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Quantum approach to the thermalization of the toppling pencil interacting with a finite bath

Sreeja Loho Choudhury
Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Straße 38, D-01187 Dresden, Germany

and Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany

Frank Grossmann *

Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany

(Received 18 November 2021; accepted 21 January 2022; published 2 February 2022)

We investigate the longstanding problem of thermalization of quantum systems coupled to an environment
by focusing on a bistable quartic oscillator interacting with a finite number of harmonic oscillators. In order to
overcome the exponential wall that one usually encounters in grid-based approaches to solve the time-dependent
Schrödinger equation of the extended system, methods based on the time-dependent variational principle are best
suited. Here we will apply the method of coupled coherent states [D. V. Shalashilin and M. S. Child, J. Chem.
Phys. 113, 10028 (2000)]. By investigating the dynamics of an initial wave function on top of the barrier of the
double well, it will be shown that only a handful of oscillators with suitably chosen frequencies, starting in their
ground states, is enough to drive the bistable system close to its uncoupled ground state. The long-time average
of the double-well energy is found to be a monotonously decaying function of the number of environmental
oscillators in the parameter range that was numerically accessible.
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I. INTRODUCTION

Ever since the pioneering works of Fermi, Pasta, Ulam, and
Tsingou (FPUT) [1,2], the puzzle of energy exchange between
subsystems, eventually leading to equilibration and thermal-
ization in closed systems with a finite number of degrees of
freedom, has intrigued researchers in the fields of classical
[3–11], as well as semiclassical [12,13] and quantum mechan-
ics [3,14–20]. In the quantum context, an important concept
is the eigenstate thermalization hypothesis (ETH) [21,22].
Whereas thermalization in classical systems is closely re-
lated to the presence of chaos and ergodicity, the ETH can
be regarded, very broadly, as the quantum manifestation of
such ergodic behavior. The principal philosophy underlying
the ETH, however, is that instead of explaining the ergod-
icity of a thermodynamic system through the mechanism of
dynamical chaos, as done in classical mechanics, one should
instead examine the properties of matrix elements of observ-
able quantities in individual energy eigenstates of the system.
The eigenstate thermalization hypothesis states that for an
arbitrary initial state of the system, the expectation value of
any observable (of a subsystem) will ultimately evolve in time
to its value predicted by a microcanonical ensemble and there-
after will exhibit only small fluctuations around that value.

In classical systems the prerequisite for thermalization is
believed to be the (hard) chaoticity of the underlying dy-
namics [4,5], this fact being one possible reason that by
investigating a weakly anharmonic system, FPUT did not
succeed in finding thermalization but were surprised by a
dynamics that showed pronounced revivals [2]. For dynamical
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chaos to appear, the phase space has to be at least three
dimensional. The question therefore arises as to whether it
is enough to increase the interaction strength between the
different degrees of freedom in order to fully develop chaos, or
if, in addition, the number of those degrees of freedom has to
be increased (possibly all the way to the thermodynamic limit)
in order to observe thermalization. In two more recent con-
tributions from the realm of classical mechanics it has been
shown by solving Newton’s equations for coupled harmonic
oscillator systems, comprising a few hundred [7] up to a few
thousand degrees of freedom [10] that, for a suitably chosen
initial configuration, a (large enough) subsystem may indeed
reach thermal equilibrium, without coupling to an (external)
thermostat and even without nonlinear interactions (i.e., with-
out chaos). In light of these results, another possible reason
that FPUT saw no signs of thermalization is the closeness of
their model to the noninteracting case [10].

Although semiclassical approaches may be helpful to
tackle such problems [23], this large number of degrees of
freedom seems elusive if one is interested in a full quantum
description of the process. From this perspective it comes
as a relief that also small numbers of degrees of freedom
(below 10) can lead to thermalization in long-time dynamics
of quantum systems, as shown long ago for spin systems
[14] and discussed more recently in the seminal book by
Gemmer et al. [15] and the article by Reimann [19]. For a
more recent reference on spin systems realized in graphene
quantum dots, see Ref. [24], and for energy exchange in
quantum systems with continuous degrees of freedom, see
Ref. [17]. There it is claimed that as little as 10–20 harmonic
degrees of freedom are necessary to observe energy loss to the
bath without backflow on the observed timescales. In addition,
in [16] the thermalization of eight valence electrons inside a
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small sodium cluster has been investigated quantum mechan-
ically. Furthermore, whereas in [14] it was argued that both
integrable as well nonintegrable systems exhibit statistical
behavior for long times, in [18] it was pointed out that, in a
Bose-Hubbard dynamics, thermalization is only observed if
the system starts from a chaotic region of phase space but not
if the system is launched from a quasi-integrable region.

In the present contribution, we will investigate the toppling
pencil model, studied recently by Dittrich and Pena Martínez
(DPM) [11]. In their classical mechanics study, they focused
on a particle on top of the barrier in a quartic double well
that is coupled to a small (from just one single up to the
order of ten and higher) number of harmonic oscillators. It
is well known that the transition from integrable to chaotic
motion sets in first around the separatrix of the double well’s
phase space, when the interaction strength with an external
sinusoidal field is tuned higher [25]. In the light of the findings
in [18], this makes an initial condition starting on top of the
double well’s barrier an ideal candidate to search for (quick
[19]) thermalization under the interaction with a relatively
small number of harmonic degrees of freedom, although the
interaction with a sinusoidal field is a crude approximation
to the interaction with harmonic degrees of freedom, whose
dynamics is influenced by “back action” of the system.

