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Studying the squeezing effect and phase-space distribution of a single-photon-added coherent state
using a postselected von Neumann measurement
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In this paper, ordinary and amplitude-squared squeezing as well as Wigner functions of single-photon-added
coherent state after postselected von Neumann measurements are investigated. The analytical results show that
the weak measurement procedure, which is characterized by postselection and weak value, can significantly
change the principal squeezing feature of the single-photon-added coherent state. From the analysis of the
Winger function we notice that in the strong measurement regime significant interference structures manifest
and the negative regions become larger than the initial pointer state. Our results indicate that after postselected
von Neumann measurement the degree of nonclassicality of single-photon-added coherent state is increased.
It is anticipated that this work may provide alternate and effective methods for solving the state optimization
problems based on the single-photon-added coherent state pointer via a postselected von Neumann measurement
technique.
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I. INTRODUCTION

States which possess nonclassical features are an important
resource for quantum information processing and the inves-
tigation of fundamental problems in quantum theory. It was
shown that squeezed states of radiation fields can be consid-
ered truly quantum [1]. In recent years, studies concerning
squeezing, especially quadrature squeezing of radiation fields,
have received considerable attention as squeezing may have
applications in optical communication and information theory
[2–13], gravitational wave detection [14], quantum teleporta-
tion [14–22], dense coding [23], resonance fluorscence [24],
and quantum cryptography [25]. Furthermore, with the rapid
development of the techniques for making higher-order corre-
lation measurements in quantum optics and laser physics, the
higher-order squeezing effects of radiation fields have also be-
came a hot topic in state optimization research. Higher-order
squeezing of radiation fields was first introduced by Hong
and Mandel [26] in 1985. Hilley [27,28] defined another type
of higher-order squeezing, named amplitude-squared (AS)
squeezing, of the electromagnetic field in 1987. Following this
work, the higher-order squeezing of radiation fields has been
investigated across many fields of research [29–45].

Squeezing is an inherent feature of nonclassical states
and its improvement requires optimization. Some states do
not initially possess squeezing, but after undergoing an opti-
mization process they may possess a pronounced squeezing
effect. The single-photon-added coherent (SPAC) state is a
typical example [46,47]. SPAC states are created by adding
the creation operator a† to the coherent state. This optimiza-
tion changes the coherent state from semi-classical to a new
quantum state which possess squeezing [48]. Since this state
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has wide applications across many quantum information pro-
cesses, including quantum communication [49], quantum key
distribution [50–53], and quantum digital signature [54], the
optimization for this state is worthy of study. In particular,
it may provide another method to the implementations of
the related processes. However, the weak signal amplification
technique proposed in 1988 [55] by Aharonov, Albert, and
Vaidman was widely used in state optimization and precision
measurement problems [56–62]. Most recently, one of the
authors of this paper investigated the effects of postselected
von Neumann measurement on the properties of single-mode
radiation fields [61,62] and found that it can change the pho-
ton statistics and quadrature squeezing of radiation fields for
different anomalous weak values and coupling strengths. In
previous works, squeezing strongly depended on the phases of
the field quadrature components and it needed to be modified
if we regarded its detection process. However, there is another
type of definition of squeezing named principal squeezing
[63]. Principal squeezing is a rotational invariant and is inde-
pendent of the phase of the local oscillator. It can occur more
frequently than the standard squeezing we generally use. Most
interestingly, principal squeezing is really measured in the
homodyne detection, supposing the quadrature correlation to
be different from zero for a value of the local oscillator phase
[63]. Here we have to mention that in our previous work [62],
we only considered the ordinary squeezing with the standard
squeezing definition [64]. Furthermore, if we regarded the
squeezing detection process, the ordinary and higher-order
squeezing needed a new kind of squeezing definition. But,
to the best of our knowledge, the effects of postselected von
Neumann measurement on ordinary and higher-order prin-
cipal squeezing of radiation fields has not been previously
investigated.

In this work, motivated by our prior works [59,61,62],
we study the principal squeezing and phase-space
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edistribution characterized by the Winger function of the
SPAC state after postselected von Neumann measurement.
In this study, we take the spatial and polarization degrees of
freedom of the SPAC state as a pointer (measuring device)
and system (measured system), respectively, and consider
all orders of the time evolution operator. Following the
determination of the final state of the pointer, we check
the criteria for the existence of the principal squeezing of
the SPAC state and find that the postselected measurement
has positive effects on squeezing of the SPAC state in the
weak measurement region. Furthermore, we investigate
the state-distance and the Wigner function of the SPAC
state after measurement. We find that, by increasing the
coupling strength, the original SPAC state spoils significantly,
and the state exhibits more pronounced negative areas as
well as interference structures in phase space after the
postselected measurement. We observe that the postselected
von Neumann measurement has positive effects on its
nonclassicality, including squeezing effects, especially in the
weak measurement region. Since the improvements of those
effects caused by the anomalous weak values are in the weak
measurement procedure, they can be considered a result of the
weak value amplification of the weak measurement technique.

