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Reverse-chiral response of two T -symmetric optical systems hosting conjugate exceptional points
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Exceptional points (EPs) are a special kind of singularity that appear as topological defects in parameter-
dependent open systems. Here we propose the concept of conjugate EPs, where a level-repulsion phenomenon
between two coupled complex states can occur in the vicinity of a square-root branch point, which is ana-
lytically associated with the presence of two complex conjugate EPs. Depending on the iteration parameter,
two corresponding levels are analytically connected via one of two conjugate EPs. Here, we report the hosting
of two conjugate EPs in two complementary equivalent systems connected with time-reversal (T ) symmetry
by using the framework of a gain-loss assisted dual-mode planar optical waveguide. We establish that if
the complex potential of any system hosts an EP, then the T -symmetric potential of the same system can
host the associated conjugate EP. Owing to the EP-aided nonadiabatic population transfer based on device
chirality, the reverse-chiral responses of two T -symmetric devices have been explored in the context of an
asymmetric-mode-conversion process. The proposed scheme has the potential to open up a credible platform to
study the physics of EPs in T -symmetric systems.

DOI: 10.1103/PhysRevA.105.022203

I. INTRODUCTION

The presence of exceptional points (EPs) is one of the
distinct non-Hermitian features of nonconservative systems
[1]. EPs are the branch-point singularities appearing in the
system’s parameter space, for which at least two coupled
eigenvalues and the corresponding eigenvectors coalesce si-
multaneously, and hence the Hamiltonian of the underlying
systems becomes defective, referring to the EP as a topolog-
ical defect [2,3]. Over the last two decades, the optics and
photonics domains have been presenting EPs as an intrin-
sic tool for manipulating the light-matter interactions [4,5]
towards a wide range of astonishing applications, such as
ultrasensitive optical sensing [6,7], topological energy trans-
fer [8], state flipping [9–11], lasing and coherent perfect
absorption [12,13], parametric instability [14], and so on.
The dynamical parametric variation around an EP enables
nonadiabatic (time-asymmetric) light dynamics enriched with
an asymmetric-mode-conversion mechanism in any length-
dependent guided-wave optical geometry [15–17], where
nonreciprocal light transmission with enhanced isolation ratio
can also be achieved in the presence of nonlinearity [18,19].
Such nontrivial light guidance is essentially governed by the
chirality of the associated EP [20–22].

The presence of an EP is inextricably associated with
the avoided resonance crossing (ARC) phenomenon among
the complex states with crossing and anticrossing of their
frequencies and widths (essentially, the real and imaginary
parts, respectively) [20,23]. At the elementary level, without
any loss of generality for higher (or infinite)-dimensional
problems, a level repulsion phenomenon can elementarily be
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explained by considering a two-level Hamiltonian H(λ), hav-
ing the form H0 + λHp as

H(λ) =
[
ε1 0
0 ε2

]
+ λ

[
ω1 κ1

κ2 ω2

]
. (1)

Here, the passive system H0, consisting of two distinct levels
ε j ( j = 1 and 2), is subjected to a parameter-dependent pertur-
bation Hp, where ω j and κ j ( j = 1 and 2) are the perturbation
parameters. λ is a complex iteration parameter that signifies
the perturbation strength. Now, the eigenvalues of H(λ) can
be written as

E1,2(λ) = (ε1 + ε2) + λ(ω1 + ω2)

2
± C; (2a)

C =
[(ε1 − ε2

2

)2

+ λ2

{(ω1 − ω2

2

)2

+ κ1κ2

}

+ λ

2
(ε1 − ε2)(ω1 − ω2)

]1/2

. (2b)