In contrast to DPM, in the following we will investigate
the system dynamics fully quantum mechanically, making use
of the method of coupled coherent states (CCS) introduced by
Shalashilin and Child [26]. By being based on an expansion
of the total wave function in terms of coherent states
(Gaussians), whose initial positions in phase space are chosen
randomly, the exponential wall that one usually experiences
in grid-based approaches to the quantum dynamics can be
overcome or at least pushed to rather larger numbers of
degrees of freedom. For a recent review of the CCS and
related methods, we refer to [27]. The main focus of the
present work is on the question of how many bath degrees
will be needed to ensure thermalization and how strong the
interaction has to be, and how the speed of thermalization
depends on the coupling and/or the number of degrees of
freedom. The toppling pencil model setup seems to be ideally
suited to answer all those questions.

The manuscript is structured as follows: In Sec. II, we
briefly introduce the bistable quartic oscillator toppling pencil
model coupled to a harmonic heat bath. In Sec. III the CCS
method that will be employed to study the quantum dynamics
of the many-particle system will be reviewed. In Sec. IV nu-
merical results for several quantities of interest are presented.
These are energy expectation values, autocorrelation func-
tions, as well as reduced densities that allow us to observe the
transition of the quartic degree of freedom into some almost
stationary state resembling the ground state of the unperturbed
problem to a large degree. Some conclusions as well as an
outlook are given in the final section. The Appendix contains
details for the implementation of the CCS method.

II. QUARTIC DOUBLE WELL COUPLED
TO A FINITE HEAT BATH

Our model system is a double well which is bilinearly
coupled to a finite number f of harmonic oscillators [11]. A

quartic double well is a bistable system with two symmetry-
related minima. It has many physical realizations, one of
the most prominent of which is the ammonia molecule, first
discussed in the quantum (tunneling) context by Hund as
early as 1927 [28]. A solid-state realization of a nonquartic
but symmetric double-well potential is given by a suitably
parametrized rf–superconducting quantum interference de-
vice (SQUID), where the role of the coordinate is played by
the flux through the ring [29]. More recently, bistable poten-
tials have been discussed in cold atom physics in connection
with Bose-Einstein condensation [30]. In the following we
first discuss the bare quartic bistable system before coupling
it to a finite heat bath.

A. Quartic double well

The potential of a symmetric quartic oscillator double well
with a parabolic barrier around its relative maximum can be
written as

VS (x) = −a

2
x2 + b

4
x4, a, b ∈ R+. (1)

It has quadratic minima at x± = ±√ a
b and a quadratic max-

imum at x0 = 0 of relative height EB = a2

4b . The Hamiltonian
of the quartic double well is then given by

HS (px, x) = p2
x

2mx
+ VS (x). (2)

Its classical dynamics consists of harmonic oscillations with

the frequency ω =
√

2a
mx

close to the minima at x±. These

oscillations become increasingly anharmonic as the energy
rises towards the top of the barrier. The phase-space portrait
of the dynamics contains the prototypical separatrix, shaped
like the number 8, as well as a hyperbolic fixed point at
px = 0, x = 0 on that separatrix and two elliptic fixed points
at px = 0, x = x± [31]. If the available energy is higher than
the barrier, in the case of the NH3 molecule, the corresponding
motion is referred to as umbrella motion.

For an understanding of the corresponding quantum dy-
namics, we first calculate the energy spectrum of the quartic
double-well potential, using a finite-difference representation
of the Laplacian to solve the time-independent Schrödinger
equation (TISE):

ĤSφn(x) ≡
[
− h̄2

2mx
� + VS (x)

]
φn(x) = Enφn(x). (3)

The first few eigenvalues for the parameters mx = 1 and a =
2, b = 1 and in units, where h̄ = 1, are gathered in Table I. In
the numerical work to be shown later, we will use a Gaussian
of the form

�(x, 0) =
(

γx

π

)1/4

e− γx
2 x2

(4)

that is located at the top of the barrier as the initial state.
Together with the potential and its first eigenstate it is shown
in Fig. 1. The base lines for the two wave functions are at their
corresponding energy expectation values, which in the case
of the Gaussian is EG = γx/4 − 1/(2γx ) + 3/(16γ 2

x ), leading
to EG = 0.3 for a width parameter of γx = 2. Although both
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FIG. 1. Quartic double-well potential with parameters a = 2,
b = 1 (solid blue line), leading to x± = ±√

2. Absolute value
squared of the initial Gaussian sitting at the top of the barrier with
initial energy EG = 0.3 (dashed red line) and absolute value squared
of the ground-state wave function of the quartic double well with
ground-state energy E1 = −0.30 (dotted yellow line) are overlaid.

the initial position as well as momentum expectations are
zero, due to its finite width, there is a finite energy content
in the wave packet. This initial state is the motivation for the
naming “toppling pencil”—a pencil balanced tip down on a
flat surface, prone to fall over [11].

