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Beyond the Tavis-Cummings model: Revisiting cavity QED with ensembles of quantum emitters
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The interaction of an ensemble of N two-level quantum emitters with a single-mode electromagnetic field
is described by the Tavis-Cummings model. There, the collectively enhanced light-matter coupling strength is
given by gN = √

Nḡ1, where ḡ1 is the ensemble-averaged single-emitter coupling strength. This model has been
employed to describe and to analyze numerous cavity-based experiments. Here, we show that this is only justified
if the effective scattering rate into noncavity modes is negligible compared to the cavity’s free-spectral range.
In terms of experimental parameters, this requires that the optical depth of the ensemble is low, a condition
that is violated in several state-of-the-art experiments. We give quantitative conditions for the validity of the
Tavis-Cummings model and derive a more general Hamiltonian description that takes into account the cascaded
interaction of the photons with all consecutive emitters. We show that the predictions of our cascaded model
can differ quantitatively and even qualitatively from those obtained with the Tavis-Cummings model. Finally,
we present experimental data, for which the deviation from the predictions of the Tavis-Cummings model is
apparent. Our findings are relevant for all experiments in which optically dense ensembles of quantum emitters
are coupled to an optical resonator.
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I. INTRODUCTION

When strongly coupling a quantum emitter to a high-
finesse optical resonator, one can control light-matter inter-
action at the fundamental level of individual photons. Such
coupled emitter-resonator systems have proven successful
for studying and harvesting cavity quantum electrodynam-
ics (cQED) effects, ranging from the implementation of
textbook models [1,2] to quantum-enhanced protocols with
potential applications in quantum technology [3]. Recently,
an increasing number of experiments go beyond cQED with
single emitters and make use of the collective interaction
of an ensemble of, e.g., atoms with the resonator mode to
study complex many-body problems [4]. These experiments
encompass cold atomic clouds [5–7] or Bose-Einstein con-
densates [8–11] that are coupled to one or several resonator
modes with the aim of exploring phase transitions or novel
regimes of cQED such as superstrong coupling [6,12]. The
interaction of atomic ensembles with optical cavities has fur-
thermore been proposed for metrology applications [5] or, in
an integrated on-chip configuration, as a platform for quantum
information processing [13,14]. A common aspect of many
of these experiments is the realization of a large light-matter
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coupling strength based on the coherently enhanced collective
interaction of many emitters with the cavity field. According
to the Tavis-Cummings model [15,16], which we briefly recall
in Sec. II below, the dynamics of the coupled system in the
low excitation regime is identical to single-emitter cQED [17]
but with a coupling strength gN = √

Nḡ1 [15,16], where
N is the number of emitters that collectively interact with
the resonator mode and ḡ1 is the ensemble-averaged single
emitter-resonator coupling strength. Here, we study the limits
of this approach and show that the standard Tavis-Cummings
model breaks down for larger numbers of emitters (Sec. III)
under conditions reached in many experiments. In order to go
beyond the Tavis-Cummings model, we develop a real-space
description of the coupled system (Sec. IV) that considers
the successive interaction of N two-level quantum emitters
with the propagating cavity field. We formulate a general
Hamiltonian (Sec. VI), which is valid in a larger parameter
range than the Tavis-Cummings model. We then derive an
analytical solution for the stationary state of an ensemble of
quantum emitters interacting with the modes of a ring res-
onator (Sec. VII) and compare the predictions of our cascaded
model to the Tavis-Cummings model as well as to a general-
ization of the Tavis-Cummings model that accounts for more
than one cavity mode (Sec. VIII). Finally, in Sec. IX, we apply
the cascaded model to an experiment for which deviations
from the Tavis-Cummings predictions are expected. We show
that the cascaded model correctly describes the experiment
where an ensemble of atoms is “superstrongly” coupled [12]
to a 30-m-long ring resonator.

II. THE TAVIS-CUMMINGS MODEL

In the framework of the rotating wave approximation, the
interaction of a single two-level quantum emitter, e.g., a single
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atom, with a single electromagnetic field mode is described
by the Jaynes-Cummings (JC) model [17]. The Hamiltonian
reads

ĤJC

h̄
= ωaσ̂

+σ̂− + ωcâ†â + g1(â†σ̂− + âσ̂+). (1)

Here, σ̂+ (σ̂−) denotes the atomic raising (lowering) operator
and â† (â) is the photon creation (annihilation) operator. ωa

and ωc are the atomic and cavity resonance frequencies, re-
spectively, and g1 is the single atom–single photon coupling
strength which, without loss of generality, we assume to be
real and positive.

Within the single excitation manifold of the {atom + cav-
ity} system, the coupling of the atom to the resonator results
in two new eigenstates with eigenenergies

EJC = h̄ωc − h̄

2

(
�ca ±

√
4g2

1 + �2
ca

)
, (2)

where �ca = ωc − ωa is the cavity-atom detuning. For �ca =
0, this leads to the vacuum Rabi splitting of the unperturbed
resonance into two split resonances separated in frequency by
2g1.

When describing an experimental {emitter + cavity} sys-
tem, we have to account for losses. Two loss channels are
typically considered: the spontaneous emission rate of the
emitter into all free-space modes, γl , and the cavities field
decay rate, κ0, quantifying intracavity losses. These loss rates
can be taken into account by introducing complex emitter
and cavity resonance frequencies ω̃a = (ωa − iγl ) and ω̃c =
(ωc − iκ0), respectively. For coupling the {emitter + cavity}
system with an external probe field, the Hamiltonian has
to be extended by the operator Ûprobe which, e.g., for the
case of a coherent probe field can be described as Ûprobe =
i
√

2κextη(â† + â), where κext is the coupling strength between
the fields in and outside of the cavity and η is the amplitude
of the probe field. Note that for the calculation in this pa-
per we use the more general operator Ûprobe in Appendix A.
The resulting Hamiltonian, which now includes loss rates and
probing, is given by

ĤJC′

h̄
= ω̃aσ̂

+σ̂− + ω̃câ†â + g1(â†σ̂− + âσ̂+) + Ûprobe. (3)

A key figure that quantifies the performance of such an quan-
tum emitter-resonator system is the so-called cooperativity of
the coupled system

C = g2
1

2κ0γl
, (4)

where most experiments and applications aim for the regime
C � 1. In this regime, the coupled system operates closely to
the ideal, lossless system.

