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Mixed states driven by non-Hermitian Hamiltonians of a nuclear spin ensemble
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We study the quantum dynamics of a noninteracting spin ensemble under the effect of a reservoir by applying
the framework of the non-Hermitian Hamiltonian operators. Theoretically, the two-level model describes the
quantum spin system and the Bloch vector to establish the dynamical evolution. Experimentally, phosphorous
(31P) nuclei with spin I = 1/2 are used to represent the two-level system and the magnetization evolution is
measured and used to compare with the theoretical prediction. At room temperature, the composite dynamics
of the radio-frequency pulse plus field inhomogeneities (or unknown longitudinal fluctuations) along the z axis
transform the initial quantum state and drives it into a mixed state at the end of the dynamics. The experimental
setup shows a higher accuracy when compared with the theoretical prediction (>98%), ensuring the relevance
and effectiveness of the non-Hermitian theory at a high-temperature regime.
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I. INTRODUCTION

Since the foundations of modern quantum theory, the Her-
mitian property of any operator that yields an observable
quantity, which ensures the compromise between its theoret-
ical physical meaning and its measurability, is deeply related
to the operator’s real eigenvalues. On the other hand, the
non-Hermitian counterpart has always taken a secondary role.
Nevertheless, the non-Hermitian features of some Hamilto-
nian operators have received more attention and are driving
a discussion on quantum harmonic oscillators with an ex-
tra polynomial imaginary potential energy, where theoretical
arguments of PT symmetry emerge to explain its real spec-
trum [1]. These results triggered a series of analogous studies
exploring the PT symmetry as new metric operators’s defini-
tions in the context of pseudohermiticity [2–4], and extending
to different contexts as optical lattices [5], waveguides [6],
driven XXY spin-1/2 chain [7], and performing applica-
tions like a quantum simulation of the fast evolution of a
PT -symmetric Hamiltonian on a two qubit nuclear magnetic
resonance (NMR) system [8]. Furthermore, another work used
a microwave billiard to analyze PT symmetry and sponta-
neous symmetry breaking theoretically and experimentally
[9]. More recently, PT symmetry breaking was implemented
with a single nitrogen-vacancy center in diamond [10], in a
superconducting quantum interference device (SQUID) [11],
hybrid experimental setups as semiconductor devices (In-
GaAsP platform), and optical pumping to generate topological
light-transport channels [12]. In parallel, an intriguing result
arises from the theoretical investigations on time-dependent
non-Hermitian Hamiltonians [13], as in Refs. [14–16], where
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the authors shed light on the possibility of achieving an infinite
degree of squeezing into a finite time interval by defining a
suitable time-dependent metric.

The well-known PT -symmetric non-Hermitian Hamil-
tonians may be seen as closed quantum systems in the
Mostafazadeh’s approach [2–4]. However, a fascinating ap-
plication of non-Hermitian Hamiltonians, not necessarily a
pseudo-Hermitian one, is found in the analysis of an open
quantum system dynamics, which can be developed by
considering an effective non-Hermitian Hamiltonian. If this
condition is chosen, then some implications arise and must be
analyzed to preserve quantum principles. There are arguments
in studies with atoms or molecules trapped on a solid sur-
face [17], photons on cavities [18], the mean-field dynamics
of a non-Hermitian Bose-Hubbard dimer [19] that supports
this quantum approach. Furthermore, the most explored ap-
plication of this approach is the analysis performed on the
quantum speed limit for nonunitary evolution [20–23], the
evolution speed of mixed quantum states [24–26], establishing
evolution speed bounds [22], and the exactly solvable damped
Jaynes-Cummings model for a two-level system interacting
with a bosonic quantum reservoir at zero temperature, consid-
ered to describe the quantum speed limit bounds [27].