For symmetry reasons it is obvious that the symmetric
initial Gaussian does have zero overlap with the eigenfunc-
tions of odd parity (see Table I). Like the odd ones, also
almost all higher even eigenstates (from the fifth eigenstate
on) are not taking part in the dynamics The dynamics of
the Gaussian in the bare potential will then be an oscillation
with the frequency corresponding to the difference of the
first and the third eigenvalue. We stress that this is not the
usual tunneling scenario, where a Gaussian is sitting in one
of the two wells initially and is then moving to the other well
and back with a (usually very small) frequency given by the
difference E2 − E1 of the two lowest eigenvalues. Here we
focus on the symmetric initial condition, however, and have
chosen the potential parameters such that just the eigenstates
with eigenvalues E1 and E3 are appreciably populated.

B. Coupling to a finite heat bath

Coupling a double well to a harmonic oscillator heat bath
with infinitely many degrees of freedom with continuous

TABLE I. Eigenvalues En and squared overlap |cn|2 :=
|〈φn|�(0)〉|2 of eigenstates with the initial Gaussian of Eq. (4) for
γx = 2 of the bare quartic double well with a = 2, b = 1. The grid
extension for the finite-difference calculation was x ∈ [−4, 4] and
256 grid points were sufficient to achieve convergence to within the
number of digits given.

n = 1 n = 2 n = 3 n = 4 n = 5

En −0.300 0.046 1.23 2.46 3.94
|cn|2 0.654 0 0.323 0 0.0225

spectral density will lead to decoherence and dissipation in
the dynamics. In the case that only the two lowest states of the
bistable system play a role, the tunneling rate will be severely
influenced by the system bath coupling [32]. A lot of work
has been done on that so-called spin-boson model in the ’80s
of the last century, as documented by the impressive review
by Leggett et al. [33]. More recently, this model has been
studied deeply by different numerical methods, with a focus
on correctly mimicking infinite baths by either a discretization
in frequency of the harmonic oscillator spectral density or by a
correct description of the bath correlation function in the time
domain [34]. Furthermore, also the influence of a sinusoidal
driving on the tunneling effect in a two-level system has been
studied, yielding surprising localization effects [35,36].

Here we are not restricting ourselves to the spin-boson case
but will consider the total Hamiltonian to be that of the full
bistable system coupled to an environment with a large but
finite number of degrees of freedom, given by

H (R, r) = HS (R) + HE (r) + HSE (R, r), (5)

where R = (px, x) denotes the phase-space vec-
tor of the central system of interest, whereas r =
(p1, p2, . . . , p f , y1, y2, . . . , y f ) denotes the 2 f -dimensional
phase-space vector of all the environmental degrees of
freedom. The dynamics of the bare central system of interest
(index S) is governed by the Hamiltonian of the quartic double
well given in Eq. (2). The environment (index E) consists of
f harmonic oscillators, whose Hamiltonian is given by

HE (r) =
f∑

n=1

(
p2

n

2m
+ mω2

n

2
y2

n

)
. (6)

The choice of a discrete set of frequencies ωn, n = 1, . . . , f
will be discussed below in the numerical results section. As
each oscillator should exert a force on the system, their inter-
action can be modeled as the position-position coupling,

HSE (R, r) = −x
f∑

n=1

gnyn, (7)

with coupling constant gn = g√
f
, which is renormalized by√

f in order to make the results for different number of oscil-
lators comparable. Using linear response theory, this scaling
has been derived in [8].

The bilinear coupling does not break the invariance of
the total Hamiltonian under a parity transformation (spa-
tial reflection) P : (R, r) → (−R,−r). However, it drives
the two bistable minima apart from x± = ±√ a

b to x± =
±

√
1
b (a + ∑ f

n=1
g2

n
mω2

n
), an effect which is not intended by the

coupling to the environment [11,37]. This driving apart can,
however, be compensated by including the so-called countert-
erm proportional to the square of the system coordinate in
the potential of the total Hamiltonian (system plus bath) to
complete the squares with respect to the dependence on the
oscillator coordinates. One thus replaces the total potential by
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[11,37,38]

VS + VE + HSE + VC

= VS (x) +
f∑

n=1

mω2
n

2
y2

n − x
f∑

n=1

gnyn + x2
f∑

n=1

g2
n

2mω2
n

= VS (x) +
f∑

n=1

mω2
n

2

(
yn − gn

mω2
n

x

)2

. (8)

The counterterm,

VC = x2
f∑

n=1

g2
n

2mω2
n

, (9)

now renormalizes the factor a in front of the quadratic term in

the system coordinate according to a → a − ∑ f
n=1

g2
n

mω2
n

[39],
thus exactly undoing the renormalization (shift of the minima)
mentioned above and the minima are at their uncoupled posi-
tions, see also Fig. 2 of [11]. In the section on the numerical
results, we will display the time evolution of the counterterm
VC . Even more importantly, we will start the bath in its ground
state (in the thermodynamic limit f → ∞ this would corre-
spond to zero temperature) and will focus on the evolution of
the system dynamics away from the excited state on top of
the barrier. To this end we will need a numerical method that
allows us to treat a multitude of degrees of freedom quantum
mechanically. The method of our choice is the CCS method to
be reviewed in the following.