If more than one emitter is coupled to the resonator mode,
the Jaynes-Cummings description has to be extended, yielding
the Tavis-Cummings (TC) model [15]. Restricting the Hilbert
space of the emitters to the subspace spanned by the fully sym-
metric Dicke states, and considering at most one excitation in
the system, the collective ensemble excitation and annihilation

operators are

Ŝ+ = 1√
N

N∑
n=1

σ̂+
n and Ŝ− = 1√

N

N∑
n=1

σ̂−
n . (5)

Using these operators, the TC Hamiltonian in the low excita-
tion limit reads

ĤTC

h̄
= ωaŜ+Ŝ− + ωcâ†â + gN (â†Ŝ− + âŜ+). (6)

A Hamiltonian describing the probed and lossy system can
then be defined analogously to Eq. (3). From Eq. (6), it
becomes apparent that the interaction between the ensemble
and the resonator mode is formally the same as for a single
emitter, but with a collectively increased coupling strength,
gN = √

Ng1. The N emitters thus collectively behave as a
“superatom” with a

√
N-fold increased coupling strength,

thereby providing a straightforward strategy for enhancing
light-matter coupling in experiments. Note that each emitter
coupled to the resonator mode can in principle have a different
coupling strength, g1,n, e.g., due to the spatial variation of the
cavity field. In this case, the Tavis-Cummings Hamiltonian
Eq. (6) still applies when defining the collective coupling
strength as

gN =
(

N∑
n=1

g2
1,n

)1/2

≡
√

Nḡ1, (7)

where ḡ1 = (
∑

g2
1,n/N )1/2 is the root mean square of the

individual single-emitter coupling strengths.

III. LIMITS OF THE JAYNES-CUMMINGS AND THE
TAVIS-CUMMINGS MODELS

We now discuss the conditions under which the Jaynes-
Cummings and the Tavis-Cummings approaches are valid. An
implicit assumption in the above models is that all relevant
rates and frequency scales are small compared to the free spec-
tral range νFSR (i.e., the inverse of the photon round trip time)
of the resonator. However, two quantities can potentially vio-
late this condition when the number of emitters N increases:
the collective coupling strength, gN , and the emitter-induced
photon loss rate of the system, g2

N/γl ; see Appendix A. The
JC or TC Hamiltonian is therefore only a valid description of
the system if the inequalities

νFSR � gN , (8)

νFSR � g2
N

γl
, (9)

are fulfilled. Violating condition (8) implies that the collective
coupling strength reaches or exceeds the free spectral range
of the resonator, thereby entering the so-called superstrong
coupling regime of cQED [6,12]. This condition will typically
only break down in experiments that were designed to explore
this regime. Furthermore, the superstrong coupling regime
can straightforwardly be included in the above description
by considering the coupling of the quantum emitters to many
cavity modes. In doing so, one obtains the multimode Tavis-
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TABLE I. A list of experiments that violate conditions 8 or 9, and thus operate in a regime where deviations from the TC model can be
observed. The violation (gN/νFSR > 1 and/or g2

N/(γlνFSR ) > 1) is highlighted with bold numbers. Note that for the last column, we assumed
no collectively enhanced emission of the ensemble into free space.

Reference gN γl ≈ γ νFSR gN/νFSR g2
N/(γlνFSR)

Lee et al. [18] 2π × 44.9 MHz 2π × 3 MHz 1.4 GHz 0.2 3
Johnson et al. [6] 2π × 9.2 MHz 2π × 2.61 MHz 7.1 MHz 8.1 29
Brennecke et al. [8] 2π × 3.5 GHz 2π × 3 MHz 850 GHz 0.026 30
Vaidya et al. [10] 2π × 464.9 MHz 2π × 3 MHz 15 GHz 0.195 30
Jiang et al. [19] 2π × 313 MHz 2π × 2.87 MHz 5.3 GHz 0.374 41
Colombe et al. [9] 2π × 12 GHz 2π × 3 MHz 3.9 THz 0.019 77

Cummings Hamiltonian, which reads

ĤTCmm

h̄
= ωaŜ+Ŝ− +

∑
j

[ω j â
†
j â j + gN, j (â

†
j Ŝ

− + â j Ŝ
+)],

(10)
where â†

j (â j) creates (annihilates) a photon in the jth mode
of the resonator with frequency ω j and gN, j is the coupling
strength between the emitter and resonator mode j.

More importantly, condition (9) is more frequently violated
in experiments, as is apparent from Table I, where we compare
the parameters of different cQED experiments. Contrary to
condition (8), the JC or TC model cannot be extended to
account for the violation of (9), because when g2

N/γl exceeds
the free spectral range, the emitter-field interaction can no
longer be treated as instantaneous. Consequently, one requires
a description which considers the successive interaction of the
field with each emitter. In the following, we will establish a
model that is based on this approach.

IV. CAVITY AND WAVEGUIDE QED

At first, we will introduce typical waveguide QED parame-
ters and relate them to the cQED quantities used in Sec. II. For
this, we consider a quantum emitter coupled to a propagating
optical mode, as sketched in Fig. 1. The emitter-mode cou-
pling strength for this configuration is typically characterized
by the β factor, defined as the ratio of the spontaneous emis-
sion rate of the emitter into the propagating mode, γmode, and
the emission rate into all modes, γ = γl + γmode. In general,
as has recently been demonstrated [20], this emitter-mode
coupling is not necessarily symmetric with respect to the

emitter

mode

FIG. 1. A single emitter interacting with an optical mode. (a) In
principle, an excited emitter can decay through three decay chan-
nels: forward or backward into the mode with rates β+γ or β−γ

respectively, or into free space with the rate γl = (1 − β )γ , where
β ≡ β+ + β−, and, in general, β+ �= β−. (b) For the scenario of
chiral coupling assumed in Sec. VII, β− = 0 and β+ = β [20].

forward and backward propagating modes. Therefore, two
coupling constants must be introduced, denoted as β+ for
the forward and β− for the backward propagating modes,
with β ≡ β+ + β−. If the waveguide is now transformed into
a Fabry-Pérot or ring resonator with a free spectral range
νFSR (either by terminating the waveguide with mirrors or
by closing the waveguide to form a ring), the vacuum Rabi
frequency of the coupled emitter-resonator system is given by
(see Appendix C)

g2
1 = 4βγ νFSR (11)

for a Fabry-Pérot cavity with the emitter placed at the antin-
odes of the standing wave in the cavity, and by

g2
1 = 2βγ νFSR (12)

for an emitter that is chirally coupled to a ring resonator. These
equations give a direct relationship between characteristic
cQED and waveguide QED parameters and illustrate that the
emitter-resonator coupling strength is given by the geometric
mean of the decay rate into the resonator mode, βγ , and the
free spectral range, νFSR. From this, we also obtain the largest
possible single emitter-resonator coupling strength for a given
resonator length gmax = 2

√
γ νFSR. Interestingly, for a given

free spectral range, this maximum coupling strength is lim-
ited even though the cooperativity of the system approaches
infinity for a perfectly coupled emitter, i.e., γl → 0. We note
that for free-space cavities, one can only approach this upper
limit by employing cavity mirrors that cover almost the full
solid angle such that emission into radiative modes can be
neglected, i.e., γl ≈ 0.