This paper is organized as follows. In Sec. II, we intro-
duce the main concepts of our scheme and derive the final
pointer state after the postselected measurement, which will
be used throughout the study. In Sec. III, we give details of
the ordinary squeezing and AS squeezing effects of the final
pointer state by using the principal squeezing definition. In
Sec. IV, we investigate the state distance and the Wigner
function SPAC state after measurement. A conclusion is given
in Sec. V.

II. MODEL AND THEORY

In this section, we introduce the basic concepts of postse-
lected von Neumann measurement and give the expression of
the final pointer state which we use in this paper. We know
that every measurement problem consists of three main parts,
including a pointer (measuring device), measured system, and
the environment. In the current work, we take the spatial
and polarization degrees of freedom of the SPAC state as the
pointer and system, respectively. In general, in measurement
problems, we want to determine the system information of
interest by comparing the state shifts of the pointer after the
measurement finishes, thus we do not consider the spoiling of
the pointer in the entire measurement process. Here, contrary
to the standard goal of the measurement, we investigate the ef-
fects of pre and postselected measurements taken on a beam’s
polarization (measured system) on the inherent properties of
a beam’s spatial component (pointer). In the measurement
process, the system and pointer Hamiltonians do not effect the
final readouts, so it is sufficient to only consider their interac-
tion Hamiltonian for our purposes. According to standard von
Neumann measurement theory [65], the interaction Hamilto-
nian between the system and the pointer takes the form

Ĥ = g(t )Â ⊗ P̂. (1)

Here Â is the system observable we want to measure and
P̂ is the momentum operator of the pointer conjugated with

the position operator [X̂ , P̂] = i. g(t ) is the coupling strength
function between the system and pointer, and it is assumed
exponentially small except during a period of interaction time
of order T . The coupling strength function g(t ) is normalized
according to

∫ +∞
−∞ g(t )dt = ∫ T

0 g(t )dt = g0. In the current
work, we assume that the system observable A is the Pauli x
matrix, i.e.,

Â = σ̂x = |H〉〈V | + |V 〉〈H | =
(

0 1
1 0

)
. (2)

Here |H〉 ≡ (1, 0)T and |V 〉 ≡ (0, 1)T represent the horizontal
and vertical polarizations of the beam, respectively. We also
assume that, in our scheme, the pointer and measurement
system are initially prepared to

|φ〉 = γ a†|α〉, γ = 1√
1 + |α|2

, (3)

and

|ψi〉 = cos
ϕ

2
|H〉 + eiδ sin

ϕ

2
|V 〉, (4)

respectively. Here α = reiθ and δ ∈ [0, 2π ] and ϕ ∈ [0, π ).
The SPAC state can represent the result of successive
elementary one-photon excitation of a classical coherent
field and occupy an intermediate position between the single
photon and the coherent states, reducing to the two-limit
cases for |α|→0 or |α| being larger than 1, respectively [48].

Here we are reminded that, in weak measurement theory,
the interaction strength between the system and measurement
is weak. Hence it is enough to only consider the evolution of
the unitary operator up to its first order. However, if we want
to connect the weak and strong measurements and investigate
the measurement feedback of postselected weak measurement
procedures and analyze the experimental results obtained in
nonideal measurements, the full-order evolution of the unitary
operator is needed [66–68], We call this kind of measure-
ment a postselected von Neumann measurement. Thus, the
evolution operator of this total system corresponding to the
interaction Hamiltonian, Eq. (1), is evaluated as

e−ig0σ̂x⊗P̂ = 1

2
(Î + σ̂x ) ⊗ D

( s

2

)
+ 1

2
(Î − σ̂x ) ⊗ D

(
− s

2

)
, (5)

since σ̂ 2
x = 1. Here s = g0

σ
is the ratio between the coupling

strength and beam width and it can characterize the mea-
surement types, i.e., the measurement is considered a weak
measurement (strong measurement) if s < 1 (s > 1). D( s

2 ) is

the displacement operator defined as D(α) = eαâ†−α∗â. The
results of our current research are valid for weak and strong
measurement regimes since we take into account the all orders
of the time evolution operator, Eq. (5). In the above calcu-
lation we use the definition of the position and momentum
operator represented in Fock space in terms of an annihilation
(creation) operator â (â†), i.e.,

