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We introduce an approach to characterize the dynamics of disordered quantum networks. Each quantum
element (i.e., each node) of the network experiences the other nodes as an effective environment that can be
self-consistently represented by a Feynman-Vernon influence functional. For networks having the topology of
locally treelike graphs, these Feynman-Vernon (FV) functionals can be determined by a new version of the cavity
or belief propagation (BP) method. Here, we find the fixed point solution of this version of BP for a network of
uniform quantum harmonic oscillators. Then, we estimate the effects of the disorder in these networks within
the replica symmetry ansatz. We show that over a large time interval, at small disorder, the real part of the
FV functional induces decoherence and classicality while at sufficiently large disorder the Feynman-Vernon
functional tends to zero and the coherence survives, signaling in a time setting, the onset of an Anderson’s
transition.
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I. INTRODUCTION

This work proposes an approach to describe real-time dy-
namics of quantum networks. The approach is geared toward
the evolution of single systems (nodes) in networks of locally
treelike topology, such as random graphs or random hyper-
graphs. As we will see, there is a natural dichotomy between
networks without disorder, where grosso modo each system in
the network behaves as if interacting strongly with a bath, and
networks with disorder. In the latter, each node experiences
the network as dissipation, but shielded from decoherence,
implying the presence of a different mechanism to preserve
quantumness that is independent of the single constituents of
the network.

To begin explaining the approach it is convenient to bring
in the classical cavity method; a way to simultaneously com-
pute all marginals of a Gibbs-Boltzmann distribution when
the interaction graph has no short loops. It is computa-
tionally efficient, taking a time polynomial in system size,
exact when interactions form tree graphs, and in many cases
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asymptotically exact when the graph size tends to infinity.
Comprehensive modern references are Refs. [1–3]. The cavity
method has found many applications to biology, sociology,
computer science and artificial intelligence, where it is often
called belief propagation (BP) [4].

A version of the cavity method for quantum systems was
introduced in 1973 [5]. In that pioneering version, the object
is the time-independent wave function on a Bethe lattice or
a Cayley tree; cavity equations connect different sites where
energy enters as a parameter. Recent applications of this fam-
ily of methods have been to bosons on the Cayley tree [6],
and to the Anderson transition on random graphs [7,8]. A
second type of applications of the cavity method to quantum
problems is to thermal equilibrium states [9,10]. Several other
attempts have been made to generalize BP to quantum systems
by taking BP messages to be operator-valued. A selection of
papers in this direction and in the ones outlined above are
Refs. [11–17].

Our approach is an extension of the cavity method to study
the real-time dynamics of quantum systems. We exploit the
influence functional technique developed by Feynman and
Vernon [18] quite long ago, and we show that the real-time
quantum cavity can be realized as transformations of influence
functionals on influence functionals. While for Feynman and
Vernon the goal was to understand the influence of an envi-
ronment on a test system, in this work the system of interest
is the environment or network itself. We want to understand
the dynamical behavior of many quantum interacting units
influencing each other.

We exploit the essence of the cavity method, the marginal-
ization of the variables of interest, starting—in this case—
from the reduced density matrix of an open system. However,
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in contrast to quantum cavity for thermal equilibrium states,
each node of the network is in the real-time dynamics de-
scribed by two histories and two Feynman path integrals. The
result of integrating out all the other histories is an influence
functional acting on one node only [18]. The difficulty is then,
to calculate self-consistently all these functionals. The main
goal of this paper is to show how to make this computation but
also to present their properties and consequences, in simple
but still relevant cases.

Some of the current computing architectures are based on
units with limited connectivity, such as 27-qubit Falcon and
5-qubit Canary processors designed by IBM [19]. Moreover,
the properties of networks of such systems have been investi-
gated extensively [20–24], e.g., in the context of generation
arbitrary quantum states using local operations and shared
entanglement between the nodes [20]. In addition, a platform
to simulate quatum Cayley-tree Ising Hamiltonians was real-
ized using Rydberg atoms [25]. The real-time quantum cavity
method introduced here gives a different approach to describe
the dissipation and decoherence present in such setups. This
may prove useful for developing noise characterization and
mitigation techniques for current noisy intermediate scale
quantum (NISQ) devices [26] but also for the developing of
novel results regarding noise threshold theorems for fault-
tolerant quantum computation [27].

The rest of this manuscript is organized as follows: In
Sec. II we briefly introduce the cavity method in its gen-
eral form. Although a well-established technique in statistical
physics, it is less known in quantum science and quantum
information, and we hence offer this summary for readers of
this community. After this introduction, we show in Sec. III
how these ideas can be extended to study quantum dynamics
in diluted networks. Then, in Sec. IV we present exact results
for networks of uniform quantum harmonic oscillators, and in
Sec. V we loosen the requirement of uniformity and extend the
analysis—at the replica symmetric level—to networks with
quenched disorder. Finally, we present the conclusions and an
outlook of our work Sec. VI. Technical details are given in a
series of Appendices.

II. INTRODUCTION TO THE CAVITY METHOD

The cavity method in its most widely used incarnation is
a way to simultaneously compute all marginals of a Gibbs-
Boltzmann distribution when the interaction graph has no
short loops [1–3]. The interaction graph is here a represen-
tation of an energy function containing only pairwise terms:
there is a link i- j between units i and j if there is term in
the energy function which depends on the corresponding vari-
ables Xi and Xj . The cavity method can be straightforwardly
generalized to energy functions containing more than pair-
wise interactions which are then represented as hypergraphs.
Such systems can however always be reduced to pairwise
interactions by introducing appropriate dummy variables and
constraints.

The starting point of the cavity method, still of this most
common type, is a joint probability distributions of the type

P(X1, . . . , XN ) = 1

Z

∏
i

φi(Xi )
∏

i j

ψi j (Xi, Xj ), (1)

where φi(Xi ) are one-body terms, ψi j (Xi, Xj ) are two-body
terms, and Z is a normalization constant. For Gibbs-
Boltzmann distributions φi(Xi ) = e−βEi (Xi ) and ψi j (Xi, Xj ) =
e−βEi j (Xi,Xj ), β = 1

kBT and T is temperature and kB is
Boltzmann’s constant. Equation (1) is however more gen-
eral; ψi j (Xi, Xj ) can for instance encode hard constraints
which do not depend on temperature. In the next sec-
tion we will be concerned with a yet wider generalization,
where P(X1, . . . , XN ) is a multivariable quantum mechanical
path probability amplitude (of both forward and backward
paths), and Z is implicit in the normalization of Feynman
path integrals.

In classical systems, the cavity method is from a formal
point of view embodied in BP output equations and BP update
equations. We illustrate these two types of equations in Fig 1.
The BP output equations are

pi(Xi ) = 1

Zi
φ(Xi )

∏
a∈∂i

ma→i(Xi ), a = (i − j), (2)

where pi(Xi ) is the BP approximation to the marginal prob-
ability of variable Xi, Zi is a normalization, and ma→i(Xi ) is
the contribution to the marginal distribution from “summing
out” all variables in the graph starting from neigbor j of i.
The use of a to denote the interaction term i- j is conventional;
the second product in above could therefore also have been
written

∏
j∈∂i m(i j)→i(Xi ).

In our generalization pi(Xi,Yi ), which has to depend on
two variables of the same type, is the probability amplitude of
system i, and ma→i(Xi,Yi ) are the Feynman-Vernon influence
functionals from integrating out all variable in the network
starting from a. Note that the preceding sentence has a precise
meaning if the network is a tree. If in fact the network is only
locally treelike, then ma→i(Xi,Yi ) should be looked at as a
part of an approximation to a total Feynman-Vernon influence
functional as discussed below.

The BP update equations for classical probability distribu-
tions are a pair of equations

ni→a(Xi ) = 1

�i→a
φ(Xi )

∏
b∈∂i\a

mb→i(Xi ), (3)

ma→i(Xi ) = 1

�a→i

∑
Xa\Xi

ψa(Xa)
∏

j∈∂a\i

n j→a(Xj ), (4)

where �i→a and �a→i are normalization constants and Xa is
a shorthand for the pair (Xi, Xj ) [the sum

∑
Xa\Xi

is thus over
Xj and the product

∏
j∈∂a\i n j→a(Xj ) contains only one term;

as written the expressions however also hold for multivariable
interactions]. In our generalization the sum

∑
Xa\Xi

goes over
to

∑
(Xa,Ya )\(Xi,Yi ) which is a (multivariable) path integral, and

the normalizations �i→a and �a→i are implicit in these path
integrals.

In the real-time quantum cavity method which we intro-
duce mj→i and n j→i are very high-dimensional objects, and
the update step (n to m iteration) is therefore computationally
expensive. For harmonic networks this aspect is mitigated as
one can then use the Feynman-Vernon theory with closed-
form expressions for the actions in the influence functionals.

A useful analogy for the more general computational chal-
lenge is the cavity method applied to describe the dynamics
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FIG. 1. Left panel: illustration of the marginal probability amplitude over local histories as expressed by Eq. (2). In the real-time cavity
method messages nj→i are equal to exp( i

h̄ Fj→i ) where Fj→i is a Feynman-Vernon action discussed in text representing the effect of integrating
out nodes in the graph subtended from j, but not j itself. Right panel: illustration of the recursive Eqs. (3) and (4). Nodes labeled k are
here coupled to a node labeled j, which in turn is coupled to a node labeled i. Message mj→i is obtained by a double path integral over the
histories Xj and Yj of node j with the bare action Sj , the interaction action Si j , and the upstream influence Fj→i. This message hence represents
integrating out all nodes subtended from node j, and node j itself. Message nj→i is on the hand obtained by combining messages mk→ j for k
in the neighborhood of j except i.

of classical spin systems [28–39]. Also in this case mj→i and
n j→i are very high-dimensional objects, and the update step
(n to m iteration) computationally expensive. Further assump-
tions or approximations are therefore also then needed to get
useful results; in Ref. [28] it is assumed that interactions are
fully asymmetric, which allows for marginalization over time;
mj→i and n j→i then become low-dimensional objects. Alter-
natively one can do Markov closure in discrete or continuous
time [32,35–37] to reduce the dynamics to low-dimensional
iterations, the accuracy of which however needs to be assessed
numerically. More advanced approximations have also been
explored, in both discrete and continuous time [33,34,39].