Now, if we consider all real parameters in both H0 and
Hp, then the overall H(λ) defines a Hermitian system for
a real λ. For a trivial consideration of κ1,2 = 0, the spec-
trum of such a system can be written by two lines, Ej (λ) =
ε j + λω j ( j = 1 and 2), which intersect at a degeneracy
point and exhibit a conventional singularity (say, a diabolic
point) at λc = −(ε1 − ε2)/(ω1 − ω2). However, λc disappears
upon the consideration of κ1,2 �= 0, where one can observe
the non-Hermitian coupling between two levels, E1,2(λ), via
ARC-type interactions for a complex λ (= λR + iλI). Such an
ARC can be associated with the locating of a branch point
singularity, i.e., an EP. For a chosen variation of λR, different
kind of special ARCs with crossing and anticrossing of real
and imaginary parts (or vice versa) of E1 and E2 can be
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FIG. 1. Distribution of Riemann surfaces associated with
(a) Re(E ) and (b) Im(E ) concerning the simultaneous variations of
λR and λI (in the vicinity of the interaction regime) for a specifically
chosen set of parameters in H(λ), where two black crosses represent
the formation of two conjugate EPs. The dotted red line represents
the connection between two conjugate EPs at a specific λR. The
dotted blue square visually differentiates two alter topologies of
Riemann surfaces around two conjugate EPs (for λI > 0 and λI < 0).

observed for different λI. Here, a coalescence between E1 and
E2 occurs, when C vanishes, which refers to the appearance
of a square-root branch point singularity that is associated
with a complex conjugate pair of EPs in the complex λ plane
given by

λ+i
EP = − (ε1 − ε2)

(ω1 − ω2) − 2i
√

κ1κ2
, (3a)

λ−i
EP = − (ε1 − ε2)

(ω1 − ω2) + 2i
√

κ1κ2
. (3b)

The formation of such a pair of conjugate EPs for specifi-
cally chosen parameters in H(λ), viz., ε1 = 1, ε2 = 2, ω1 = 1,
ω2 = −1, κ1 = 0.5, and κ2 = 0.1, is shown in Fig. 1. Fig-
ures 1(a) and 1(b) show the Riemann surface distributions
associated with Re(E ) and Im(E ) for the simultaneous vari-
ations of λR within [0.4, 0.56] and λI within [−0.17, 0.17],
where two black crosses represent the pair of conjugate EPs
appearing at (0.4762 + i 0.1063) and (0.4762 − i 0.1063) in
the complex λ plane.

Now, if we want to implement optical systems with gain-
loss based on the above Hamiltonian, then the situations
λI > 0 and λI < 0 would essentially express two complemen-
tary optical systems concerning the gain-loss perturbation.
Two associated coalescing levels are analytically connected
via one of the two conjugate EPs in a particular system,
whereas they are connected via the conjugate counterpart in
the corresponding complementary system. In this context,
the correlation between two complementary optical systems
hosting such two conjugate EPs separately has the potential
to explore an intriguing physical aspect associated with the
chiral light dynamics, which has been investigated in this
paper by exploiting the time-reversal (T ) symmetry, where
T : {x, t, i} → {x,−t,−i}.

Based on the T symmetry, we explore the correla-
tion between two complementary gain-loss assisted optical
waveguides (WGs) to host two conjugate EPs. We design
a framework of a planar dual-mode optical WG, where
two complementary variants are realized based on two
T -symmetric complex potentials in the form of parameter-
dependent unbalanced gain-loss profiles. We establish that
the quasiguided modes of two complementary active WGs

FIG. 2. (a) Schematic framework of the specialty gain-loss as-
sisted WG system to realize two T -symmetric complementary
variants. (b) (Upper panel) Transverse profiles of na(x) and nc(x);
the dotted black line represents the variation of Re(n) associated
with both, whereas the solid blue and red lines represent their re-
spective Im(n) profiles for a specific cross section associated with
γ = 0.01 and τ = 3.16. (Lower panel) The normalized intensities
of quasiguided ψF and ψH as shown by dotted red and solid green
curves, respectively.

encounter two conjugate EPs in the respective parameter
spaces associated with their T -symmetric gain-loss profiles.
Considering the dynamical parametric encirclement scheme
of two conjugate EPs and implementing the constraints of T
symmetry, we exclusively reveal the reverse-chiral response
of two complementary variants of the designed WG. The
proposed scheme has the potential to explore an unconven-
tional platform for investigating the correlative response of
two T -symmetric optical systems around EP singularities.