V. COLLECTIVE COUPLING IN THE DICKE
AND TIMED-DICKE MODEL

Concerning the nature of the collective interaction of many
emitters, e.g., an ensemble of identical atoms, with the cavity
mode, we have to distinguish two basic cases: either the dis-
tance between any two emitters is much smaller than λ/2π ,
or the interemitter distance is much larger than λ/2π . The
two cases are typically described in the framework of Dicke
states [21] and timed-Dicke states [22], respectively. Here, λ

refers to the wavelength of the light that probes the coupled
system.

For the situation where all emitters are separated by less
than λ/2π , the cavity field will excite the emitters into the
superradiant Dicke state and, assuming the low excitation
limit, one excitation is shared between all emitters. Due to
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the small separations, the emissions of the individual emitters
add up constructively for all emission directions. Thus, the
ensemble can be described as an effective “superatom” with
a collectively enhanced dipole moment or, equivalently, a
collectively enhanced decay rate γN . When the near field in-
teraction between the emitters is neglected, the latter is given
by γN = Nγ . According to Eqs. (11) and (12), this results
in a collectively enhanced coupling strength to the resonator
of gN = √

γN/γ ḡ1. For this situation, the Tavis-Cummings
model typically applies: As g2

N and γl,N = (1 − β )γN are both
proportional to γN , their ratio is independent of N . Thus, if
Eq. (9) is fulfilled for a single emitter, it is also fulfilled by the
ensemble. However, experimentally, is hard to confine emit-
ters to such a small volume. And even if this is achieved, the
collective interaction of the emitters with the cavity will not
increase the cooperativity: Given that g2

N ∝ N and γN ∝ N ,
see above, the collective cooperativity of the coupled system,
CN = g2

N/(2 γl,N κ0), is independent of N .
The situation is different for the case of large emitter-

emitter distances. In the low-excitation regime, the collective
emitter-light interaction again gives rise to a state with one
shared excitation of the ensemble, which is superradiant with
respect to the cavity mode and exhibits a collectively en-
hanced coupling strength, gN = √

Nḡ1. However, in contrast
to the situation above, the amplitudes for emission into free
space now add up incoherently and the emission rate remains
unchanged, γl,N = γl . Consequently, for large emitter-emitter
distances, the ensemble-resonator cooperativity will increase
linearly with N . This is the situation that is aimed for and
realized in typical experiments. However, in this case, Eq. (9)
will depend on the number of emitters, and the equation will
be violated from a certain emitter number onward. Using
gN = √

Nḡ1 and Eq. (12), we can reformulate Eqs. (8) and (9)
and obtain for a ring resonator with chiral coupling

βN 
 1

2

νFSR

γ
, (13)

βN 
 1
2 (1 − β ), (14)

where β = ∑
βn/N is the arithmetic mean of βn of the indi-

vidual emitters. For most experiments, νFSR � γ and β 
 1.
Under these assumptions, condition (14) is always violated
first when N increases and takes the simple form

βN 
 1/2. (15)

For the case of a Fabry-Pérot resonator, we obtain the same ex-
pressions as in Eqs. (13)–(15) but with an additional factor 1/2
on the right-hand side. When considering the interaction of a
spatially extended ensemble in a typical cavity QED setup, the
assumptions which underlie the TC model therefore no longer
hold if βN becomes large. In this case, the modification of
the resonator field in a single round trip becomes significant
because the single-pass optical depth of the ensemble, given
by OD ≈ 4β+N (for β 
 1), is no longer small compared to
1. In this case, the local strength of the cavity field depends on
its interaction with the preceding emitters, and emitters further
along the direction of propagation experience a weaker field.

FIG. 2. Sketch of the system under consideration featuring the
notations introduced in the main text.

VI. HAMILTONIAN INCLUDING CASCADED
EMITTER-LIGHT INTERACTION

In order to derive a Hamiltonian that accounts for the
position-dependent resonator field, we follow the formalism
in Ref. [23] and treat the resonator mode as a propagat-
ing wave that consecutively interacts with two-level quantum
emitters. More specifically, we consider the mode of a ring
resonator of length L that is coupled to an ensemble of N emit-
ters and include probing and loss; see Fig. 2. The Hamiltonian
of this system is given by

Ĥ/h̄ = Ûc +
∫ 0

−∞
dx[ĉ†

x+ (ω − ivg∂x )ĉx+ + ĉ†
x− (ω + ivg∂x )ĉx− ]

+
∫ +∞

0
dx[d̂†

x+ (ω − ivg∂x )d̂x+ + d̂†
x− (ω + ivg∂x )d̂x− ]

+
∫ L

0
dl

{
[â†

l+ (ω + ivc∂l )âl+ + â†
l− (ω − ivc∂l )âl− ]

+
N∑

n=1

δ(l − ln)[σ̂+
n σ̂−

n (ωa − iγl )

+ Vn,+(â†
l+ σ̂−

n + âl+ σ̂+
n ) + Vn,−(â†

l− σ̂−
n + âl− σ̂+

n )]

}
.

(16)

Here, the intraresonator field at position l is described by the
photon creation and annihilation operators, â†

l+ and âl+ (â†
l−

and âl− ), for the counterclockwise (clockwise) propagating
mode, respectively, with l ∈ [0, L[. σ̂+

n (σ̂−
n ) is the raising

(lowering) operator for emitter n at position ln, vg (vc) is
the group velocity of light outside (inside) the resonator,
ωa is the emitter’s resonance frequency, and ∂x = ∂/∂x. The
coupling strength of the nth emitter to the clockwise and coun-
terclockwise propagating resonator mode is given by Vn± =
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√
2vcβn±γ . Here, we assumed that the dispersion relation

of the probe field with frequency ωk and wave number k is
approximately linear in the frequency range of interest around
the center frequency, i.e., ωk,± = ω ± vg,ck. The resonator is
probed via the incoming and outgoing free-space fields that
are denoted by the creation (annihilation) operators ĉ†

x+ , d̂†
x−

and d̂†
x+ , ĉ†

x− (ĉx+ , d̂x− and d̂x+ , ĉx− ), respectively. These modes
are coupled to the resonator modes at the in-coupling mirror,
whose effect is given by the beam-splitter matrix

Ûc =
∑
k=±

[trt(ivcrâLk â†
0k

+ √
vgvct âLk d̂†

0k
)

