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Inverse design approach to x-ray quantum optics with Mössbauer nuclei in thin-film cavities
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Thin-film cavities containing layers of Mössbauer nuclei have been demonstrated to be a rich platform for
x-ray quantum optics. At low excitation, these systems can be described by effective few-level schemes, thereby
providing tunable artificial quantum systems at hard x-ray energies. With the recent advent of an ab initio theory,
a numerically efficient description of these systems is now possible. On this basis, we introduce the inverse design
and develop a comprehensive optimization for an archetypal system with a single resonant layer, corresponding
to an artificial two-level scheme. We discover a number of qualitative insights into x-ray photonic environments
for nuclei that will likely impact the design of future x-ray cavities and thereby improve their performance. The
methods presented readily generalize beyond the two-level case and thus provide a clear perspective towards the
inverse design of more advanced tunable x-ray quantum optical level schemes.
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I. INTRODUCTION

The conventional approach to describing physical systems
is to define the system and to subsequently derive its func-
tionality. In most relevant cases, the functionality depends on
the system’s design in a nontrivial way such that the devel-
opment of novel or improved functionality is challenging and
is often founded on intuition. Opposed to that, specifying the
desired properties at the outset of the procedure and trying to
afterward find a suitable apparatus is known as inverse design.
Exploring the yet unknown inverse design is not always triv-
ially realized as a corresponding setup might not exist. Also in
the realm of nanophotonics (see [1,2] and references therein)
and light-matter interactions [3], inverse design has become a
sought-after paradigm.

In this work we introduce and develop the inverse design
of artificial x-ray quantum level schemes which are realized
with Mössbauer nuclei in thin-film cavities probed in grazing
incidence (see Fig. 1). These systems constitute an intriguing
platform for quantum optics in the x-ray regime [4–8]. We
focus the design on the nanometer-scale layer thicknesses and
materials as well as the x-ray incidence angle, rather than
allowing for photonic structures with arbitrary shapes. This is
motivated by the present state-of-the-art in cavity fabrication,
but also by the fact that the hard-x-ray wavelengths considered
here are on or below the scale of the lattice parameters of
corresponding materials; for example, the resonance wave-
length of the Mössbauer transition in 57Fe is 86 pm, whereas
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the lattice constant of α-Fe is 287 pm. As a result, it is
usually not possible to structure the photonic environment
on (sub)wavelength scales at hard-x-ray energies. However,
in the grazing-incidence regime, the wave-vector component
normal to the layer surfaces is reduced, thus allowing for the
formation of one-dimensional x-ray standing-wave patterns
with an effective wavelength on the scale of 10 nm. Therefore,
the design of the cavity layer structure on nanometer scales
considered here is a meaningful approach to control the nu-
clear dynamics and the resulting artificial few-level scheme.

Resonances in Mössbauer nuclei are distinct from corre-
sponding electronic x-ray resonances by their exceptionally
narrow linewidths, owing to the recoilless absorption and
emission of photons [9–11]. This has the advantage of desir-
ably long coherence lifetimes of the nuclear excitations, but
on the other hand severely limits the possibility to strongly
drive or control nuclear x-ray transitions even at modern x-
ray sources. As a result, it remains challenging to implement
advanced nuclear multilevel schemes featuring several tran-
sitions driven by probe or control fields. One of the most
successful approaches to overcome this restriction so far is
to influence the nuclear properties and dynamics with tailor-
made photonic environments such as x-ray cavities [8]. Note
that complementary approaches towards nuclear quantum op-
tics also have made substantial progress (see [12–24] and
references therein).

The key idea behind the x-ray cavity approach is that in
the experimentally relevant low-excitation regime, the joint
nuclei-cavity system can be shown to feature an effective de-
scription as a tunable x-ray quantum optical few-level scheme
[25–30]. By choosing a suitable cavity setup, the structure
of the few-level scheme, the transition frequencies, and the
decay rates can be controlled and changed as compared to the
bare nuclear properties. Furthermore, the cavity environment
can induce coherent couplings between the different states
of the few-level system, thus compensating for the lack of
direct x-ray control fields implemented with external sources.
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FIG. 1. Schematic setup of the archetypal thin-film cavity system and illustration of its relation to the artificial two-level scheme. The
cavity consists of a stack of different layers (thicknesses and exemplary materials are indicated) and a single thin layer of Mössbauer nuclei
(here 57Fe). The cavity is illuminated in grazing incidence with x rays near-resonant to the nuclear transition frequency. Here θ , k, and k‖
are the x-ray incidence angle, the wave vector, and its projection onto the cavity surface, respectively. At low probing intensities, the system
features an effective description as an artificial two-level system. As compared to the bare two-level system of individual nuclei with transition
frequency ωnuc and decay rate γ0, it is driven by a cavity- and collectively enhanced Rabi frequency � and features a level shift �CLS and a
decay rate enhancement �SR. A recently developed ab initio theory allows one to readily derive the artificial level scheme from a given cavity
structure [25]. In this work we introduce and develop the inverse design of artificial two-level systems, i.e., we determine cavity structures
suitable to the realization of desired two-level schemes.