II. RESULTS AND DISCUSSION

A. Design of two complementary waveguides
to host parametrically encircled conjugate EPs

We configure a gain-loss assisted dual-mode planar step-
index WG, occupying the regions −W/2 � x � W/2 and 0 �
z � L along the transverse x and longitudinal z directions,
respectively, as schematically shown in Fig. 2(a). The passive
refractive indices of core and cladding are chosen as nh = 1.5
and nl = 1.46, respectively; whereas considering the normal-
ized operating frequency ω = 1, we set the effective width
W = 40 (i.e., 20λ/π ; λ is the corresponding wavelength)
and length L = 18 × 103 in dimensionless units. The passive
WG supports only two linearly polarized quasiguided scalar
modes, i.e., the fundamental LP01 mode (say, ψF) and the first
higher-order LP11 mode (say, ψH). Here, the modulation of
gain-loss is controlled by a two-dimensional tunable param-
eter space based on a gain-loss coefficient γ with a ratio τ .
Now, we consider two complimentary variants [say, WG(a)

and WG(c) to represent the actual and complementary WG
systems] concerning the T -symmetric complex potentials in
such a way that the transverse refractive index profiles of them
[say, na(x) and nc(x), respectively] can be written as

na|c(x) =
⎧⎨
⎩

nh − iγ
nh + iτγ

nl + iγ

∣∣∣∣∣∣
T

nh + iγ :
nh − iτγ :
nl − iγ :

−W/6 � x � 0,

0 � x � W/6,

W/6 � |x| � W/2.

(4)

Figure 2(b) shows the transverse profiles of na(x) and nc(x)
along with normalized intensities of quasiguided ψF and ψH.
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FIG. 3. (a) Coalescences of complex βF (dotted red curve) and
βH (dotted blue curve) at γ ≈ 0.0082 for a chosen τ = 3.16, re-
ferring to the presence of conjugate EP and EP* in WG(a) and
WG(c), respectively (as differentiated by the light-gray plane). The
circular markers of respective colors represent the passive locations
(when γ = 0) of β values (b) Encirclements of EP and EP* [fol-
lowing Eq. (5)] in their respective (γ , τ ) planes associated with
T -symmetric complementary WG(a) and WG(c), respectively (as
shown with respect to an additional i axis). (c) Adiabatic switching
between βF and βH in the complex β plane, following the individual
encirclements of EP and EP*, as shown in panel (b), in both CW
[(c.1) and (c.2)] and ACW [(c.3) and (c.4)] directions. (d) The overall
length-dependent variations of two complex conjugate Im(n) profiles
associated with WG(a) and WG(c) after mapping the respective (γ , τ )
parameter spaces [following Eq. (6)] to dynamically encircle EP and
EP*, respectively.

Owing to T symmetry, two complementary WGs experience
two exactly opposite gain-loss distribution concerning the
transverse x direction.

Now, to encounter EPs in both the complementary WGs,
we study the topological ARC-type interactions [3,11] be-
tween the propagation constants (β values) of coupled ψF and
ψH [say, βF and βH, respectively; computed by solving the
scalar modal equation [∂2

x + n2(x)ω2 − β2]ψ (x) = 0 under
approximation of small index difference] induced by the vari-
ation of gain-loss within a chosen range based on the control
parameters γ and τ . For a specific τ = 3.16, it is observed
in Fig. 3(a) that βF and βH coalesce at γ ≈ 0.0082, referring
to the presence of second-order EPs at (0.0082, 3.16) in the
(γ , τ ) plane, for both the complementary variants. As can
be seen here, the coalescence is observed along the positive
Im(β) axis for WG(a) as it is loss dominated; however, in con-
trast, it is observed along the negative Im(β) axis for WG(c) as

it is gain dominated. Thus, based on two T -symmetric gain-
loss profiles in the same passive WG, we encounter two EPs in
the (γ , τ ) plane. These two EPs can conveniently be defined
as conjugate EPs, say EP and EP*, as their respective (γ , τ )
parameter spaces are associated with two complex conjugates
Im(n)-profiles corresponding to two complementary variants
WG(a) and WG(c), respectively, of the designed passive WG.

