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Particle transport in quantum systems, which can be modeled by quantum walks on graphs, demonstrates a
faster propagation advantage over the corresponding transport in classical systems. As known from several graph
examples, achieving further advantages is possible by adding directional control in quantum walks. One way to
introduce directional bias is via time-reversal symmetry breaking that can be achieved with chiral quantum
walks, where complex phases are added to the edge weights. However, it is not known for which complex
phases values and on which graphs quantum transport can be enhanced. Therefore, the classification of graph
properties remains an open problem. Here we tackle this graph classification problem with a graph convolutional
neural network trained on a set of simulated examples. We find that chiral quantum-walk dynamics leads to
almost always faster transport on hypercubes compared to nonchiral dynamics. We connect our paper to physical
implementations of quantum walks in superconducting qubits and optical waveguides. Our results open the
possibility and flexibility of experimental implementations in demonstrating quantum-walk advantage.
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I. INTRODUCTION

A quantum walk [1–5], an analog to a classical random
walk [6–8], is a stepwise process of walker state changes
defined on a graph. Both quantum walks and classical ran-
dom walks appear broadly in nature [9–13], hence making
quantum- and random-walk process simulation significant
[14–18]. In addition to simulation nature, there are widespread
applications [19] in randomized algorithms [20–22], search
algorithms [23–26], machine learning [27–29], quantum gates
design [30], and universal models for quantum computing
[31,32].

Compared to random walks, quantum walks are funda-
mentally different. First, due to the superposition principle,
a quantum walker’s state can represent a superposition of
several states. Second, quantum walkers have no path defined:
only a measurement probabilistically determines a walker
position on the graph. Due to these differences, one can get
a significant advantage in quantum transport properties on
graphs. However, one can also experience a quantum disad-
vantage because of the lack of directional control on graphs.
The directional control cannot be easily implemented because
of the time-reversal symmetric evolution of quantum systems
[33]. Nonetheless, there is a possibility to break the time-
reversal symmetry on graphs with complex edge weights.
Quantum-walk dynamics on graphs with complex weights is
known as chiral quantum walks [34–36].

The existence of quantum advantage in particle transport
depends on several factors: graph topology, initial and target
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vertices positions, measurement type, and decoherence rates.
As was shown in Refs. [37,38], machine learning can be
of great help in finding classifying factors. Machine learn-
ing is becoming increasingly more useful in automation of
problem solving in quantum physics research [39,40]. New
reinforcement learning algorithms, inspired by the success of
automated designs [41], were shown to be capable of design-
ing new quantum experiments [42–44], and of discovering
new concepts in physics from observed data [45,46]. In ad-
dition to designing new experiments, machine learning helps
in designing new quantum algorithms [47] and protocols [48].
Then, machine learning is used to realize these experiments
and protocols in quantum devices, by autonomously learning
how to control [49–52], error correct [53–55], and measure
quantum devices [56].

In this paper, we consider the chiral quantum walk, which
gives many more possibilities to control the transport due to
the continuous spectrum of phases attached to graph edges.
In general, chiral quantum walks represent one way to add
direction into the graph structure. The directed graphs evoke
great interest in the quantum domain due to their impor-
tant applications in information science (see Refs. [57,58]).
Remarkably, there exist different ways to introduce directed
graphs in the case of a quantum walker. In particular, it is
possible through the control of nonunitary terms in the Gorini-
Kossakowski-Sudarshan-Lindblad equation [see Eq. (5)], by
means of time-dependent Hamiltonians and/or Hamiltonians
with PT symmetry [57]. In our paper complex-valued weights
are added to the edges of the graphs. We study arbitrary graphs
and special cases of two possible implementations of quantum
walks in currently available quantum devices and train the
machine learning model to predict quantum advantage.
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The paper is structured as follows. First, we describe chiral
quantum-walk dynamics on graphs, and demonstrate several
consequences of these dynamics using hypercube graphs.
Next, we introduce a modified architecture of a convolu-
tional neural network to classify graphs according to chiral
quantum-walk properties of these graphs. We then demon-
strate the convolutional neural network’s effectiveness by
considering several graph sets, including two special cases
relevant for quantum walks’ near-term experimental imple-
mentations. We finish the paper by summarizing the results
and discuss their impact.

