H as the probe qubit and 13C
and 19F as the system qubits. We apply the transformations
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FIG. 4. (a) Quantum circuit to measure the correlation function
〈ArBq〉 involved in the Bell-type inequality, where Ur,q = e

−i2πr,q
5 ,

O = σz and r, q = 0, 1, 2, 3, 4. (b) Quantum circuit for state prepara-
tion. (c) Corresponding NMR pulse sequence for the quantum circuit.
The sequence of pulses before the first dashed black line achieves
initialization of the state into the pseudopure |000〉 state. The unfilled
rectangles denote π pulses, and the flip angle and phases of the other
pulses are written below each pulse. The bar over a phase indicates
negative phase. The time intervals τ12, τ13, τ23 are set to 1

2JHF
, 1

2JHC
,

1
2JFC

, respectively.

given in Fig. 4(a) with suitable values of O = σz and q, r =
0, 1, 2, 3, 4.

The optimal violation of the Bell-type inequality can be
obtained for the state 〈ψ1| = 1√

2
(1, 0, 0, 1) with the probe

qubit prepared in the state |0〉, and for the measurements
Aj = σ j ⊗ I , Bj = I ⊗ σ j where j = 0, 1, 2, 3, 4 and σ j =
ei 2π j

5 σyσze−i 2π j
5 σy . The correlation functions 〈ArBq〉 for the state

〈ψ1| = 1√
2
(1, 0, 0, 1) can be obtained by measuring the real

part of the expected value of the spin z component for the
probe qubit. The corresponding quantum circuit for state
preparation is shown in Fig. 4(b) and the NMR pulse sequence
is shown in Fig. 4(c). The sequence of pulses before the
first dashed black line achieves state initialization into the
|000〉 state. After this we apply the Hadamard gate (on 13C),
followed by a CNOT23 gate, and the resultant state corresponds
to ρ1 = |0〉〈0| ⊗ |ψ1〉〈ψ1| with 〈ψ1| = 1√

2
(1, 0, 0, 1).

The tomograph of the state prepared in ρ1 = |0〉〈0| ⊗
|ψ1〉〈ψ1| with 〈ψ1| = 1√

2
(1, 0, 0, 1) is given in Fig. 5 with

an experimental fidelity of 0.947 ± 0.009. The mean val-
ues of the correlation functions and their error bars were
calculated by repeating the experiment three times and and
calculated values are given in Table II. As seen from the
values tabulated in Table II, the theoretically computed and
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FIG. 5. Real (left) and imaginary (right) parts of the theoretically
expected and the experimentally reconstructed tomographs of the
〈ψ1| = 1√

2
(1, 0, 0, 1, 0, 0, 0, 0) state in the eight-dimensional quan-

tum system, with an experimental state fidelity of 0.947 ± 0.009.

experimentally measured values of the correlation functions
agree well to within experimental errors. We have experimen-
tally violated the Bell-type inequality with the violation of
−3.755 ± 0.008.

It should be noted that there are no spacelike separated
measurements here. However, the inequality given in Eq. (16),
with the constraint specified in Eq. (17), will be valid when the
measurements on A and B are spacelike separated and when
the no-signaling principle is relevant. Our limited goal here is
to show the possibility of maximally violating the Bell-type
inequality given in Eq. (16).

E. Classical description of the experimental setup

All experimental tests of nonclassical properties of quan-
tum correlations whether quantum contextuality, Bell nonlo-
cality, or nonclassical temporal correlations, ultimately seek
to disprove a classical theory, either local hidden variable
models, or noncontextual or macrorealist theories. Hence any
experimental test of quantum correlations must subsume a
classical description of the setup and one should be able to
associate a measurement procedure to any classical variable
using this setup. For instance, in order to measure the correla-
tor 〈AB〉 one should in principle be able to measure A and B
independently.

Throughout in our analysis we have considered expectation
values of products of observables to show that a quantum

TABLE II. Theoretically computed and experimentally mea-
sured values of quantum correlations corresponding to the Bell test.

Observables Theoretical Experimental

〈A0B1〉 −0.809 −0.684 ± 0.014
〈A1B2〉 −0.809 −0.754 ± 0.006
〈A2B3〉 −0.809 −0.756 ± 0.011
〈A3B4〉 −0.809 −0.746 ± 0.005
〈A4B0〉 −0.809 −0.815 ± 0.004

FIG. 6. Quantum scattering circuit for measuring the nine ob-

servables where R±
l = e

∓ iHσy
h̄ and R±

2 = e
∓ iHσx

h̄ ; Sz denotes the
expectation value of σz.

description may violate bounds derived from classical ideas
of assignment of outcomes to individual measurements. As
mentioned above, it is important to be able to measure the
observables one by one, where it is possible to imagine as-
signing outcomes from a classical description. To provide the
possibility of a classical description of our experimental setup,
we validate the following assumptions: (i) that each of the nine
observables involved in the PM inequality can be measured
individually and has the eigenvalue ±1; and (ii) that the ob-
servables involved in the sequences of the PM inequality are
mutually compatible.

TABLE III. Theoretically computed and experimentally mea-
sured values of each of the individual observables in their eigenstates.