III. COUPLED COHERENT STATES METHOD

To tackle the quantum dynamics under the many-body
Hamiltonian from the previous section, grid-based methods
are running into an an exponential wall, and we will use a
variational approach, based on time-evolving coherent states,
that was introduced by Shalashilin and Child [26,40] and was
recently reviewed in [27]. In the following we will briefly
recapitulate the so-called coupled coherent state ansatz and
its working equations, extending the notation of [27] towards
many degrees of freedom.

For a system of ( f + 1) degrees of freedom as in the pre-
vious section, an ansatz for the solution of the time-dependent
Schrödinger equation (TDSE) is given in terms of multimode
coherent states (CS) of multiplicity M by

∣∣�M
CS(t )

〉 =
M∑

l=1

al (t )|zl (t )〉, (10)

with time-dependent complex coefficients ak (t ) and time-
dependent ( f + 1)-dimensional complex displacement vec-
tors

zl (t ) = γ1/2ql (t ) + iγ−1/2 pl (t )√
2

, (11)

with q = (x, y1, . . . , y f ) and p = (px, p1, . . . , p f ) and diago-
nal matrix γ with entries γ j = mjω j, j = 0, . . . , f , where

γ0 = γx, m0 = mx, and m1, . . . , m f = m, and we have set
h̄ = 1.

The ( f + 1) mode CS are given by an ( f + 1)-fold tensor
product

|zl〉 =
f⊗

j=0

|zl j〉 (12)

of normalized one-dimensional CS

|zl j〉 = exp
[− 1

2 |zl j |2
]

exp
[
zl j â

†
j

]|0 j〉, (13)

where â†
j is the creation operator acting on the ground state

of a suitably chosen jth harmonic oscillator and the CS form
an overcomplete and nonorthogonal basis set [41] and are
Gaussian wave functions in position space.

To make progress, the Hamiltonian in (5) is to be expressed
in terms of the creation and annihilation operators of the har-
monic oscillator underlying the CS. In all that follows we will
use the normally ordered Hamiltonian, where all appearances
of â†

j precede those of â j . Whereas for the bath part of the
Hamiltonian, which is harmonic, the task of finding the nor-
mally ordered Hamiltonian is trivial, for the quartic bistable
system of interest, corresponding to index j = 0, we give the
derivation of the corresponding expression in some detail in
Appendix A.

The time evolution of the coefficients and the displace-
ments is now governed by the Dirac-Frenkel variational
principle [42,43],

〈
δ�M

CS

∣∣i∂t − Ĥ
∣∣�M

CS

〉 = 0, (14)

and we have given the fully variational equations of motion in
[44]. In the case that the ansatz (10) is restricted to a single
term, i.e., M = 1, these equations reduce to

iȧ = a

[
Hord(z∗, z) − i

2
(ż · z∗ − z · ż∗)

]
, (15)

iż = ∂Hord

∂z∗ . (16)

The second of these equations is the complexified Hamilton’s
equation, and it is given for the present case in Appendix A.

In the CCS method one now reintroduces the multiplicity
index and propagates all the coherent state parameters zl (t ) in
the ansatz (10) according to the classical equations and keeps
the fully variational equations of motion for the coefficients
al (t ) [40], given by

i
M∑

l=1

〈zk (t )|zl (t )〉ȧl (t ) =
M∑

l=1

H̃kl (t )al (t ), (17)

022201-4



QUANTUM APPROACH TO THE THERMALIZATION OF THE … PHYSICAL REVIEW A 105, 022201 (2022)

with the time-dependent matrix elements (even in the case of an autonomous Hamiltonian)

H̃kl (t ) = 〈zk (t )|zl (t )〉
[

Hord(z∗
k , zl ) − 1

2

(
zl (t ) · ∂Hord(z∗

l , zl )

∂zl
− ∂Hord(z∗

l , zl )

∂z∗
l

· z∗
l (t )

)
− z∗

k (t ) · ∂Hord(z∗
l , zl )

∂z∗
l

]
, (18)

where the elements of the overlap matrix of the multimode CS are given by

〈zk|zl〉 =
f∏

j=0

exp

[
−1

2
(|zk j |2 + |zl j |2) + z∗

k jzl j

]

= exp

[
−1

2
(|zl |2 + |zk|2) + z∗

k · zl

]

= exp

[
−(ql − qk )T γ

4
(ql − qk ) − (pl − pk )T γ−1

4
(pl − pk ) + i

2
(pl · qk − ql · pk )

]
, (19)

which is the product of the corresponding single-mode over-
laps. We note that the Klauder phase convention of the
corresponding Gaussian wave packets has been used [27].

For the determination of the initial conditions of the tra-
jectories, we are using the pancake sampling idea suggested
by Shalashilin and Child [45]. It is the (random) sampling
of the initial conditions in the extended (system plus bath)
phase space that is believed to help the CCS method cope with
the exponential wall, that is usually encountered in grid-based
approaches to many-body quantum dynamics.

