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Designing robust quantum refrigerators in disordered spin models
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We explore a small quantum refrigerator in which the working substance is made of paradigmatic nearest-
neighbor quantum spin models, the XY Z and the XY model with Dzyaloshinskii-Moriya interactions, consisting
of two and three spins, each of which is in contact with a bosonic bath. We identify a specific range of
interaction strengths which can be tuned appropriately to ensure a cooling of the selected spin in terms of
its local temperature in the weak-coupling limit. Moreover, we report that in this domain, when one of the
interaction strengths is disordered, the performance of the thermal machine operating as a refrigerator remains
almost unchanged instead of degrading, thereby establishing the flexibility of this device. However, to obtain
a significant amount of cooling via ordered as well as disordered spin models, we observe that one has to go
beyond the weak-coupling limit and compute the figures of merit by using global master equations.
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I. INTRODUCTION

The quest for small quantum thermal machines [1] that
can supersede their classical counterparts in performance [2]
has been an important and vibrant component in the field
of quantum thermodynamics [3,4]. These machines are ex-
pected to not only provide a better understanding of the
interplay between the concepts from quantum information
theory and thermodynamics [4–6], but also lead to building
efficient quantum technologies [7]. Moreover, the interdis-
ciplinary nature of the designs and working principles of
these machines has also attracted attention from researchers
in statistical [8] and quantum many-body physics [9,10]. To
verify the theoretical proposals on these machines, several
experiments have been performed by using trapped ions [11],
mesoscopic systems [12], nuclear magnetic resonance [13],
and superconducting materials [14].

Among the wide variety of small quantum thermal ma-
chines, quantum refrigerators made of quantum systems with
Hilbert spaces of small dimension have gained a lot of in-
terest [15–21]. Special attention has recently been given to
three-spin quantum refrigerators, where a local cooling of one
of the spins is achieved by connecting each of the spins in
the system with a local Markovian thermal bath. Depending
on the choice of the system parameters, the refrigerator may
operate in either the absorption region where energy is con-
served or in an external energy-driven region, where a channel
exists between the refrigerator and an external energy source
or sink. The performance of the refrigerator and its type are
assessed in terms of the heat currents between the spins and
their respective baths, and a lowering of temperature either
in the steady state or during the transient dynamics can be
observed via an increase in the ground-state population of the
spin undergoing local cooling [15–19]. Along with theoretical
proposals to implement these machines in various substrates

such as quantum dots [22], circuit QED architectures [23], and
atom-cavity systems [24], three-spin quantum refrigerators
have recently been implemented in laboratories using trapped
ions [25].

While the original model for the three-spin refrigerator
exploits a three-body interaction among the spins constitut-
ing the working substance [15], it has been shown that one
can construct a three-spin refrigerator with two-body inter-
actions also [21], where the spin-spin interactions constitute
the well-known XXZ model [26], thereby highlighting the
possibility of building small quantum thermal machines using
paradigmatic low-dimensional quantum spin models [27–31]
of few spins. On one hand, it allows one to control the
performance of these machines by appropriately tuning the
parameters of the quantum spin Hamiltonian, which is now
possible in experiments using the same substrates used for re-
alizing thermal machines [32–39]. On the other hand, existing
studies on the interface of the quantum information theory
and quantum spin models [40–42] may prove useful in es-
tablishing the connection between quantum thermodynamics
and quantum information theory. However, identifying appro-
priate spin Hamiltonian among numerous low-dimensional
quantum spin models available in literature [30,31,43,44]
to implement a quantum refrigerator remains a demanding
task.

Another challenge in implementing a working quantum
refrigerator using a quantum spin model in the laboratory
would be disorder, since imperfections are inevitably present
in the system [45–49]. A disordered system has two funda-
mental timescales—the observation time, τ , over which the
system undergoes a dynamics and subsequent observation via
a measurement, and the time τ ′ taken by the disordered pa-
rameter to attain its equilibrium. When τ ′ � τ , an effectively
frozen disorder configuration during the observation time hap-
pens which can be incorporated by performing the average
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over configurations after computing the physical quantity of
interest, known as quenched disordered averaging [50–53].
The realization of quantum spin models with disordered pa-
rameters being now possible in laboratories [54–57], it is
natural to ask how the performance of quantum refrigerators,
built out of quantum spin models, can alter in the presence
of disorder in the system, which is a focus of the current
paper.

In the present paper, we construct quantum refrigerators
using a one-dimensional quantum spin chain consisting of
two or three spin- 1

2 particles, each of which is connected
to a local Markovian bosonic thermal bath. We consider
nearest-neighbor interactions among the spins, and exam-
ine a number of paradigmatic quantum spin Hamiltonians,
namely, quantum XY Z [31,43,44] and quantum XY mod-
els with Dzyaloshinskii-Moriya (DM) interaction [58–61],
as possible system Hamiltonians for a thermal machine to
operate as a refrigerator where the latter model is chosen
to introduce asymmetry in the system. More specifically, we
focus on two main questions as to (1) whether a small quan-
tum refrigerator built out of quantum spin systems always
provides a significant cooling to a selected spin in terms of
the population-dependent definition of local temperature (if
the answer is positive, we focus on the identification of the pa-
rameter regimes to be tuned) and (2) whether the performance
of the quantum thermal machine as a refrigerator remains
unaffected in the presence of quenched disorder.

We answer both questions affirmatively in terms of heat
current and local temperature of the selected spins, by consid-
ering the local as well as the global master equation. For the
local master equation, we first notice that since the magnetic
fields of the initial states are aligned to the z directions, the
interaction strength in the z plane of the XY Z model has neg-
ligible effect on the refrigeration. We observe that when the
couplings are weaker than the strengths of the magnetic fields,
the refrigerator based on the XY model with DM interac-
tions performs better than that of the XY Z model. Moreover,
numerical simulations reveal a small subspace of the entire
parameter space in which cooling of a selected spin can take
place. Such a hierarchy remains unaltered when either the
interaction strengths in the xy plane or the DM ones are chosen
randomly from the Gaussian distribution. Notice that although
they are demonstrated by fixing the strengths of the magnetic
fields, the results remains true even for the large range of pa-
rameters. However, in this domain, the refrigerator described
by a quantum spin Hamiltonian, ordered as well as disordered,
does not ensure a significant cooling for a selected spin in
terms of the local temperature of the spin. To overcome this,
we go beyond the local master equation, and by employing
the global master equation we illustrate that the local cooling
provided by the ordered as well as disordered spin models can
substantially be improved.