Chiral quantum walks and particle transfer

Continuous-time quantum walks (CTQWs) of a single par-
ticle are considered in this paper. A particle can be thought
of as an excitation that hops in superposition between neigh-
boring vertices on a graph defined by a weighted adjacency
matrix A. The quantum-walk dynamics is governed by the
Hamiltonian

H = h̄ω

d∑
i, j=1

βi j |i〉〈 j|, (1)

where βi j are couplings between graph vertices i and j, and
h̄ω is a constant energy associated with transitions between
the vertices. The coefficients βi j establish a weighted edge of
a graph with d vertices having a weighted adjacency matrix A
with components

Ai j = βi j, (2)

for all edges connecting vertices i and j. A quantum walker,
which can be considered as a quantum system with d basis
states |i〉, i ∈ [1, d], is described by a state |ψ (t )〉 at the
time t . The state |ψ (t )〉 = U (t )|ψ (0)〉, where U (t ) = e−iωAt ,
can be reverted to the initial state |ψ (0)〉 with the unitary
U †(t ) = eiωA†t . In case of the real-valued couplings β, the ini-
tial state is obtained with U †(t ) = U (−t ), which corresponds
to replacing t with −t . Therefore, this CTQW case with real
edge weights corresponds to the time-symmetric evolution.
The time-symmetric evolution is standard in quantum walks
[1,4].

The time asymmetry can arise in chiral quantum walks due
to a more general case of complex-valued couplings β. Chiral
quantum walks are quantum walks on graphs with complex
edge weights, introducing complex phases in the adjacency
matrix. We denote the adjacency matrix with complex edge
values as Ac, which has the components

(Ac)i j = eiϕi j βi j, (3)

with phases ϕi j . One can relate the adjacency matrix to the
Hamiltonian H = h̄ωAc. The chiral quantum-walk dynamics
allows for directional control that can contribute to quantum
search [59] and to potential time-controlled quantum routers
in complex quantum networks [60].

A quantum state |ψ (t )〉 = ∑d
i αi(t )|i〉, arising from the

evolution with the Hamiltonian in Eq. (1), defines a proba-
bility distribution over the graph pq(t ) = |αi(t )|2. Changing a
probability distribution is one of the central problems in ran-
dom walks. Specifically in the particle transfer problem, one

is interested in the time it takes for a particle to stochastically
move from one, initial, vertex to another, target, vertex on a
given graph. Quantum particles can be faster or slower than
classical particles in reaching target vertices. To perform a
comparison, one simulates a probability vector pcl(t ) corre-
sponding to a classical particle evolution, which is

pcl(t ) = e(T −I )t p(0). (4)

Matrix T is the transition matrix, which is a matrix of prob-
abilities Ti j for a walker to go from vertex j to vertex i. The
transition matrix is obtained from the real-valued adjacency
matrix A by normalizing all columns of A to one.

To cover a complete picture of quantum dynamics, we have
to consider a quantum walker as an open quantum system.
It relates to the discussed fundamental difference between
classical random walks and quantum walks: the measurement
device is needed to read out the walker’s state, hence perturb-
ing the unitary dynamics.

Measurement devices can be connected to all the vertices
[61], however for particle transfer studies one needs only one
measurement at the target vertex. A measurement apparatus
coupled to a target vertex can be modeled as a sink vertex,
to which walkers decay with a certain rate once the target
vertex is reached [62]. We simulate the chiral quantum walks
combining open dynamics by numerically solving the Gorini-
Kossakowski-Sudarshan-Lindblad equation:

dρ(t )

dt
= − iω[Ac, ρ(t )] + γ

(
Lρ(t )L† − 1

2
{L†L, ρ(t )}

)
,

(5)

where L = |sink〉〈target| is a Lindbladian term that connects
target and sink vertices and γ is the coupling strength. In case
γ = 0, one goes back to the unitary dynamics case discussed
above, and no particle will be captured.

The solution of Eq. (5) for the hypercube graph is shown
in Fig. 1 for three different hypercube dimensions: n = 2
(square), n = 3 (cube), and n = 4 (tesseract). The transfer
probabilities, which are probabilities of reaching the target
vertex, are compared for classical, quantum, and chiral quan-
tum walks. From Fig. 1 one sees that depending on the initial
and target vertex positions and the hypercube dimension, dif-
ferent types of walks reach the 1/ log d transfer probability
threshold.