Experimentally, a broad range of quantum optically inspired
setups has been realized using this approach. Examples in-
clude the collective Lamb shift (CLS) and superradiance (SR)
[26] (which have been intensely studied in other systems
[10,31–40]), electromagnetically induced transparency [27]
(see [41] for a review), vacuum generated coherences [42]
(see [43,44] for reviews), the realization of strong coupling
[45], Rabi oscillations [46], and subluminal propagation of
x-ray pulses [47] (see, e.g., [48,49]). Beyond that, a number
of schemes involving x-ray cavities have been theoretically
proposed (see, e.g., [50–53] and references therein), as well as
related schemes in other photonic environments [24,54–58].

Over the past decade, the quantum optical description of
the cavity setups in terms of few-level systems has been
continuously advanced [25,28–30]. A step towards the inverse
design of artificial x-ray few-level systems was recently taken
with the advent of an ab initio quantum optical theory [25].
The latter is formulated in terms of the classical electromag-
netic Green’s function, which is known analytically [59] and
thus allows for the numerically efficient calculation of the
effective level schemes.

Here we use this ab initio method to introduce and develop
the inverse design of artificial nuclear few-level schemes. We
focus on two-level systems, which are realized in an archety-
pal cavity setup featuring a single resonant nuclear layer (see
Fig. 1). As compared to the bare nuclei, the cavity, by the
collective effects it mediates, may lead to a modified transi-
tion frequency and spontaneous decay rate, as well as to an
enhancement of the external driving of the two-level system.

In the first step, we determine the complete parameter
space of the realizable artificial two-level systems. This al-
ready allows for inverse design, since we can attribute specific
cavity geometries to any of the possible quantum optical
parameter combinations. However, the optimization towards
different design goals does not always lead to experimentally
relevant cavities. Therefore, in the second step, we include
the visibility of the nuclear resonance in the experimentally
accessible reflectance spectrum as an additional design goal
in the procedure.

Performing the inverse design and also optimizing it in
terms of different layer materials and resonant isotopes, we are
led to a number of qualitative and somewhat unexpected in-
sights into x-ray cavity quantum electrodynamics (QED) with
Mössbauer nuclei. First, the accessible parameter space shows
interesting features that can be associated with the mode
structure of the cavity. Second, we find that cavities without
the topmost (mirror) layer may outperform their counterparts
with a mirror in relevant settings. Third, our analysis reveals
that cavities featuring maximum superradiance have entirely
different geometries than those with maximum field enhance-
ment at the nuclei. By contrast, these two optimization goals
coincide, e.g., in standard optical Fabry-Pérot cavities. A
closer inspection reveals that the grazing-incidence operation
of the x-ray cavities is responsible for this qualitative differ-
ence. Fourth, our results on the optimization of cladding- and
guiding-layer materials suggest an increase in the tuning capa-
bilities, but also the cavity performance more generally, upon
revision of the high-Z cladding-layer–low-Z guiding-layer
material design paradigm, implicit in most cavity designs
employed so far. Here Z is the atomic number of the material,
which directly influences the index of refraction at x-ray ener-
gies. Instead, we find that the absorption of the cladding layer
is the dominant limiting factor on the performance. Finally,
by analyzing the impact of the nuclear isotope on the artificial
level scheme design, we find that the nuclear properties alone
are not sufficient to determine the isotope’s influence on the
overall performance of a thin-film cavity system. Instead, it is
crucial to also consider the isotope’s impact on the photonic
environment for a comprehensive assessment.

The paper is organized as follows. In Sec. II we define our
model, derive the two-level artificial quantum system from the
cavity structure, and introduce our observables. In Sec. III we
start with the inverse design of the artificial two-level system.
In Sec. IV we add the reflection visibility as an additional de-
sign goal, to ensure the experimental relevance of the results.
In Sec. V we contrast the results of Sec. IV with corresponding
ones including the intracavity field enhancement as a design
goal and compare them to the case of a Fabry-Pérot cavity. In
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Secs. VI and VII we explore the roles of the layer materials
and the nuclear isotope on the inverse design, respectively.
Finally, Sec. VIII summarizes and discusses the results.