The rest of the paper is organized as follows. In Sec. II,
we briefly introduce the construction of the three-spin quan-
tum refrigerator by discussing the system Hamiltonians, the
evolution of the system due to the interaction between the
spins and the local Markovian bosonic baths, and the idea
of local refrigeration of a selected spin during the dynam-
ics of the system. In Sec. III, we present our results on
the two-spin refrigerator using ordered as well as disordered

systems while we demonstrate the results for the three-
spin refrigerator in Sec. IV. Section V offers concluding
remarks.

II. QUANTUM REFRIGERATOR: MODEL AND DYNAMICS

In this section, we briefly describe the quantum spin
Hamiltonians used to implement a two-spin and a three-spin
quantum refrigerator. The setup of the local thermal baths in
contact with the individual spins, and the quantities that we
have used for assessing the performance of the machine, are
also discussed.

A. Interacting quantum spin models

We model the refrigerator as a one-dimensional quantum
spin chain with N spin-1/2 particles, governed by a Hamil-
tonian, HS = HF + HI . Here HF and HI = Hxy + Hz + HDM

correspond to the components of the system Hamiltonian HS

due to the local external magnetic fields acting on each spin,
and the spin-exchange interactions between the spins, respec-
tively. They are given by

HF =
N∑

i=1

hiσ
i
z , (1)

Hxy =
N∑

i=1

Jxy
i,i+1

[
(1 + γ )σ i

xσ
i+1
x + (1 − γ )σ i

yσ
i+1
y

]
, (2)

Hz =
N∑

i=1

Jz
i,i+1σ

i
zσ

i+1
z , (3)

HDM =
N∑

i=1

JDM
i,i+1

(
σ i

xσ
i+1
y − σ i

yσ
i+1
x

)
. (4)

Here γ is the xy anisotropy parameter, hi is the strength
of the local magnetic field acting on the spin i, σ i

p (p =
x, y, z) are Pauli matrices, Jxy

i,i+1 and Jz
i,i+1 respectively rep-

resent the xy and the zz nearest-neighbor antiferromagnetic
interaction strengths, and JDM

i,i+1 denotes the strength of the
Dzyaloshinskii-Moriya interaction [58–61]. Moreover, we
consider interaction strengths to be site independent as well
as site dependent, leading to the ordered and disordered spin
systems, respectively. A number of paradigmatic quantum
spin Hamiltonians emerged from HS for different values of
these system parameters as follows: (1) Jxy

i,i+1, JDM
i,i+1 = 0-the

classical Ising model in a parallel magnetic field; (2) γ =
1, Jz

i,i+1 = 0, JDM
i,i+1 = 0-the transverse-field Ising model; (3)

0 < γ < 1, Jz
i,i+1 = 0, JDM

i,i+1 = 0-the anisotropic XY model
in a transverse field; (4) γ = 0, Jz

i,i+1 = 0, JDM
i,i+1 = 0-the XX

model in a transverse magnetic field; (5) γ = 0, JDM
i,i+1 = 0-the

XXZ model with magnetic field; and (6) γ = 0, Jz
i,i+1 = 0-the

XX model in a transverse magnetic field with DM interaction.
In this paper, we focus on small quantum refrigerators,

where the size is justified by the low dimension of the Hilbert
space of the system. More specifically, we consider a two-
and a three-spin refrigerator (N = 2, 3) for demonstrating the
results in the subsequent sections.
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FIG. 1. A three-spin refrigerator in the presence of disorder.
Three spin-1/2 particles are interacting with each other via spin-
exchange interactions, while individually interacting with a local
thermal heat bath. The spin-exchange interactions can be disordered,
where the values of their strengths can be chosen from Gaussian
distributions of fixed mean and standard deviations.

B. Local environments and the open quantum dynamics

We now describe the system-environment setup for imple-
menting the quantum refrigerator. We consider N local heat
baths, B1, B2, · · · , BN , each of which is connected to a spin
in the N-spin system (see Fig. 1 for the N = 3 case), such that
any spin is completely insulated from the effect of the N − 1
baths, except the one connected to it. We assume that at t = 0,
the spin-exchange interactions are absent, i.e., HS = HF , and
each of the spins is at thermal equilibrium with its respective
environment, so that the temperature Ti(0) of the spin i at
t = 0 is T 0

i , with T 0
i being the absolute temperature of the bath

i. The initial state of the system, therefore, is given by ρ0
s =⊗N

i=1 ρ0
i , where ρ0

i = exp(−β0
i hiσ

i
z )/Tr[exp(−β0

i hiσ
i
z )], with

β0
i = (kBT 0

i )−1, where kB is the Boltzmann constant. At t > 0,
all of the spin-exchange interactions or a subset of them are
turned on, so that the system is taken out of equilibrium, and
it undergoes an open system dynamics. The evolution of the
state of the system, ρs, during this dynamics is described by a
quantum master equation (QME) of the form

ρ̇s = − i

h̄
[HS, ρ] + D(ρ), (5)

where D(.) represents the dissipator, emerging due to the spin-
bath interaction. The state of the system, ρs(t ), as a function
of t is obtained as the solution of the QME.