Input State Observables Experimental (Theoretical)

|00〉 σz ⊗ I + 0.945 ± 0.026 (+1)
|11〉 σz ⊗ I − 1.075 ± 0.027 (−1)
|00〉 I ⊗ σz + 0.914 ± 0.021 (+1)
|11〉 I ⊗ σz − 0.901 ± 0.015 (−1)
|00〉 σz ⊗ σz + 0.932 ± 0.026 (+1)
|10〉 σz ⊗ σz − 1.048 ± 0.029 (−1)

|00〉+|01〉√
2

I ⊗ σx + 0.969 ± 0.025 (+1)
|10〉−|11〉√

2
I ⊗ σx − 0.993 ± 0.026 (−1)

|01〉+|11〉√
2

σx ⊗ I + 0.984 ± 0.028 (+1)
|01〉−|11〉√

2
σx ⊗ I − 0.994 ± 0.029 (−1)

|00〉+|11〉√
2

σx ⊗ σx + 0.967 ± 0.025 (+1)
|00〉−|11〉√

2
σx ⊗ σx − 0.97 ± 0.027 (−1)

|00〉+|01〉√
2

σz ⊗ σx + 1.067 ± 0.023 (+1)
|10〉+|11〉√

2
σz ⊗ σx − 1.042 ± 0.021 (−1)

|00〉+|10〉√
2

σx ⊗ σz + 0.903 ± 0.025 (+1)
|01〉+|11〉√

2
σx ⊗ σz − 0.975 ± 0.027 (−1)

|01〉+|10〉√
2

σy ⊗ σy + 1.001 ± 0.012 (+1)
|00〉+|11〉√

2
σy ⊗ σy − 1.014 ± 0.026 (−1)
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TABLE IV. Experimentally calculated expectation values of the possible combination of each observable of the six sequences to check the
commutative relations.

Observables Experimental Observables Experimental Observables Experimental

〈A.B.C〉 0.928 ± 0.017 〈b.c.a〉 0.706 ± 0.012 〈γ .α.β〉 0.817 ± 0.010
〈A.C.B〉 0.935 ± 0.012 〈b.a.c〉 0.723 ± 0.010 〈γ .β.α〉 0.839 ± 0.012
〈B.A.C〉 0.919 ± 0.009 〈a.b.c〉 0.725 ± 0.019 〈α.β.γ 〉 0.829 ± 0.010
〈B.C.A〉 0.935 ± 0.008 〈a.c.b〉 0.707 ± 0.015 〈α.γ .β〉 0.799 ± 0.018
〈C.A.B〉 0.929 ± 0.012 〈c.a.b〉 0.733 ± 0.018 〈β.α.γ 〉 0.824 ± 0.014
〈C.B.A〉 0.908 ± 0.010 〈c.b.a〉 0.719 ± 0.017 〈β.γ .α〉 0.796 ± 0.016

〈A.α.a〉 0.685 ± 0.008 〈b.B.β〉 0.755 ± 0.011 〈γ .c.C〉 − 0.784 ± 0.019
〈A.a.α〉 0.672 ± 0.017 〈b.β.B〉 0.726 ± 0.019 〈γ .C.c〉 − 0.813 ± 0.010
〈α.A.a〉 0.671 ± 0.018 〈B.b.β〉 0.776 ± 0.017 〈C.γ .c〉 − 0.760 ± 0.020
〈α.a.A〉 0.644 ± 0.020 〈B.β.b〉 0.779 ± 0.009 〈C.c.γ 〉 − 0.811 ± 0.012
〈a.A.α〉 0.714 ± 0.017 〈β.B.b〉 0.776 ± 0.015 〈c.C.γ 〉 − 0.771 ± 0.019
〈a.α.A〉 0.639 ± 0.019 〈β.b.B〉 0.746 ± 0.019 〈c.γ .C〉 − 0.789 ± 0.013

We first check that each observable in the PM inequality
has the eigenvalue ±1. To do so, we measure the expectation
values of the nine individual observables using the quantum
scattering circuit given in Fig. 6. The input states are prepared
in the eigenstates of each of the nine observables involved in
the PM inequality. Table III contains a comparison of the ex-
perimentally observable expectation values of each observable
with its theoretically expected value of ±1.

We then proceed to check the second assumption that
the measurements in the six sequences involved in the PM
inequality are commutative, i.e., each of the observables is
context independent. We do this by switching the measure-
ment sequence in the scattering circuit. Table IV contains the
experimentally calculated expectation values of all possible
combinations of each observable in the six sequences involved
in the PM inequality.

IV. CONCLUDING REMARKS

We designed and experimentally implemented a gen-
eralized quantum scattering circuit to measure an n-point

correlation function on an NMR quantum information pro-
cessor, with an observable being measured sequentially at
these n time instants. We experimentally demonstrated the
violation of a temporal noncontextuality PM inequality using
three NMR qubits, which involved performing sequential non-
invasive measurements. The generalized quantum scattering
circuit we have constructed is independent of the quantum
hardware used for its implementation and can be applied to
systems other than NMR qubits. Our work asserts that NMR
quantum processors can serve as optimal test beds for testing
such inequalities.
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