III. THE REAL-TIME QUANTUM CAVITY

We now proceed to define BP for the dynamics of quantum
networks interacting as locally treelike graphs. Each system i
in the network is represented by a set of commuting observ-
ables which we write X̂i, possibly with several components.
The corresponding time-dependent coordinate integrated over
in the path integral approach is written Xi(t ). The variables
which we start from are the trajectories X1 . . . XN of the de-
grees of freedom of the systems in the network, and the state
of the network is the full density matrix, ρ(t ) = U (t )ρ0U †(t ).
In the path integral approach this is expressed as

U (t ) · U †(t )

=
∫

DXiDYi · · · exp
i

h̄
(S[Xi] + S[Xj] − S[Yi]

− S[Yj] + S[Xi, Xj] − S[Yi,Yj] + · · · )

× ρ0[xi(ti ), . . . , yi(ti ), . . .], (5)

where ρ0[xi(ti ), . . . , yi(ti ), . . .] is the initial density operator
of the whole network. A characteristic feature of real-time
quantum dynamics is that for each system there is one “for-
ward path” (denoted X , representing U ) and one “backward
path” (Y , representing U †) [18]. The action contains two

kind of constitutive action parts. S[Xi] and S[Yi] are the self-
interactions of system i and thus represent the evolution of the
density matrix by a single-system Hamiltonian Hi. S[Xi, Xj]
and S[Yi,Yj] are the interactions between systems i and j,
neighbors in the interaction graph, and represent the evolution
of the density matrix by a system-system interaction Hamilto-
nian Hi j .

We are interested in the reduced dynamics of the ith node,
obtained by tracing out all other nodes. Tracing first out all
units except the ith unit and its neighbors labeled j, we can
rewrite Eq. (5) as an evolution equation for the density matrix
of system or node i:

ρ
(i)
f [Xi(t f ),Yi(t f )]

=
∫

DXiDYi

∏
j∈∂i

DXjDYj

× exp

[
i

h̄
(S[Xi] − S[Yi] + S[Xj]

− S[Yj] + S[Xi, Xj] − S[Yi,Yj])

]

× exp
{ i

h̄
F∂i[(Xj,Yj ) j∈∂i]

}
ρ

(i)
0 [xi(ti ), yi(ti )]

×
∏
j∈∂i

δ[x j (t f ) − y j (t f )] ρ
( j)
0 [x j (ti ), y j (ti)]. (6)

Here and in the following we assume a factorized initial state,
and we explicitly trace the final state of all states j ∈ ∂i,
the set of neighbors of i. The functional F∂i is the result of
integrating over the histories and tracing the final state of all
variables except those in node i and ∂i. It is a functional of
the histories in ∂i, but does not know about i itself. In cavity
method language one says that variable i has been removed,
and its place in the original network has been replaced by a
cavity.
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The locally treelike geometry means that the variables in
∂i are far apart in this new cavity network. They are not
independent, but after i has been removed their dependence is
through many intermediate nodes. The fundamental assump-
tion of the cavity method on the replica symmetric (RS) level
is that in a large enough network the nodes in ∂i are eventually
independent. This means that F∂i simplifies as

F∂i =
∑
j∈∂i

Fj→i[Xj,Yj] (RS cavity assumption). (7)

Structurally, Eq. (6) with Eq. (7) is now a BP output equation
where the the Fj→i play the roles of BP messages.

To put this into practical terms, this real-time quantum
cavity method exploits the Feynman-Vernon functionals inte-
grating out a whole tree subtended by one node. As discussed
in the previous section these are of two types, convention-
ally in the cavity literature called “n-type” and and “m-type”
messages. When all terms in the action are quadratic we
parametrize these messages as explicit Feynman-Vernon ac-
tions [18]:

n j→i[Xj,Yj] = e
i
h̄ Fj→i[Xj ,Yj ] = exp

{
i

h̄

∫ T

τ

∫ t

τ

k j→i
I (s, t − s)[Xj (t ) − Yj (t )][Xj (s) + Yj (s)]dtds

}

× exp

{
−1

h̄

∫ T

τ

∫ t

τ

k j→i
R (t, s)[Xj (t ) − Yj (t )][Xj (s) − Yj (s)]dtds

}
, (8)

mj→i[Xi,Yi] = e
i
h̄ F̃j→i[Xi,Yi] = exp

{
i

h̄

∫ T

τ

∫ t

τ

k̃ j→i
I (s, t − s)[Xi(t ) − Yi(t )][Xi(s) + Yi(s)]dtds

}

× exp

{
−1

h̄

∫ T

τ

∫ t

τ

k̃ j→i
R (t, s)[Xi(t ) − Yi(t )][Xi(s) − Yi(s)]dtds

}
. (9)

The kernels k j→i (symbol without tilde) in n j→i multiply histories pertaining to the ingress node (node j). They represent the
effect of integrating out the histories of the systems in all nodes neighbors to j or subtended from neighbors of j, except node
i and nodes subtended from i. If the network is not harmonic, then the Feynman-Vernon action contains terms of every order
(cubic, quartic, etc.). The kernels of those higher order terms are given by connected correlation functions in the environment,
in analogy to that kI and kR in above are related to the pairwise correlation functions in a harmonic environment [40].

One relation between n-messages and m-messages follows from the most basic property of influence functionals; that
influence functions from disjoint environments multiply. In our case we write this as

n j→i[Xj,Yj] ≡ exp
[ i

h̄
Fj→i[Xj,Yj]

]
=

∏
k∈∂ j\i

mk→ j[Xj,Yj] ≡ exp

⎡
⎣ i

h̄

∑
k∈∂ j\i

F̃k→ j[Xj,Yj]

⎤
⎦, (10)

which for the kernels translate to

k j→i
I (s, t − s) =

∑
k∈∂ j\i

k̃k→ j
I (s, t − s), (11)

k j→i
R (s, t − s) =

∑
k∈∂ j\i

k̃k→ j
R (s, t − s). (12)

This relation is the same also for nonharmonic networks; the kernels of the higher-order Feynman-Vernon action terms sum in
the same way.

The other relation between n messages and m messages follows from integrating out the histories of the system in node j. In
general we can formally write this mapping as

mk→ j[Xj,Yj] ≡
∫

DXkDYk exp
[ i

h̄
(S[Xk] − S[Yk] + S[Xj, Xk] − S[Yj,Yk])

]
× nk→ j[Xk,Yk]δ[xk (t f ) − yk (t f )] ρ

(k)
0 [xk (ti ), yk (ti )]. (13)

This is the step which is computationally costly and which in general cannot be done without further assumptions. The case of
harmonic degrees of freedom is considered in the following section.

IV. QUANTUM HARMONIC OSCILLATORS

As a first solvable example with unexpected properties, we now discuss a uniform random network of harmonic oscillators

which interact linearly. The action is then S[X1, · · · , XN ] = ∫ t f

ti
m
2

∑
j Ẋ 2

j − mω2
0, j

2 X 2
j + 1

2

∑
j,i∈∂ j Ci j (Xi − Xj )2 dt , where m is the

oscillator mass, ω0, j is the frequency, and Ci j is the spring constant between oscillator i and j. The single-system action parts

are S[Xj] = ∫ t f

ti
m
2 Ẋ 2

j − mω2
0+

∑
i∈∂ j Ci j

2 X 2
j dt , and it is convenient to use the notation mω2 = mω2

0 + ∑
i∈∂ j Ci j . The system-system

actions are S[Xj, Xk] = ∫ t f

ti
(−Ci j )XjXk dt . All terms in the action are quadratic, and one could suppose the problem solvable

by diagonalization. However, the initial conditions have been assumed factorized over the nodes in the network which is a
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condition on the original coordinates, not on the modes obtained after diagonalization. To solve the problem is therefore not
trivial. Additionally, except in one dimension the total Hamiltonian is partly random only from the structure of the locally
treelike graph.

For the harmonic oscillator in node j, under the action of the interactions discussed above the Feynman-Vernon path integral
to consider is

e
i
h̄ F̃j→i[Xi,Yi] =

∫
exp

{
i

h̄

∫ T

τ

[
m

2

(
Ẋ 2

j − Ẏ 2
j

) − mω2

2

(
X 2

j − Y 2
j

) + Ci jXiXj − Ci jYiYj

]
dt

}
e

i
h̄ Fj→i[Xj ,Yj ]

δ[Xj (T ) − Yj (T )]
1

N
exp[−(Ax2 + 2Bxy + Cy2)/2]DXjDYj dXj (τ )dYj (τ ) dXj (T ) dYj (T ). (14)

Lowercase letters (x and y) in the above stand for the initial data on j, i.e., Xj (τ ) and Yj (τ ), and uppercase letters (X and Y ) will
from now on stand for the final data Xj (T ) and Yj (T ). The core problem is to translate Eq. (14) into a transformation of kernels,
while the geometry of passing of message of types m and n remains as in Fig. 1.

It turns out that Eq. (14) is a kind of iterated path integral first considered by Vernon in Appendix V of his Ph.D. thesis [41]
and which we call the Vernon transform. The transform has been reinvented at least once in the more recent literature [42]. We
can therefore immediately write down

k̃ j→i
I = V

[
k j→i

I ,Ci j
] = 1

2 Ci j (t )Ci j (s) Gj→i(t, s − t ), (15)

where Gj→i is a response function described below. Neglecting the contribution from the initial condition of oscillator j (see
Appendix A for details) the real side of the Vernon transform W is

k̃ j→i
R (t, s) = W

[
k j→i

R ,Ci j
] = Ci j (t )Ci j (s)

∫ t

τ

∫ s

τ

k j→i
R (t ′, s′) Gj→i(t ′, t − t ′) Gj→i(s′, s − s′) ds′dt ′, (16)

with the same response function Gj→i as in Eq. (A11).
Equations (15) and (16) can be closed through Eq. (10) as

k j→i
I (t, s − t ) =

∑
k∈∂ j/i

k̃k→ j
I (t, s − t ) =

∑
k∈∂ j/i

1

2
Ck j (t )Ck j (s) G(t, s − t ),

k j→i
R (t, s) =

∑
k∈∂ j/i

k̃k→ j
R (t, s) =

∑
k∈∂ j/i

Ck j (t )Ck j (s)
∫ t

−∞

∫ s

−∞
kk→ j

R (t ′, s′) G(t ′, t − t ′) G(s′, s − s′) ds′dt ′. (17)

The information about the graph structure is given through the introduction of the
∑

k∈∂ j/i. Equations (17) constitute the BP
update equations of the problem and constitute integral transformations on the Feynman-Vernon kernels.