X̂ = σ (â† + â), (6)

P̂ = i

2σ
(a† − a), (7)

where σ is considered as the size of ground-state wave packet
of the beam. Thus, the total state of the system |ψi〉 ⊗ |φ〉 after
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the time evolution changes to

|�〉 = e−ig0σ̂x⊗P̂|ψi〉 ⊗ |φ〉

= 1

2

[
(Î + σ̂x ) ⊗ D

(
s

2

)
+ (Î − σ̂x) ⊗ D

(−s

2

)]
|ψi〉

⊗ |φ〉. (8)

After we take a strong projective measurement onto the polar-
ization degree of the beam with postselected state |ψ f 〉 = |H〉,
the above total system state gives us the final state of the
pointer and its normalized expression reads as

|�〉 = κ√
2

[
(1 + 〈σx〉w )D

(
s

2

)
+ (1 − 〈σx〉w )D

(
− s

2

)]
|φ〉.

(9)
Here

κ−2 =1 +|〈σx〉|2+ γ 2e− s2

2 Re[(1 + 〈σx〉∗w )(1 −〈σx〉w )

× (γ −2 − s2 + αs − α∗s)e2siIm[α]] (10)

is the normalization coefficient and the weak value of the
system observable σ̂x is given by

〈σ̂x〉w = 〈ψ f |σx|ψi〉
〈ψ f |ψi〉 = eiδ tan

ϕ

2
. (11)

In general, the expectation value of σ̂x is bounded −1 �
〈σ̂x〉ex � 1 for any associated system state. However, as we
can see in Eq. (11), the weak values of the observable σ̂x can
take arbitrary large numbers with small successful postselec-
tion probability Ps = |〈ψ f |ψi〉|2 = cos2 ϕ

2 . This weak value
feature is used to amplify very weak but useful information
on various forms of the related physical systems [69–77].
For details of the applications of weak measurement in sig-
nal amplification processes, we refer the reader to the recent
overview of the field [78,79].

The state given in Eq. (9) is a spoiled version of the SPAC
state after postselected measurement. In the next sections, we
study the squeezing effects and the phase-space distribution,
namely the Wigner function of the state |�〉.

III. ORDINARY AND AMPLITUDE SQUARE SQUEEZING

In this section, we check the ordinary (first-order) and AS
(second-order) squeezing effects of the SPAC state after post-
selected von Neumann measurement. The squeezing effect is

one of the nonclassical phenomena unique to the quantum
light field. The squeezing reflects the nonclassical statistical
properties of the optical field by a noise component lower
than that of the coherent state. In other words, the noise of an
orthogonal component of the squeezed light is lower than the
noise of the corresponding component of the coherent-state
light field. In practice, if this component is used to transmit
information, a higher signal-to-noise ratio can be obtained
than that of the coherent state. Consider a single mode of
electromagnetic field of frequency ω with creation and an-
nihilation operators a†, a. The quadrature and square of the
field-mode amplitude can be defined by operators Xϑ and Yϑ

as [64]

Xϑ ≡ 1
2 (ae−iϑ + a†eiϑ ), (12)

and

Yϑ ≡ 1
2 (a2e−iϑ + a†2eiϑ ), (13)

respectively. For these operators, if �Xϑ ≡ Xϑ − 〈Xϑ 〉,
�Yϑ ≡ Yϑ − 〈Yϑ 〉, the minimum variances with respect to all
the possible phases ϑ are [63,80]

〈(�Xϑ )2〉min = 1
4 + 1

2 [(〈a†a〉 − |〈a〉|2) − |〈a2〉 − 〈a〉2|], (14)

and

〈(�Yϑ )2〉min = 〈
a†a + 1

2

〉 + 1
2 [〈a†2a2〉 − |〈a2〉|2

− |〈a4〉 − 〈a2〉2|], (15)

respectively. Here a and a† are annihilation and creation oper-
ators of the radiation field. If 〈(�Xϑ )2〉min < 1

4 , Xϑ is said to
be ordinary squeezeing and if 〈(�Yϑ )2〉min < 〈a†a + 1

2 〉, Yϑ is
said to be AS squeezing. These conditions can be rewritten as

Sos = 〈a†a〉 − |〈a〉|2 − |〈a2〉 − 〈a〉2| < 0, (16)

and

Sass = 〈a†2a2〉 − |〈a2〉|2 − |〈a4〉 − 〈a2〉2| < 0. (17)

Thus, the system characterized by any wave function may
exhibit nonclassical features if it satisfies Eqs. (16) and (17).