+ ivgrĉ0k d̂†
0k

+ √
vcvgt (ĉ0k â†

0k
)], (17)

where r and t are the amplitude reflection and transmission
coefficients of the mirror, which fulfill r2 + t2 = 1. Note that,
just like for the driven JC and TC Hamiltonians [see Eqs. (3)
and (6)], the Hamiltonian in Eq. (16) above is non-Hermitian
because of the term −iγl , which accounts for photon loss by
emitter-induced scattering out of the resonator and because
of the factor trt � 1 in the definition of Uc, which accounts
for resonator round-trip losses. Furthermore, as discussed
above, our approach assumes no collectively enhanced emis-
sion into free space. With these definitions, the coefficients
trt and r are related to the intrinsic resonator loss rate, κ0,
and the in-coupling rate, κext, via trt = √

1 − 2κ0/νFSR and
r = √

1 − 2κext/νFSR.
This description models the successive interaction of the

propagating field with N emitters and, thus, naturally consid-
ers the modification of the field upon interaction with each
individual emitter. Moreover, the model also comprises the
possible interaction with several longitudinal cavity modes,
which occurs in the superstrong coupling regime. In the next
section, we will derive an analytical solution for the steady
state in the low excitation limit and discuss how the predic-
tions of this cascaded model differ from that of the TC model
and its generalization to more than one mode.

VII. SOLUTIONS IN THE LOW EXCITATION LIMIT

In the following, we want to discuss the differences be-
tween the cascaded model and the TC description. Thus,
from now on, we assume perfect chiral emitter-resonator
coupling [20] which allows us to obtain a simple analytical
steady-state solution for the Hamiltonian in Eq. (16). This
means we assume that all emitters interact solely with the for-
ward propagating (+ direction) mode via Vn,+ and set Vn− = 0
in Eq. (16). Consequently, we get β+,n = βn and β−,n = 0.
Details of the derivation can be found in Appendix B. When
probing the resonator along the positive x direction, the power
reflection at the input mirror (c† → d†) reads

R =
∣∣∣∣ e−i�c/νFSRtrttN − r

e−i�c/νFSRtrttN r − 1

∣∣∣∣2

, (18)

where

tN =
N∏

n=1

tn (19)

and tn is the transmission past emitter n, which is given by (see
Appendix B)

tn = 1 − 2γ βn

γ + i�a
. (20)

Here, �a = ωa − ω and �c = ωc − ω are the probe-emitter
and probe-resonator detunings, respectively, and ωc is the
resonator resonance frequency closest to ωa. For small βn or
small variations between the individual βn, we can approxi-
mate tN in Eq. (19) by (see Appendix B)

tN =
(

1 − 2γ β

γ + i�a

)N

, (21)

with the mean emitter-mode coupling β = ∑
βn/N . Introduc-

ing the complex-valued function

φ(�a,�c) = − �c

νFSR
+ arg(tN ) − i ln |tNtrtr| (22)

≈︸︷︷︸
β
1

− �c

νFSR
+ 2βNγ

�a − iγ
− i ln |trtr|, (23)

we can simplify Eq. (18) and obtain

R =
∣∣∣∣eiφ(�a,�c )/r − r

eiφ(�a,�c ) − 1

∣∣∣∣2

. (24)

With this definition, Re{φ(�a,�c)} corresponds to the phase
shift the light acquires in a single round trip in the resonator
and Im{φ(�a,�c)} denotes the total round-trip loss.

We note that, even if the system does not exhibit chiral
emitter-light coupling, Eqs. (18)–(21) still apply provided that
the resonator is probed from one direction, that β 
 1, and
that a large number of emitters is coupled to the resonator
mode at random positions. Under these conditions, collec-
tive enhancement only occurs for the direction in which the
resonator is probed, and the residual light scattered by the
emitters into the counterpropagating resonator mode [24] can
be treated as a small loss and does not affect the forward
transmission significantly.

Equation (18) or (24) holds for any combination of cavity
parameters. For illustration, we consider two limiting cases.
First, when conditions (8) and (9) are both fulfilled, the emit-
ters effectively only interact with the single resonator mode
closest to the emitter’s resonance and the effect of other res-
onator modes can be neglected. For small detunings (�c 

νFSR), Eq. (18) can then be simplified (see Appendix D),
yielding

R =
∣∣∣∣g2

N + (γl + i�a)(κ0 − κext + i�c)

g2
N + (γl + i�a)(κ0 + κext + i�c)

∣∣∣∣2

, (25)

where gN = √
2Nβγ νFSR is the ensemble-resonator coupling

strength. Equation (25) is identical to the predictions of the
driven JC and TC model [25]; see Appendix A. Second, for
r → 0, i.e., in the waveguide limit where light only takes a
single round trip in the resonator, Eq. (18) simplifies to t2

rt|tN |2.
This expression corresponds to a saturated Lorentzian and is
the well-known expression for the transmission spectrum of
an optically dense ensemble [26,27].

We note that our approach can also be used to derive the
solution for the case where the light-emitter interaction is
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described in the Dicke picture. In this case, the power reflec-
tion is still described by Eqs. (18) and (24), but the ensemble
transmission tN has to be replaced by its counterpart for the
Dicke case

tN,D = 1 − 2γNβ

γN + i�a
(26)

to account for the collectively enhanced decay rate γN .

VIII. BEYOND TAVIS-CUMMINGS PHYSICS

In the following, we study the predictions of the TC model
and its generalization to more than one mode when its validity
conditions (13) and (14) are not fulfilled and compare them
with the predictions of our Hamiltonian (16), which generally
applies.

A. Excitation spectrum of the coupled system

In the cascaded model, the solution for the intracavity field
is given by Eqs. (B5) in Appendix B. In general, the solution
depends on the number of emitters the light field has passed
within the resonator mode. In the following, we focus on the
two main parts: the steady-state resonator field before (φ0)
and after (φN ) passing the ensemble. The ratio of the two
fields is given by the factor tN in Eq. (19). For βN � 1 and
on resonance (�a = �c = 0), we obtain for the normalized
resonator fields

φ0

φi
= it, (27)

φN

φi
= it e−2βN , (28)

φTC

φi
= it

β − 1

2βN
, (29)

where φTC is the circulating field in the resonator predicted
by the Tavis-Cummings model; see Eq. (A7) and φi is the
input field. For large values of βN , these fields differ by many
orders of magnitude, which can be seen, e.g., in Fig. 3(a)
that shows the normalized intracavity linear photon density
predicted by our and the TC models for βN = 10 as a function
of the probe light detuning � = �a = �c. For larger detun-
ings, the difference between the fields in Eqs. (A7) and (B5)
decreases and for |�| � γ , i.e., when the absorption of the
ensemble is no longer significant, all fields are approximately
identical and the predictions of the two models agree every-
where in the resonator. Figure 3(b) shows in addition the
prediction of the power reflection R from the in-coupling
mirror calculated from both models for the same parameters
as in Fig. 3(a). For large detunings, the predictions of both
models agree. In contrast, close to the emitter’s resonance,
one obtains predictions that quantitatively and qualitatively
differ. At resonance and for βN � 1, our cascaded model
predicts a reflection R = r2, while the TC model predicts
R = 1. Furthermore, in our prediction, one observes an ad-
ditional signature of a resonance that is not present for the TC
model. In the following, we study these new resonances in
more detail.