However (for derivations, see Appendices A and B), the response function and the friction kernel satisfy the twinning relation

Gj→i(t, s − t ) = G(0)
j (s − t ) +

∫ T

t
dt1

∫ T

t1

dt2 G(0)
j (t1 − t ) kk→ j

I (t1, t2 − t1) Gj→i(t2, s − t2), (18)

which, under the assumption of independence from the first
time argument, in the Laplace domain becomes

G̃(λ) = G̃0(λ) + G̃0(λ)kk→ j
I (λ)G̃(λ), (19)

where for simplicity we used the same symbol for kk→ j
I in

the time domain and in the Laplace domain and dropped the
supraindexes. The Laplace transform G̃0(λ) is given by

G̃0(λ) =
∫ ∞

0
e−λt 2

mω
sin ωt dt = 2

m

1

λ2 + ω2
. (20)

This is twice the response function of the harmonic oscillator
as conventionally defined.

In other words, when the process has been going on for
a long time under constant conditions the transform V of kI

simplifies greatly on the Laplace or Fourier transform side:

k̃ j→i
I (λ) = C2

i j

2
G0, j (λ)

[
1 − G0, j (λ)k j→i

I (λ)
]−1

. (21)

Notice that kI does not depend on the real kernel, i.e., the
imaginary kernels of the cavity influence functionals form
a system of updates closed in themselves. This is also true
without the assumptions that the process has been going on
for a long time or under constant conditions.

The real part of the Vernon transform W is, however, a
linear transformation of k j→i

R to k̃ j→i
R which depends quadrat-

ically on k̃ j→i
I . With the same assumptions as above it

simplifies, on the Fourier domain, to

k̃ j→i
R (ν) = A(ν)k j→i

R (ν), (22)

where A(ν) = 4
C2

i j
|k̃ j→i

I (ν)|2. The real kernels of the cavity

influence functions hence do not form a system closed in
themselves. Furthermore, for a process over a finite time W
also contains other terms which also depend on k̃ j→i

I and
on initial conditions (bath temperature) but not on k j→i

R ; see
Appendix A.
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FIG. 2. Inverse Laplace transform of the fixed point kernel given by Eq. (C12). The parameters are: left panel—ω0 = 10, C = 1, n = 5,
m = 1

2 ; right panel—ω0 = 0.1, C = 20, n = 20, m = 1
2 .

In the specific case of random regular graphs where all
oscillator frequencies and all interaction parameters are the
same (ω j = ω for all j, Ci j = C for pairs i and j) the equa-
tions written above admit a fixed point solution. Calling n the
number of neighbors of each node in this solution all kernels,
everywhere in the network, are the same and follow

ki+1
I (λ) = (n − 1)C2

2
G0(λ)

[
1 − G0(λ)ki

I (λ)
]−1

, (23)

where i is now an iteration index. There is always a fixed point
of this rational map for C small enough. When it exists it is
given by

k∗
I (λ) = m

λ2 + ω2

4

[
1 −

√
1 − 8(n − 1)C2

m2(λ2 + ω2)2

]
. (24)

Since that ω2 has been defined as ω2 = ω2
0 + nC

m , the ex-
pression inside the square root in Eq. (24) is a decreasing
function of C, positive for all λ if either n � 8 or if n < 8 and

C is less than a critical value C∗(n) = mω2
0√

8(n−1)−n
. For n < 8

and C > C∗(n) the fixed point still exists for λ larger than

λ∗(C, n) = ω0

√
C
C∗ − 1.

The first result on this quite simple example is hence that
if C < C∗ every system in the uniform network behaves as
if interacting with the same effective environment. We call
this the ordered phase. The fixed point kernel k∗

I in the time
domain is illustrated in Fig. 2; a more detailed discussion can
be found in the Appendices.

For C > C∗(n) and λ < λ∗(C, n) the BP messages [the
functions ki

I (λ)] do not converge as iteration index i tends
to infinity. In this setting it is therefore not consistent to
assume that all incoming messages in Fig. 1 to be the same;
there is nothing to synchronize them. As we will discuss
in the following section, one can instead assume that each
such kk→ j

I (λ) is a random number drawn from a probabil-
ity P[kk→ j

I (λ)] and check if this distribution is preserved
as P[k j→i

I (λ)] (replica symmetric analysis of the BP update
equations). In this regime, every system in the network be-
haves as if interacting with an environment, drawn randomly
from the same ensemble of environments. We call this the
dynamically disordered phase. The instances of this phase are
complex, as there is no smooth function f (t ) which has a

Laplace transform f̃ (λ), for which when λ < λ∗ the values
are independent random numbers.

This seemingly pathological property can be traced back to
our neglecting the first time in the definition of kI (s, t − s). In
the time domain ki+1

I (s, t − s) is related to ki
I (s − τI , t − s)

where τI is a characteristic time of the response function.
When the process starts at time ti one can only iterate the
quantum cavity in the form independent of the first time for
imax ≈ s−ti

τI
times until the initial conditions start to be felt.

Therefore, the different components ki
I (s, λ) are actually cor-

related over a distance in λ of size roughly −imax
where 

is a characteristic expansion rate of the Vernon transform. For
the same reason, the potential divergence of the denominator
on the right-hand side of Eq. (23), if in fact the incoming
messages would be synchronized, is not a real difficulty. It
can be traced back to the Fredholm integral equation defin-
ing ki

I (λ) (see Appendices), where each term in the series
brings in an additional time delay. Over a finite time interval
the individual terms are eventually modified, and the series
converges.

However, when kI is at the fixed point Eq. (24) the mul-
tiplier A(ν), in front of the real kernel, depends on whether
the expression in the square root in Eq. (24) (for λ = iν) is
positive or negative. The second case pertains to a band of
frequencies around ω with width linear in C for small C. The
value of A(ν) is 2 throughout the band, while it decreases
down from 2 away from the band; see Fig. 3. In the ordered
phase successive iteration of some Fourier components of
kR hence increase without limit. By the same argument as
above this pathological behavior can again be traced back to
neglecting the first time; actually kR(s, ν) only reaches size

about 2
s−ti
τI .

V. DISORDER AND QUANTUM DYNAMICAL REPLICA
SYMMETRY

Understanding disorder in parameters is an important ap-
plication of the cavity method. In this case, the fixed points
of BP will then not be uniform, but the messages mi→ j and
ni→ j will depend on the link in the network. While it is
possible to solve for the coupled equations of all the messages
in a whole network, a more compact description is in terms
of self-consistency relations of probability distributions over
messages. On the level of RS the real-time quantum cavity for
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FIG. 3. The multiplier A(ν ) in the real Vernon transformation W , assuming the imaginary Vernon transform V has reached the fixed point
given by Eq. (C12). Parameters are the same as in Fig. 2: left panel—ω0 = 10, C = 1, n = 5, m = 1

2 ; right panel—ω0 = 0.1, C = 20, n = 20,
m = 1

2 .

harmonic networks is hence described by probability distribu-
tions over the kernel pairs. As the BP update equation acts on
kI kernel alone it is convenient to consider separately P(k̃I )
and Q(kI ), which satisfy RS cavity equations

Q(kI ) =
∑

k

k

∫ ∏
k

[
dk̂k

I P
(
k̂k

I

)]
δ

(
kI −

∑
k

k̂k
I

)
(25)

and

P(k̂I ) = ED

∫
dk̂I Q(kI )δ[k̂I − V (kI )], (26)

where k is the probability of the neighborhood to be of
size k, ED represents the average over the disorder, coupling
or frequency distribution and V is the n to m step of the
BP update determined by the Vernon transform. The kind of
solution discussed in the previous sections in this formulation
is described by P’s and Q’s that are δ functions. For a line or
a random regular graph the size of every neighborhood is the
same, and there are only identical terms in the sum in Eq. (25).
It is easy to check that without disorder in the ordered phase
the δ function distributions are stable, see Appendix D.

The most important effects of disorder can be discussed
assuming that Eqs. (25) and (26) have solutions in terms of
distributions of finite width with, roughly the size of disorder,
(see Appendix E for a justification) and that the iteration of W ,
the transformation acting on kR(ν), amounts to multiplying by
4

C2 |kI (ν)|2. Therefore, the effect of many iterations on kR(ν)
is just a product of random numbers

Wk (ν, ωk, . . . , ω1) = 4

C2

∣∣kk
I (ν, ωk )

∣∣2 4

C2

∣∣kk−1
I (ν, ωk−1)

∣∣2 · · ·

× 4

C2

∣∣k1
I (ν, ω1)

∣∣2, (27)

where the upper index above stands for the order of the itera-
tion, and ωl represents the disorder realized in iteration step
l . The typical behavior of such products is well studied in
random matrix theory; see, e.g., Ref. [43]. If all terms are
similar and larger than one, then the product will typically
also be larger than one and increase exponentially with the
number of terms k. If, however, the terms are not similar and
are mostly less than one, then the product will typically be
small, and decrease exponentially in k.

In the problem at hand, the distinction between the two
cases may be established in terms of the relation between
the size of disorder in ω and the width of the plateau in the
multiplier illustrated in Fig. 3. When the disorder is smaller
than the plateau width, the behavior is similar to the case
without disorder; for ν in the plateau the multiplier of kR(ν)
is around two, and those Fourier modes will grow leading to
decoherence. In Appendix E 1 we verify analytically that such
a solution to Eqs. (25) and (26) exists, and that the width of
the distribution is proportional to the noise variance.