The above criteria for the existince of squeezing is a result
of the principal squeezing [63].

To achieve our goal, we first have to calculate the above
related quantities under the state |�〉. After some calculations
we can get their explicit expressions. Those are listed below.

(1) The expectation value 〈a†a〉 under the state |�〉 is given
by

〈a†a〉 = |κ|2{|1 + 〈σx〉w|2t1(s) + |1 − 〈σx〉w|2t1(−s) + 2Re[(1 − 〈σx〉w )(1 + 〈σx〉w )∗t2(s)]}, (18)

where

t1(s) = γ 2((2 + |α|4 + s|α|2)Re(α) + 3αα∗ + 1) + s2

4
,

and

t2(s) = 1
4γ 2e2isIm(α)e− s2

2 {4|α|4 − 6sα|α|2 + 2[6αα∗ + sα∗2(3α + s)

+ sRe(α)(8 − 9sα − 3s2)] + 11α2s2 + s4 + 6αs3 − 5s2 − 16αs + 4},
respectively.
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(2) The expectation value 〈â〉 under the state |�〉 is given by

〈â〉 = |κ|2γ 2

{
|1 + 〈σx〉w|2

(
2α + α|α|2 + s

2γ 2

)
+ |1 − 〈σx〉w|2

(
2α + α|α|2 − s

2γ 2

)

+ (1 − 〈σx〉w )(1 + 〈σx〉w )∗w1(−s) + (1 + 〈σx〉w )(1 − 〈σx〉w )∗w1(s)

}
, (19)

where

w1(s) = 1
2 e−2siIm(α)[2α(2 + |α|2) + 3sγ −2 − 2α2s + s2(α∗ − 3α)]e− s2

2 .

(3) The expectation value 〈â2〉 under the state |�〉 is given by

〈â2〉 = |κ|2{|1 + 〈σx〉w|2q1(s) + |1 − 〈σx〉w|2q1(−s) + (1 − 〈σx〉w )(1 + 〈σx〉w )∗q2(s) + (1 + 〈σx〉w )(1 − 〈σx〉w )∗q2(−s)}, (20)

where

q1(s) = 1
4γ 2(2α + s)[6α + |α|2(2α + s) + s],

and

q2(s) = − 1
4 e2isIm(α)e− s2

2 γ 2(s − 2α)[6α + α∗(s − 2α)(s − α) + 2α2s + s3 − 3αs2 − 5s],

respectively.
(4) The expectation value 〈â†2â2〉 under the state |�〉 is given by

〈â†2â2〉 = |κ|2{|1 + 〈σx〉w|2 f1(s) + |1 − 〈σx〉w|2 f1(−s) + 2Re[(1 − 〈σx〉w )(1 + 〈σx〉w )∗ f2(s)]}, (21)

where

f1(s) = 1

2
γ 2{2|α|6 + s|α|2[(s2 + 16)Re(α) + sRe(α2)] + 2|α|4[2sRe(α) + s2 + 5]

+ 8α∗α + 6s2α∗α + (2s3 + 8s)Re(α) + 3s2Re(α2)} + s4

16
+ γ 2s2,

and

f2(s) = − 1
16γ 2(s − 2α)(2α∗ + s)

(
2(α∗)2(s − 2α)(s − α) + 20|α|2 + 3sα∗(s − 2α)(s − α)

+ 28isIm(α) + s2(2α2 + s2 − 3αs − 9) + 16e− 1
2 s(s−4iIm[α])

)
,

respectively.
(5) The expectation value 〈â4〉 under the state |�〉 is given by

〈â4〉 = |κ|2{|1 + 〈σx〉w|2h1(s) + |1 − 〈σx〉w|2h1(−s) + (1 + 〈σx〉w )∗(1 − 〈σx〉w )h2(s)

+ (1 + 〈σx〉w )(1 − 〈σx〉w )∗h2(−s)}, (22)

where

h1(s) = 1
16 [8αγ 2|α|2(α + s)(2α2 + s2 + 2αs) + s4 + 8αγ 2(10α3 + 2s3 + 9αs2 + 16α2s)],

and

h2(s) = − 1
16γ 2e2isIm(α)e− s2

2 (s − 2α)3[10α + α∗(s − 2α)(s − α) + 2α2s + s3 − 3αs2 − 9s],

respectively.

Here we have to mention that, if 〈a2〉 − 〈a〉2 and 〈〈a4〉 −
〈a2〉2〉 are all real, respectively, then the principal squeezing
and standard squeezing which we used in previous work [62]
are equivalent [63]. However, in this work, as we can see,
those quantities both are complex and it give a rotationally
invariant squeezing effect in contrast to the prior work.