In many of those applications, the non-Hermitian prop-
erty of the Hamiltonian operator was successfully explored
to describe the two-level system interacting with a reservoir
[27]. One of the main common characteristics of those previ-
ous theoretical and experimental setups is its low-temperature
regime. It implies that, almost always, the quantum system
evolves to the ground state and the maximum purity value
is achieved. On the other hand, quantum systems at the
high-temperature regime are not frequently analyzed because
quantum signatures are drastically diminished. Nevertheless,
even with these limiting weak quantum features, the nuclear
spin dynamics monitored by the nuclear magnetic resonance
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preserves its quantumness. In this sense, the dynamics of the
spin system with I = 1/2, under a time-dependent transversal
weak magnetic field and its relaxation behavior, was studied in
different approaches applying the Redfield equation [28–32]
and the Bloch equations [33]. In light of those standard
mathematical approaches, the application of non-Hermitian
Hamiltonians emerged as another alternative physical model
to describe decoherence and relaxation dynamics.

From the arguments introduced in the previous paragraphs,
this study explores the non-Hermitian formalism and its ex-
tension to a nuclear spin system in the NMR technique. To
achieve this task, this paper is organized as follows. First, in
Sec. II we introduce the master equation framework and its
extension to the non-Hermitian regime in the framework of the
Bloch vector. Then, in Sec. III, we explain the experimental
setup: the spectrometer, the samples, the Hamiltonian, and the
density matrix of the nuclear spin system. Finally, in Secs. IV
and V we present our main discussions and conclusions,
respectively.

II. SPIN DYNAMICS ON NON-HERMITIAN APPROACH

The primary purpose of our study is to compare experi-
mentally and theoretically the magnetization dynamics of an
ensemble of spin-half nuclei submitted to a weak magnetic
field By along the minus y axis. Ideally, any spin system will
precess around the y axis under the unitary transformation that
characterize the described setup. Moreover, it is well known
that any components of the nuclear magnetization is the sum
of innumerable small contributions from the individual spins.
Therefore, to obtain the net magnetization, we can apply
the successful density matrix method describing the quantum
state of the entire ensemble, without referring to the individual
spin states [34].

For a sample of spin-half nuclei, given the nuclear symme-
try properties and appropriate concentration of nuclei in the
sample, it can be assumed that the N spins in the ensemble
do not interact among themselves, even at room temperature.
Thus, the Redfield approach seems more proper to precisely
describe the dynamical properties of a nuclear spin ensem-
ble [35], which is mathematically described through master
equations [36]. However, nonunitary processes occur during
the NMR experiments, and a rigorous description of spin
dynamics may not be an easy task from the mathematical
point of view due to the complexity of the reservoir.

Therefore, instead of the Redfield approach, we consider
a simple model based on the effective non-Hermitian Hamil-
tonian to obtain a phenomenological description of the time
evolution of the magnetization components. Certainly, the di-
rect application of the non-Hermitian Liouville–von Neumann
equation

ih̄∂t ρ̂ = Ĥeffρ̂ − ρ̂Ĥ†
eff,

might not make sense and cause some confusion when the
trace of the density matrix is not preserved in time. This
entails probability losses and puts the statistical meaning in
an obscure scenario according to the standard quantum for-
malism [37]. However, Brody and Graefe [25] and Sergi and
Zloshchastiev [38] considered the density matrix of a two-
level system and studied the non-Hermitian time evolution

to mimic the coupling with a dissipative environment. They
proposed the following nonlinear Liouville–von Neumann
equation

ih̄∂t �̂ = [Ĥ0, �̂] − i{�̂0, �̂} + 2i Tr[�̂0�̂]�̂ (1)

by introducing a normalized density operator �̂ = ρ̂/Trρ̂
and considering the effective non-Hermitian Hamiltonian
in the form Ĥeff = Ĥ0 − i�̂0, with both Ĥ0 and �̂0 being
Hermitian operators. The nonlinear term 2i Tr[�̂0�̂]�̂ arises
from the time derivative of Trρ̂, and it is accountable for
the trace-preserving time-evolution of �̂. Equation (1) was
broadly applied and deeply discussed in different theoretical
scenarios, such as symmetry breaking [25], criticality in PT -
symmetric systems [39], quantum speed limits [20,23], even
its comparison with the Lindblad equation [40] and others
[41,42].