We consider each of the local thermal baths Bi to be
a collection of harmonic modes with a Hamiltonian Hb =∫ ωm

0 dωa†
ωaω, where aω (a†

ω) is the annihilation (creation)
operator corresponding to the harmonic mode of energy
ω, obeying [aω, a†

ω′ ] = δ(ω − ω′), and ωm is the maximum
ω. The total interaction between the spins and their cor-
responding baths is represented by the Hamiltonian Hsb =∑N

i=1

∑
ω(σ+

i ⊗ aω + σ−
i ⊗ a†

ω ), where σ+
i and σ−

i are the
raising and lowering operators of the ith spin, respectively.
The dynamical term in the QME [Eq. (5)] takes the form [62]

D(ρ) = ∑N
i=1 Di(ρ), with

Di(ρ) = 	i
[(

ni
ω + 1

)(
σ−

i ρσ+
i − 1

2 {σ+
i σ−

i , ρ})
+ ni

ω

(
σ+

i ρσ−
i − 1

2 {σ−
i σ+

i , ρ})], (6)

in the case of the Markovian spin-bath interactions
at the strict weak-coupling limit given by hi, 	i �
max{Jxy

i,i+1, Jz
i,i+1, JDM

i,i+1}. In Eq. (6), ni
ω is the occupation num-

ber of the Bose-Einstein distribution corresponding to bath Bi

given by ni
ω = (eh̄ω/kBT 0

i − 1)−1, with ω = 2h̄hi, and 	i being
a constant. Note that the Lindblad operators represented by
σ±

i here signify local transitions among the eigenstates of the
subsystem i, and the QME in such situations belongs to the
class of local master equations. It is also important to note
that in such scenarios, a violation of the second law of ther-
modynamics may take place, implying that a local quantum
master equation may not always be appropriate to describe
the stationary nonequilibrium properties of the system (see
Refs. [63–65]). Therefore, in the case of the local quantum
master equation, the results should be interpreted carefully,
and there have been proposals for rectifying this issue by
constructing the master equation in a different fashion [66].

On the other hand, in the strong-coupling limit, the spin-
interaction strengths are comparable to the strengths of the
local magnetic fields, and the dynamical term corresponding
to spin i in Eq. (5) takes the form [20]

Di(ρ) =
∑
ω>0

γ ω
i

[(
Ai

ωρAi†
ω − 1

2

{
Ai†

ω Ai
ω, ρ

})

+
(

Ai†
ω ρAi

ω − 1

2

{
Ai

ωAi†
ω , ρ

})]
, (7)

where the operator Ai
ω, given by

eiHSt (σ+
i + σ−

i )e−iHSt = 2
∑

ω

Ai
ωe−iωt , (8)

is the Lindblad operator on the spin i corresponding to the
transition of energy ω among the energy levels of the system,
and is derived by decomposing the spin part of Hsb in the
eigenbasis of HS . Note that in contrast to the previous case
of the local master equation, the Lindblad operators here
correspond to the transitions among the eigenstates of the
entire system, and the QME in this situation is a global one.
The coefficient γ ω

i is the transition rate corresponding to the
energy gap ω for the spin i, where

γ ω
i = fi(ω)[1 + κi(ω)], for ω � 0,

γ ω
i = fi(|ω|)κi(|ω|), for ω < 0, (9)

with fi(ω) = αiωe− ω
� , with � being the cutoff frequency and

κi(ω) = (eh̄βiω − 1)−1 representing the Ohmic spectral func-
tion and the Bose-Einstein distribution, respectively. Here,
αi is a constant for the bath, i, quantifying the strength of
the spin-bath interaction strength. In order for the Markovian
approximation to be valid, we restrict the values of αi such
that max{αi} � 1. Here, the second law of thermodynamics is
always valid. However, care must be taken while constructing
quantities that are local to a subsystem of the quantum spin
model. We shall elaborate on this in Sec. IV C.
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C. Local refrigeration

If the N-spin system operates as a refrigerator for the spin
i, then the heat current,

Q̇i = Tr[HSDi(ρs)], (10)

corresponding to the spin i in the steady state is positive
[1,20,21]. This represents a situation where heat flows from
the bath Bi to the spin i, which is at a lower temperature than
T 0

i in the steady state. This can also be visualized by defining
a local temperature for the spin i [15] as follows. At t = 0,
the initial state of the ith spin is a diagonal state, which can
be written in the eigenbasis of σz, {|0〉, |1〉}, having eigenval-
ues 1 and −1 respectively, as ρ0

i = τ 0
i |0〉〈0| + (1 − τ 0

i )|1〉〈1|,
where τ 0

i = exp(−2β0
i hi )/[1 + exp(−2β0

i hi )]. During the dy-
namics, the forms of the Lindblad operators (see Sec. II B)
ensure that the single-spin density matrix

ρi(t ) = Tr j,k( �=i)
j,k=1,2,3

[ρs(t )], (11)

at every time instant t , remains diagonal, i.e., ρi(t ) =
τi(t )|0〉〈0| + [1 − τi(t )]|1〉〈1|, while τi(t ) varies with time
starting from τi(0) = τ 0

i . It allows us to define a local tem-
perature of the spin i as

Ti(t ) = 2hi

ln[τi(t )−1 − 1]
(12)

at every time t , which is in agreement with the initial temper-
ature Ti(0) of the spin i to be equal to T 0

i .
A local steady-state cooling of the spin i is achieved if

T s
i = Ti(t → ∞) < T 0

i (13)

at any t > 0. Note, however, that as of now, no specific corre-
lation between the values of Q̇i and T s

i exists as we will also
show here. In the subsequent sections, we demonstrate the sta-
tus of the local refrigeration of a spin in the (two-) three-spin
system via the heat current as well as the local temperature
corresponding to the chosen spin, by appropriately tuning the
system as well as the spin-bath interaction parameters.

III. TWO-SPIN QUANTUM REFRIGERATOR:
ORDER VS DISORDER

We begin our discussion with a two-spin refrigerator model
(see Fig. 1 where the third spin and its corresponding bath,
B3, are absent), where we focus on the local refrigeration of a
chosen spin in the system. For the purpose of demonstration,
we choose spin 1 to be cooled, although the system as well
as the environment parameters can be chosen appropriately to
locally cool any one of the spins. To ensure that the two-spin
thermal machine operates as a refrigerator for the spin 1,
we exhibit Q̇1 > 0 as well as T s

1 < T 0
1 by properly tuning

the parameter values. Note that maintaining Q̇1 > 0 alone
describes a situation that includes all the operating regimes
(see Ref. [21] for the three-spin refrigerator) corresponding to
the two-spin thermal machine that refrigerates spin 1.