Using the expression for Sos, the curves for this quantity
are plotted and the analytical results are shown in Fig. 1. In
Fig. 1(a), we fix the parameter r = 1 and plot Sos as a function
of the coupling factor s for different weak values quantified
by ϕ. As we observe, when there is no interaction between the

system and the pointer (s = 0), there is no ordinary squeezing
effect of the initial SPAC state. However, in the moderate cou-
pling factor regions such as 0 < s < 2, the ordinary squeezing
effect of the SPAC state is proportional to the weak value, i.e.,
the larger the weak value, the better its squeezing effect. From
Fig. 1(a) we also can see that the ordinary squeezing effect
of the light field gradually disappears and tends to the same
value for different weak values by increasing the coupling
factor s in the strong measurement regime. In Fig. 1(b), we
plot Sos as a function of the state parameter r in the weak
measurement regime by fixing the coupling factor s (s = 0.5).
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FIG. 1. The effects of postselected von Neumann measurement
on ordinary squeezing of SPAC state. Panel (a) shows the quantity
Sos as a function of coupling factor for different weak values with
fixed coherent state parameter (r = 1). Panel (b) shows quantity Sos

as a function of coherent state parameter r for different weak values
with fixed coupling factor (s = 0.5). Here we take θ = π

4 , δ = π

6 .

It is very clear from the curves presented in Fig. 1(b) that
the ordinary squeezing effect of the SPAC state is increased
when increasing the weak value, especially when ϕ is taken
as 7π

9 . Furthermore, along with the increasing r (for r values
exceeding 1.5), the squeezing effect of the field for different
weak values tends to be the same. In the weak measurement
procedure the SPAC state shows a good ordinary squeezing
effect after postselected measurement with large weak values.
This can be seen as a result of the signal amplification feature
of the weak measurement technique.

The quantity Sass can characterize the AS squeezing of the
SPAC state if it takes negative values. In Fig. 2 it is plotted
as a function of various system parameters. As indicated in
Fig. 2(a), when we fix the coherent state parameter r, the Sass

can take negative values in the weak measurement regime
(s < 1); its negativity increases when increasing the weak
value quantified by ϕ. That is to say, in the weak measurement
procedure, the magnitude of the weak value has a linear rela-
tionship with the AS squeezing effect of the SPAC state, i.e.,
the larger the weak value, the better the AS squeezing effect.
However, by increasing the coupling strength, the value of Sass

becomes larger than zero and it indicates that there is no AS
squeezing effect of the SPAC state in the postselected strong
measurement regime (s > 1) no matter how large the weak

FIG. 2. The effects of postselected von Neumann measurement
on AS squeezing of SPAC state. (a) the Sass as a function of coupling
factor s for different weak values with fixed coherent state parameter
r (r = 1); (b) the Sass as a function of coherent state parameter r for
different weak values with fixed weak coupling factor s (s = 0.5).
Other parameters are the same as those used in Fig. 1.

value is taken to be. To further investigate the AS squeezing
of the radiation field in the weak measurement procedure, we
plot Sass as a function of the coherent state parameter r for
different weak values with fixed coupling factor (s = 0.5).
The analytical results are shown in Fig. 2(b). We can see that
when r is relatively small, there is no AS squeezing effect
no matter how large the weak value we take. By increasing
the system parameter r, Sass takes negative values and its
negativity is proportional to r. From Fig. 2(b) we can also
observe that, in the weak measurement procedure, the weak
values have positive effects on the AS squeezing of the SPAC
state and it can also be considered a result of the weak signal
amplification feature of the postselected weak measurement
technique.

According to the results of recent theoretical and experi-
mental studies [81,82], when the interaction strength changed
from weak to strong postselected measurement regimes, the
value of the system observable changed from weak value to
the expectation value, respectively, and there was not any sig-
nal amplification effect in strong measurement regimes. Thus,
in strong postselected von Neumann measurement the “weak
value” has no significant impact on the inherent properties of
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the system. This statement can also be verified in Figs. 1(a)
and 2(a).