However, if the width of the disorder is larger than the
plateau, then the multiplier will most often be small. In this
phase kR(ν) almost surely tends to zero upon iteration of the
cavity equations. Every node in the network behaves as if
interacting with an environment, drawn from an ensemble
of environments, and every node has the property of finite
dissipation (finite kI ) but no decoherence (zero kR). Such an
effective environment is qualitative different from a thermal
bath at any temperature, where kI and kR would be linked
by the fluctuation-dissipation theorem. In that case, for any
nonzero kI (nonvanishing spectrum of the effective environ-
ment) there would be a nonzero kR which would lead to
nonvanishing decoherence even when environment is in the
ground state (zero bath temperature).

VI. CONCLUSIONS AND OUTLOOK

In this work we have introduced a real-time version of the
quantum cavity method. We have shown that when all systems
in a network are harmonic oscillators interacting linearly, this
real-time quantum cavity can be represented as transforms
of Feynman-Vernon kernels. We have also shown that for
uniform harmonic networks there is an ordered phase where
one can solve explicitly for a fixed point of transformation. In
this case, each single quantum harmonic oscillator behaves,
for a long time dynamics, as if under the influence of a
dissipation kernel of finite spectral support, and eventually
arbitrarily strong decoherence, such a network will eventu-
ally behave entirely classically. We have also presented how
this technique can be extended to study an ensemble aver-
age over a disordered system under the replica symmetry
ansatz. We know that disorder in equilibrium models induce
an Anderson transition on locally treelike graphs [5,7,44]. For
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small disorder states are delocalized and influence propagate
though the network, while for large disorder states are lo-
calized. We have shown that a similar transition also takes
place for our real-time problem. With disorder each system
perceives the network as an instance of an ensemble of effec-
tive environments. As in the uniform case, for small disorder
the system presents finite decoherence through the whole
network—delocalized state—while, when the disorder is large
enough, these effective environments have the unexpected
property of finite dissipation (finite imaginary Feynman-
Vernon kernel kI ) but almost surely zero decoherence (zero
real Feynman-Vernon kernel kR) retaining quantum coherence
locally—localized state. We therefore believe that this tran-
sition may be a reflection, in the real-time dynamics of a
disordered network, of the equilibrium Anderson transition.

Our results constitute a first step toward a more detailed
and deeper characterization of the dynamics of open quantum
networks. For example, while in this work we focused on
the regime of stationary parameters, in most quantum compu-
tational applications, the network parameters would change
in time. This would entail full two-time kernels kI and kR

to describe the effective environment. Also, the examples
we have considered are networks of harmonic oscillators, as
they yield explicit solutions of the real-time quantum cav-
ity in closed form. While the challenges in extending these
investigations to qubits or other systems are significant, the
Vernon transform is defined also for environments that are
not harmonic oscillators [40] these can be treated as done
in this work. While keeping an infinite tower of higher-order
Feynman-Vernon kernels may be impractical, one can con-
sider truncations, the analogues of which have found many
applications in classical information processing [45,46].
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APPENDIX A: THE VERNON TRANSFORM IN THE TIME
DOMAIN AND ON THE LAPLACE TRANSFORM SIDE

This Appendix contains further details on the calcula-
tion outlined in the main body of the paper. It starts with
a presentation of the Vernon transform ([41], Appendix V);
a presentation of this material by two of us can also be
found in Ref. [47]. As noted in main paper the Vernon
transform has been rediscovered at least once in the later
literature [42].

In contrast to the presentation in the main paper we now
keep the time dependence throughout, to eventually write
the Vernon transform for a time-stationary situation on the
Laplace side. The point of departure is then Eq. (14), the path
integral expressing the Vernon transform. For illustration, for
the moment we do not require the initial state to be symmetric.
We introduce for simplicity new variables

X̄ j (t ) = Xj (t ) + Yj (t ), (A1)

� j (t ) = Xj (t ) − Yj (t ), (A2)

and similarly for the target node i and the initial and final state
on j. In this way one can write

e
i
h̄ F̃j→i[X̄i,�i] =

∫
δ
(
�T

j

)
exp

{
i

h̄

∫ T

τ

[(
m

2
˙̄Xj�̇ j − mω2

2
X̄ j� j + Ci j

2
X̄i� j + Ci j

2
�iX̄ j

)]
dt

}

× exp

{
i

h̄

∫ T

τ

∫ t

τ

k j→i
I (s, t − s)� j (t )X̄ j (s)dtds − 1

h̄

∫ T

τ

∫ t

τ

k j→i
R (t, s)� j (t )� j (s)dtds

}

× 1

N
exp

[ − (
A′(X̄ τ

j

)2 + 2B′X̄ τ
j �τ

j + C′(�τ
j

)2)/
2
]
DX̄ jD� j d�τ

j d�T
j dX̄ τ

j dX̄ T
j , (A3)

where A′ = 1
4 (A + 2B + C), C′ = 1

4 (A − 2B + C), and B′ = 1
2 (A − C). Requiring that the initial state does not mix x̄ j and

� j leads to B′ = 0 and A′ = 1
2 (A + B) and C′ = 1

2 (A − B). Note that the normalization 1
N

∫
e− 1

2 (A′ x̄2 )dx̄ = 2. A thermal

state at inverse temperature β has A = C = mjω j

h̄ coth β h̄ω j and B = −mjω j

h̄ sinh−1 β h̄ω j , and hence A′ = mjω j

2h̄ tanh β h̄ω j

2 and

C′ = mjω j

2h̄ coth β h̄ω j

2 . The assumption of an initially symmetric Gaussian state is hence equivalent to assuming an initial thermal

state where the two parameters A′ and C′ set a length scale � = 2h̄
m jω j

= 1√
A′C′ and an inverse temperature β = 2

h̄ω j
tanh−1

√
A′
C′ .

We will drop the primes on A′ and C′ from now on.
The first step is now to integrate the term ˙̄Xj�̇ j by parts which gives

∫ T

τ

˙̄Xj�̇ jdt = �̇T
j X̄ T

j − �̇τ
j X̄

τ
j −

∫ T

τ

X̄ j�̈ jdt, (A4)

from which follows

e
i
h̄ F̃j→i[X̄i,�i] = 1

2

∫
δ
(
�T

j

)
exp

{
i

h̄

∫ T

τ

[(
−m

2
X̄ j�̈ j − mω2

2
X̄ j� j + Ci j

2
X̄i� j + Ci j

2
�iX̄ j

)]
dt

}
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× exp

{
i

h̄

∫ T

τ

∫ t

τ

k j→i
I (s, t − s)� j (t )X̄ j (s)dtds − 1

h̄

∫ T

τ

∫ t

τ

k j→i
R (t, s)� j (t )� j (s)dtds

}

× 1

N
exp

{ − [
AX̄ τ

j
2 + C

(
�τ

j

)2]
/2

}
exp

im

2h̄

(
�̇T

j X̄ T
j − �̇τ

j X̄
τ
j

)
DX̄ jD� j d�τ

j d�T
j dX̄ τ

j dX̄ T
j . (A5)

The prefactor 1
2 is the Jacobian of the change of variables at the initial time; the other (functional) Jacobian is included in

the path integral measure. The initial state is Gaussian, and we can integrate over X̄ j . This gives 1
N

∫
dX̄ τ

j e− 1
2 A′X̄ τ

j
2− im

2h̄ �̇τ
j X̄ τ

j =
2e− m2

8h̄2A′ (�̇τ
j )2

where the factor 2 cancels in above. The corresponding integral over the final state fixes the final velocity for � j ,

that is
∫

dX̄ T
j exp

im
2h̄ �̇T

j X̄ T
j = δ(�̇T

j ). The remaining integrals over X̄ j at intermediate times give a δ functional

δ[g(� j )(t )], (A6)

where

g(� j )(t ) = m

2
�̈ j (t ) + mω2

2
� j (t ) − Ci j

2
�i(t ) −

∫ T

t
k j→i

I (t, s − t )� j (s)ds. (A7)

The integral over the deviation path � j (t ) hence has support on a classical path which satisfies final conditions � j = �̇ j = 0,
and equations of motion g(�Xj )(t ) = 0. It is convenient to call this auxiliary path Q(t ). The double path integral in Eq. (A5)
hence gives

i

h̄
F̃j→i[X̄i,�Xi] = i

h̄

∫ T

τ

Ci j (t )

2
X̄i(t )Q(t )dt − 1

2h̄

∫ T

τ

∫ T

τ

k j→i
R (t, s)Q(t )Q(s) − 1

2
Cq2 − m2

8h̄2A
(q̇)2, (A8)

where by q we mean the initial position of the auxiliary classical path, i.e., Q(τ ). Q(t ) depends on the deviation path �Xi(s) for
all values of s larger than t . This is because Q satisfies final conditions as s = T while its initial conditions at s = τ are not given.
It is further clear that Q(t ) is a linear functional �Xi(s) for s ∈ [t, T ]. This linear functional can be represented by a kernel

Q(t ) =
∫ T

t
G(t, s − t )Ci j (s)�Xj (s) ds, (A9)

where

G(t, s − t ) = G0(s − t ) +
∫ T

t
dt1

∫ ∞

t1

dt2G0(t1 − t )kk→ j
I (t1, t2 − t1)G(t2, s − t2). (A10)

As shown in Appendix B there is at least as a formal power series a kernel which satisfies G(t, s − t ) = 0 for s < t . Substituting
Eq. (A9) in Eq. (A8) we have the kernels of the transformed Feynman-Vernon action as

k̃ j→i
I (t, s − t ) = 1

2
Ci j (t )Ci j (s) G(t, s − t ), (A11)

k̃ j→i
R (t, s) = Ci j (t )Ci j (s)

∫ t

τ

∫ s

τ

k j→i
R (t ′, s′) G(t ′, t − t ′) G(s′, s − s′) ds′dt ′ + Ci j (t )Ci j (s) h̄CG(τ, t + τ ) G(τ, s + τ )

+Ci j (t )Ci j (s)
1

h̄A

dG(r, t − r)

dr
|r=τ

dG(r, s − r)

dr
|r=τ . (A12)

The last two terms are zero if the auxiliary path Q(t ) returns to rest at the origin at t → τ . This should be so whenever the kernel
k j→i

I (t, s − t ) behaves as friction and when the process goes on for infinite time (τ = −∞), and when the drive [Ci j (t )] vanishes
before some turn-on time ti. In any case, if the response function G(τ, t + τ ) has essentially finite support in t , then these two
terms will only give a boundary contribution and will not matter when t and s are sufficiently larger than τ .