FIG. 3. (a) Normalized linear photon density in the resonator as
a function of the light-resonator detuning � = �a = �c predicted
by the cascaded model for the light before (|φ0|2, dash-dotted green
curve) and after the emitters (|φN |2, solid red curve) as well as
by the TC model (dashed blue curve). The parameters used for
the models are βN = 10, νFSR = 200 MHz, γ = 2π × 5 MHz, and
in-coupling mirror power reflectivity |r|2 = |trt |2 = 98%. (b) Corre-
sponding power reflection of the resonator predicted by our (solid
red line) and the TC model (dashed blue line). Close to resonance,
the predictions for the circulating power differ by many orders of
magnitude from each other. In reflection, for large βN , the cascaded
model predicts a plateau in the reflection at about |r|2, in contrast
to the TC model. For large detuning � � γ , the predictions of the
two models for the reflection and the different resonator fields agree
with each other. The vertical lines indicate the position of the new
resonances predicted by the cascaded model; see Eq. (30) and Fig. 4.

B. Resonances of the coupled system

In general, resonances of the coupled {emitter + cavity}
system occur, when the round trip phase is an integer multiple
of 2π . For the cascaded model, this is the case for

Re{φ(�a,�c)} = 2π × q , (30)

with the integer number q. We first consider the case gN 

νFSR, i.e., the situation where the interaction of the emitter
with the higher order cavity resonances can be neglected.
Figures 4(a) and 4(c) show the predicted cavity resonance
as a function of βN according to the predictions of the TC
model and the cascaded model, respectively. For small βN in
Figs. 4(a) and 4(c), we observe the familiar behavior where the
central resonance of the cavity splits into two new resonances
that, for gN � (κ, γl ), are separated by 2gN and for which
the splitting increases with gN ∝ √

βN . At the same time,
the adjacent longitudinal resonator modes (not shown) are
mostly unaffected. However, surprisingly, for large numbers
of emitters for which condition (9) or (14) is not fulfilled,
the predictions of the two models qualitatively differ. While
both models still predict that the splitting of the central line in-
creases ∝ √

βN , the cascaded model predicts the occurrence
of additional resonances in the spectrum close to the emitter’s
resonance. As βN increases, more of these new resonances
appear.

A physical explanation of the origin of these additional
resonances can be obtained when looking at the round-trip

013719-6



BEYOND THE TAVIS-CUMMINGS MODEL: REVISITING … PHYSICAL REVIEW A 105, 013719 (2022)

FIG. 4. Positions � = �a = �c of the resonances calculated for the Tavis-Cummings model for (a) gN 
 νFSR (νFSR = 200 MHz, γ =
2π × 5 MHz) and (b) gN � νFSR (νFSR = 10 MHz, γ = 2π × 5 MHz) as a function of βN . Panels (c) and (d) show the predictions of the
cascaded model for the same cases and values as in panels (a) and (b), respectively. In panel (a), we see the usual strong coupling prediction,
where the central resonance is split by 2gN ∝ √

N . In panel (b), the system enters the superstrong coupling regime, where the splitting saturates
at νFSR and the superstrong coupling spectrum is similar to the empty cavity spectrum but shifted by νFSR/2. In contrast to the predictions of
the Tavis-Cummings model, the cascaded model [(c) and (d)] predicts the appearance of new resonances for large βN in the region around
� = 0. This is due to the fact that light undergoes multiple 2π phase shifts in a single resonator roundtrip. Additionally, in panel (d), where
both conditions (8) and (9) are violated, contrary to the predictions of Tavis-Cummings, the splitting and shifting of the resonances do not
saturate but increase continuously with increasing βN .

phase shift of the light Re{φ(�a,�c)}. According to Eq. (23),
this phase shift is composed of a propagation and an emitter-
induced phase shift. For a single emitter as well as the
superatom assumed in the TC model, the phase shift im-
parted by the emitters to the light is always limited to the
range [−π, π ], independently of N . However, when coupling
a spatially extended ensemble to the resonator, tN is given
by Eq. (19) and the emitter-induced single-pass phase shift
arg(tN ) can in principle span an unlimited range and, conse-
quently, more solutions to Eq. (30) are found; see Fig. 5.

In the limit where gN exceeds the free spectral range of
the resonator, the emitters strongly interact with different
resonator modes and, consequently, the TC model has to be
replaced by its generalization to more than one mode, as given
in Eq. (10). Figure 4(b) shows the cavity resonances predicted
by this model as a function of βN whereas Fig. 4(d) shows
the prediction of the cascaded model for the same parameters.
In the case shown in Fig. 4(b), one observes that the central
resonance starts to split once gN gets comparable to the loss
rate γl and the system enters the strong coupling regime. With
increasing βN also the adjacent longitudinal resonances are
increasingly shifted outward. For very large gN , the splitting
of the central resonance saturates at νFSR and the shift of all
adjacent resonances saturates at νFSR/2 with respect to the
resonance of the empty resonator. This saturation for large gN

is a consequence of the interaction of the emitter with many
modes and can, e.g., be derived from the eigenenergies of the
Hamiltonian; see Appendix E.

In contrast to this, the cascaded model does not predict
any saturation effect and for gN � γ the splitting of the
central resonance is simply given by 2gN = 2ḡ1

√
N , i.e., it

FIG. 5. Single-pass phase shift of the light induced by a two-level
quantum emitter as a function of emitter-light detuning �a. (a) The
dashed red line shows the results for a perfectly coupled single
emitter, i.e., β = 1 and N = 1, as calculated from Eq. (26). The
solid blue line represents the predictions of the cascaded model from
Eq. (21) with β = 0.2 and N = 5. (b) Same situation as in panel
(a) but now for βN = 6. The dashed red line is the prediction for the
Dicke superatom for which the TC model applies. It is calculated
from Eq. (26) for β = 1, N = 6. Interestingly, despite the larger
number of emitters, the maximum phase shift of the light imparted
by the emitters is not increased compared to panel (a) and remains
within [−π, π ]. The solid blue line (β = 0.2, N = 30) shows the
predictions of the cascaded model with a maximum phase shift well
in excess of [−π, π ].
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follows the
√

N behavior even when the collective coupling
exceeds the free spectral range. The other resonator modes
are all subject to a shift proportional to

√
N , for g � νFSR,

and show no saturation effect either. Furthermore, similar as
in the single-mode situation, the cascaded model predicts the
occurrence of new resonances close to the emitter’s resonance.