 0.99
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FIG. 2. Temperature dynamics for spin 1 of a two-spin refrig-
erator in the weak-coupling limit: variation of T1 (ordinate) vs t
(abscissa). The initial temperatures of the two spins are T1(0) = 1,
T2(0) = 1.1 (solid lines), and T1(0) = T2(0) = 1 (dashed line). Dark
(red) lines represent the XX model with Jxx = 0.02 while light (or-
ange) lines are for the XX model with DM interactions where Jxx =
JDM = 0.02. In both cases, we fix h1 = 1.1, h2 = 1.3, 	 = 0.05, and
γ = 0. Both the axes are dimensionless.

A. Ordered spin models as refrigerators

1. Transverse XY model

Let us first consider XY -type spin-exchange interaction
between the spins so that HS = HF + Hxy for N = 2 [see
Eqs. (1) and (2)], where we set γ = 0 for demonstration.
Solving Eq. (5) for the two-spin refrigerator model via the
local master equation, followed by the calculation of the local
density matrix for spin 1, leads to the local temperature of
spin 1 as T1(t ) = 2h1/ ln[σ11(t )−1 − 1] (see the Appendix).
Notice that when HS represents a classical Ising model in a
parallel magnetic field and the initial state of the system is
a diagonal one, the system does not evolve under the local
master equation, implying that a local refrigeration of spin
1 is absent. Note also that under the strict weak-coupling
limit (see Sec. II B) where the spin interactions are negligible
compared to both the local magnetic fields and the dissipation
rates, our numerical analysis does not find any point in the
parameter space for which a local cooling for spin 1 can take
place. This motivates us to relax the weak-coupling condition
as hi > Jxy ∼ 	i (see Ref. [18]), where significant subspace
in the parameter space of the system is found where the
designed refrigerator demonstrates cooling in spin 1. This
is a feature valid for both two- and three-spin refrigerators,
and from now onward, unless otherwise mentioned, we use
the relaxed weak-coupling condition in terms of appropriate
spin-interaction strengths (i.e, a subset of {Jz, Jxy, JDM}) to
investigate the performance of refrigerators.

The observations obtained for the two-spin refrigerator
modeled via a spin system other than the classical Ising model
are the following.

(1) A nonzero XY interaction strength, Jxy, results in an
evolution of the system, leading to a local cooling of spin
1, irrespective of the value of Jz. In Fig. 2, the dynamics of
the local temperature of spin 1 in a two-spin refrigerator is
depicted, thereby demonstrating a local steady-state cooling.
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FIG. 3. Variation of heat current and steady-state temperature (vertical axis) as functions of the strength of the spin-exchange interactions
(horizontal axis). (a, b) Heat current and temperature of spin 1 with increasing XX interactions (squares) where JDM = 0 and with the
increase of DM interactions, JDM (circles) having Jxy = 0.02 �= 0. Hollow and solid symbols (squares as well as circles) represent ordered
and disordered spin models, respectively. Other parameter of the systems, namely, magnetic-field strengths and the spin-bath interactions, are
chosen as h1 = 1.1, h2 = 1.3, and 	 = 0.05, and the initial temperature of each spin is T1(0) = 1 and T2(0) = 1.1 respectively. Here γ = 0.
All the axes are dimensionless.

(2) Interestingly, we find that even when 
T = T 0
2 − T 0

1 =
0, a steady-state cooling occurs where an energy bias is
given to the system in terms of two unequal strengths of the
magnetic field to the individual spins. More importantly, we
report that vanishing 
T proves to be more advantageous
with respect to cooling than nonvanishing 
T (see Ref. [67])
if we suitably adjust the parameters of Hs and the spin-bath
interaction strength (comparing solid and dashed lines of
Fig. 2).

(3) The heat current (the steady-state temperature) remains
almost constant when the strength of the spin-exchange inter-
action is �10−2, and increases with an increase in the value of
Jxy within the weak-coupling limit (� 10−1), irrespective of
the presence of the interactions in the z plane, i.e., independent
of the values of Jz.

The variation of the heat current and the steady-state tem-
perature of spin 1 against the strength of the spin-exchange
interaction Jxy is depicted in Figs. 3(a) and 3(b).

Remark 1. The amount of steady-state cooling achieved in
the two-spin refrigerator is very small in magnitude, and it
possibly indicates that one has to go beyond the local master
equation to achieve a significant steady-state cooling of spin 1.

Remark 2. The trend remains unchanged for γ ≈ 0, with
negligible effect on the amount of steady-state cooling at-
tained during the refrigeration of spin 1. On the other hand,
when γ → 1, the performance of the refrigerator diminishes.
Hence the entire analysis in the rest of the paper is performed
for the spin model with γ = 0.

2. Transverse XY model with DM interaction

To answer the question as to whether a change in the type
of the spin-exchange interaction between the two spins affects
the performance of the two-spin refrigerator, we add an asym-
metric spin-spin interaction, specifically, the DM interaction

in the system Hamiltonian, i.e., Hs = Hxy + HDM. We explore
the behaviors of Q̇1 and T s

1 as functions of JDM, where Jxy is
kept fixed.

Our analysis clearly indicates that the qualitative behaviors
of both the quantities, the heat current as well as the steady-
state temperature observed in the XX model, remain the same
even in the presence of DM interactions although the slight
improvement in terms of cooling can be seen in the presence
of asymmetric DM interactions, especially when the coupling
constant is weak (of the order of 10−2) (see Fig. 3). The local
temperature dynamics of spin 1 is shown in Fig. 2, while the
variation of the heat current and the steady-state temperature
of spin 1 with increasing JDM is plotted in Fig. 3.

B. Robustness in a disordered two-spin refrigerator

Let us now determine the response of the performance
of the machine against disorder in the two-spin refrigerator
model. As mentioned in Sec. II A, impurities are introduced
in this model by choosing random spin-exchange interaction
strengths, g, from a Gaussian distribution with a mean 〈g〉 and
standard deviation σg, keeping the values of the local magnetic
fields fixed. In this paper, either Jxy or JDM is chosen to be
random, by keeping the other coupling constants ordered. No-
tice that a vanishing standard deviation reduces to a perfectly
ordered system discussed above.