To investigate the branch point behaviors of the pair of
conjugate EPs toward their chiral features, we consider the
stroboscopic encirclement processes of EP and EP* in their re-
spective (γ , τ ) planes associated with complementary WG(a)

and WG(c). Accordingly, we implement the parametric equa-
tions

γ (φ) = γ0 sin(φ/2) and τ (φ) = τEP + a sin(φ) (5)

to describe two closed loops, enclosing two conjugate EPs
separately (with γ0 > γEP), as shown in Fig. 3(b). Here,
γEP (= 0.0082) and τEP (= 3.16) define the location of EP
and EP* with respect to an additional i axis [+i for WG(a),
whereas −i for WG(c)]. γ0 = 0.015 and a = 0.3, which are
two characteristic parameters to control the closed variation of
γ and τ over the angel φ ∈ [0, 2π ]; φ : 0 → 2π enables the
clockwise (CW) encirclement process, whereas φ : 2π → 0
enables the anticlockwise (ACW) encirclement process.

Now, we track the trajectories of complex βF and βH in
Fig. 3(c) by following the stroboscopic variation of γ and
τ along the chosen loops, where the left panel [3(c.1) and
3(c.2)] shows the trajectories for encirclements of EP and EP*
in the CW direction and the right panel [3(c.3) and 3(c.4)]
shows the same for the ACW encirclement processes. The
hosting of such encirclement schemes in two T -symmetric
variants of the designed WG results in the adiabatic per-
mutation between the initial positions of βF and βH in the
complex β plane, as can be seen in Fig. 3(c), which reveals
the second-order branch point behavior of the pair of conju-
gate EPs. Here, it is noticeable that the overall β trajectories
due to encirclements of EP and EP* in any of the particular
directions look like two mirror images with respect to the
Im(β) axis. During the switching process, we can estimate the
average loss encountered by any of the two particular modes
as γ av = [

∮
Im(β )dφ]/2π with the corresponding adiabatic

expectations of Im(β). Here, we observe that a specific mode,
evolving with a lower γav due to encirclement of EP in a par-
ticular direction, experiences a higher γav due to encirclement
of EP* in the same direction, and vice versa for the coupled
counterpart mode; this fact is also evident from the trajectories
shown in Fig. 3(c).

B. Dynamical encirclement of two conjugate EPs toward
reverse-chiral response in asymmetric-mode-conversion process

To investigate the propagation of the quasiguided modes
through the two T -symmetric variants of the designed WG,
we map the parameter spaces associated with EP and EP*
throughout the length (z axis) of WG(a) and WG(c), respec-
tively. Such a parameter space mapping, which allows a
complete encirclement process (φ : 0 → 2π ) to be equivalent
to one complete pass of light through the waveguide (z : 0 →
L), enables the dynamical EP-encirclement process, where the
control parameters vary with time or analogous length for
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FIG. 4. (a), (b) Beam propagation simulation results through
WG(a) for the dynamical encirclement of EP in (a) the CW direc-
tion, showing the conversions {ψF, ψH} → ψH, and (b) the ACW
direction, showing the conversions {ψF, ψH} → ψF. (c), (d) Beam
propagation simulation results through WG(c) for the dynamical en-
circlement of EP* in (c) the CW direction, showing the conversions
{ψF, ψH} → ψF, and (d) the ACW direction, showing the conver-
sions {ψF, ψH} → ψH.

optical systems (i.e., the t axis plays the role of the z axis;
concerning the equivalence of the Helmholtz equation with
the Schrödinger equation). Now, as the T symmetry enables
the transformation t → −t , we analogically consider the map-
ping of parameter spaces in two opposite directions along the
z axis for two T -symmetric variants of the designed WG.
Accordingly, we implement the replacements