In summary, when comparing the resonance frequencies
predicted by the TC model and our cascaded model, qual-
itative differences occur already in the weak driving limit
considered here. These differences are present for the single-
mode as well as the multimode situation, where in both cases,
the cascaded model predicts the occurrence of new resonances
that are not present in the TC model. Furthermore, for the
multimode situation, the TC model predicts a saturation of
the shift of the cavity resonances which does not occur in our
description. We note that the new resonances emerge close
to or within the absorption profile of the ensemble where the
propagating cavity field is subject to strong absorption. As
a consequence, they are expected to only give rise to a low-
contrast modulation of the power reflection signal. This holds
in particular for the branches that shift toward the emitter’s
resonance.

IX. EXPERIMENTAL VERIFICATION

To experimentally illustrate the breakdown of the Tavis-
Cummings model, we experimentally investigate the situation
where the conditions (8) and (9) break down using an exper-
imental platform in the superstrong coupling regime, which
we reported on in Ref. [6]. Compared to the measurements
presented in this previous publication, we could substantially
increase the collective coupling strength, which allows us to
now highlight the deviation from the TC model. The exper-
iment consists of a cloud of laser-cooled Cs atoms coupled
to a 30-m-long ring fiber resonator (νFSR = 7.1 MHz) via
a nanofiber-based optical interface. The effective number of
atoms that are coupled to the resonator mode reaches up to
≈2300, thereby giving rise to a maximum βN = 12.96 (or
gN = 2π × 8.74 MHz). We measure the loaded cavity spectra
for a range of different collective coupling strengths, scan-
ning the frequency of the probe field over many free spectral
ranges and measuring its power reflection with a single photon
counter. The result of this measurement is summarized in
Fig. 6.

Figures 6(a) and 6(b) show the measured spectrum together
with the predictions of the TC model and the cascaded model,
respectively. Whereas the positions of the cavity resonances
do not follow the predictions of the Tavis-Cummings ap-
proach, theory and experiment agree well for the cascaded
model. Specifically, we observe that the shifts of the res-
onances do not saturate as the collective coupling strength
increases and its dependence on βN agrees well with the
prediction from the cascaded model (solid black lines). Fur-
thermore, the maximum shift observed, e.g., for the +1st
order, exceeds νFSR/2 and the fit splitting reveals 2gN ≈
2.3νFSR. These observations exceed the predictions of the TC
approach significantly. We note that, due to the low finesse
of the resonator, the predicted contrast of the additional res-
onances for our experimental settings is only about 0.1%,

FIG. 6. Experimentally measured reflection spectra of a ring res-
onator coupled to an optically dense cloud of atoms. The black
solid lines indicate the resonance frequencies predicted by the gen-
eralized TC model in panel (a) and the cascaded model in panel
(b), both for γ /2π = 2.61 MHz, β = 0.005, and νFSR = 7.1 MHz.
(c) Cut through the data (dark blue dots) presented in panels (a) and
(b) for βN = 12.4, with a theory curve using the generalized TC
model (green, solid upper line) and a fit to the cascaded model
(red, solid lower line), using Eq. (18). Note that for all theory
plots a cavity-atom detuning �ca = 1.12 MHz is considered, that
was present during the measurement. It becomes apparent that the
cascaded model agrees well with the experimental data and, for the
large coupling strength depicted here, we observe the splitting of the
central resonance exceeding the limit of νFSR and the shift does not
saturate, unlike in the TC prediction. Note that the predicted addi-
tional resonances in panel (b) cannot be discerned in the experimental
data due to their small contrast and the limited signal to noise of
our measurement. The shifting of the first higher resonance exceeds
νFSR/2 as can be seen by comparison to the spectrum of the empty
resonator (light gray dots), indicating operation in the superstrong
coupling regime.

which is below our experimental signal to noise ratio. Thus,
the new resonances cannot be discerned in our data.

X. SUMMARY AND CONCLUSION

In this article, we derived quantitative conditions under
which the Tavis-Cummings model fails to correctly describe
the interaction of an ensemble of two-level quantum emitters
with a single optical mode. Our analysis shows that the valid-
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ity of the Tavis-Cummings model breaks down as soon as the
single-pass optical depth of the ensemble approaches OD ≈ 1.
In this case, the collective interaction of the emitters with
the resonator mode needs to be accounted for by considering
the successive interaction of the propagating cavity field with
each emitter in the ensemble, because the field is significantly
altered by each of these interaction events. We then presented
a more general theoretical model that can be applied for de-
scribing cQED in all parameter ranges. Using this cascaded
model, we analytically derived the steady-state solution in
the low power limit and compared it to the predictions of
the Tavis-Cummings model. We found qualitative differences
between the predictions of the two models concerning the
intracavity linear photon density and the reflection spectrum
of the coupled emitter-cavity system. Around the emitter’s
resonance the cascaded model predicts a position-dependent
photon density that for βN � 1 can deviate by several orders
of magnitude from the photon density derived from the TC
model. Furthermore, the Tavis-Cumming model predicts that,
irrespective of the number of coupled emitters, the splitting
of the central resonance cannot exceed the resonator’s free
spectral range. In contrast, the cascaded model predicts that
the splitting is not limited and continues to grow as the num-
ber of emitters increases. Moreover, with increasing number
of emitters, the cascaded model predicts a growing number
of additional resonances, which are missing by the Tavis-
Cummings model. These resonances occur because, for large
ensembles, the single-pass phase shift of the cavity field in-
duced by the quantum emitters is in principle not limited. This
feature cannot be captured by the Tavis-Cummings model,
where the largest possible phase shift is ±π . We compare
our findings to experimentally measured reflection spectra of
a 30-m-long optical ring resonator, which is coupled with a
high optical depth atomic ensemble. The measured spectra
agree well with the predictions of the cascaded model and
qualitatively disagree with the Tavis-Cummings model.