IV. LONG-TIME DYNAMICS OF THE COUPLED SYSTEM

In the following we present numerical results for the time
evolution of the composite system using the method just de-
scribed to solve the time-dependent Schrödinger equation. In
addition, for up to a total of four degrees of freedom (DOF),
i.e., f = 3, we also corroborated our results by using the split-
operator fast Fourier transform (FFT) technique for quantum
propagation [46,47]. Our focus will be on the question of
whether the coupling to the environmental degrees of free-
dom, which are all starting in their ground states,

�(yn, 0) =
(

γn

π

)1/4

exp

{
−γn

2
y2

n

}
, (20)

will eventually lead to a “thermalization” of the quartic degree
towards its ground state (which is depicted in Fig. 1 as the
dotted yellow line). We stress that previous treatments of the
double-well dynamics using CCS [48] have focused on the
description of quantum tunneling, where the initial state is
made up of an equal weight superposition of the two lowest
energy eigenstates, whereas herein, the initial states consists
mostly of state 1 and state 3 (see Table I).

In the following the potential parameters for the double
well are a = 2 and b = 1, and the mass mx is set equal to unity.
The choice of frequencies of the environmental degrees of
freedom will be detailed below. All masses of the oscillators
are taken to be equal and given by m = 0.1.

A. Different numerical measures

As a first measure of the possible deviation of the time-
evolved wave function away from the initial state, we use the

autocorrelation function, defined in one dimension (1D) as

c(t ) = 〈
�(0)

∣∣�M
CS(t )

〉 =
M∑

l=1

al (t )〈�(0)|zl (t )〉

=
∑
k,l

a∗
k (0)〈zk (0)|zl (t )〉al (t ). (21)

For a multitude of degrees of freedom, an analogous quantity
could be defined by just replacing the scalars zk, zl by the
corresponding vectors zk, zl , which would, however, not serve
our purpose. Our goal is to find an autocorrelation measure,
irrespective of the dynamics of the environment. Therefore
we first define the probability density of the system degree of
freedom by integrating the absolute value squared of the full
wave function over all f environmental degrees of freedom,

ρS (x, t ) =
∫

dy1 . . . dy f

∣∣�M
CS(x, y1, . . . , y f , t )

∣∣2
, (22)

to arrive at the probability density of the quartic degree of
freedom. This then allows us to calculate the quantity

cS (t ) =
∫

dx�(x, 0)
√

ρS (x, t ), (23)

which [if the initial state is real (and positive) as herein] has
no phase anymore and is thus the analog of the absolute value
of the correlation function of Eq. (21). For the pure quartic
(1D) case and the initial state we use, the time evolution of
the quantities defined in Eqs. (21) and (23) is similar but not
identical. The oscillation period is identical though.

An even more stringent measure to decide if the time-
evolved state is approaching the ground state is the energy
expectation value, defined by

〈E〉(t ) = 〈
�M

CS(t )
∣∣Ĥord

∣∣�M
CS(t )

〉
=

∑
k,l

a∗
k (t )Hord(z∗

k , zl )〈zk (t )|zl (t )〉al (t ). (24)

The different terms in the total Hamiltonian can be disen-
tangled, and their respective contribution to the total energy
can be looked at separately. The conservation of the total
energy will also serve as a convergence check for the CCS
method [49]. In passing, we note that the norm of the to-
tal wave function was well conserved in all the numerical
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FIG. 2. Absolute value of the autocorrelation function for the 1D
system (double well only) from a CCS calculation (solid blue line)
and from a split-operator FFT calculation (dashed red line). The two
curves coincide to within line thickness.

calculations that we present. This is in contrast to the semi-
classical Herman-Kluk case, where often a normalization of
the results has to be performed [50]. This is not necessary for
CCS.

B. Numerical results

First, we consider the autocorrelation of the initial state
at the top of the barrier in the uncoupled 1D case in Fig. 2.
For the CCS calculations, a multiplicity of M = 299 was
enough to converge the result to the converged split-operator
FFT result. Because the initial state mainly contains only two
eigenstates (see Table I), the local spectrum [51], i.e., the
Fourier transform of the autocorrelation, contains just two
major peaks. From the figure it can be seen that the abso-
lute value of the autocorrelation correspondingly oscillates
back and forth between unity and around 0.3 with a period
of around T = 2π/(E3 − E1) ≈ 4 in the dimensionless units
used. The initial state will thus be revisited frequently in the
uncoupled case.

The initial state that will be used in the propagation of
the coupled system is the (direct) product of the Gaussian on
top of the barrier of the double well, given in Eq. (4), times
the ground-state Gaussians of Eq. (20). Before showing the
alteration of the results by the coupling of the double well
to several oscillators, we have to elaborate on the choice of
frequencies of those oscillators, however. This choice will be
crucial for the energy flow between the double well and the
environment. We again follow the work of DPM [11] and
choose the frequencies from the (normalized) density:

ρf (ω) = 1

ωco
exp

{
− ω

ωco

}
, (25)

with a parameter ωco to be fixed below, according to∫ ωk

0
dωρf (ω)

!= k

fco
. (26)

TABLE II. Parameters needed for the calculation of the dis-
cretized bath frequencies according to Eq. (27) for different values
of f .