φ = (2πz/L) and φ = [2π (L − z)/L] (6)

separately in Eq. (5) to realize the dynamical encirclements of
EP and EP* with the simultaneous variations of {γ (z), τ (z)}
in WG(a) and WG(c), respectively. The length dependence of
associated complex conjugate Im(n) profiles are shown in the
upper [for WG(a)] and lower [for WG(c)] panels of Fig. 3(d).
Here, the CW dynamical encirclement process is equivalent
to a complete propagation of light from z = 0 to z = L (for-
ward propagation along the +z axis) for WG(a), whereas it is
equivalent to a complete propagation of light from z = L to
z = 0 (backward propagation along the −z axis) for WG(c).
On the other hand the ACW dynamical encirclement process
can be realized with a complete propagation from z = L to
z = 0 for WG(a) and from z = 0 to z = L for WG(c). Here,
CW and ACW variation of parameters for a specific encir-
clement process can be realized by changing the propagation
directions of light through the respective variant.

In Fig. 4, we investigate the propagation of modes
(along the z axis) in two T -symmetric complementary vari-
ants of the designed WG due to dynamical encirclement
processes of two respective conjugate EPs. To study the
propagations of two quasiguided scalar modes ψF and
ψH, we numerically solve the scalar beam propagation
equation [∂2

x + ω2
n2(x, z)]ψ (x, z) = −2iω∂zψ (x, z) [with

n2(x, z) ≡ n2(x, z) − n2

l ] by the split-step (Fourier) method
under the paraxial approximation and the approximation of
sufficiently slow (adiabatic) variation of Im(n) along the z

axis. During the consideration of length dependence in the
EP-encirclement process (dynamical), the induced relative
gain-loss factors lead to the failure of the system’s adiabaticity
[despite the observed adiabatic switching process between
the corresponding β values, as can be seen in Fig. 3(c)]
with asymmetric population transfer among the corresponding
coupled modes due to associated nonadiabatic corrections
[24,25]. The associated light dynamics allows the adiabatic
conversion of only one mode that evolves with a comparably
lower γav, whereas its coupled counterpart evolves nonadia-
batically and does not follow the adiabatic switching process.

In Fig. 4(a), we consider the CW dynamical encirclement
of EP by launching light at z = 0 of WG(a) and observe
that ψF is adiabatically converted to ψH, whereas ψH evolves
nonadiabatically and remains in itself at z = L; i.e., only ψH

dominates at the end of the encirclement process. However,
while implementing the ACW dynamical encirclement of EP
by considering the backward propagation of light (z : L →
0) in WG(a), ψF dominates at the end of the encirclement
process with a nonadiabatic transition of ψF (→ ψF) and an
adiabatic conversion of ψH (→ ψF), as shown in Fig. 4(b).
Thus, the dynamical encirclement of EP in WG(a) allows an
asymmetric-mode-conversion process, where WG(a) exhibits
the chiral response in the sense that it delivers two different
dominating modes for encirclements in two different direc-
tions, irrespective of the inputs.

On the other hand, we observe an opposite chiral response
in the associated-mode-conversion process upon considering
the dynamical encirclement of EP* in WG(c). Here, the con-
sideration of the encirclement in the CW direction with the
excitation of modes from z = L yields the dominating ψF at
z = 0 with nonadiabatic and adiabatic conversions of ψF (→
ψF) and ψH (→ ψF), respectively, as shown in Fig. 4(c).
However, the ACW dynamical encirclement of EP* results in
adiabatic and nonadiabatic conversions of ψF and ψH excited
from z = 0 to the dominating ψH at z = L, as can be seen in
Fig. 4(d). Here, we also calculate the relative gain-loss factors
to verify the beam propagation simulation results, where we
observe that one of the modes that evolves with a lower γav

transits adiabatically for all the cases.
Hence, based on the encirclement directions around two

conjugate EPs, we establish the reverse-chiral response of two
T -symmetric variants of the designed WG. Interestingly, ow-
ing to constraints of T symmetry, two complementary variants
deliver the same modes for the propagation of light in a par-
ticular direction through the designed WG. Here, the output
intensities are indeed different for two variants, where the
overall intensity decreases in loss-dominated WG(a), whereas
it increases in gain-dominated WG(c). However, we renormal-
ize the intensities at each step of propagation to show the beam
propagations in Fig. 4 with proper visibility, and hence the
variations of intensities are essentially scaled.