For each random parameter configuration constituted of a
random value of the spin-exchange interaction strength cor-
responding to a random realization of the system, one can
compute the quantities of interest, and subsequently take an
average of the quantity over a statistically large number of
parameter configurations, known as quenched averaging of
the physical quantity. Mathematically, the quenched averaging
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FIG. 4. Three-spin refrigerator: (a) Q̇1 and (b) T s
1 as functions of different spin-exchange interaction strengths where gi,i+1 = g ∀i ∈

[1, 2, 3]. The other relevant parameters, which are kept constant, are chosen as follows. For g̃ ≡ Jxy, Jz = 0.019 and JDM = 0 (circles). When
g̃ ≡ Jz, Jxy = 0.073 and JDM = 0 (crosses), while, for g̃ ≡ JDM, Jxy = 0.073 and Jz = 0 (squares). In all these cases, the local magnetic fields
corresponding to the individual spins are fixed to h1 = 1.11, h2 = 2.82, and h3 = 3.65, and the values of the spin-bath interaction parameters
are 	1 = 0.0639, 	2 = 0.0984, and 	3 = 0.0673. All the axes are dimensionless.

of a physical quantity, Q, can be represented as

〈Q(〈g〉, σg)〉 =
∫

P (g)Q(g)d (g), (14)

where g is the parameter the values of which are chosen from
a Gaussian distribution [P (g)] of mean 〈g〉 and standard devi-
ation σg quantifying the strength of the disorder. Note that no
restrictions on the possible values of the exchange interactions
are imposed in order to keep the two-spin thermal machine
operating in a specific working region, and a change in the
values of the system parameters may, in principle, shift the
two-spin thermal machine from one working region like an
absorption refrigerator to another such as an external source
driven thermal machine.

We investigate the patterns of quenched averaged heat
current, 〈Q̇1〉, and steady-state temperature, 〈T s

1 〉, with the
increase of 〈Jxy〉 or 〈JDM〉 where the averaging is performed
over 2 × 103 realizations by keeping the value of the strength
of disorder fixed at 2 × 10−2. As shown in Fig. 3, we demon-
strate that for small 〈Jxy〉 (〈JDM〉), the quenched steady-state
temperature (the quenched heat current) is smaller (higher)
than that obtained via an ordered spin model as a refrigerator.
It is also clear from the figure that the overall performance
of the refrigerator remains qualitatively as well quantitatively
similar in the presence of any amount of disorder in exchange
interactions, thereby establishing a robustness of the refriger-
ator model against impurities.

These results provide a certain insight into how a small
quantum refrigerator may behave when designed using a low-
dimensional quantum spin Hamiltonian, and when disorder
is present in the system. However, it is not clear whether
these trends remain the same when one considers the tra-
ditional three-spin refrigerator. We explore this in the next
section.

IV. THREE-SPIN REFRIGERATOR BASED ON THE
QUANTUM SPIN MODEL

In order to check whether the results of the two-spin refrig-
erator remain qualitatively valid also for the widely studied
three-spin refrigerator, we first explore the case of identical
spin-exchange interactions between all spins, i.e., gi,i+1 =
g ∀i ∈ [1, 2, 3], where g stands for different types of spin-
exchange interactions (see Secs. II A and III B). For brevity,
we denote Jxy

i,i+1 = Jxy, Jz
i,i+1 = Jz, and JDM

i,i+1 = JDM for all i.
Unless otherwise stated, we assume the constraint T 0

1 �
T 0

2 � T 0
3 for the bath temperatures, and always choose their

values as T 0
1 = 1, T 0

2 = 2, T 0
3 = 3 for demonstration. By fix-

ing the strengths of the magnetic fields, we study the response
of the machine on the local cooling phenomena, specifically
in terms of Q̇1 as well as T s

1 , when interaction strengths
Jxy, Jz, and JDM are varied in the range [10−3, 10−1] (see
Fig. 4). Notice that a stark difference between the two- and the
three-spin refrigerators is that for the latter, there are possibil-
ities to choose different interaction strengths between spins,
i and i + 1, i = 1, 2, 3. In this paper, we take them to be site
independent although site dependence does not substantially
effect the cooling procedure as we will see in the succeeding
subsection.

A. Role of interaction strength on refrigeration

The observations for the three-spin refrigerators are quite
similar to the two-spin ones and can be divided into three
categories: (1) increase of Jz while Jxy �= 0, JDM = 0; (2)
variations of Jxy with fixed Jz and JDM = 0, leading to the
XY Z refrigerator; and (3) change of JDM by fixing Jxy with
Jz = 0 which can be referred as the XY DM refrigerator.
In the first case, the presence of a nonzero xy interaction
in the system results in a slow variation of Q̇1 with Jz, while
the corresponding change in the steady-state temperature T s

1
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of spin 1 is vanishing [see Fig. 4(b) for the behavior of T s
1

corresponding to the data presented in Fig. 4(a)]. The increase
(decrease) of Q̇1 (T s

1 ) becomes more prominent in the second
and the third scenarios. As pointed out in the case of the two-
spin refrigerator, the refrigeration can be improved by varying
DM interaction strength compared to the XXZ refrigerator
as depicted in Fig. 4. In all these calculations, we fix γ = 0
in Hxy (i.e., the XX model) since our data suggest that a
nonzero value of γ in the neighborhood of the XX model
has no significant effect on the refrigeration of spin 1 and
the performance of the refrigerator degrades with the increase
of γ .

As it is clear from Figs. 4(a) and 4(b), there is little or
no variation of Q̇1 and T s

1 as a function of the spin-exchange
interactions, when the interaction strength is �10−2. Beyond
10−2, the variations of Q̇1 and T s

1 increase with increasing
the spin-exchange interaction strength. Also, it is important to
note that in the strictly weak-coupling regime, the local refrig-
eration obtained in spin 1 is negligible, although the three-spin
machine operates in the refrigerator region for spin 1. These
findings suggest that in order to obtain a significant cooling
in terms of the temperature of spin 1, one needs to explore
beyond the local master equation, as was also indicated by
the results on the two-spin refrigerator. To investigate whether
significant cooling can be found beyond this local master
equation domain, we relax the weak-coupling condition to
hi > max{Jxy, Jz, JDM}, and find that a considerable steady-
state cooling may indeed be present in such situations. See
Fig. 7 for a typical example, where we have set Jxy, Jz �= 0,
and JDM = 0.