From some of those discussions, Eq. (1) can be rewritten
as follows:

ih̄∂t �̂ = [Ĥ0, �̂] − i
{
�̂0

�̂(t ), �̂
}
, (2)

where we define the operator �̂0
�̂(t ) = �̂0 − Tr[�̂0�̂]1̂. There-

fore, this master equation points out an effective non-
Hermitian Hamiltonian

Ĥeff(t ) = Ĥ0 − i�̂0(�̂). (3)

Notice that the term Tr[�̂0�̂] introduces a state dependence to
the effective Hamiltonian, which reflects a kind of feedback
over the dynamics as happens in a mean-field approxima-
tion to superradiant emission [43,44]. The Gisin equation is
achieved from Eq. (2) by considering �̂0 = Ĥ0 as a candidate
to describe dissipative quantum dynamics [45]. Furthermore,
Wieser [46] showed that the classical Landau-Lifshitz equa-
tion can be derived from the quantum mechanical description
provided by Eq. (2), assuming certain considerations.

The Hermitian Hamiltonian Ĥ0 of a two-level quantum
system can be written as

Ĥ0 = h̄ωx Îx + h̄ωy Îy + h̄ωz Îz, (4)

where ωk represents the kth angular frequency component
and the basis operators are given by Î0 = 1̂/2 and Îk = σ̂k/2
where σ̂k represents the kth Pauli matrix (k = x, y, z). In ad-
dition, we generalize the Sergi’s approach by including the ad
hoc time-dependent operator �̂0 → �̂(t ):

ih̄∂t �̂ = [Ĥ0, �̂] − i{�̂�̂(t ), �̂}, (5)

with �̂�̂(t ) = �̂(t ) − 2Tr[�̂�̂]Î0 in which we assume the op-
erator �̂(t ) in the general form

�̂(t ) = h̄λ0(t )Î0 + h̄λx(t )Îx + h̄λy(t )Îy + h̄λz(t )Îz, (6)

where the λi’s are real functions to be determined and they
are associated with the reservoir in a phenomenological sense.
Looking at the operator �̂(�̂), we note that the first term in
Eq. (6) does not actually contribute to the dynamics and it can
be neglected.

The general quantum state of a two-level system is given
by

�̂(t ) = Î0 + rx(t )Îx + ry(t )Îy + rz(t )Îz, (7)
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with the time-dependent coefficients

rk (t ) = 2Tr[Îk �̂(t )], (8)

being the kth component of the Bloch vector (k = x, y, z).
We now apply the quantum state (7) and the operator (6) in
the nonlinear non-Hermitian Liouville–von Neumann equa-
tion (2), and obtain a set of differential equations to be
satisfied by rk (t ):

∂t rx(t ) = rx(t )[λx(t )rx(t ) + λy(t )ry(t ) + λz(t )rz(t )]

+ωyrz(t ) − ωzry(t ) − λx(t ), (9a)

∂t ry(t ) = ry(t )[λx(t )rx(t ) + λy(t )ry(t ) + λz(t )rz(t )]

+ωzrx(t ) − ωxrz(t ) − λy(t ), (9b)

∂t rz(t ) = rz(t )[λx(t )rx(t ) + λy(t )ry(t ) + λz(t )rz(t )]

+ωxry(t ) − ωyrx(t ) − λz(t ). (9c)

To describe the depolarization effects, decreasing the ampli-
tude of the magnetization components, we introduce a decay
as a real positive function f (t ). It determines the decreasing
rate in the magnitude of the components of the Bloch vector
along the time. Thus, we infer the solutions having the form

rk (t ) = f (t )r0
k (t ), k = x, y, z, (10)

where we consider f (0) = 1, whereas r0
k (t ) is the kth compo-

nent of the Bloch vector in the absence of any loss processes,
and satisfying the condition

[
r0

x (t )
]2 + [

r0
y (t )

]2 + [
r0

z (t )
]2 = [r0(0)]2, (11)

with r0(0) being a constant fixed at initial time corresponding
to the Bloch sphere radius at t = 0. For initially pure states,
the radius of the Bloch sphere is equal to the unit; otherwise,
for mixed states, it assumes a positive value smaller than
the unit. Furthermore, we suitably choose the λ’s functions
assuming that they are determined from the coherent magne-
tization components r0

x,y,z(t ) according to

λk (t ) = g(t )r0
k (t ), k = x, y, z, (12)

we assume the interaction is turned on at t = 0 and no ex-
changes exist between the system and the reservoir at this
initial time. Thus, we have g(0) = 0. At later times, correla-
tions between the system and the reservoir will arise due to the
coupling, and in this case g(t ) assumes nonnull values. The
components r0

x,y,z(t ) are bounded and behave harmonically in
time. In this approach, the function g(t ) works modulating
these components, and the assumption proposed in Eq. (12)
suggests that the depolarization effects in each component
depend on the Bloch vector components and decrease in time.
Now we consider the solutions (10) and the functions (12)
in the differential equations (9), and taking into account the
condition (11) which is satisfied by r0

x,y,z(t ). Straightforwardly,
Eq. (9) become

∂t r
0
x (t ) = ωyr0

z (t ) − ωzr
0
y (t ), (13a)