f 2 3 4 5

ωco 4 4 4 4
fco 10 12 14 16

This leads to the explicit expression

ωk := −ωco ln

(
1 − k

fco

)
k = 1, . . . , f (27)

for the frequencies, and we here choose the second parameter
fco > f , such that extremely high frequencies which would
not exchange energy with the system (not shown) are not
considered. Other frequency distributions have been used in
[34] as well as in [52], while the present one has been found
favorable also in multiconfiguration time-dependent Hartree
(MCTDH) calculations [53]. Now one could choose the cou-
pling strength between system and environment according to
a specific (continuous) spectral distribution, which is usually
taken as Ohmic or sub- or super-Ohmic. Here, however, we
again adhere to DPM and take equal coupling strengths g =
0.1 for all oscillators, just suitably normalized by the total
number of environmental degrees of freedom [see remark
after Eq. (7)] to make the results for different values of f
comparable. In Table II we give the parameters that were used
in Eq. (27) for the calculation of the discretized frequencies
for different values of f . We note in passing that for the
number of oscillators that we will use, and for the present
frequencies and couplings (which are renormalized with the
square of the number of bath oscillators), there is no transition
to monostability of the combination of the bare potential plus
the counterterm, mentioned in [39]. In the following, several
different quantities will be looked at for increasing numbers
of environmental degrees of freedom.

To start with, for the system’s “autocorrelation” cS (t ) de-
fined in Eq. (23), we found the results displayed in Fig. 3.
For the three-dimensional results ( f = 2) we used 799 tra-
jectories, whereas for the four-dimensional case ( f = 3) we
used 2999. From Fig. 3 and by comparison to the 1D case
displayed in Fig. 2, it can be seen that by the coupling to the
environmental degrees of freedom, the oscillation frequency is
only marginally increased (as to be expected by comparison
to Rabi oscillations in a two-level system), but the oscilla-
tion amplitude becomes decisively smaller. Furthermore, a
damping of the oscillations for long times can be observed,
which becomes the more prominent the higher the number of
environmental degrees of freedom. If the quartic subsystem
evolves towards the ground state for long times, the expected
long-time asymptotic value of the quantity we calculated is
cS (∞) = |c1| ≈ 0.8 (taking the square root of |c1|2 from Ta-
ble I). This value is close to the asymptotic average value of
the results displayed in Fig. 3.

The most important measure to decide about the propa-
gated density’s possible evolution towards the ground state is
the energy expectation value. In Fig. 4 the energy expectations
for all five degrees of freedom in the case of f = 4 as well as
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FIG. 3. Absolute value of the autocorrelationlike quantity de-
fined in Eq. (23) from a CCS calculation for different numbers of
environmental oscillators: f = 2 (solid blue) and f = 3 (dashed red).

FIG. 4. Different energy expectation values for the case f =
4: (a) total energy (dashed-dotted purple), counterterm (dashed
magenta), double well (solid blue), coupling term (dotted red), (b) ki-
netic plus potential energy of the different harmonic degrees of
freedom: ω1 = 0.29 (solid blue), ω2 = 0.61 (dotted red), ω3 = 0.96
(dashed magenta), ω4 = 1.34 (dashed-dotted purple).

FIG. 5. Long-time average energy of the double well as a func-
tion of the total number of degrees of freedom (DOF).

the coupling and the counter term are displayed for times up
to t = 300, whereby panel (a) contains the total energy, the
double-well energy as well as the coupling and the countert-
erm, and panel (b) contains all the different oscillator energies.
The total energy is conserved very well, although a small
tendency towards an energy drift is visible [panel (a)]. For the
presented results we have used a multiplicity of M = 5999,
and we did not increase this number because the convergence
is becoming exceedingly slow with the number of trajectories
and the presented calculation took already several days on a
modern computer cluster using several cores. As displayed in
panel (b), the different oscillators clearly show an increase in
their energy, away from their ground-state value, and the ω1

oscillator even overtakes the ω2 oscillator in terms of energy
at certain times. We stress that the oscillators’ energies never
fall below their ground-state energies, as it should be [54].
Furthermore, the oscillator with the highest frequency is still
showing appreciable variations in its energy. If even higher
frequencies would have been chosen, the energy transfer
would start to diminish, however (not shown). We stress that
the environment, by consisting of a finite number of degrees
of freedom, does heat up, in contrast to the case of infinitely
many environmental oscillators described by a continuous
spectral density [55]. As shown in panel (a), the counterterm
shows high-frequency oscillations with a period similar to the
total double-well energy and the interaction energy is large
and negative. Most importantly, the total double-well energy
shows a clear tendency to decrease below its initial value of
0.3. In addition, for large times the amplitude of oscillation
of the double-well energy around its average value is rather
small, and we do not observe any revival in the relatively long
time span that we display.

This last finding led us to investigate the long-time average
value of the double-well energy expectation,

〈E〉 = 1

Ttot

∫ Ttot

0
dt〈E〉(t ), (28)

as a function of the number of environmental oscillators for
the relatively long total time of Ttot = 300. In the case f = 1,
the frequency of the single oscillator was ω = 0.96, whereas
for f ∈ [2, 5], the frequencies have been calculated from the
parameters given in Table II. As shown in Fig. 5, the average
energy of the double-well oscillator indeed decreases as a
function of the number of environmental oscillators, indi-
cating a clear trend towards the ground-state energy. In the
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Supplemental Material we provide a video of the time evo-
lution of the probability density of the double-well degree of
freedom, defined in Eq. (22), for 0 < t < 80 [56]. This video
shows that for long times, the time-evolved density, due to the
coupling (in the presented case to three harmonic degrees of
freedom), approaches the (static) ground-state density (also
displayed in the movie) to a substantial degree.