IV. STATE DISTANCE, MEASUREMENT ACCURACY, AND
WIGNER FUNCTION

A. State distance

The postselected measurement taken on the polarization
degree of freedom of the beam could spoil the inherent prop-
erties presented in its spatial part. Before we investigate the
phase-space distribution of the SPAC state after postselected
von Neumann measurement, we check the similarity between
the initial SPAC state |φ〉 and the state |�〉 after measure-
ment. The state distance between these two states can be
evaluated by

F = |〈φ|�〉|2, (23)

and its value is bounded 0 � F � 1. If F = 1 (F = 0), then
the two states are totally the same (totally different). The F in
our case can be calculated after substituting Eqs. (3) and (9)
into Eq. (23) and the analytical results are shown in Fig. 3.
In Fig. 3(a) we present the state distance F as a function of
state parameter r for different coupling factors with a fixed,
large weak value. As shown in Fig. 3(a), in the weak coupling
regime (s = 0.5), the state after the postselected measurement
maintains its similarity with the initial pointer state |φ〉 as the
coherent state parameter r increases. However, by increas-
ing the coupling factor, the initial state |φ〉 is spoiled and
the similarity between the pointer states before and after the
measurement decreases dramatically [see Figs. 3(a) and 3(b)].
Furthermore, from Fig. 3(b) we can observe that the distortion
of the SPAC state after the measurement strongly relates to the
magnitude of weak values and coupling factors. In the weak
measurement regime (0 < s < 1), the larger the anomalous
weak value is, the larger the distortion of the state occurrs.

In contrast to the original purpose of the weak value
achieved in the two-state vector formalism of quantum theory
[55], the role of the weak value in the present work is to
manipulate the external degrees of freedom of the pointer
state rather than to obtain information of the system. In
general, there are three kinds of existing values of a sys-
tem observable including the eigenvalue, expectation value,
and weak value, which depends on different measurement
circumstances. Among them, the eigenvalue and expecta-
tion value usually occurr in strong measurement models, but
the weak value is a natural way to express the value of
the system observable in pre and postselected intervals in
the weak measurement procedure. The transition from the
weak value to the (conditional) expectation value can be
realized by making the transition from Aharonov’s weak
measurement to von Neumann’s strong measurement. This
transition is characterized by a transition factor e−s2/2 [81,82].
However, the actual effects of those three values on the pointer
is not very clear, but a recent study [83] gave a clue to this
puzzle. The authors investigated the fact that the nature of
the weak value is different from the nature of the expectation
value of the system observable, so the weak value describes
the interaction in the same way as the eigenvalue does.

FIG. 3. The state distortion after taking measurement. (a) The
state distance between |�〉 and initial SPAC state |φ〉 as a function
of coherent state parameter r for various coupling factors. (b) The
state distance between |�〉 and initial SPAC state |φ〉 as a function
of coupling factor s for various weak values, and we r = 1. (c) The
Bures angle, Eq. (24), as a function of coupling factor s for various
coherent state parameter r. Here, we set other parameter as θ = π

4 ,
δ = π

6 , ϕ = 7π

9 .

To verify their claims in our scheme, we calculate the state
distance of the pointer for the same expectation value and
weak value of the observable σ̂x. If we assume the expecta-
tion value and weak value of σ̂x is equal to 1, then only the
|↑x〉 = 1/

√
2(|H〉 + |V 〉) state of σ̂x can produce this fixed

same value. After taking the related measurement procedures,
we can find the final states of the SPAC state pointer for the
above two cases and evaluate the distance. By following the
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authors of Ref. [83], we express the distance between two
states by using the Bures angle

DA ≡ arccos |〈�ex|�w〉|, (24)

where |�ex〉 = D( s
2 )|φ〉 and |�w〉 = N [2 − D( s

2 )]|φ〉 repre-
sent the final states of the SPAC state pointer caused by the
same expectation value and weak value, respectively. The
Bures angles [see Eq. (24)] as functions of the coupling factor
s for different state parameter r are shown in Fig. 3(c). The nu-
merical results indicate that, in our scheme, the exactly equal
expectation value and weak value (i.e., 〈σx〉ex = 〈σx〉w = 1)
have different effects on the SPAC state pointer. Here, we must
mention that in our scheme the chosen corresponding state
is not flexible for the same fixed eigenvalue, the expectation
value, and weak value, in contrast to that in Ref. [83].

Before we jump to the next subsection related to the phase-
space distribution of our measurement scheme, we want to add
some analysis about the accuracy of the weak measurement
based on the coherent and SPAC state pointers, respectively.
In our measurement model, the general expression of the
unnormalized final state of the pointer after the measurement
process is given by

|�〉 = 〈ψ f |e−ig0σ̂x⊗P̂|ψi〉 ⊗ |Θ〉

= 〈ψ f |ψi〉
2

[
(1 + 〈σx〉w )D

(
s

2

)
+ (1 − 〈σx〉w)D

(−s

2

)]
|Θ〉.

(25)

Here |Θ〉 is the arbitrary initial state of the pointer. Next
we find the expectation values of the pointer under the final
pointer state |�〉 for |�〉 considered as the coherent state and
SPAC state, respectively.