∂t r
0
y (t ) = ωzr

0
x (t ) − ωxr0

z (t ), (13b)

∂t r
0
z (t ) = ωxr0

y (t ) − ωyr0
x (t ), (13c)

by imposing the constraint

g(t ) = ∂t f (t )

[r0(0) f (t )]2 − 1
, t > 0, (14)

to describe the coherent dynamics for the r0
k (t ) components.

By considering the system initially prepared in the pure state
corresponding to r0

z (0) = 1 and r0
x,y(0) = 0, the solutions of

Eq. (13) assume the form

r0
x (t ) = ωxωz

�2
[1 − cos (�t )] + ωy

�
sin (�t ), (15a)

r0
y (t ) = ωyωz

�2
[1 − cos (�t )] − ωx

�
sin (�t ), (15b)

r0
z (t ) = ω2

z

�2
[1 − cos (�t )] + cos (�t ), (15c)

with the effective angular frequency �2 = ω2
x + ω2

y + ω2
z .

Since the depolarization effect is described by the operator
(6) in the non-Hermitian approach, we also suppose that it
effectively acts in a finite time interval due to the nonlinear
feature of the relaxation process. This means that the system
does not achieve a maximally mixed state, and to precisely
describe the ensemble dynamics, we introduce the following
Ansatz for the decay function f (t ):

f (t ) = e−δt + ν(1 − e−μt ), (16)

where μ and δ are the decay parameters, and we call ν the
Bloch sphere radius for a long time interval such that ν � 1.
Consequently, the function g(t ) in Eq. (14) becomes

g(t ) = δe−δt − νμe−νt

1 − [e−δt + ν(1 − e−μt )]2 . (17)

For long time intervals, such that μt, δt � 1, the kth compo-
nent of the Bloch vector behaves according to

rk (t ) ≈ νr0
k (t ), (18)

which corresponds to a mixed state regime where the Bloch
vector oscillates with a very small constant amplitude. To
further illustrate this behavior, we apply the purity of the quan-
tum state defined as P(t ) = Tr[�̂2(t )], which can be rewritten
as follows:

P(t ) = 1
2 [1 + r2(t )], (19)

where r2(t ) = r2
x (t ) + r2

y (t ) + r2
z (t ). Note the purity is

bounded, and it is defined in the interval 1/2 � P(t ) � 1,
where the upper and lower bounds correspond to the pure
and the maximally mixed states, respectively. Substituting
Eq. (10) into Eq. (19), we have

P(t ) = 1
2 + 1

2 [e−δt + ν(1 − e−μt )]2, (20)

which for a long time regime, it approximates to

P(t ) ≈ 1

2
+ ν2

2
, (21)

and from this expression it is understood that the system
evolves to a mixed state with very low purity P(t ) � 1/2.

We find that the nonunitary dynamics described by the
effective non-Hermitian Hamiltonian Ĥeff(t ) = Ĥ0 − i�̂�̂(t ),
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FIG. 1. Drawings of the molecular structures of the samples used
in the present study (a) triphenyl phosphate (TPP) C18H15PO4 and the
spectrum of 31P nuclei are sketched. (b) Disodium Phosphate (DSP)
Na2HPO4 and the spectrum of 31P nuclei are sketched. The green
spheres represent 31P nuclei, red spheres represent 16O nuclei, black
spheres represent 12C nuclei, brown spheres represent 1H nuclei,
and blue ellipsoids represent 23Na nuclei. (c) The standard presat-
uration pulse sequence was modified to implement and to monitor
the dynamics of the 31P nuclei of the sample under a non-Hermitian
Hamiltonian. The pulse sequence is divided into four stages; it starts
with a recycle delay d1 to achieve the quantum steady state of nuclei
in the sample. The second stage is devoted to implement the Rabi
regime using the transformation rotation R̂−y(tr ). The third stage
corresponds with the implementation of the tomography procedure
denoted by the dashed square, and at the fourth stage is performed
the readout of the free induction decay (FID).