Finally, it is worthwhile to mention that we have tried
different values for the coupling strength g and found (not
shown) that larger values lead to too much initial energy from
the counterterm (the coupling itself has zero expectation value
at t = 0) and thus eventually in the system, whereas smaller
values of g, due to the small coupling decrease the flow away
from the quartic into the harmonic degrees of freedom. So the
value g = 0.1 that we used was close to optimal if the cooling
of the quartic degree of freedom is to be achieved.

V. CONCLUSIONS AND OUTLOOK

By focusing on the toppling pencil model, i.e., an excited
initial state on top of the barrier of a symmetric quartic double
well, we have investigated if the coupling of the central quartic
double well to a finite, environmental bath of harmonic oscil-
lators in their ground states will let the central system evolve
towards its ground state. This amounts to the thermalization,
i.e., a cooling down to the bath “temperature” (strictly only
defined in the thermodynamic limit) of the central system.

By solving the time-dependent Schrödinger equation using
the CCS methodology (and also split-operator FFT for small
numbers of degrees of freedom), we could show that, indeed,
the coupling eventually excites those environmental oscilla-
tors, and for the relatively long times investigated, there is
no appreciable backflow of energy to the system of interest
such that the central degree of freedom looses an appreciable
amount of energy, monitored by its long-time average, which
we found to be a monotonously decaying function of the
number of environmental degrees of freedom. For the largest
number f = 5 of oscillators that we investigated, the long-
time average of the double-well energy decreases from its
uncoupled value of 0.3 to −0.125. This tendency of driving
the double well towards lower energy via the environmental
coupling was corroborated by an autocorrelation function–
like measure, which showed a long-time behavior in accord
with the estimate assuming a total transition to the ground
state of the quartic degree of freedom. In the light of these
results it is worthwhile to note that the variational approach
to solving the TDSE is based on a Lagrangian, see, e.g., [40],
and the wave-function parameters can be viewed as classical
generalized coordinates. There are usually many more of them
than in the pure classical approach, where there is only a pair
of position and momentum variables per degree of freedom.

We have thus added a further example to the list of
continuous-variable systems of interest with (in principle)
infinite-dimensional Hilbert space that are coupled to a finite
bath and show signs of energetic equilibration. Up to now,
the focus in the literature was mainly on spin-chain systems
[14,15,24]. The bath, by consisting of a finite number of
degrees of freedom, also has a finite heat capacity, in con-
trast to treatments in terms of reduced density matrices that
hinge on continuous spectral densities of the oscillator bath

[55,57]. By (hypothetically) going to the limit of very large
f , due to the scaling of the coupling by the inverse of the
square root of f , the coupling to the individual oscillators
will be diminished and thus also the energy flow, such that
the oscillators will stay close to their initial state, which was
here one of zero temperature (all oscillators in their ground
states). Due to limited computer resources the explicit fully
quantum treatment of all degrees of freedom will be difficult
in these cases though. Other possible methods to try in the
future could be MCTDH [58], matrix product state [20], or
different types of semiclassical treatments [27,59].

Furthermore, so far the dynamics studied does not break
the symmetry of the initial state of the double well, because
the Hamiltonian as well as the initial state of the bath are
symmetric under the parity transformation. In the classical
mechanics study by Dittrich and Pena Martínez [11], it has
been argued that small asymmetries in the initial condition of
the bath lead to a preference of the bistable system to end up
in one of the wells. It will be a worthwhile endeavor to study
such asymmetric initial conditions also in a full quantum time
evolution.
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APPENDIX A: NORMALLY ORDERED HAMILTONIAN
AND CLASSICAL EQUATIONS OF MOTION

The Hamilton operator for the quartic double-well poten-
tial is given by

ĤS = T̂S + V̂S = p̂2
x

2mx
− a

2
x̂2 + b

4
x̂4. (A1)

To make progress, the position and momentum operators are
expressed via creation and annihilation operators via

x̂ = 1√
2γx

(â†
x + âx ), p̂x = ih̄

√
γx

2
(â†

x − âx ). (A2)

In the following we set h̄ = 1. The subscripts to the creation
and annihilation operators denote the respective degree of
freedom. Using the fundamental commutation relation

[âx, â†
x] = 1̂, (A3)

the normal ordered form of the kinetic energy operator is
found to be

T̂S (â†
x, âx ) = p̂2

x

2mx
= − γx

4mx
(â†

x − âx )2

= − γx

4mx

[
(â†

x )2 − 2â†
x âx − 1 + â2

x

]
, (A4)

and thus

TS (z∗
kx, zlx ) = − γx

4mx
[(z∗

kx − zlx )2 − 1] (A5)
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follows for the CS matrix elements of the normally ordered
kinetic energy operator.

Now, for the potential energy operator V̂S of the system, we
have

x̂2 = 1

2γx
(â†

x + âx )(â†
x + âx )

= 1

2γx

[
(â†

x )2 + 2â†
x âx + 1 + â2

x

]
(A6)

and

x̂4 = x̂2x̂2 = 1

4γ 2
x

[
(â†

x )2 + 2â†
x âx + 1 + â2

x

]
× [

(â†
x )2 + 2â†

x âx + 1 + â2
x

]
= 1

4γ 2
x

(
(â†

x )4 + â4
x + (â†

x )2â2
x + â2

x (â†
x )2

+ 2(â†
x )2 + 2â2

x + 2(â†
x )3âx + 2â†

x â3
x + 2â2

x â†
x âx

+ 2â†
x âx(â†

x )2 + 4â†
x âxâ†

x âx + 4â†
x âx + 1

)
.