(1) The coherent state |Θ〉 = |α〉 = D(α)|0〉. For this
pointer state, the expectation value of the position observable
X̂ = σ (â† + â) after the postselected measurement is given
as [59]

〈X 〉coh, f = 〈�|X̂ |�〉
〈�|�〉

= 2σ |λ|2{Re[α](1 + |〈σx〉w|2) + sRe[〈σx〉w]

+ Re[(1 − 〈σx〉∗w )(1 + 〈σx〉w )e−2isIm[α]]

× Re[α]e− 1
2s2

}
, (26)

with

λ−2 = 1 + |〈σx〉w|2

= Re[(1 − 〈σx〉∗w )(1 + 〈σx〉w )e−2isIm[α]]e− 1
2s2 . (27)

In the weak measurement regime, we obtain

〈X 〉coh,w = lim
s→0

〈X 〉coh, f = gRe[〈σx〉w] + 〈X 〉i, (28)

where 〈X 〉i = 〈α|X̂ |α〉 = 2σRe[α] is the expectation value
of X̂ under the initial pointer state |α〉. Thus, the shift of
the coherent state pointer after the weak measurement is
equal to

δXcoh,w = gRe[〈σx〉w]. (29)

(2) The SPAC state |Θ〉 = |φ〉. If we take the initial state
of the pointer in the SPAC state, which we considered in

the present work, then the expectation value of the position
observable X̂ = σ (â† + â) under the final pointer state |�〉
[see Eq. (9)] is written as

〈X 〉spac, f = 〈�|X̂ |�〉 =2σRe[〈â〉] + 〈X 〉spac,i, (30)

where 〈X 〉spac,i = 〈φ|X̂ |φ〉 = 2σγ 2(2 + |α|2)Re[α] is the ex-
pectation value of X̂ under the initial pointer state |φ〉 and 〈â〉
is given by Eq. (19). In the weak measurement regime, we
obtain

〈X 〉spac,w = lim
s→0

〈X 〉spac, f = gRe[〈σx〉w]

− g
∂Var(X )|φ〉

2σ 2∂θ
Im[〈σx〉w] + 〈X 〉spac,i. (31)

Here

Var(X )|φ〉 = σ 2γ 4(3 + 4|α|2 sin2 θ + |α|4) (32)

is the variance of the position variable under the initial SPAC
state |φ〉. We can deduce that the shift of the SPAC state
pointer after the weak measurement procedure is equal to

δXspac = 〈X 〉spac,w − 〈X 〉spac,i

= gRe[〈σx〉w] − g
∂Var(X )|φ〉

2σ 2∂θ
Im[〈σx〉w]. (33)

We know that the SPAC state is generated by adding one
photon to the coherent state [46,47]. However, we can see that,
in the weak measurement procedure, the shift of the coherent
state pointer only depends on the real part of the weak value
〈σx〉w, but the shift of the SPAC state pointer is related to the
real and imaginary parts of the weak value simultaneously.
Equations (29) and (33) fit with Josza’ s theorem [84], thus
we can conclude that in the weak measurement procedure the
expectation value of the system observable X̂ of the SPAC
state pointer is not exactly equal to the weak value, in contrast
to the coherent state. As mentioned above, the single-photon
Fock state and the coherent state correspond to the two-limit
cases (for |α| → 0 or |α| 1) of the SPAC state. In these two
extreme cases, the second term of Eq. (33) tends to zero and
then the shift of the pointer is equal to the coherent state case.

B. Wigner function

To further explain the squeezing effects of the SPAC state
after the postselected von Neumann measurement, in the rest
of this section we study the Wigner function of |�〉. The
Wigner distribution function is the closest quantum analog of
the classical distribution function in phase space. According
to the value of the Wigner function, we can intuitively de-
termine the strength of its quantum nature, and the negative
value of the Wigner function proves the nonclassicality of the
quantum state. The Wigner function exists for any state and
it is defined as the two-dimensional Fourier transform of the
symmetric-order characteristic function. The Wigner function
for the state ρ = |�〉〈�| is written as [64]

W (z) ≡ 1

π2

∫ +∞

−∞
exp(λ∗z − λz∗)CW (λ)d2λ, (34)
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FIG. 4. Wigner function of SPAC state with changing parameters. Each column is defined for the different coherent state parameter α with
r = 0, 1, 2, and are ordered accordingly from left to right. Panels (a) to (c) correspond to s = 0, (d) to (f) correspond to s = 0.5, and (g) to (i)
correspond to s = 2. Other parameters are the same as those used in Fig. 3.