B. Connecting heat current with local temperature in a
three-spin model based refrigerator

Let us here address the question of whether a high
positive value of Q̇1 always implies a low value of steady-
state temperature in a specific spin. To demonstrate it, we
choose 104 random parameter configurations of the three-
spin refrigerator, where the system Hamiltonian is represented
by HS = HF + Hxy + Hz, and we assume gi,i+1 = g ∀i ∈
[1, 2, 3], where g ≡ Jxy, Jz. The random values of the spin-
exchange interaction strengths, and the spin-bath coupling
strengths 	i, ∀i ∈ [1, 2, 3], are chosen from a uniform dis-
tribution within [0, 10−1]. In the scatter diagram presented
in Fig. 5, each point represents a three-spin thermal machine
performing local refrigeration for spin 1, which is indicated by
T 0

1 − T s
1 > 0 and Q̇1 > 0. It is clear from the corresponding

amounts of the steady-state cooling that no specific correlation
exists between T 0

1 − T s
1 and Q̇1. Specifically, a very low value

of heat current can lead to a substantially low steady-state tem-
perature and vice versa. Note also that only about 4.11% of the
104 randomly chosen points result in Q̇1 > 0, which remains
almost unchanged even in the presence of an additional DM
term in HS (in this case, the percentage is 3.25%). It again
indicates the scarcity of a working three-spin refrigerator pro-
viding a significant amount of cooling by considering the local
master equation, which indicates the importance of identify-
ing the subspace in the entire parameter space for designing
a small quantum refrigerator using the chosen quantum spin
models.

 0
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1)

 

FIG. 5. Scattered plot of Q̇1 (ordinate) against T 0
1 − T s

1 (ab-
scissa) of the three-spin XXZ refrigerator. The values of the local
magnetic fields, {h1, h2, h3}, corresponding to the individual spins
are chosen uniformly from [1.1,5] while the values of the spin-bath
interaction parameters {	1, 	2, 	3} as well as the spin-exchange in-
teraction strengths {Jxy, Jz} are chosen from a uniform distribution
of range [0, 10−1]. Here T 0

1 = 1, T 0
2 = 2, and T 0

3 = 3. Among 104

choices of parameters, only 4.11% points are displayed for which
local temperature of the first spin is lower than unity. Results indicate
that there is no monotonic relation between them. Both the axes are
dimensionless.

C. Disorder-enhanced refrigeration in three-spin systems

We will now examine how impurities arising naturally in
the spin model affect the refrigeration. To incorporate impuri-
ties in this three-spin refrigerator model, interaction strengths,
i.e., Jxy

i,i+1 and JDM
i,i+1, are taken to be site dependent and are

chosen randomly from the Gaussian distribution with mean,
〈Jxy〉 and 〈JDM〉, having standard deviation σJxy and σJDM ,
respectively. The magnetic fields are fixed to the same value
mentioned in the ordered case (see Fig. 4). Finally we com-
pute the quenched averaged heat current, 〈Q̇1〉, and quenched
steady-state temperature, 〈T s

1 〉, of spin 1 by averaging over
2 × 103 random configurations for a given strength of the
disorder. Both with the random XY as well as DM interaction
strength, i.e., for a given 〈Jxy〉 or 〈JDM〉 and their correspond-
ing σJxy or σJDM , we report that

〈Q̇1〉 > Q̇1 and 〈T s
1 〉 < T s

1 , (15)

which establishes the disorder-induced thermal device al-
though the increase (decrease) of heat current (temperature
of the first spin) is small. It should be noted that although
in Figs. 6(a) and 6(b), we depict the enhancement of the
cooling feature by using the disordered three-spin refrigerator
over its ordered counterparts by choosing exemplary values of
magnetic fields and other interaction strengths, the character-
istics remain the same even for another range of parameters
in the local master equation. Therefore, as argued in the case
of the two-spin refrigerator, our analysis clearly indicates
that the spin model as a thermal machine is robust against
impurities.

A comment on the significance of the enhancement of
the cooling phenomena in the disordered refrigerator is in
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FIG. 6. Ordered vs disordered spin models as refrigerators. (a, b) For g̃ ≡ 〈Jxy〉, Jz = 0.019 and JDM = 0 with σJxy = 5 × 10−2 (dashed line
with solid squares). When g̃ ≡ 〈JDM〉, Jxy = 0.073 and Jz = 0 while σJDM = 5 × 10−2 (dashed line with solid circles). The quenched averaging
is performed over 2 × 103 random configurations, chosen from Gaussian distribution with mean g̃ and standard deviation, σg̃. A similar set of
parameters is also used for the ordered system (hollow circles and squares). All other specifications are the same as in Fig. 4. (c, d) 〈Q̇1〉 and
〈T s

1 〉 with varying strength of disorder, σg̃ and JDM = 0.02. Other specifications are similar to (a) and (b). All the axes are dimensionless.

order here. For brevity of the notation, let us again denote the
disordered spin-interaction strength by g, where in the present
paper we choose g to be either Jz or Jxy (see also Sec. III B,
and Figs. 3, 4, 6, and 7). Let us denote by g0 the value of g for
which

Q̇1(g0) = max Q̇(g),

T s
1 (g0) = min T s

1 (g),

where the maximization and minimization are performed over
the entire range of g satisfying the weak-coupling constraint,
and by definition, 〈Q̇1〉 � Q̇1(g0) and 〈T s

1 〉 � T s
1 (g0). This can

interpret the results reported in Figs. 6(c) and 6(d) as being far
from the optimal value g0 of g. Note, however, that under the
local master equation, Q̇1 (T s

1 ) increases (decreases) monoton-
ically with g, and g0 is the point g0 = 10−1 in the chosen range
of g. While finding 〈Q̇1〉 � Q̇1(〈g〉) [〈T s

1 〉 � T s
1 (〈g〉)] is likely

for such monotonically increasing (decreasing) behavior of Q̇1

(T s
1 ) when 〈g〉 is far from g0, such straightforward predictions

cannot be made for quantities that vary nonmonotonically
with g. This highlights the importance of investigating the
possibility of enhancement (decrease) in the value of Q̇1 (T s

1 ).