Our approach is not limited to a concrete realization of
the cavity, the quantum emitter, or the emitter-light coupling
mechanism. Consequently, our findings are relevant for all
theoretical and experimental studies, in which the number
of resonator-coupled emitters reaches or exceeds 1/(2β ); see
Eq. (15). In this case, the Tavis-Cummings model should
be taken with precaution. This particularly applies to exper-
iments that study superradiance [28–31] or that make use
of cooperative effects to enhance the performance of quan-
tum memories and, thus, invariantly aim for high single-pass
optical depths. Adding a cavity with the aim of enhanc-
ing the performance then inevitably sets these experiments
into a regime where the Tavis-Cummings model cannot be
applied. Instead, in general, our approach is required for
correctly modeling the system’s properties. Furthermore, in
the superstrong coupling regime, non-Markovian dynamics
has been predicted where, e.g., pulsed revivals rather than
conventional Rabi oscillations are expected [32]. However,
this non-Markovian behavior requires high single-pass optical
depths. Thus, the Tavis-Cummings model cannot be expected
to hold in this regime while our description is well suited in
view of its wide range of applicability. We note that Eq. (15)
can already be violated for a single two-level emitter for β �
1/2. This shows that even the single-emitter cavity system can

only be described correctly by the JC model for the case of
small β, i.e., for large scattering losses into the environment.
Consequently, the case of an emitter perfectly coupled to a
cavity mode (β = 1) is not covered by the JC model, which
will be discussed in Ref. [33], where we study in detail the
situation of a single emitter coupled with high β to a Fabry-
Pérot or ring resonator.

In this paper, we limited our discussion to the linear regime
of low excitation where at most one photon is present in
the cavity. Under these assumptions, we can derive analytical
solutions for the system. Already here, we observe qualitative
deviations between the Tavis-Cummings approximation and
the cascaded model. However, one of the main reasons for
using optical cavities is the enhancement of nonlinear effects.
In this context, we also expect to observe qualitative differ-
ences concerning the nonlinear properties of the system. For
example, it has recently been shown theoretically and exper-
imentally that the transmission of light through an atomic
ensemble with a large optical depth leads to the generation
of photon correlations and squeezing through the collective
nonlinear response of the atoms [34–37]. The physics under-
lying these effects is already contained in our Hamiltonian.
This illustrates that the theoretical framework presented in
this article has consequences and applications that go well
beyond the presented examples. It therefore has the potential
to reveal new physics that cannot be captured by the Jaynes-
and Tavis-Cummings models.
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APPENDIX A: STRONG COUPLING IN THE
JC (TC) MODEL

In order to derive the steady state of a resonator coupled to
a single emitter, we use a photon transport approach [23] to
quantum mechanically describe the resonator probing fields.
The Hamiltonian of this system is given by

Ĥ = ĤJC′ + Ûprobe, (A1)

where the first term describes the interaction of a single emit-
ter with the cavity field. It includes loss from photons scattered
into noncavity modes by the emitter (−iγl ) and loss from the
cavity implementation (−iκ0) and is given by

ĤJC′/h̄ = (�a − iγl )σ̂
+σ̂− + (�c − iκ0)â†â

+ g(â†σ̂− + âσ̂+). (A2)

Here, â† (â) is the cavity photon creation (annihila-
tion) operator, �c = ωc − ω is the cavity-probe detuning,
�a = (ωa − ω) is the emitter-probe detuning, and g is the
coupling strength. The probing term describes the coupling
of a driving field ĉ†

x to the cavity via

Ûprobe

h̄
=

∫ ∞

−∞
dx[ĉ†

x (ω0 − ivg∂x )ĉx + Vcavδ(x)(â†ĉx + âĉ†
x )],

(A3)
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where Vcav = √
2κextvg is the coupling strength between cavity

and the driving field. In the weak driving regime, we obtain
the steady-state solution of Ĥ |�〉 = E |�〉 by using a general
single excitation wave function

|�〉 =
[∫

dxφc(x)ĉ†
x + φcava† + φatσ̂

+
]
|0〉. (A4)

The results for the steady-state values for the amplitude of the
output (input) field, φo (φi), the emitter’s excitation amplitude,
φat, and the cavity field amplitude, φcav, are given by

φo

φi
= g2 + (γl + i�a)(κ0 − κext + i�c)

g2 + (γl + i�a)(κ0 + κext + i�c)
, (A5)

φat

φi
= −g

√
2vgκext

g2 + (γl + i�a)(κ0 + κext + i�c)
, (A6)

φcav

φi
= −i

√
2vgκext(γl + i�a)

g2 + (γl + i�a)(κ0 + κext + i�c)
, (A7)

φat

φcav
= −ig

γl + i�a
, (A8)

where | φat

φcav
|2 = g2

γ 2
l +�2

a
is the cavity-induced emitter excitation

probability, such that the emitter-induced loss from the cavity
on resonance can be calculated to be g2/γl , appearing in
condition (9). The results above apply for both, the JC and
TC Hamiltonian with g = g1 or g = gN .

APPENDIX B: CHIRAL COUPLING TO A RING CAVITY

Here we outline the derivation of Eq. (18) in the main
text. For chiral interaction, the Hamiltonian in Eq. (16) can
be simplified by neglecting the resonator mode â†

l− (âl− ) that
is not coupled to the emitters (Vn− = 0) and consequently
ĉ†
−, ĉ− = 0 and d̂†

−, d̂− = 0. This gives

Ĥ/h̄ = Ûc +
∫ 0

−∞
dx[ĉ†

x+ (ω − ivg∂x )ĉx+ ]

+
∫ +∞

0
dx[d̂†

x+ (ω − ivg∂x )d̂x+ ]

+
∫ L

0
dl

{
[â†

l+ (ω + ivc∂l )âl+ ]

+
N∑

n=1

δ(l − ln)[σ̂+
n σ̂−

n (ωa − iγl )

+ Vn+(σ̂+
n âl+ + σ̂−

n â†
l+ )]

}
. (B1)

The general single excitation wave function of the system is
of the form

|�〉 =
[∫ 0

−∞
dxφc(x)ĉ†

x+ +
∫ ∞

0
dxφd (x)d̂†

x+

+
∫ L

0
dlφa(l )â†

l+ +
N∑

n=1

φat,nσ̂
+
n

]
|0〉. (B2)

To obtain the steady-state solution, we make the ansatz that
the fields can be described as propagating plane waves with

wave number k of the form

φc(x) = eikxφc�(−x),

φd (x) = eikxφd�(x),

φa(l ) = e−ikl
N∑

n=0

φn�(l − ln)�(ln+1 − l ), (B3)

where l0 = 0 and lN+1 = L, � is the Heaviside step function,
and φc and φd are complex numbers. Here, the nth emitter
couples to the resonator at position ln with φn being the
cavity field after the nth emitter and φat,n being the excitation
amplitude of emitter n. For simplicity, we set vg = vc. Using
these relations, one can unambiguously solve the eigenvalue
problem Ĥ |�〉 = E |�〉. Injecting the wave-function ansatz
into the Schrödinger equation, we obtain a set of coupled
equations

0 = −ivg
φd

2
− vgtrtt

φN

2
e−ikL + ivgr

φc

2
,

0 = ivg
φ0

2
− ivgtrtr

φN

2
e−ikL + vgt

φc

2
,

0 = −ivg(φn − φn−1)e−ikln + Vn+φat,n,

0 = Vn+
2

(φn + φn−1)e−ikln + (�a − iγl )φat,n. (B4)