where CW (λ) is the Weyl-ordered (symmetrically ordered)
characteristic function and is defined as

CW (λ) = Tr[ρeλa†−λ∗a]. (35)

Using the notation λ′, λ′′ for the real and imaginary parts of λ

and setting z = x + ip to emphasize the analogy between the
radiation field quadratures and the normalized dimensionless
position and momentum observables of the beam in phase
space, we can rewrite the definition of the Wigner function
in terms of x, p and λ′, λ′′ as

W (x, p) = 1

π2

∫ +∞

−∞
e2i(pλ′−xλ′′ )CW (λ)dλ′dλ′′. (36)

By substituting the final normalized pointer state |�〉 into
Eq. (36), we can calculate the explicit expression of its Wigner
function and it reads as

W (z) = 2|κ|2
π (1 + |α|2)

e−2|z−α|2

× {|1 + 〈σx〉w|2w(s) + |1 − 〈σx〉w|2w(−s)

+ 2(−1 + |2z − α|2)Re[(1 + 〈σx〉w )∗(1 − 〈σx〉w )

× e2isIm[z]]}, (37)

with

w(s) = e− 1
2 s2

e−2(Re[α]−Re[z])s

×
(

− 1 + |2z − α|2 + 2s

[
Re[α] − 2Re[z] + s

2

)]
.

(38)

This is a real Wigner function and its value is bounded − 2
π
�

W (α) � 2
π

in the entirety of the phase space.
To depict the effects of the postselected von Neumann

measurement on the nonclassical feature of the SPAC state,
in Fig. 4 we plot its curves for different state parameters r and
coupling factor s. In Fig. 4, each column from left to right,
in turn, indicates the Winger functions of |�〉 for different
coherent state parameters r, namely r = 0, 1, and 2, and each
row from up to down represents the different coupling factors
s = 0, 0.5, and 2, respectively. It is observed that the positive
peak of the Wigner function moves from the center to the
edge position in phase space and its shape gradually becomes
irregular with changing coupling factor s. From the first row
[see Figs. 4(a) to 4(c)] we can see that the original SPAC state
exhibits inherent features, changing from the single-photon
state to coherent states, with a gradually increasing coherent
state parameter r. Figures 4(d) to 4(i) indicate the phase-space
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density function W (z) after the postselected von Neumann
measurement. Figures 4(d) to 4(f) represent the Wigner func-
tion for fixed weak interaction strength s = 0.5. It can be
observed that the Wigner function distribution shows squeez-
ing in phase space compared to the original SPAC state. This
kind of squeezing is more pronounced with increasing cou-
pling factor [see Figs. 4(g) to 4(i)]. Furthermore, in Figs. 4(g)
to 4(i) we can see that, in the strong measurement regime,
significant interference structures manifest and the negative
regions became larger than the initial pointer state.

As mentioned above, the existence of progressively
stronger negative regions of the Wigner function in phase
space indicates the degree of nonclassicality of the associated
state. From the above analysis we can conclude that, after
the postselected von Neumann measurement, the phase-space
distribution of the SPAC state is not only squeezed, but the
nonclassicality is also more pronounced in the strong mea-
surement regime.

V. CONCLUSION

In this paper, we studied the squeezing and Wigner func-
tion of the SPAC state after the postselected von Neumann
measurement. To achieve our goal, we first determined the
final state of the pointer state along with the standard measure-
ment process. We examined the principal squeezing effects
of the pointer after the postselected weak measurement pro-
cedure. We found that, in the weak measurement regime, the
ordinary squeezing and AS squeezing of the SPAC state’s light
field increased significantly as the weak value increased.

To further explain our result, we examined the similarity
between the initial SPAC state and the state after measure-
ment. We observed that, under the weak coupling, the state
after the postselected measurement maintains similarity with
the initial state. However, as the intensity of the measurement
increased, the similarity between them gradually decreased.
This indicated that the measurement spoiled the system state if
the measurement was strong. We also investigated the Wigner
function of the system after postselected measurement. It was
observed that, following the postselected von Neumann mea-
surement, the phase-space distribution of the SPAC state is
not only squeezed, but also develops significant interference
structures in the strongly measured regime. It also possess
pronounced nonclassicality characterized by a large negative
area in phase space.

As previous works indicated, the higher-order squeezing,
named AS squeezing, of the electromagnetic field is a natural
way to generate the higher-order squeezed states [28]; it can
be used for reducing the noise in the output of certain nonlin-
ear optical devices [27,28]. We anticipate that the theoretical
scheme in this paper may provide an effective method for
solving practical problems in quantum information processing
associated with the SPAC state.
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