In this way we have formally established the BP update equation as an integral transformation on Feynman-Vernon kernels
given by Eq. (A11) and the first line of Eq. (A12). Equations (A11) and (A12) can be closed through the use of Eq. (10).
Concretely we write them as

k j→i
I (t, s − t ) =

∑
k∈∂ j/i

k̃k→ j
I (t, s − t ) =

∑
k∈∂ j/i

1

2
Ck j (t )Ck j (s) G(t, s − t ),

k j→i
R (t, s) =

∑
k∈∂ j/i

k̃k→ j
R (t, s) =

∑
k∈∂ j/i

Ck j (t )Ck j (s)

×
∫ t

−∞

∫ s

−∞
kk→ j

R (t ′, s′) G(t ′, t − t ′) G(s′, s − s′) ds′dt ′. (A13)

Note that the information about the graph structure is given through the introduction of the
∑

k∈∂ j/i.
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APPENDIX B: REPRESENTATION OF THE KERNEL G

Our goal of this Appendix is to derive an explicit repre-
sentation of the kernel G defined in Eq. (A9) in the preceding
Appendix. This kernel is to relate a function Q(t ) to a source
term Ci j (s)�Xi(s) for all s > t . Values of the source at times
s earlier than t have no influence on Q(t ). The solution must
therefore satisfy G(t, s − t ) = 0 when s < t .

Q(t ) is determined by the equation of motion of an exter-
nally driven harmonic oscillator with non-Markovian damp-
ing [given in the preceding Appendix as Eq. (A7) and below
as Eq. (B1)] and final conditions Q(T ) = Q̇(T ) = 0. For an
infinite time interval (τ = −∞ and T = ∞) it is convenient
to assume that Ci j (s) vanishes for s > t f as well as for s < ti.
The first means that Q(t ) must also vanish for t > t f . The
second means that for those values Q satisfies an autonomous
integro-differential equation without drive. That is, if we know
Q in the interval [ti : t f ], then Q(t ) for t < ti follows as
a consequence.

For convenience we restate the equation satisfied by Q
representing oscillator k driven by oscillator j:

m

2
Q̈ + mω2

2
Q − 1

2
Ck j (t )� j (t )

−
∫ ∞

t
ds kk→ j

I (t, s − t )Q(s) = 0. (B1)

To emphasize that kk→ j
I (t, s − t ) vanishes when the second

argument is negative we write out explicitly a Heaviside func-
tion �(s − t ). We start introducing the Fourier transform of

Q(t ) = 1

2π

∫ ∞

−∞
dν e−iνt Q̂(ν) (B2)

and

kk→ j
I (t, s − t )�[s − t] = 1

2π

∫ ∞

−∞
dμe−iμ(s−t )k̂k→ j

I− (t, μ),

(B3)

where μ should have an infinitesimal positive imaginary part.
Substituted in Eq. (B1) this leads to

1

2π

∫
dν e−iνt

[
m

2
(−ν2 + ω2)�̂k (ν)

− 1

2
[Ck j� j]ν − k̂k→ j

I− (t,−ν)�̂k (ν)

]
= 0, (B4)

where ν should have an infinitesimal negative imaginary part.
Integrating over time as

∫
dteiκt (· · · )

1

2π

∫
dt eiκt

∫
dν e−iνt

[
m

2
(−ν2 + ω2)�̂k (ν)

−1

2
[Ck j� j]ν − k̂k→ j

I− (t,−ν)�̂k (ν)

]
= 0, (B5)

and defining

ˆ̂kk→ j
I− (κ − ν,−ν) =

∫ ∞

−∞
dt ei(κ−ν)t k̂k→ j

I− (t,−ν) (B6)

one finds[
m

2
(−κ2 + ω2)Q̂(κ ) − 1

2
[Ck j� j]κ

− 1

2π

∫ ∞

−∞
dν ˆ̂kk→ j

I− (κ − ν,−ν)Q̂(ν)

]
= 0, (B7)

where κ should have an infinitesimal negative imaginary part.
We can rewrite the preceding expression as

Q̂(κ ) =
1
2 [Ck j� j]κ

m
2 (ω2 − κ2)

+
1

2π

∫ ∞
−∞ dν ˆ̂kk→ j

I− (κ − ν,−ν)Q̂(ν)
m
2 (ω2 − κ2)

,

(B8)
which is a Fredholm singular integral. It can be written

Q̂(κ ) = f (κ ) + λ

∫ ∞

−∞
dνK (κ, ν)Q̂(ν). (B9)

Applying the method of successive iterated approximations
one finds

Q̂(κ ) = f (κ ) + λ

∫ ∞

−∞
dν K (κ, ν) f (ν) + λ2

∫ ∞

−∞

∫ ∞

−∞
dνdν1K (κ, ν)K (ν, ν1) f (ν1)

+ λ2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dνdν1dν2K (κ, ν)K (ν, ν1)K (ν1, ν2) f (ν2) + · · · . (B10)

Substituting for our f (κ ) and K (κ, ν) one finds

Q̂(κ ) =
1
2 [Ck j� j]κ

m
2 (ω2 − κ2)

+
∫ ∞

−∞
dν

1
2π

ˆ̂kk→ j
I− (κ − ν,−ν)
m
2 (ω2 − κ2)

1
2 [Ck j� j]ν

m
2 (ω2 − ν2)

+
∫ ∞

−∞

∫ ∞

−∞
dνdν1

1
2π

ˆ̂kk→ j
I− (κ − ν,−ν)
m
2 (ω2 − κ2)

1
2π

ˆ̂kk→ j
I− (ν − ν1,−ν1)

m
2 (ω2 − ν2)

1
2 [Ck j� j]ν1

m
2

(
ω2 − ν2

1

)
+
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dνdν1dν2

1
2π

ˆ̂kk→ j
I− (κ − ν,−ν)
m
2 (ω2 − κ2)

1
2π

ˆ̂kk→ j
I− (ν − ν1,−ν1)

m
2 (ω2 − ν2)

1
2π

ˆ̂kk→ j
I− (ν1 − ν2,−ν2)

m
2

(
ω2 − ν2

1

) 1
2 [Ck j� j]ν2

m
2

(
ω2 − ν2

2

)
+ · · · . (B11)
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The above expression can be written as Q(t ) = ∫ ∞
−∞ ds 1

2 G(t, s)Ck j (s)� j (s), where G(t, s) stands for the iterated sum

G(t, s) =
[

1

2π

∫ ∞

−∞
dκe−iκt 1

m
2 (ω2 − κ2)

eiκs + 1

2π

∫ ∞

−∞
dκe−iκt 1

m
2 (ω2 − κ2)

∫ ∞

−∞
dν

1
2π

ˆ̂kk→ j
I− (κ − ν,−ν)
m
2 (ω2 − ν2)

eiνs

+ 1

2π

∫ ∞

−∞
dκe−iκt 1

m
2 (ω2 − κ2)

∫ ∞

−∞

∫ ∞

−∞
dνdν1

1
2π

ˆ̂kk→ j
I− (κ − ν,−ν)
m
2 (ω2 − ν2)

1
2π

ˆ̂kk→ j
I− (ν − ν1,−ν1)

m
2

(
ω2 − ν2

1

) eiν1s + · · ·
]
. (B12)

The first (zero-order) term in the sum

G0(t, s) = 1

2π

∫ ∞

−∞
dκeiκ (s−t ) 1

m
2 (ω2 − κ2)

. (B13)

When κ has infinitesimal negative imaginary part and when s − t is negative, the integral can be closed in the lower half plane,
and is zero. When s − t is positive the integral can be closed in the upper complex plane and is 2

mω
sin ω(s − t ).

The next (first-order) term is

G1(t, s) = 1

2π

∫ ∞

−∞
dκe−iκt 1

m
2 (ω2 − κ2)

∫ ∞

−∞
dν

eiνs

m
2 (ω2 − ν2)

1

2π

ˆ̂kk→ j
I− (κ − ν,−ν)

= 1

2π

∫ ∞

−∞
dκ

e−iκt

m
2 (ω2 − κ2)

∫ ∞

−∞
dν

eiνs

m
2 (ω2 − ν2)

1

2π

∫ ∞

−∞
dt1ei(κ−ν)t1 k̂k→ j

I− (t1,−ν)

= 1

2π

∫ ∞

−∞
dκ

e−iκt

m
2 (ω2 − κ2)

∫ ∞

−∞
dν

eiνs

m
2 (ω2 − ν2)

1

2π

∫ ∞

−∞
dt1ei(κ−ν)t1

∫ ∞

−∞
dt2e−iν(t2−t1 )kk→ j

I (t1, t2 − t1)�(t2 − t1),

(B14)

where the definitions of ˆ̂kk→ j
I− (κ − ν,−ν) and k̂k→ j

I (t,−ν) given in Eqs. (B6) and (B6) were used. In the above some term can
be rearranged to give

G1(t, s) = 1

2π

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

1

2π
kk→ j

I (t1, t2 − t1)�(t2 − t1)
∫ ∞

−∞
dκ

e−iκ (t−t1 )

m
2 (ω2 − κ2)

∫ ∞

−∞
dν

eiν(s−t2 )

m
2 (ω2 − ν2)

=
∫ ∞

−∞
dt1

∫ ∞

t1

dt2kk→ j
I (t1, t2 − t1)

1

2π

∫ ∞

−∞
dκ

e−iκ (t−t1 )

m
2 (ω2 − κ2)

1

2π

∫ ∞

−∞
dν

eiν(s−t2 )

m
2 (ω2 − ν2)

=
∫ ∞

−∞
dt1

∫ ∞

t1

dt2kk→ j
I (t1, t2 − t1)G0(t1 − t )G0(s − t2). (B15)

Successive repetition of the above procedure leads to the fol-
lowing expression:

G(t, s − t ) = G0(s − t ) +
∫ T

t
dt1

∫ T

t1

dt2G0(t1 − t )kk→ j
I

× (t1, t2 − t1)G(t2, s − t2), (B16)

which is Eq (18). In general, the above one-sided functional
equation does not have a convenient closed-form solution.
However, if one assumes that both kk→ j

I (t, s − t ) and G(t, s −
t ) depend only on their second argument and essentially van-
ish when it is large enough, then one has the considerably
simpler relation

G(s − t ) = G0(s − t ) +
∫ ∞

t
dt1

∫ ∞

t1

dt2G0

× (t1 − t )kk→ j
I (t2 − t1)G(s − t2) (B17)

valid when s (the largest time in above) is considerably
smaller than T (the final time). Since this equation involves
a convolution, it can be conveniently written in the Laplace

domain as

G̃(λ) = G̃0(λ) + G̃0(λ)kk→ j
I (λ)G̃(λ), (B18)

where for simplicity we used the same symbol for kk→ j
I in

the time domain and in the Laplace domain. The Laplace
transform G̃0(λ) is given by

G̃0(λ) =
∫ ∞

0
e−λt 2

mω
sin ωt dt = 2

m

1

λ2 + ω2
. (B19)

This is twice the response function of the harmonic oscillator
as conventionally defined.