(A7)

Using the differential calculus employed in Theorem II on
page 142 of [60], the above equation (A7) can be simplified
in order to transform all the terms into normal ordered form.
To this end one replaces â by z + ∂/∂z∗ and â† by z∗ and
applies the expression to the unit operator to arrive at the
matrix elements of the normal form of an operator. N shall
denote the normal ordering operator. Therefore, e.g., from

N
{(

z + ∂

∂z∗

)2

(z∗)2 · 1

}
= N {z2(z∗)2 + 4zz∗ + 2}

= (z∗)2z2 + 4z∗z + 2, (A8)

it follows that

â2
x (â†

x )2 = (â†
x )2â2

x + 4â†
x âx + 2 (A9)

and similarly,

â2
x â†

x âx = â†
x â3

x + 2â2
x , (A10)

â†
x âx(â†

x )2 = (â†
x )3âx + 2(â†

x )2, (A11)

â†
x âxâ†

x âx = (â†
x )2â2

x + â†
x âx, (A12)

for all terms that are not normally ordered already. Hence

x̂4 = 1

4γ 2
x

(
(â†

x )4 + 4(â†
x )3âx + 6(â†

x )2â2
x + 4â†

x â3
x + â4

x

+ 6
[
(â†

x )2 + 2â†
x âx + â2

x

] + 3
)

(A13)

holds for the normal ordered form of the quartic term in the
potential, and the CS matrix elements of the total potential
energy for the system are given by

VS (z∗
kx, zlx ) = − a

4γx
[(z∗

kx + zlx )2 + 1] + b

16γ 2
x

× [(z∗
kx + zlx )4 + 6(z∗

kx + zlx )2 + 3], (A14)

leading to the corresponding Hamiltonian,

HS (z∗
kx, zlx ) = TS (z∗

kx, zlx ) + VS (z∗
kx, zlx ), (A15)

with the kinetic energy from Eq. (A5). Now the environmental
Hamilton operator

ĤE =
f∑

n=1

(
p̂2

n

2m
+ mω2

n

2
ŷ2

n

)

=
f∑

n=1

− γn

4m

[
(â†

n)2 − 2â†
nân − 1 + â2

n

]

+ γn

4m

[
(â†

n)2 + 2â†
nân + 1 + â2

n

]

=
f∑

n=1

ωn

(
â†

nân + 1

2

)
(A16)

is already normal ordered, leading to the matrix elements

HE (z∗
ky1

, . . . , z∗
kyn

, zly1 , . . . , zlyn ) =
f∑

n=1

ωn

(
z∗

kyn
zlyn + 1

2

)
.

(A17)

The same holds true for the interaction Hamilton operator

ĤSE = −x̂
f∑

n=1

gnŷn, (A18)

leading to

HSE (z∗
kx, z∗

ky1
, . . . , z∗

kyn
, zlx, zly1 , . . . , zlyn )

= − (z∗
kx + zlx )

2
√

γx

f∑
n=1

gn√
γn

(
z∗

kyn
+ zlyn

)
. (A19)

Finally, the counterterm operator

V̂C = x̂2
f∑

n=1

g2
n

2mω2
n

(A20)

is just quadratic and leads to

VC (z∗
kx, zlx ) = [(z∗

kx + zlx )2 + 1]
f∑

n=1

g2
n

4mω2
nγx

. (A21)

Therefore the total normal ordered Hamiltonian is given by
the sum of all the terms in Eqs. (A15), (A17), (A19), and
(A21) as

Hord(z∗
k , zl )

= − γx

4mx

[
(z∗

kx − zlx )2 − 1
] − a

4γx
[(z∗

kx + zlx )2 + 1]

+ b

16γ 2
x

[(z∗
kx + zlx )4 + 6(z∗

kx + zlx )2 + 3]

+
f∑

n=1

ωn

(
z∗

kyn
zlyn + 1

2

)
− (z∗

kx + zlx )

2
√

γx

f∑
n=1

gn√
γn

× (
z∗

kyn
+ zlyn

) + [(z∗
kx + zlx )2 + 1]

f∑
n=1

g2
n

4mω2
nγx

.

(A22)
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The complexified classical equation of motion for the displacements zx of the quartic degree of freedom is given by

iżx = ∂Hord

∂z∗
x

= − γx

2mx
(z∗

x − zx ) + b

4γ 2
x

(z∗
x + zx )3 −

f∑
n=1

gn

2
√

γxγn

(
z∗

yn
+ zyn

) + (z∗
x + zx )

2γx

[
f∑

n=1

g2
n

mω2
n

− a + 3b

2γx

]
. (A23)

The equations of motion for the displacements zyn of the harmonic (environmental) degrees of freedom are

iżyn = ∂Hord

∂z∗
yn

= ωnzyn − gn

2
√

γxγyn

(z∗
x + zx ). (A24)

The equations of motion for the coefficients in the CS expansion are given in (17).
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