has the depolarization effects described in the framework of
non-Hermitian operators by the nonlinear operator

�̂�̂(t ) = h̄g(t )
[
r0

x (t )Îx + r0
y (t )Îy + r0

z (t )Îz
]
, (22)

with g(t ) given by Eq. (17) for t > 0. The time-dependent
quantum state dynamic generated by the theory of this study
is similar to the extended model discussed in Ref. [25], where
the system evolves from an initially pure state to a mixed state
due to noise, but here the state remains oscillating around the
fixed point �̂ = Î0 with an amplitude ν, i.e., for long times
the quantum state evolves to �̂ = Î0 + ν[r0

x (t )Îx + r0
y (t )Îy +

r0
z (t )Îz]. In the next section, we apply this approach to de-

scribe two experiments in an NMR setup.

III. EXPERIMENTAL SETUP: TWO-LEVEL
SPIN ENSEMBLE

A single two-level quantum model is implemented exper-
imentally on an ensemble of nuclear spin systems by the
NMR technique. In this sense, the 31P nuclei of the triphenyl
phosphate (TPP) C18H15PO4 molecule, see Fig. 1(a), and dis-
odium phosphate (DSP) Na2HPO4 molecule, see Fig. 1(b),
are used to represent the quantum model. The triphenyl

phosphate sample was prepared at stoichiometric propor-
tions of 0.0485 M triphenyl phosphate and dissolved in
acetone-d6. The disodium phosphate sample was prepared
at stoichiometry proportions of 12.609 M di-sodium phos-
phate and dissolved in deuterated water. Each sample solution
(solute and solvent) was placed in a 5-mm NMR tube. The
sample was placed in a homogeneous strong static magnetic
field of B0 = 9.39 T and oriented along the z axis of a spatial
coordinate frame.

The NMR spectrometer used in this implementation is a
400 MHz-Ascend III Bruker configured for liquid samples. A
multinuclear 5-mm double resonance broadband liquid probe-
head with variable temperature facility, at liquid configuration
supplied by a two-channel probe-head encoded by (H/F)X:
one channel to detect or excite 1H or 19F nuclei signals and the
other one to detect or excite from 31P until 15N nuclei signals.
The 31P control setup for the sample of triphenyl phosphate
run at the radio frequency ωrf = 2π (161.973 MHz), π/2
pulse time is 11.80 μs or equivalently ω1 = 2π (21 186 Hz),
recycle delay is d1 = 80s, acquisition time is τAcq. = 0.8 s.
Also, the transversal relaxation time (T2) and the longitudinal
relaxation time (T1) were experimentally measured and found
to be 1.0 s and 8.1 s, respectively. The 31P control setup
for the sample of disodium phosphate run at the radio fre-
quency ωrf = 2π (161.976 MHz), π/2 pulse time is 13.40 μs,
or equivalently ω1 = 2π (18 657 Hz), recycle delay is d1 =
80 s, acquisition time is τAcq. = 2.0 s. Also, the transversal
relaxation time (T2) and the longitudinal relaxation time (T1)
were experimentally measured and found to be 0.51 s and
12.3 s, respectively. Using these experimental parameters, the
31P signals of the TPP and the DSP samples were measured
with only one scan and the spectra are shown in Figs. 1(a)
and 1(b), respectively. Significant and qualitative differences
between both spectra point out that the 31P spectrum of the
TPP sample is noisier when compared with the 31P spec-
trum of the DSP sample. This characteristic matches with the
stoichiometric relation between sample-solvent for TPP and
DSP samples. Therefore, from now onwards, the experimental
implementations were performed using two scans for the 31P
signal of the TPP sample and using one scan for the 31P of the
DSP sample.