APPENDIX C: FIXED POINT FOR CONSTANT
INTERACTIONS ON n-REGULAR RANDOM GRAPHS

The goal of this Appendix is to make an explicit compu-
tation of Eq. (A13) in a specific model. We will present two
approaches, one relying on the known representation of the
Laplace transform function, and one of a sine transform anal-
ogous to the the Mehler-Sonine representation of the Bessel
function. We consider a set of oscillators interacting with con-
stant couplings, what one may call a ferromagnetic case. In the
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present context constant interaction means that all functions
Ci j (t ) are the same and do not depend on time. Moreover, we
will assume that oscillators are placed in an n-regular random
graphs, i.e., a graph where all vertices have the same number
(n) of neighbors. In such a setting there can be a determin-
istic replica symmetric phase of the cavity equations where
all cavity messages are the same. In this Appendix we will
consider the corresponding fixed point and the corresponding
message.

In this case, it is easy to show that

k̃k→ j
I (t, s − t ) = 1

2
Ck jCk jG

k→ j (t, s − t ), (C1)

k̃k→ j
R (t, s) = Ck jCk j

∫ t

−∞

∫ s

−∞
kk→ j

R (t ′, s′)Gk→ j

× (t ′, t − t ′)Gk→ j (s′, s − s′). (C2)

These expression apparently suggest that the sign of the cou-
plings Ci j is irrelevant, they always appear squared. However,
we have to remember that in above we have implicitly used
the relation ω2 = ω2

0 + nC
m which enters in the bare response

function G0, which in turn enters in G. C can be taken arbitrar-
ily large positive, but not smaller than −mω2

0
n , as otherwise the

total potential is not positive definite and the system has no
ground state. We now turn to the two different ways in which
the fixed point of the imaginary kernel can be derived.

1. First version of the calculation

We start by summing the twinning relation Eq. (B18)
which gives

G̃(λ) = G̃0(λ) + G̃0(λ)kk→ j
I (λ)G̃(λ)

= G̃0(λ)
[
1 − G̃0(λ)kk→ j

I (λ)
]−1

. (C3)

The Laplace transform of the kernels [Eq. (C2)] gives

k̃k→ j
I (λ) = 1

2Ck jCk jG̃
k→ j (λ),

k̃k→ j
R (λ) = Ck jCk jk

k→ j
R (λ)(G̃k→ j )2(λ). (C4)

Now we use the fact that Fj→i = ∑
k F̃k→ j as well as kI =

(n − 1)k̃I and kR = (n − 1)k̃R, and we assume that all the
couplings are the same. Therefore,

kI (λ) = (n − 1)k̃I (λ) = (n − 1) 1
2C2G̃(λ),

kR(λ) = (n − 1)k̃R(λ) = (n − 1)C2kRG̃2(λ), (C5)

Subsequently we use definition of G(λ) to solve Eq. (C5) for
kI (λ) and find

kI (λ) = (n − 1)
1

2
C2G̃0(λ)

[
1 − G̃0(λ)kk→ j

I (λ)
]−1

= G̃−1
0 (λ)

2

[
1 ±

√
1 − 2(n − 1)C2G̃2

0(λ)
]
. (C6)

From Eq. (B19) we know that G̃0(λ) = 2
m

1
λ2+ω2 . It is clear we

should take the negative sign in front of the square root, as
otherwise the Laplace transform does not decay with parame-
ter λ at infinity. To derive the actual message as a function of

time we follow the definition of kk→ j
I (λ),

kI (λ) = 2(n − 1)
C2

m

× 1

(ω2 + λ2) +
√

(ω2 + λ2)2 − (
2
m

)2
2(n − 1)C2

= m

4
a4 1

(ω2 + λ2) +
√(

λ2 + ω2
1

)(
λ2 + ω2

2

) , (C7)

where a4 = ( 8(n−1)
m2 )C2, and ω2

1 = ω2 − a2 and ω2
2 = ω2 + a2.

Equation (C8) can be rewritten in a convenient form:

kI (λ) = m

4

{
a4√(

λ2 + ω2
1

)(
λ2 + ω2

2

)
−
[

(λ2 + ω2)2√(
λ2 + ω2

1

)(
λ2 + ω2

2

) − (λ2 + ω2)

]}
. (C8)

The inverse Laplace transform of the first term is [48]

L−1

⎡
⎣ 1√(

λ2 + ω2
1

)(
λ2 + ω2

2

)
⎤
⎦

=
∫ t

0
dτJ0(ω1τ )J0(ω2(t − τ )) ≡ f (t ). (C9)

To compute the inverse transform of the terms in bracket
we exploit the property of the Laplace transform L[ f (n)(t )] =
λnF (λ) − ∑n

k=1 λn−k f k−1(0), where f k (0) denotes kth
derivative of f (t ) calculated t = 0. In the case considered here
we have L−1[λ4F (λ)] = f (4)(t ) + L−1[

∑4
k=1 λ4−k f (k−1)(0)],

and L−1[λ2F (λ)] = f (2)(t ) + L−1[
∑2

k=1 λ2−k f k−1(0)],
where F (λ) = 1√

(λ2+ω2
1 )(λ2+ω2

2 )
. Taking those relations into

account one arrives at the expression for the imaginary kernel
in the time domain

kI (τ ) = L−1[kI (λ)]

= m

4

{
a4 f (τ ) − [

f (4)(τ ) + 2ω2 f (2)(τ ) + ω4 f (τ )
]}

,

(C10)

where in the derivation we use the fact that f (0) = 0,
f (1)(0) = 1, f (2)(0) = 0, f (3)(0) = −ω2, f (4)(0) = 0. In this
way we have reduced the inverse Laplace transform to a
convolution of Bessel functions and derived combinations
thereof.

2. Second version of the calculation

For an alternative version of the calculation it is convenient
to restate the iteration of the Vernon transform in the Laplace
domain as

k̃n+1
I (λ) = (n − 1)C2

2
G̃0(λ)

[
1 − G̃0(λ)k̃n

I (λ)
]−1

, (C11)

where as above G̃0(λ) = 2
m

1
λ2+ω2 is twice the Laplace trans-

form of the harmonic oscillator response function.
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FIG. 4. Illustration of the computation of the inverse Laplace
transform of the fixed point kernel from Eq. (C13). By definition
this is the integral over a vertical path far enough to the right in the
complex plane. Moving the path to the left part of the complex plane
one picks up branch cut contributions determined in the text.

The fixed point can thus be written [equivalent to Eq. (C8)]
as

k̃∗
I (λ) = m

λ2 + ω2

4

(
1 −

√
1 − 8(n − 1)C2

m2(λ2 + ω2)2

)
. (C12)

The fixed point kernel in the time domain is given by an
inverse Laplace transform:

kI (τ ) = 1

2π i

∫
k̃I (λ)eλτ dλ. (C13)

The integral is to be performed on a vertical contour far
enough to the right in the complex plane. Since the integrand
goes down as λ−2 for large λ such an integral has a finite value.
If the contour can be moved to the far left in the complex
plane, then that integral will be zero because eλτ then acts as
dampening. The inverse Laplace transform is hence given by
the integrals encircling poles and cut-lines encountered when
moving the integral contour as illustrated in Fig. 4.

The kernel k̃I (λ) is analytic everywhere except in the
neighborhood of points where the argument of the square root
vanishes. These points are at

iλ±± = ±i
√

ω2 ±
√

8(n − 1)C/m. (C14)

The arguments of the outer square root in above is posi-
tive, hence the four points all lie on the imaginary axis. The
kernel k̃I (λ) is analytic around the real line as well as for
large enough λ. The contour therefore needs to encircle two
cuts between respectively i(λ+−, λ++) and i(λ−−, λ−+) =
i(−λ++,−λ+−).

It is convenient to rewrite the square root in Eq. (C12) as√
(λ2 + λ2+−)(λ2 + λ2++). On the imaginary axis the argument

of the square root is then positive for z < λ+−, negative in
the interval (λ+−, λ++), and positive again for z > λ++. The
phase of the square root is zero on the imaginary axis up
to just below the start of the cut at iλ+−. Along the cut
and just to the right the absolute value of the square root

is
√

(z2 − λ2+−)(−z2 + λ2++) and the phase is i. At the same
point along the cut and just to the left the phase is −i. The
value of the integral encircling (λ+−, λ++) in the counter-
clockwise direction is hence

(+)-side

=
∫ λ++

λ+−
eizτ (2i)

(
− 1

2

)√
(z2 − λ2+−)(−z2 + λ2++), d (iz),

(C15)

where − 1
2 is the prefactor of the square root in Eq. (C12).