For the waveguide-emitter coupling Vn+ = √
2βnγ vg and the

emitter-field detuning �a = (ωa − ω), we can solve the set of
equations above. For the resonator fields, we get

φn

φn−1
= 1 − 2β+,nγ

γ + i�a
= tn, n �= 0,

φ0

φc
= −it

e−ikLrtNtrt − 1
. (B5)

For the field at the output of the probed emitter-cavity
system, we get

φd

φc
= tNtrte−ikL − r

tNtrtre−ikL − 1
. (B6)

Using kL = �c/νFSR we obtain for the power reflection of a
loaded ring resonator Eq. (18)

R =
∣∣∣∣φd

φc

∣∣∣∣2

=
∣∣∣∣ e−i�c/νFSRtrttN − r

e−i�c/νFSRtrttN r − 1

∣∣∣∣2

. (B7)

Apart from the resonator fields between the emitters in
Eq. (B5), all quantities only depend on the total single-pass
transmission tN through the whole ensemble, which is given
by

tN =
N∏

n=1

tn. (B8)

For βn sufficiently small or sufficiently small variations of βn

we can approximate tN via

tN = 1 −
∑

n

β̃n +
∑
n<m

β̃nβ̃m − ...
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= 1 −
∑

n

β̃n︸ ︷︷ ︸
=N β̃

+ ( ∑
n

β̃n
)2 −

∑
n

β̃2
n︸ ︷︷ ︸

≈ 1
2 (N2−N )β2

−...

≈
∑

n

(
N
n

)
(−β̃ )n = (1 − β̃ )N , (B9)

where we used the shorthand notation β̃n = 2βnγ /(γ + i�a)
and β̃ = 2βγ /(γ + i�a), with β = ∑

βn/N describing the
mean emitter-mode coupling. We note that for large detuning
�a > γ , this approximation is always fulfilled.

APPENDIX C: COUPLING STRENGTH g AND β FACTOR

To compare the description of the cascaded model to the
Jaynes- and Tavis-Cummings models, we need an expression
linking the characteristic coupling parameters g1 and β with
the definition 〈â†â〉 = 〈n̂〉, where n̂ is the number operator
quantifying the mean number of photons inside the cavity
and â† (â) is the photon creation (annihilation) operator in the
Jaynes-Cummings Hamiltonian. For the cascaded model, the
mean intracavity photon number is 〈∫ L

0 dl â†
l âl〉 = 〈n̂〉. With

this we can identify V 2
n+/L = g2, which leads to

g2 = 4βγ νFSR (C1)

for an emitter placed inside an antinode of the cavity field in a
Fabry-Pérot cavity (symmetric coupling) and

g2 = 2βγ νFSR (C2)

for a ring cavity, where we assumed chiral coupling.

APPENDIX D: SOLUTIONS OF OUR CASCADED
MODEL FOR LARGE νFSR

From the reflection in the cascaded real-space formalism in
Eq. (18), one can reproduce the reflection spectra calculated
from the Jaynes- and Tavis-Cummings model for a resonator
coupled strongly to an ensemble of quantum emitters, for
βN < 1. At first, we substitute for βnγ using g2 = 2βnγ νFSR

as

tn = 1 − 2βnγ

γ + i�a
= 1 − 2g2

g2 + 2νFSR(γl + i�a)
. (D1)

For single-mode interaction, where �c 
 νFSR, a condition
satisfied in most conventional cQED experiments, we can
restrict the derivation to first order in νFSR and obtain for the
reflection from the incoupling mirror

R =
∣∣∣∣g2 + (γl + i�a)(κ0 − κext + i�c)

g2 + (γl + i�a)(κ0 + κext + i�c)

∣∣∣∣2

, (D2)

the same expression as from Jaynes- and Tavis-Cummings as
derived in Eq. (A5) for g = g1 or g = gN , respectively.

APPENDIX E: MULTIMODE EXTENSIONS OF THE
JAYNES- AND TAVIS-CUMMINGS MODELS

Starting from the standard Jaynes-Cummings approach,
Eq. (1), the generalization to many modes is

Ĥ

h̄
= ωatσ̂

+σ̂− +
∑

j

[ω j â
†
j â j + g j (â

†
j σ̂

− + â j σ̂
+)], (E1)

where â†
j creates a photon in the jth mode of the resonator and

g j is the coupling strength between the emitter and the cavity
mode j. In a similar way, we can apply the same method to
the Tavis-Cummings model

Ĥ

h̄
= ωatŜ

+Ŝ− +
∑

j

[ω j â
†
j â j + gN, j (â

†
j Ŝ

− + â j Ŝ
+)], (E2)

where we substituted the operators Ŝ± = 1/
√

N
∑

n σ̂±
n , to

take a collective emitter-resonator interaction into account. In
order to calculate the eigenvalue spectrum of the Hamiltonian,
we now consider an equally distributed mode spacing of the
resonator around the emitter’s resonance as ω j = jωFSR +
�a, where we define ω0 as the resonance closest to the
emitter’s resonance. The resonator modes are separated by
the free spectral range ωFSR = 2πνFSR and �a = ωat − ω0 is
the emitter-resonator detuning. Furthermore, for simplicity,
we assume that the emitters couple with equal strength to
all cavity modes with g = gN, j which is, e.g., the case for
a ring resonator. In order to solve the Schrödinger equation
Ĥ |�〉 = h̄ω|�〉, we make a single-excitation wave-function
ansatz |�〉 = ∑

j α j â
†
j + βσ̂+|0〉. Plugging the ansatz into the

time-independent Schrödinger equation and comparing coef-
ficients leads to

α j = gβ

ω − jωFSR − �a
and (E3)

β = g

ω

N∑
j=1

α j . (E4)

From this, we can formulate an eigenvalue equation

1 = g2

ω

M∑
j=−M

1

ω − j ωFSR − �a
, (E5)

having 2(M + 1) solutions, where 2M + 1 is the number of
modes considered. In the limiting case of very large coupling
strength g � ωFSR, we can make an ansatz for ω = mωFSR

(m ∈ R) and approximate ω2
FSR/g2 → 0. With this, we arrive

at

0 =
M∑

j=−M

1

m − ( j + �a/νFSR)
. (E6)

For M → ∞, this equation can be solved for any mode k (k ∈
N) by mk = 1

2 + �a/ωFSR + k. Consequently, for a coupled
multimode emitter-resonator system, we find the position of
the new resonances of the {emitter + cavity} system at the
frequencies

ω̃k = ωk + 1
2ωFSR, (E7)
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where k is the resonance’s mode number and ωk the frequency
of the bare cavity resonance. All resonances are shifted by

ωFSR/2 from their position of the bare cavity system, where
the shift saturates.
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