Describing this setup in the laboratory frame, the magnetic
moment of the nuclear spin system interacts with a homoge-
neous magnetic field B0 aligned along the z axis establishing
the Zeeman energy, or the secular Hamiltonian, as the first
energy contribution. This Hamiltonian is denoted by Ĥs =
−h̄γ B0Îz = −h̄ωLÎz where γ is the gyromagnetic ratio, ωL

is the Larmor frequency, and Îk are the nuclear spin opera-
tors. Another time-dependent weak magnetic field B1 parallel
to the xy plane interacts with the magnetic moment of the
nuclei establishing the radio-frequency energy, the second en-
ergy contribution, denoted by Ĥrf(t ) = h̄ω1[cos(ωrft + φ)Îx +
sin(ωrft + φ)Îy], with the radio-frequency strength defined by
ω1 = γ B1. The total energy of the nuclear spin system is
denoted by

Ĥ (t ) = Ĥs + Ĥrf(t ), (23)

such that the Hamiltonian at the rotating frame reads as

Ĥ = −h̄(ωL − ωrf )Îz + h̄ω1(cos φ Îx + sin φ Îy). (24)
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The generation of the effective Hamiltonian is achieved on
resonance ωrf = ωL and precessing around an effective mag-
netic field along the negative y axis with φ = 3π/2 such that
the Hamiltonian of Eq. (24) might be written as Ĥ = −h̄ω1Îy.
Thus, the target quantum state is transformed using a rotation
operator defined by

R̂−y(tr ) = exp

[
− i

h̄
Ĥ tr

]
= exp [iω1tr Îy]. (25)

The most appropriate procedure to experimentally describe
any ensemble of nuclear spins is using the density operator.
Following principles of statistical mechanics, we initially pre-
pared the system in the thermal equilibrium quantum state �̂eq

at temperature T . It is represented by the density operator �̂eq

written as

�̂eq = eβ h̄ωL Îz

Z = Î0 + ε(T )Îz, (26)

where Z = 2 cosh (β h̄ωL/2) is the canonical partition func-
tion, β−1 = kBT (kB is the Boltzmann’s constant), and

ε(T ) = tanh

[
h̄ωL

2kBT

]
, (27)

is the so-called polarization factor. Note the equilibrium state
in Eq. (26) can be rewritten in the suitable form

�̂eq = [1 − ε(T )]Î0 + ε(T )�̂(0), (28)

where �̂(0) corresponds to the initially pure state described
by Eq. (7) for rx,y(0) = 0 and rz(0) = 1. Further, the pure

state is achieved only at extremely low temperatures in which
ε(T ) ≈ 1. However, a remarkable feature of the NMR tech-
nique is the possibility of working at a high-temperature
regime by preparing of a pseudopure state. In this sense, the
thermodynamic stationary quantum state (26) of any NMR
spin system at high-temperature regime has ε(T ) determined
by the first-order term of a Taylor’s expansion of Eq. (27) as
[47]

ε(T ) ≈ h̄ωL

2kBT
, (29)

where T means the room temperature at 24◦ C, ωL is the
Larmor frequency for 31P nuclei at B0 = 9.39 T. Furthermore,
the term proportional to the identity does not contribute to
the measured signal since the NMR observables Îk’s have null
trace. It means that the dynamical behavior of the pseudopure
state is the same as that of a pure state, and all measurements
and experimental data are proportional to the polarization fac-
tor as denoted by Eq. (29) and at the high-temperature regime
is ε(T ) ≈ 1.304 × 10−5. Moreover, the z component of the
spin angular momentum operator Îz represents the so-called
deviation density matrix ��̂0 [47], which is related to the
thermal state (26) as ��̂0 = Îz = (�̂eq − Î0)/ε(T ), which is
traceless. This deviation density matrix can be tomographed
and reconstructed using global rotations [48], and this proce-
dure was explained in Ref. [49] and applied on a similar spin
system.