C. Validation of reverse-chiral response
from the nonadiabatic correction terms

Here, a detail analytical treatment is presented to establish
the reverse-chiral response of two complementary WGs by
estimating the nonadiabatic correction factors associated with
beam evolution processes. We assume that the 2 × 2 generic
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time-dependent Hamiltonian H(t ), illustrating the proposed
WG framework, depends on two time-dependent potential
parameters μ j (t ) ( j = 1 and 2) (analogically comparable to
the parameters γ and τ ), where two physical eigenvalues are
assumed as βad

F {μ j (t )} and βad
H {μ j (t )} with two corresponding

eigenvectors ψad
F {μ j (t )} and ψad

H {μ j (t )}, respectively. Here,
we can consider a similar parametric dependence for both
WG(a) and WG(c) (however, exhibiting altered topologies),
as they individually host EP and EP*, which are two conju-
gate singularities appearing from the eigenvalues of a generic
Hamiltonian. The parameters μ1(t ) and μ2(t ) control the
time-dependent nonadiabatic corrections in the solutions of
time-dependent Schrödinger equation associated with H(t )
[24]. Such nonadiabatic correction factors during the beam
evolution processes led by the dynamical variation of param-
eters can be written as

NA⋂
F/H→H/F

= ϑNA
F/H→H/F exp

{
(+/−)i

∮ T

0

βad

F,H(μ j )dt

}
, (7)

with the pre-exponent term

ϑNA
F/H→H/F =

〈
ψad

F/H(μ j )

∣∣∣∣∣
2∑

j=1

μ̇ j
∂

∂μ j

∣∣∣∣∣ψad
H/F(μ j )

〉
. (8)

Equation (7) represents the nonadiabatic correction factors
for two transitions, simultaneously (via the associated suffix
F/H → H/F), viz., |ψad

F 〉 → |ψad
H 〉 corresponding to the am-

plifying exponent term and |ψad
H 〉 → |ψad

F 〉 corresponding to
the decaying exponent term. T represents the duration of the
encirclement process. Now, the pre-exponent terms of

⋂NA
F→H

and
⋂NA

H→F [i.e., ϑNA
F→H and ϑNA

H→F, as given by Eq. 8] contain
the time derivative of the two considered potential parameters,
i.e., μ̇ j ( j = 1 and 2). Hence, the divergence in T associated
with the exponential terms of

⋂NA
F→H and

⋂NA
H→F exceeds the

decay of 1/T incorporated in the pre-exponents ϑNA
F→H and

ϑNA
H→F, respectively.

Here, the form of the factor 
βad
F,H = (βad

H − βad
F ) [as ap-

peared in the exponent of Eq. (7)] for two T -symmetric WG
variants can be written as


βad
F,H{μ j (t )} = Re

[

βad

F,H(μ j )
] ± i
γ ad

F,H(μ j ). (9)

The plus and minus in Eq. (9) corresponds to the vari-
ants WG(a) and WG(c), respectively. The term 
γ ad

F,H =
|γ av

H | − |γ av
F | represents the relative gain between the quasigu-

ided modes, which would be alternatively positive and
negative for two different encirclement directions [can
be predicted from the associated adiabatic β trajecto-
ries shown in Fig. 3(c)]. The substitution of Eq. (9) in
Eq. (7) gives a relative-gain-associated exponent part of⋂NA

F/H→H/F, i.e., (−/+) exp[
∮ T

0 
γ ad
F,H(μ j )dt] for WG(a), and

(+/−) exp[
∮ T

0 
γ ad
F,H(μ j )dt] for WG(c), which is the key to

detecting the final dominating output during the evolution of
the beams.