For the integral encircling (λ−−, λ−+) one can start from
that the phase of the square root must be zero on the imaginary
axis just above the cut. Along the cut and just to the left the
phase is +i, and to the right it is −i. The value of this integral,
encircling this cut in the positive direction, is thus

(−)-side =
∫ −λ+−

−λ++
eizτ (−2i)

(
− 1

2

)

×
√

(z2 − λ2+−)(−z2 + λ2++), d (iz)

=
∫ λ++

λ+−
e−izτ (−2i)

(
− 1

2

)

×
√

(z2 − λ2+−)(−z2 + λ2++), d (iz). (C16)

Combining both integrals and bringing out a dimensional
factors we have a rather simple integral representation

kI (τ ) = 

∫ 1

q
sin(λ++xτ )

√
(x2 − q2)(1 − x2) dx, (C17)

where  = mλ3
++/π , and where we have used q = λ+−

λ++
. The

expression in Eq. (C17) is analogous to the Mehler-Sonine
representation of the Bessel function J0(ωt ), which is in fact
nothing but the inverse Laplace transform of the function

1√
2+ω2 .
The representation Eq. (C17) lends itself to a physical

interpretation as follows. The total Hamiltonian in the tree
subtended from j will have normal modes. The kernel of the
real Feynman-Vernon action on i is according to the general
formula

kI (τ ) =
∫

dω sin ωτJ (ω) dω, (C18)

where J (ω) is the spectral density. Comparing Eqs. (C17) and
(C18) we have the nontrivial result

J (ω) =
{√

(ω2 − λ2+−)(λ2++ − ω2) for ω ∈ [λ++, λ+−],

0 otherwise.

In other words, the infinite network as to its influence on one
system, behaves for this ferromagnetic harmonic oscillator
example as a bath with compact spectral support.
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FIG. 5. Numerical comparison of the two formulas for the inverse Laplace transform of the imaginary kernel Eqs. (C13) and (C17). In the
left panel the two formulas are plotted together. In the right panel absolute value of the difference between the two formulas (note a different
scale in the inset). The parameters used to compute the kernels are The parameters are: ω0 = 0.1, C = 20, n = 20, m = 1

2 . Extensive numerical
comparison of the two formulas for different set of parameters allows us to conclude that they are the same.

The Fourier transform of the function kI (τ ) in Eq. (C18),
when the value is zero for negative τ , is the Laplace transform
of kI (τ ) of argument ıν. Since k̂I (−ν) = [k̂I (ν)]∗ it is enough
to consider positive ν. The function kI (iν) is hence real except
on the cutline (on positive imaginary λ axis), where it is

k̂∗
I (ν) = m

−ν2 + ω2

4

[
1 − i

√
4(n − 1)C2

m2(−ν2 + ω2)2
− 1

]
.

The Fourier transform of a real function satisfies k̂∗
I (−ν) =

[k̂∗
I (ν)]∗. We note for further reference that on the cutlines we

have

k̂∗
I (ν)k̂∗

I (−ν) =
(

m
−ν2 + ω2

4

)2 8(n − 1)C2

m2(−ν2 + ω2)2

= (n − 1)C2

2
. (C19)

We further note that the cavity kernels k̂∗
I (ν) are of the Belief

Propagation n-type messages (variables to interactions).
The fixed point kernel k∗

I in the time domain is illustrated
in Fig. 2 and as to the difference of the two ways of computing
it in Fig. 5.

APPENDIX D: STABILITY ANALYSIS OF THE
DETERMINISTIC REPLICA SYMMETRIC SOLUTION

FOR FERROMAGNETIC MODEL ON n-REGULAR
RANDOM GRAPHS

In this Appendix we consider the stability of the fixed point
found in the main body of the paper, in the context of Replica
Symmetry. We hence here consider parameters such that the
fixed point exists. The starting point is then that k and k̃ in that
analysis are not values but arguments of probability distribu-
tions that satisfy compatibility conditions. The goal is to check
whether Dirac δ distributions are stable solutions of these
compatibility conditions. We thus start from the BP update
equations for Feynman-Vernon kernels in Laplace transform
picture written as

Q(k) =
∫ n−1∏

k

dk̂ jP(k̂ j )δ

(
k −

∑
j

k̂ j

)
(D1)

and

P(k̂) =
∫

dkQ(k)δ[k̂ − fλ(k)], (D2)

where fλ(k) = C2

2
G0(λ)

1−G0(λ)k to be expanded around k = k0 =
(n − 1)k∗ is the Vernon transform applied to Laplace trans-
form variable with parameter λ. G0(λ) = 3

m
1

λ2+ω2 is twice the
response function of the free harmonic oscillator.

Instead of taking P and Q δ functions we then assume

P(k̂) ∼ e− 1
2σ2 (k̂−k∗ )2

That from Eq. (D1) leads directly to

Q(k) ∼ e− 1
2σ2 (n−1)

[k−(n−1)k∗]2

. (D3)

The point now is to check whether this is consistent with
a new Gaussian P(k̂). This is clearly not the case for general
fλ(k). Therefore, a reasonable approach is to check if for σ

small enough, the variance of P(k̂) grows or goes to zero. In
the second case, we say that the deterministic solution k∗ in
Eqs. (D1) and (D2) is stable. Otherwise, it is not.

We then proceed to estimate 〈k̂α〉, which in practice trans-
lates into solving the following integral:

〈k̂α〉 =
∫

dk̂α

∫
dkQ(k)δ[k̂ − fλ(k)]

=
∫

dkQ(k) fλ(k)α =
∫

dke− 1
2σ2 (n−1)

[k−(n−1)k∗]2

fλ(k)α.

We expand the function fλ(k)α = [C2

2
G0(λ)

1−G0(λ)k ]
α

around k =
k0 = (n − 1)k∗. For the expected value (α = 1) we have

G0(λ)

1 − G0(λ)k
= G0(λ)

1 − G0(λ)k0
+

[
G0(λ)

1 − G0(λ)k0

]2

(k − k0)

+
[

G0(λ)

1 − G0(λ)k0

]3

(k − k0)2, (D4)

such that

〈k〉 = C2

2

{
G0(λ)

1 − G0(λ)k0

∫
dke− 1

2σ2 (n−1)
(k−k0 )2

+
[

G0(λ)

1 − G0(λ)k0

]3 ∫
dke− 1

2σ2 (n−1)
(k−k0 )2

(k − k0)2

}

= C2

2

G0(λ)

1 − G0(λ)k0

{
1 + σ 2(n − 1)

[
G0(λ)

1 − G0(λ)k0

]2}
.

(D5)
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Similarly, for the second moment (α = 2)

[
G0(λ)

1 − G0(λ)k

]2

=
[

G0(λ)

1 − G0(λ)k0

]2

+ 2

[
G0(λ)

1 − G0(λ)k0

]3

(k − k0)

+6

2

[
G0(λ)

1 − G0(λ)k0

]4

(k − k0)2 (D6)

and

〈k2〉 = C4

4

[
G0(λ)

1 − G0(λ)k0

]2{
1

+ 3σ 2(n − 1)

[
G0(λ)

1 − G0(λ)k0

]2}
. (D7)

Putting everything together we have

〈k2〉 − 〈k〉2 = σ 2 (n − 1)

4

×C4

[
G0(λ)

1 − G0(λ)k0

]4

. (D8)

The variance of the distribution after passing through the BP
update is hence proportional to original variance σ 2. Note that
the combination C G0(λ)

1−G0(λ)k0
is dimensionless, and that σ has

the same dimension as k.
Since we expand around the fixed point k∗ we have

k0 = (n − 1)k∗, G0(λ)
1−G0(λ)k0

= 2
C2(n−1) k

∗, and k∗ = m λ2+ω2

4 [1 −√
1 − 8(n−1)C2

m2(λ2+ω2 )2 ]. For small C we can neglect the difference
between ω and ω0 and have

k∗ ≈ (n − 1)C2

m
(
λ2 + ω2

0

) (C small), (D9)

and hence

G0(λ)

1 − G0(λ)k0
≈ 1(

λ2 + ω2
0

) (C small). (D10)

For small values of C the proportionality is hence less than
one, and by iteration the Gaussian gets sharper. This means
that the deterministic (δ function) solution is stable.

APPENDIX E: REPLICA ANALYSIS OF OSCILLATOR
FREQUENCY DISORDER

In this Appendix we give the details of the analyze the
effects of disorder in frequencies. As we will eventually be
mostly interested in the effects on kR it will be convenient
to consider the iteration of the cavity equation for kI in the
Fourier domain. Our starting point will hence be the following
mappings of n − 1 complex numbers z1, z2, . . . , zn−1 on one
complex number z′:

z′ = V (z1, z2, . . . ; ω,C, n) = a
1

b − ∑
k zk

. (E1)

The variables z represents k̂I (ν) (interaction-to-variable mes-
sage of at Fourier component ν) and the parameters as defined
in the main body of the paper and above are

a = C2

2
, (E2)

b = m

2
(−ν2 + ω2), (E3)

ω2 = ω2
0 + nC

m
. (E4)

To this we now add

ω0 = ω̄ + �ω, (E5)

where ω̄ is a baseline bare oscillator frequency and �ω is
quenched random variable of mean zero and variance (�ω)2.
We note the �ω = 0 fixed point

z′ = z1 = z2 = . . . = zn−1 = p (E6)

given by

p = b

2(n − 1)
±

√
b2

4(n − 1)2
− a

(n − 1)
. (E7)

The expression inside the square root is positive if a < b2

4(n−1)

or (−ν2 + ω̄2) > C
m

√
8(n − 1). This is always possible when

ν is sufficiently different from ω̄. The fixed point Fourier k̃I (ν)
is then real, and by analytic continuation from the Laplace
transform we should take the negative sign of the square root.
However, the expression inside the square root is negative if
a > b2

4(n−1) . This happens in a band of frequencies I suffi-
ciently close to ω̄ given by

Iω̄,m,C,n =
[√

ω̄2 − C

m

√
8(n − 1),

√
ω̄2 + C

m

√
8(n − 1)