The nuclear magnetic moment operator m̂ is related to the
angular momentum operator Î by means of the expression
m̂ = h̄γ Î. Thus, the mean value of the kth component of the

)b()a(

FIG. 2. On the top, the bar chart representing the real part of five experimental density matrices labeled by k = 1, 48, 100, 157, and 251 are
depicted. On the bottom, the experimental results (symbols) and theoretical prediction (solid and dashed lines) of the magnetization dynamics
are sketched. Numbered arrows denote density matrices and the respective values are represented by large red square symbols. (a) Data
generated studying the TPP sample, and performing fitting procedures the theoretical parameters were quantified δ = 11.5 μ, μ/ω1 = 3.95 ×
10−3, ωth

1 /ω1 = 1.05, and ν = 6.53 × 10−2. (b) Data generated studying the DSP sample, and performing fitting procedures the theoretical
parameters were quantified δ = 11.5 μ, μ/ω1 = 3.79 × 10−3, ωth

1 /ω1 = 1.07, and ν = 5.82 × 10−2.
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net magnetization is given by

mk (t ) = h̄γ
Tr[Îk �̂(t )]

Tr[�̂(t )]
, (30)

with k = x, y, z. At equilibrium, the net magnetization comes
from the above definition as being meq = h̄γ Tr[Îz�̂eq] ≈
h̄2γωL/4kBT . Additionally, from the general formalism pre-
viously discussed in Sec. II, Eq. (8) allows defining the
measurable dimensionless magnetization component Mk (t )
for the pseudopure state evolving in time, in terms of the
Bloch vector component rk (t ) as

Mk (t ) = mk (t )

meq
= rk (t ). (31)

Therefore, these experimental details match some theoreti-
cal definitions made in the previous section, such that the
two most important are as follows: first, we set the param-
eters of the Hamiltonian (4) as ωx = ωth

1 cos (φ + π ) = 0,
ωy = ωth

1 sin (φ + π ) = ωth
1 , ωz = −(ωL − ωrf ) = 0. Second,

the dimensionless magnetization becomes

Mx(t ) = [e−δt + ν(1 − e−μt )] sin
(
ωth

1 t
)
, (32a)

Mz(t ) = [e−δt + ν(1 − e−μt )] cos
(
ωth

1 t
)
, (32b)

whereas My(t ) = 0. Here, ν means the resilient or residual
magnetization of the sample, μ and δ are decay rates such
that δ > μ. These parameters are given by fitting the exper-
imental data in the theoretical model. The net magnetization
components decrease over time as plotted in Fig. 2 as far as the
system evolves from a pseudopure state to close maximally
mixed state as in Eq. (21), illustrated in Fig. 3.

The initial quantum state, represented by the density matrix
�̂(0), is graphically sketched using bar charts at the top of
Fig. 2, labeled by k = 1 and only the real part of �̂(0) is
plotted because the imaginary part assumes values close to
null. The dynamics of the system is generated by the oper-
ator of Eq. (25) such that the evolved density matrix at the
time tr is denoted by �̂(tr ) where the tomography procedure
was implemented at 251 values of tr,k ∈ [0 s, 500 μs] with
�tr = tr,k − tr,k−1 = 2 μs and some density matrices with
subscripts k = 48, 100, 157, 251 are plotted and shown at
the top of Fig. 2. The final quantum state is represented by
the null density matrix operator, or at least the closest to it as
experimentally possible.

IV. DISCUSSION

Formally, the definition of magnetization matches the the-
oretical definition of the Bloch vector [50] or the pseudospin
notation [51]. Therefore, it allows to transfer all previous
theoretical description to the experimental setup made for
the magnetization of a one spin-half nuclear spin species
[34,47,52]. In this sense, from the experimental density ma-
trices, x, y, z-magnetization components at each tr,k were
computed and the data of the x and z components (circle
and diamond symbols, respectively) are shown at the bottom
of Fig. 2. Similarly, the theoretical prediction of the x- and
z-magnetization components (solid and dashed lines, respec-
tively) are shown in Fig. 2 and were computed using Eq. (32).

0 250 500
0.5

1

t (µs)

P
(t

)

(a)

0 250 500
0.5

1

t (µs)

P
(t

)

(b)

FIG. 3. Normalized purity P(t ) in according to Eq. (20) for the
dimensionless magnetization components in Eq. (32). It is plotted the
purity calculated from the experimental data (symbols) and theoret-
ical prediction (solid lines) for (a) TPP and (b) DSP. The oscillatory
behavior is associated with experimental imperfections.