II. CONVOLUTIONAL NEURAL NETWORK
CLASSIFYING CHIRAL QUANTUM WALKS

To classify graphs according to the classical random-walk
and quantum-walk properties, we design a convolutional neu-
ral network similar to the one introduced in Ref. [37]. The
classical-quantum convolutional neural network (CQCNN)
used in this paper has several differences compared to
the original CQCNN architecture. First, the two previous
implementations [37,63] were designed to deal only with real-
valued unweighted adjacency matrices A. Here we study a
more general case of chiral quantum walks requiring reliable
feature extraction from complex-valued weighted adjacency
matrices Ac. Second, the previous CQCNN implementations
were not designed for large input matrices and high variability
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FIG. 1. Particle transfer probabilities on hypercube graphs of dimensions n = 2, 3, and 4. Particle transfer is performed via three different
stochastic mechanisms: classical random walk (yellow), quantum walk (gray), and chiral quantum walk (orange). The transfer probability
threshold is shown as a dashed line. The corresponding hypercubes are shown in the inset. Initial vertices are shown as purple, whereas targets
are green.

in their size. Here, by studying hypercube graphs, we have in-
put matrices scaling as d = 2n with the hypercube dimension
n.

The CQCNN architecture designed for graph classification
in this paper is shown in Fig. 2. The neural network consists
of two parts: convolutional layers and classification layers.
The input adjacency matrix Ac comes in the form of two
real-valued matrices ReAc and ImAc. The total number of ac-
tivated input neurons is 2d2 with normalized neuron values in
the region from −1 to 1. The input is then passed through five
edge-to-vertex (ETV) filters, each of the size d2, to perform
convolution. The ETV filter ETV(m) performs the following
operation on an input matrix I to produce an output vector o
with components:

oETV(m)

i (I ) =
n∑

k=1,k �=i

(
ETV(m)

ik

)
Iik + (

ETV(m)
ki

)
Iki. (6)

The filter aims to extract features using information about the
adjacent edges’ connectivity for every given vertex. The five
ETV filters’ output consists of ten vectors of dimension d ,
which are then flattened and passed through two fully con-

nected layers of neurons with rectified linear unit activation
functions to allow for nonlinear classification functions. The
hidden layer consists of five neurons, independently of d .
The final output is a value of two neurons y1 and y2 that are
converted to an output class as argmax(y1, y2).

We next apply the described CQCNN network to different
datasets. First, two special cases of hypercubes that are rele-
vant for experimental implementation are considered. The first
case is linked to the qubit quantum register implementation,
whereas the second case is relevant for photonic implementa-
tion. We then consider a general case of arbitrary hypercube
graphs with chirality, followed by an example of random
graph sets.

A. Chiral quantum walks on hypercubes with qubits

The first special case of chiral weighted hypercube graphs
under consideration is defined by an underlying symmetry
appearing in the binary encoding of vertices [18]. One can em-
bed an n-dimensional hypercube into an n-dimensional space,
where each axis has exactly two positions for the vertices.
One can label these positions as 0 and 1. This case is graph-
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FIG. 2. Schematic representation of a CQCNN implemented as a binary classifier. The neural network consists of convolutional layers and
fully connected layers. The CQCNN takes a graph adjacency matrix Ac input and outputs a prediction of which walker is faster on a given
graph: quantum or classical. The total number of neurons is specified for an input graph with d vertices. This CQCNN architecture is fixed for
all the supervised learning tasks studied in the paper.
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FIG. 3. Chiral quantum walks on hypercubes with a binary encoding symmetry. (a) Encoding a state of a quantum walker on 2n vertices in
n qubits. Examples of n = 2, 3, and 4 are shown. The same colors represent edges related to each other due to the binary encoding symmetry.
(b) Learning curves of the CQCNN on the chiral hypercube graphs with the above symmetry for n = 4 (tesseract). The average over 100
independent parallel CQCNN runs is shown. (c) Learning performance after 40 epochs, with the batch size equal to the total training dataset,
shown for different hypercube dimensions. The average over 100 independent parallel CQCNN runs is shown.

ically illustrated in Fig. 3(a). Edges, for which the connected
vertices have the same binary encoding up to a single bit flip,
are assigned the same weight eiϕk as they correspond to the
symmetric edges shown in Fig. 3(a). For this special case, the
adjacency matrix of the hypercube (hc) can be decomposed in
the following way:

Ahc
c =

n−1∑
i=0

I⊗i
2 ⊗ Aqubit i

c ⊗ I⊗n−1−i
2 , (7)

where I2 is a two-dimensional identity matrix, Aqubit i
c is a

two-vertex adjacency matrix corresponding to an arbitrary
Hamiltonian acting on a qubit i. This symmetry and the con-
sequential simplification provide a possibility to implement
quantum walks in the space of qubits. Moreover, these quan-
tum walks can be simulated on a quantum computer efficiently
with n qubits for d = 2n dimensional graphs. Successful
implementation of quantum walks on up to 25-dimensional
hypercubes was demonstrated on the IBM Q quantum com-
puter [18]. The quantum transfer speedup was demonstrated
using a time-reversal symmetric quantum walk; however, the
same mapping can be used to simulate a chiral quantum walk.

To determine if there is a quantum advantage in the chiral
quantum-walk case, one has to simulate the walk for given
amplitudes and locations of a given initial and target vertices.
In addition to this, a sink vertex described in Eq. (5) introduces
a difference in the dynamics making it even harder to estimate
the potential quantum advantage. For that reason, we next use
the CQCNN to classify graphs according to their quantum
advantage.

To achieve an accurate prediction on quantum advantage,
we first generate sets of 1000 graphs with random edge phases
from zero to 2π (chosen uniformly) for each of the 2n − 1
possible target vertices for a fixed initial vertex 1. These sets
are generated for n = 2, 3, and 4 separately by numerically
solving Eq. (5). We use 70% of examples in the datasets for
CQCNN training, and 30% are used in a test set. We use the
batch size equal to the total dataset, known as the batch mode,
and minibatches of size 100 to compute the loss and perform
back-propagation. These datasets are used to train and test
100 independent CQCNN networks, each contributing to an
averaged learning performance result shown in Figs. 3(b)
and 3(c).

The learning performance is evaluated by four metrics:
accuracy, loss, precision, and recall. The loss that corresponds
to the cross entropy loss function estimates the quality of
the machine learning model on the training set, whereas the
accuracy, which is defined as a fraction of the correctly clas-
sified graphs from the test set, estimates the quality of the
model on the test set. Precision and recall shed light on the
performance on the test set further: recall is the fraction of
correct predictions in a particular class (classical or quantum),
and precision is the fraction of predictions in a particular class
(classical or quantum) that turned out to be correct.

As seen in Fig. 3(c), the performance measures on test
graphs have similarities: the learning done on graphs with
n = 2, 3, and 4 demonstrates an average performance over
0.9 for classification accuracy with the performance being
best in case of n = 4. An improvement of performance with
increasing n, given the same dataset size, is explained by the
increase in the number of edges less affected by the measure-
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FIG. 4. Quantum walks on weighed hypercubes with a Hamming distance symmetry. (a) Encoding a state of a quantum walker on 2n

vertices in n + 1 optical waveguides. Examples of n = 2, 3, and 4 are shown. The same colors represent edges with the same Hamming
distance relative to the leftmost initial vertex. (b) Learning curves of the CQCNN on the weighted hypercube graphs with the above symmetry
for n = 3 (cube). The average over 100 independent parallel CQCNN runs is shown. (c) Learning performance after 40 epochs, with the batch
size equal to the total training dataset, shown for different hypercube dimensions. The average over 100 independent parallel CQCNN runs is
shown.

ment device. The phase value can be ignored for the edges
where the particle evolves coherently, which is learned by the
neural network. Details on the learning performance dynamics
are shown in Fig. 3(b) for n = 4. We achieve a nearly perfect
classification performance only after three epochs, each using
the full training dataset.

B. Quantum walks on weighted hypercubes in
optical waveguides

The second experimentally relevant dataset that we con-
sider uses the symmetry appearing relative to the initial vertex.
On hypercube graphs vertices with the same Hamming dis-
tance from the initial vertex have the same transfer probability.
In this symmetry case, shown in Fig. 4(a), edges connect-
ing vertices with the same Hamming distance have the same
weight. Figure 4(a) demonstrates that a quantum-walk space
can be significantly reduced from 2n vertices to n + 1 vertex
in the mapped space. There is a change in hopping ampli-
tudes βi j associated with this mapping. The mapping is well
suited for photonic quantum walks, which stand out from
other experiments. In photonic experiments, it is quite natural
to implement single-particle and noninteracting multiparticle
continuous-time quantum walks. This can be done via coher-
ent propagation of photons in optical waveguide arrays, where
the distance between waveguides controls the amplitudes βi j

[64–66].
To find out if there exists a quantum advantage in a

weighted hypercube of considered symmetry, one has to sim-
ulate the walk for given weights, and locations of given initial

and target vertices. As in the previous section, the sink vertex
described in Eq. (5) introduces a difference in probability
distributions which is hard to estimate in practice. For that
reason, we next use the CQCNN to classify graphs according
to their quantum advantage.