Now, for the proposed variant WG(a), the dynamical encir-
clement of EP in the CW direction gives 
γ ad

F,H > 0, which

yields the nonadiabatic correction terms
⋂NA

F→H → 0 (con-
verging) and

⋂NA
H→F → ∞ (diverging), while T → ∞. On the

other hand, the situation 
γ ad
F,H < 0 during the dynamical EP

encirclement in the ACW direction yields
⋂NA

F→H → ∞ and⋂NA
H→F → 0. Here, the converging correction factors maintain

the adiabaticity in the modal dynamics, whereas nonadia-
baticity comes into the picture when the correction factors
diverge. Thus, during the dynamical encirclement of EP in
the CW direction,

⋂NA
F→H → 0 allows the adiabatic conver-

sion of |ψad
F 〉 into |ψad

H 〉 and
⋂NA

H→F → ∞ forces |ψad
H 〉 to

remain as |ψad
H 〉 beyond the adiabatic expectations. On the

other hand, the vice-versa conditions during the dynamical EP
encirclement in the ACW direction allows the nonadiabatic
evolution of |ψad

F 〉 (→ |ψad
F 〉) and the adiabatic conversion of

|ψad
H 〉 (→ |ψad

F 〉).
In contrast, while we consider the variant WG(c), the con-

dition 
γ ad
F,H > 0 during the dynamical encirclement of EP*

in the CW direction gives
⋂NA

F→H → ∞ and
⋂NA

H→F → 0,
whereas the condition 
γ ad

F,H < 0 during the dynamical en-

circlement of EP* in the ACW direction gives
⋂NA

F→H → 0
and

⋂NA
H→F → ∞. Hence, WG(c) allows the nonadiabatic evo-

lution of |ψad
F 〉 (→ |ψad

F 〉) and the adiabatic conversion of
|ψad

H 〉 (→ |ψad
F 〉) during the CW EP*-encirclement scheme,

whereas it allows the adiabatic conversion of |ψad
F 〉 (→ |ψad

H 〉)
and the nonadiabatic evolution of |ψad

H 〉 (→ |ψad
H 〉) during the

ACW EP*-encirclement scheme.
Hence, the above analytical treatment establishes the

reverse-chiral response of two conjugate EPs in two T -
symmetric complementary WG variants. Here, one can
predict the dominating output based on the relative gain factor
in the nonadiabatic corrections associated with beam dynam-
ics, where the relative gain dependence re-establishes the fact
that only the least-decaying mode obeys the adiabatic expec-
tation. The analytically predicted adiabatic and nonadiabatic
transitions for different encirclement schemes can be verified
by observing the beam propagation results shown in Fig. 4.

III. CONCLUSION

In summary, we exclusively propose the concept of conju-
gate EPs and report the hosting of such a pair of conjugate EPs
in two complementary variants of a dual-mode planar waveg-
uide based on two T -symmetric optical potentials in terms of
complex refractive index profiles. Here, two waveguide vari-
ants experience unbalanced gain-loss profiles in such a way
that their refractive index profiles are complex conjugate and
correlated by T symmetry. We implement the dynamical en-
circlements of two conjugate EPs in their respective parameter
spaces and reveal an asymmetric-mode-conversion scheme for
both variants, where light is converted into different particular
dominating modes for two different encirclement directions
in terms of the direction of light propagation. Based on the
constraints of T symmetry, we establish the reverse-chiral
response of two complementary variants of the designed
waveguide, concerning the direction of the encirclement pro-
cess, where the individual dynamical encirclements of two
conjugate EPs in two opposite encirclement directions result
in the delivery of the same dominating modes by the re-
spective waveguide variants. The findings enriched with the
physics of conjugate EPs will certainly open up a potential
platform to investigate the inherent correlations of optical re-
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sponses of two T -symmetric systems toward unconventional
light manipulation mechanisms for a wide range of inte-
grated (or on-chip) device applications. Furthermore, in the
context of nonreciprocal transmission through such comple-
mentary optical systems in the presence of local nonlinearity,
the basis of T symmetry would certainly be of interest
and also open to explore in exploiting the functionalities of
conjugate EPs.
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