]
(E8)

and the reflected interval for negative frequencies. By analytic
continuation we then have

z∗(ν) = b

2(n − 1)
+ i

√
a

n − 1
− b2

4(n − 1)2
, (E9)

z∗(−ν) = b

2(n − 1)
− i

√
a

n − 1
− b2

4(n − 1)2
. (E10)

We note the quantity entering in the cavity equation for kR(ν):

z∗(ν)z∗(−ν) = |p|2 = a

(n − 1)
= C2

2(n − 1)
. (E11)

In the band the multiplier of the cavity equation for kR(ν)
is independent of ν, combined with the prefactor 4

C2 (n − 1)
discussed above and in the main text, it equals 2. In Iω̄,m,C,n.
It is therefore convenient to write

p = C[2(n − 1)]−
1
2 eiφ, (E12)

where the phase φ ∈ [0, π ] parametrizes the frequency ν and
the fixed point p in the band. For the following discussion it is
further convenient to introduce the abbreviation

n−1∑
k=1

= (n − 1)p + �z (E13)
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and note the following derivatives of V at �z = �ω = 0 in
Iω̄,m,C,n:

dV
d�z

= V ′[(n − 1)p] = 2

C2
p2 = 1

n − 1
e2iφ, (E14)

d2V
d (�z)2

= V ′′[(n − 1)p] = 2

(
2

C2

)2

p3

=
√

8(n − 1)
1

C(n − 1)2
e3iφ, (E15)

dV
d�ω

= −2mω̄

C2
p2 = − mω̄

n − 1
e2iφ, (E16)

d2V
d�ωd�z

= −2
2mω̄

C2

2

C2
p3 =

√
8(n − 1)

mω̄

C(n − 1)2
e3iφ,

(E17)

d2V
d (�ω)2

= −2m

C2
p2 + 2

(
2mω̄

C2

)2

p3

= − m

n − 1
e2iφ +

√
8(n − 1)

m2ω̄2

C(n − 1)2
e3iφ.

(E18)

1. Small-disorder RS calculation

The procedure here is similar to the small-disorder expan-
sion for the Anderson model on a tree carried out by Miller
and Derrida [44]. We chose to not represent messages of type
kI (variable-to-interaction BP messages). We therefore do not
make explicit the “n-type” update Eq. (D1) but incorporate it
in the “m-type” update Eq. (D2). The latter however must now
also take into account the disorder in frequencies which leads
to a probability distribution on the real and imaginary parts
of the Fourier component kI (ν). The equation to consider is
hence

P′(Rez′, Imz′) = E�ω

∫
δ{Re[z′] − Re[V (z1, . . . , zn−1)]}

× δ{Im[z′] − Im[V (z1, . . . , zn−1)]} (E19)

n−1∏
k=1

P(Rezk, Imzk ) dRezk dImzk. (E20)

The two-dimensional measure dRez dImz can be abbreviated
dz ∧ dz∗ and the two-dimensional distribution P(Rez, Imz)
can be written P(z, z∗). A Gaussian distribution on the real
and imaginary parts of a complex number z is characterized
by the first and second moments

z =
∫

zP(z, z∗) dz ∧ dz∗, (E21)

z2 =
∫

z2P(z, z∗) dz ∧ dz∗, (E22)

|z|2 =
∫

|z|2P(z, z∗) dz ∧ dz∗. (E23)

Note that z∗ = (z)∗ and (z∗)2 = (z2)∗. Assuming Gaussian
closure we need to approximate the same moments for the
distribution P′, which gives

z′ = E�ω

∫
V (z1, . . . , zn−1)

n−1∏
k=1

P(zk, z∗
k ) dzk ∧ dz∗

k ,

(E24)

(z′)2 = E�ω

∫
V2(z1, . . . , zn−1)

n−1∏
k=1

P(zk, z∗
k ) dzk ∧ dz∗

k ,

(E25)

|z′|2 = E�ω

∫
V (z1, . . . , zn−1)V∗(z1, . . . , zn−1)

×
n−1∏
k=1

P(zk, z∗
k ) dzk ∧ dz∗

k . (E26)

The above equations are then evaluated in Taylor expansion
around p and p∗, which gives

z′ = p + dV
d�z

(n − 1)z − p + 1

2

d2V
d (�z)2

[(n − 1)(z − z)2

+ (n − 1)2(z − p)2] + 1

2

d2V
d (�ω)2

(�ω)2, (E27)

(z′)2 − (z′)2 = {V ′[(n − 1)p]}2(n − 1)[z2 − (z)2]

+
(

dV
d�ω

)2

(�ω)2, (E28)

|z′|2 − |z′|2 = |V ′[(n − 1)p]|2(n − 1)(|z|2 − |z′|2)

+
∣∣∣∣ dV
d�ω

∣∣∣∣
2

(�ω)2. (E29)

For n = 2 (a line) the last two equations are not relaxations.
In particular, (z′)2 − (z′)2 has resonant contributions from the
two endpoints of the band and the middle, at the points where
e4iφ = 1. This means that the Gaussian ansatz is not stable
under iteration. For n > 2 (a tree) the last two equations are,
however, relaxations, and give

(z)2 − (z)2 =
(

1 − 1

n − 1
e4iφ

)−1( mω̄

n − 1

)2

e4iφ (�ω)2,

(E30)

|z|2 − |z|2 =
(

1 − 1

n − 1

)−1( mω̄

n − 1

)2

(�ω)2. (E31)

The iteration equation for z − p is not a relaxation for any n,
but a perturbed rotation. Substituting in the relaxed quantities
it reads

z′ − p = e2iφ (z − p) +
√

2(n − 1)

C
e3iφ (z − p)2

× (�ω)2

(
1

2

m

n − 1
e2iφ + (mω)2 2

C
e3iφ
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+
(

1 − 1

n − 1
e4iφ

)−1( mω̄

n − 1

)2

e4iφ

× 2

C

(
1

n − 1

) 3
2

e3iφ

)
+ h.o.t. (E32)

Assuming that only resonant terms matter the above can be
simplified to

z′ − p ≈ e2iφ

[
z − p + 1

2

m

n − 1
(�ω)2

]
. (E33)

The assumption is not valid for small C. This is so because
the interval where the derivative changes phase from zero
to π is of width proportional to C; hence, for small C the
complex derivatives are large. However, for moderately large
C and small enough (�ω)2 it should be justified. Nevertheless,
Eq. (E33) describes a rotation and not a relaxation which
reaches a fixed point. Hence, the Gaussian ansatz is also not
stable for a tree.

2. RS analysis of the rotating distribution

By a slight extension of the argument we can analyze also
the rotating distribution. As the new starting point we assume
the distribution on each incoming link to be characterized
by zk − p which is a small complex number. We assume
the phase of this complex number to be uniformly randomly
distributed over [0, 2π ]. The goal is to deduce from the this
a stationary distribution over the absolute values of |z − p|
and eventually |z|2, the quantity which matters in the iteration
equation for kR(ν). Instead of Eq. (E33) we hence have

z′ − p ≈ e2iφ

[
1

n − 1

n−1∑
k=1

zk − p + 1

2

m

n − 1
(�ω)2

]
.

(E34)

For the absolute value squared we have

|z′ − p|2 ≈
[

1

2

m

n − 1
(�ω)2

]2

+ 1

(n − 1)2

[∑
k

|zk − p|2 +
∑
k �=l

zk − p(zl − p)∗
]
.

(E35)

Assuming all incoming distribution equally distributed in
radius and uniformly random in phase and taking the expecta-
tion value with respect to this metadistribution we find

E[|z − p|2] ≈ m2

4(n − 1)(n − 2)
[(�ω)2]2 ≡ r. (E36)

Note that we have already assumed n > 2 (a tree); for n = 2
(a line) the above equation is not valid and there is not a stable

solution for the metadistribution. For the tree we can however
evaluate quantities such as

E[|z|2] ≈ 1

2π

∫ 2π

0
|p + reiθ |2dθ = |p|2 + r2. (E37)

Since 4
C2 (n − 1)|p|2 = 2 for all frequencies in the band I,

small disorder in the oscillator frequencies does not change
the conclusion that the real fix point kR(t, ν) is exponentially
large in the duration of the process (in t − ti). Hence, such
systems will eventually turn classical.

3. Remarks on the strong disorder case

In this Appendix we supplement the remarks in the main
body of the paper on the case of strong disorder. It is con-
venient to also assume that while disorder large compared to
the interaction, it is also small compared to the bare oscillator
frequency. When this is the case we have

C

m
� (�ω)2 � ω̄2, (E38)

where ω̄ is the expected value of the bare oscillator frequency.
The interval Eq. (E8) then reads

I ≈
[
ω̄ − C

mω̄

√
2(n − 1), ω̄ + C

mω̄

√
2(n − 1)

]
. (E39)

The assumption in the strong disorder case is that the width of

this interval is much less than σω =
√

(�ω)2 which follows
from the first inequality in Eq. (E38). The variable kI (ν) has
the same dimension as C. We can therefore introduce the di-
mensionless frequency shift as ν = ω̄ + ν̃ C

mω̄
, a dimensionless

oscillator frequency disorder parameter as �ω = sσω and the
dimensionless mapping

Ṽ (x + iy) = 1

C
V[(x + iy)C] = 1

2

1

As − ν̃ − x − iy
. (E40)

In the above A = ω̄σω

C/m is a dimensionless number much larger

than one, and we have neglected terms from ν2 and �ω2.
Successive iterations of V will then be characterized by dif-
ferent values of the random parameter s, which by the above
have the same effect as large fluctuations in the dimensionless
frequency ν̃. Supposing now that a fixed point distribution
of such a process exits we are to consider kR(ν) after many
applications of the cavity equation, which means multiplying
many factors 4

C2 |z|2. In the band without disorder this factor
is 2, but outside the band it decays to zero. To know if such
a product typically increases or decreases we should estimate
the expectation value of log 4

C2 |z|2. When the disorder in the
oscillator frequencies is larger than the width of the band the
distribution is sampled often where 4

C2 |z|2 is less than one.
Contrary to the previous limit for large enough disorder in the
oscillator frequencies kR(ν) therefore eventually tends to zero
for all ν. In this limit the quantum network hence behaves as
a dissipative but still decoherence-free environment.
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