1. Effects of strength of disorder on refrigeration

To probe further, let us check the role of the magnitude
of the disorder on the observed robustness. We systematically
increase the value of the disorder strength up to 10−1, and

observe that with increasing strength of the disorder, the aver-
age value of the heat current of the first spin attains a more
positive value, while the steady-state temperature becomes
lower [see Figs. 6(c) and 6(d)] than that of the model with
low disorder strength. It clearly exhibits an advantage to attain
a lower steady-state temperature of the refrigerated spin in
the presence of disorder where one is forced to operate a
small quantum thermal machine made of three spins as a
refrigerator.

2. Beyond the weak-coupling limit

All the results obtained until now strongly pinpoint that
spin-exchange interaction strength beyond the weak-coupling
limit aids in attaining a lower steady-state temperature of
the refrigerated spin. This poses the natural question as to
whether a quantum refrigerator in the strong-coupling domain
performs advantageously to obtain an even lower steady-state
temperature. It is also logical to ask whether the robustness of
the three-spin refrigerator against disorder remains unaltered
in the strong-coupling regime. Our numerical study of the
three-spin refrigerator in the strong-coupling limit using the
global master equation, as described in Sec. II B, answers both
the questions positively.

Both in ordered as well as disordered scenarios, we
find that the steady-state temperature and the corresponding
quenched averaged temperature of the first spin can substan-
tially be decreased in the strong-coupling domain compared to
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FIG. 7. Study of refrigeration with a global master equation. (a) Q̇1 for the ordered spin model and 〈Q̇1〉 for the disordered ones vs g̃.
(b) Steady-state temperature and its quenched averaged one with varying interaction strengths. Both for disordered and ordered situations,
when g̃ ≡ Jxy or 〈Jxy〉, Jz = −0.55 and JDM = 0 (solid squares for disordered and hollow squares for ordered), while, when g̃ ≡ Jz or 〈Jz〉,
Jxy = −0.4 and JDM = 0 (solid circles and hollow circles for disordered and ordered, respectively). Initial temperatures are the same as in other
three-spin refrigerators. Here h1 = 0.1, h2 = 1.5, and h3 = 1.4, and α1 = 10−4, α2 = 10−3, and α3 = 10−2. In the disordered case, averaging
is performed over 5 × 102 configurations. All the axes are dimensionless.

that obtained in the weak-coupling limit. In Fig. 7, the patterns
of the steady-state temperature T s

1 as well as 〈T s
1 〉 by varying

the corresponding interaction strengths, Jxy or Jz, are depicted
by fixing local magnetic fields of all the spins comparable
to the coupling constants. Note here that due to numerical
limitations, we perform here quenched averaging over 5 × 102

configurations. In this regime also, we exhibit that effects of
randomness in interaction strengths on the physical quantities
quantifying the performance of the thermal machine are not
significant, thereby supporting our claim of the robustness of
the quantum refrigerator against quenched disorder.

While the robustness of local cooling in the disordered
refrigerator is a common feature in both local and global
master equations, an interesting difference between these two
situations emerges from Fig. 7. Note that in the ordered case,
a lower steady-state temperature for spin 1 can be obtained by
varying Jz for a fixed value of Jxy, compared to the situation
when Jxy is varied keeping Jz fixed. The situation alters after
a certain threshold value of the varying parameter.

A higher enhancement of cooling, in terms of both heat
current as well as local temperature of spin 1, is also obtained
when disorder is present in Jz, compared to when Jxy is
disordered. These observations indicate that Jz occasionally
outperforms Jxy in enhancing the performance of the refriger-
ator. In the same context, note that the results reported on the
weak-coupling range of the spin-interaction strengths remain
invariant under changing the value of Jz from a zero to a
nonzero value. However, under the global master equation,
the performance of the refrigerator depends qualitatively (i.e.,
in terms of presence or absence of cooling) as well as quan-
titatively (i.e., in terms of the amount of cooling obtained)
on the value of Jz. This is justified by the result that for a
fixed nonzero value of Jxy (for instance, when −0.65 � Jxy �
−0.45), the system may also exhibit a steady-state heating

of spin 1 at Jz = 0, and a local cooling of spin 1 starts to
appear only when Jz � Jz

c , where Jz
c is a critical value of Jz

that depends on the chosen value of Jxy.
Before concluding, let us point out that the heat current for

spin 1 in the strong-coupling scenario is negative, which is in
contrast to a positive heat current expected for a spin, under-
going a local cooling. Note that the strong-coupling scenario
corresponds to a global approach of constructing the quantum
master equation (see Sec. II B). In view of this, one needs to be
careful in defining the heat current, since a definition in terms
of the local Hamiltonian, given by Q̇i = Tr[Hi

FLi(ρ)], where
Hi

F and Li(ρ) are, respectively, the local Hamiltonian and the
dissipating term corresponding to the subsystem i, may not be
appropriate for the validity of the balance equation given by


 = dS

dt
−

∑
i

Qi

kBTi
, (16)

which, in turn, ensures the validity of the second law of
thermodynamics [63–65,67]. Here, 
 and S, respectively, are
the entropy production rate and the entropy of the system,
Qi is the heat flow from the system to the ith bath, kB is
the Boltzmann constant, and Ti is the absolute temperature of
the bath i. This implies that the determination of Q̇i requires
a careful analysis (see, for example, Ref. [68]), and in an
effort to avoid the inconsistency arising from defining the heat
currents using the local Hamiltonian, we have used the full
system Hamiltonian HS , including both the local and the inter-
action parts, to define the heat current as Q̇i = Tr[HSLi(ρ)]. It
is important to stress here that although one is interested in
the local properties of the refrigerator, in a global approach,
the dynamics of the system is determined as a whole, and
extracting information about a specific subsystem is nontrivial
due to the strong interactions between individual subsystems.
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However, this does not affect the main thesis of this paper,
since local cooling of spin 1 is seen in both cases of the local
and global master equation approach.