We have generated sets of 1000 graphs with random edge
weights from 0 to 1 (chosen uniformly) for each of the 2n − 1
possible target vertices for a fixed initial vertex 1. These sets
are generated for n = 2, 3, and 4 separately by numerically
solving Eq. (5). We use 70% of examples in the datasets
for CQCNN training, and 30% are used in a test set. These
datasets are used to train and test 100 independent CQCNN
networks, each contributing to an averaged learning perfor-
mance result shown in Figs. 4(b) and 4(c). We use the batch
size equal to the total dataset, known as the batch mode, and
minibatches of size 100 to compute the loss and perform back-
propagation. From the results in Fig. 4(c), where the learning
is done on graphs with n = 2, 3, and 4, we obtain the classi-
fication accuracy above 0.85 for all n, with the performance
being best in case of n = 4. An improvement of performance
with increasing n, given the same dataset size, is interesting
and highlights that CQCNN learns more from larger graphs.
Details on the learning performance dynamics are shown in
Fig. 4(b) for n = 3.

C. Chiral quantum walks on arbitrary hypercubes and
random graphs

We finish our results with the most general case studied in
this paper: the case of arbitrary chiral quantum-walk dynamics
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FIG. 5. (a) Learning results for the chiral quantum walks on hypercube graphs of dimension n = 2, 3, 4, and 5. Training is performed
during 40 epochs, with the batch size equal to the total training dataset. The average over 100 independent parallel CQCNN runs is shown.
(b) Learning results for the chiral quantum walks on random graphs with d = 15 vertices. Training is performed during 40 epochs, with the
batch size equal to the total training dataset. The average over 100 independent parallel CQCNN runs is shown.

on hypercubes, and dynamics of random graphs. The learning
results are shown in Fig. 5 for hypercubes (a) and random (b)
graphs. Random graphs are uniformly sampled from the set
of connected graphs. We generated datasets of 1000 graphs
with random edge phases from 0 to 2π (chosen uniformly)
for each of the 2n − 1 possible target vertices for a fixed
initial vertex 1. The displayed classification results are worse
than in the experimentally relevant special hypercube cases in
previous sections. The performance decreases with n, which is
explained by the limited availability of the training data. Given
that the number of different graphs grows as factorial with n
and d , 1000 training examples are becoming less sufficient
for larger graphs. Nonetheless, the classification accuracy sur-
passes the random guess significantly, making it possible to
use the new CQCNN architecture for chiral quantum walks
on arbitrary graphs.

III. DISCUSSION

Chiral quantum walks, which introduce time-symmetry
breaking, are studied in this paper. Introducing direction-
dependent transitions on graphs opens a possibility to further
speed up quantum transport. It is, however, difficult to find
out if a given graph topology, a given configuration of edge
phases, and given target vertices would allow observing a
quantum advantage.

In this paper, we introduced a supervised learning method-
ology to study quantum transport of chiral quantum walks. We
optimized the architecture and significantly reduced network
parameters compared to the previous versions of graph convo-
lutional neural networks for quantum-walk classification. The

presented development of the graph neural network approach
is designed to predict the performance of a quantum circuit,
or an underlying quantum system, given its graph structure.
We tested our machine learning algorithm on various datasets,
both special cases of experimental implementation relevance
and general cases of hypercube and random graphs. First,
we have observed that chiral quantum walks have improved
quantum particle transfer on hypercubes. Second, we achieved
the classification accuracy of 90–100% in the case of quan-
tum walks with qubits, and 80–90% accuracy in the case
of quantum walks in optical waveguides. Finally, our graph
classifier learned by achieving an accuracy of 60–70% on
general hypercube cases, and random graphs with up to 15
vertices. Given the relatively small size of the training set,
our results demonstrate the practical possibility of predicting
chiral quantum-walk transport advantage on arbitrary graphs.
This paper paves the way for faster particle transport leading
to more efficient energy transport and better quantum infor-
mation processing.
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