Theoretical parameters δ, μ, and ν of both mathematical equa-
tions were evaluated performing fitting procedures from the
TPP sample experimental data δ = 11.5 μ, μ/ω1 = 3.95 ×
10−3, and ν = 6.53 × 10−2; measuring the DSP sample δ =
11.5 μ, μ/ω1 = 3.79 × 10−3, and ν = 5.82 × 10−2.

The non-Hermitian approach introduced in this analysis
considers a resilient magnetization ν at long time spin dynam-
ics. This magnetization is characterized by the time regime
t � δ−1 ≈ 165.39 μs for the TPP sample and t � δ−1 ≈
195.852 μs for the DSP sample. This residual magnetization
is due mainly to transversal magnetic field inhomogeneities
along the sample. This signature happens similarly in solvent
suppression NMR experiments to eliminate the 1H signals of
water [53] or of nonpure deuterated solvents [54,55]. In this
sense, the parameter value ν allows to quantify the percent-
age of this residual magnetization, which for both samples
is approximately 6.18 ± 0.36% of the total magnetization,
and apparently it is independent of the sample preparation
stoichiometry. To avoid this uncertainty, the residual magne-
tization of the TPP and DSP sample configures low and high
concentrations of the 31P signal, respectively. For both cases,
the errors are corrected, on average, at the level of a few
(∼0.36) percent. This percentage value could be improved,
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FIG. 4. The fidelity parameter according to Eq. (33) is plotted
for the TPP (solid) and DSP (dashed) samples. Both of them have
a minimum close to 98.5% in 22 and 24 μs, respectively, for TPP
and DSP. It increases slightly over the 30 μs and remains above
99.9%, which means the theoretical model may precisely represent
the experiment’s results.

even closest to the null values, performing any of the suppres-
sion pulse technique [53–55] or similar [34].

This theoretical non-Hermitian approach turns easy to han-
dle with relaxation dynamics of an open quantum system,
making it practical and favoring its direct application for lin-
ear Hamiltonians, and even for quadratic ones. On the other
hand, the standard master equation approach is an efficient
and a rigorous theoretical treatment of open quantum systems
[28–32], but many times must be developed by a laborious
and time-consuming mathematical effort to find the appro-
priate dynamical equations. Contrastingly, the non-Hermitian
approach emerges as an alternative procedure to simplify any
theoretical procedure to mimic the damped effect of the inho-
mogeneities of the time-dependent radio frequency as happens
in the present discussion. This kind of theoretical discussion
can be extended to a more recent NMR experimental setup
[56].

The accuracy of the theoretical predictions may be checked
by calculating the fidelity definition as discussed in Ref. [57]

F(tr,k ) = Tr[�̂th(tr,k )�̂exp(tr,k )]√
Tr

[
�̂2

th(tr,k )
]
Tr

[
�̂2

exp(tr,k )
] , (33)

where we compared the theoretical density operator �̂th(tr,k )
to the experimental one �̂exp(tr,k ). The time evolution of the

fidelity parameter is shown in Fig. 4, in which we obtain the
minimum value of fidelity around 0.985 (or 1.5% of error)
at the time instant 22 and 24 μs for TPP and DSP samples,
respectively. After decreasing slightly to the minimum value
at the first time interval between 0 and 30 μs, both systems
remain with the fidelity close to 1, which means that the
theoretical description matches the experimental data with
great accuracy.

V. CONCLUDING REMARKS

The theoretical approach of non-Hermitian Hamiltonians
is a theoretical framework that could be adapted to mimic
some environment characteristics or modes of interaction
with a quantum system. In this study, the non-Hermitian
Hamiltonian preserves the density operator properties, which
implies probability conservation and normalization. Under the
description of the non-Hermitian Hamiltonian, the density
matrix evolution of 31P spin nuclei ensemble at any time could
be useful for an experimental description of a long external
radio-frequency pulse, or even in a continuous-wave irradi-
ation regime. The residual magnetization at the end of the
dynamics is a signature of the experimental implementation
on solution NMR experiments, introduced in this study and
denoted by the parameter ν. Purity and fidelity definitions are
used to warrant the spin ensemble dynamics’ accuracy and
the experimental implementations’ quality, respectively. This
analysis introduces the theory of non-Hermitian Hamiltonians
as an alternative approach for relaxation processes that can be
extended to other spin interactions like dipolar or quadrupolar
ones by the NMR technique.
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