V. CONCLUSION

A potential method to build small scale quantum thermal
machines is via quantum spin models which can be imple-
mented by using physical substrates like trapped ions and
neutral atoms in optical lattices. We chose this avenue to
design quantum refrigerators consisting of two and three spins
based on the nearest-neighbor quantum XY Z model as well
as the quantum XY model with DM interactions. The initial
state of the device is prepared in the thermal equilibrium
states of the individual spins which are attached with their
respective local baths, and their interactions are turned on
during the dynamics, which is the refrigeration process. In this
paper, the interaction strength is considered to be both ordered
as well as disordered. Our aim is to show the reduction of
local temperature in one of spins at the steady state, thereby
exhibiting the refrigeration. We call this device a refrigerator
when the temperature of that spin is lower than the minimum
of the initial temperatures of all the spins.

By considering the local master equation, we found that the
cooling of one of the spins occurs when the parameters of the
ordered spin models are appropriately tuned. Specifically, we
observed that DM interactions help to reach lower temperature
than that of the XY Z model while interactions in the z plane
of the XY Z model do not help at all. During the preparation
procedure of the spin model, it is quite natural to have impu-
rities in the system and hence refrigeration should be affected
by the disorder. We observed that both in two- and three-spin
refrigerator models, instead of decreasing the performance,
disorder in the interaction strength can help to increase the
figures of merit for refrigeration, although the advantage is
not significant. It clearly illustrates that the spin model based
quantum thermal machines are robust against impurities. We
finally showed that the robustness against disorder can also

be confirmed beyond the weak-coupling limit by investigating
the global master equation. In future, it will be interesting
to study whether the robustness observed against disorder on
quantum spin model based thermal devices remains valid for
other spin models having different intricacies.
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APPENDIX: QUANTUM MASTER EQUATION FOR THE
TWO-SPIN MODEL

For a two-spin model, let us consider the general form of
the density matrix at time t , given by

ρ(t ) =

⎡
⎢⎣

ρ11(t ) ρ12(t ) ρ13(t ) ρ14(t )
ρ21(t ) ρ22(t ) ρ23(t ) ρ24(t )
ρ31(t ) ρ32(t ) ρ33(t ) ρ34(t )
ρ41(t ) ρ42(t ) ρ43(t )) ρ44(t )

⎤
⎥⎦, (A1)

where ρi j (t ) = ai j (t ) + ibi j (t ), ∀ i �= j and ρii(t ) =
aii(t ), ∀ i = j, both ai j (t ) and bi j (t ) being real. Consider
the initial state of the system to be ρ0 = ρ0

1 ⊗ ρ0
2 , where

ρ0
i = τ 0

i |0〉〈0| + (1 − τ 0
i )|1〉〈1| with τ 0

i = exp(−2β0
i hi )/[1 +

exp(−2β0
i hi )], i = 1, 2. Time evolution of this state,

according to Eqs. (5) and (6), with HS = HF + Hxy (γ = 0),
can be determined by solving the 16 coupled differential
equations, given by

ȧ11 = 	
[
a33n1

2h1
− a11

(
2 + n1

2h1
+ n2

2h2

) + a22n2
2h2

]
, ȧ12 = 	

[ − a12
(
1.5 + n1

2h1
+ n2

2h2

) + a34n1
2h1

] − 2b13J + 2b12h2,

ḃ12 = 	
[ − b12

(
1.5 + n1

2h1
+ n2

2h2

) + b34n1
2h1

] + 2a13J − 2a12h2, ȧ13 = 	
[ − a13

(
1.5 + n1

2h1
+n2

2h2

)+a24n2
2h2

]−2b12J+2b13h1,

ḃ13 = 	
[ − b13

(
1.5 + n1

2h1
+ n2

2h2

) + b24n2
2h2

] + 2a12J − 2a13h1, ȧ14 = −	a14
(
1 + n1

2h1
+ n2

2h2

) + 2b14(h1 + h2),

ḃ14 = −	b14
(
1 + n1

2h1
+ n2

2h2

) + 2a14(h1 + h2), ȧ22 = 	
[
a11

(
1 + n2

2h2

) − a22
(
1 + n1

2h1
− n2

2h2

) + a44n1
2h1

] − 4b23J,

ȧ23 = −	a23
(
1 + n1

2h1
+ n2

2h2

) + 2b23(h1 − h2), ḃ23 = −	b23
(
1 + n1

2h1
+ n2

2h2

) + 2J (a22 − a33) − 2a23(h1 − h2),

ȧ24 = 	
[
a13

(
1 + n2

2h2

) − a24
(
0.5 + n1

2h1
+ n2

2h2

)] + 2b34J + 2b24h1, ḃ24 = 	
[
b13

(
1 + n2

2h2

) − b24
(
0.5 + n1

2h1
+ n2

2h2

)]
− 2a34J − 2a24h1,

ȧ33 = 	
[
a11

(
1 + n1

2h1

) − a33
(
1 + n1

2h1
+ n2

2h2

)
a44n2

2h2

] + 4b23J, ȧ34 = 	
[
a12

(
1 + n1

2h1

) − a34
(
0.5 + n1

2h1
+ n2

2h2

)]
+ 2b24J + 2b34h2,

ḃ34 = 	
[
b12

(
1 + n1

2h1

) − b34
(
0.5 + n1

2h1
+ n2

2h2

)] − 2a24J − 2a34h2, ȧ44 = 	
[
a22

(
1 + n1

2h1

) + a33
(
1+n2

2h2

)−a44
(
n1

2h1
+n2

2h2

)]
,

with n1
2h1

= 1/[exp(2β0
1 h1) − 1] and n2

2h2
= 1/[exp(2β0

2 h2) −
1] [see Eq. (6) and the following discussion]. Notice that the

above coupled differential equations will be changed when
Hs = HF + Hxy + HDM. The time-dependent density matrix
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ρ(t ) of the two-spin system reads as

ρs(t ) =

⎡
⎢⎣

ρ11(t ) 0 0 0
0 ρ22(t ) ρ23(t ) 0
0 ρ32(t ) ρ33(t ) 0
0 0 0 ρ44(t )

⎤
⎥⎦. (A2)

Tracing out spin 2, the local density matrix of spin 1 takes the
form

ρ1(t ) =
[
σ11(t ) 0

0 σ22(t )

]
, (A3)

where σ11(t ) = ρ11(t ) + ρ22(t ) and σ22(t ) = ρ33(t ) + ρ44(t ).
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