II. ARTIFICIAL X-RAY TWO-LEVEL SYSTEM

The key concept underlying the present work is the obser-
vation that in the low-excitation limit, thin-film cavities doped
with large ensembles of resonant nuclei are analytically equiv-
alent to suitably chosen single artificial few-level systems
(see Fig. 1). Thereby, they form a platform to realize level
schemes otherwise inaccessible at hard-x-ray energies. In the
following, we summarize the equations of motion governing
the nuclei in the waveguide, explain the above-mentioned
equivalence to a few-level system, and discuss the relevant
observables, within the framework of macroscopic QED. The
latter allows us to express the Hamiltonian describing the
quantized light field in the cavity and the coupling to the
nuclei embedded therein in terms of the classical electromag-
netic Green’s function. Details on the derivation can be found
in Ref. [25].

A. Nuclear many-body Hamiltonian in the single-particle basis

Corresponding to the archetypal setup of Fig. 1, we con-
sider two-level nuclei placed in a single thin cavity layer at
depth z. Within the Born-Markov approximation, the system’s
dynamics can be described via its density operator ρ using a
master equation

ρ̇ = −i[Ĥ, ρ] + L[ρ], (1)

where we employ natural units h̄ = c = 1. The Hamiltonian
derived from macroscopic QED, given by [60,61]

Ĥ =
∑

n

ωnuc

2
σ̂ z

n −
∑
n,n′

Jnn′ σ̂
+
n σ̂−

n′

−
∑

n

[d∗ · E in(rn)σ̂+
n + H.c.], (2)

is a standard many-body Hamiltonian and can be interpreted
in a straightforward way. The first term describes the exci-
tation energy of the bare nuclei enumerated by index n and
characterized by the Pauli operators σ̂ z

n , σ̂±
n . In addition, ωnuc

is the nuclear transition frequency and d the nuclear transition
dipole moment. The second term denotes couplings between
nuclei n and n′ with coupling constant Jnn′ mediated by the
cavity environment (the dependence of the coupling constants
on the Green’s function will be defined in Sec. II C below).
The final term describes the driving of the nuclei by an ex-
ternally applied classical electric field E in(rn) evaluated at the
position of the nuclei. Note that this field in general differs
from its free-space value, due to reflections and absorption in
the cavity structure, as discussed in Sec. II C below.

Similarly, the Lindbladian assumes a standard form

L[ρ] =
∑
n,n′

�nn′

2
[2σ̂−

n′ρσ̂+
n − {σ̂+

n σ̂−
n′ , ρ}] + LIC[ρ], (3)

where {·, ·} is the anticommutator. Here �nn′ describes spon-
taneous emission in the presence of the cavity environment
for n = n′ and incoherent couplings between the nuclei for

n �= n′. The final term LIC[ρ] models the single-nucleus decay
due to internal conversion with rate γIC approximately equal
to the bare nuclear linewidth γ0.

B. Nuclear few-level Hamiltonian in the spin-wave basis

Next we show that in the low-excitation regime, the above
many-body master equation given by Eqs. (2) and (3) can
be rewritten in terms of an effective two-level system by
means of a suitable basis transformation. To motivate this
basis transformation, we model the synchrotron radiation im-
pinging in grazing incidence onto the cavity as a classical
plane-wave electromagnetic field with wave vector k. Due to
the grazing-incidence geometry, nuclei at different in-plane
positions will be driven with relative phase offsets determined
by the projection k‖ of k onto the nuclear plane (cf. Fig. 1).
We take this into account by introducing spin-wave operators

σ̂±
k‖ =

∑
n

e±ik‖·rn‖ σ̂±
n , (4)

which describe the excitation (σ̂+
k‖ ) and deexcitation (σ̂−

k‖ ) of an
excitonic spin wave with wave vector k‖ in the nuclear layer
due to the applied driving field, where rn‖ is the projection of
rn onto the nuclear plane.

It can be shown that in the low-excitation limit and as-
suming translational invariance of the system along the cavity
plane, the light-matter dynamics in the cavity preserves the
parallel wave vector k‖ [25]. This is consistent with the ex-
pectation that in reflecting light on the cavity, the angles of
incidence and reflection coincide for a translationally invariant
structure under plane-wave illumination.

As a result, we can rewrite the Hamiltonian and Lind-
bladian governing the equations of motion in the single k‖
subspace to give (see Appendix A and Ref. [25] for details)

Ĥ = ωnuc

2
σ̂ z

k‖ + �CLSσ̂
+
k‖ σ̂

−
k‖ − (�σ̂+

k‖ + H.c.) (5)

and

L[ρ] = �SR + γ0

2
[2σ̂−

k‖ρσ̂+
k‖ − {σ̂+

k‖ σ̂
−
k‖ , ρ}], (6)

respectively. Here σ̂±
k‖ and σ̂ z

k‖ are Pauli operators and � =
d∗ · E in(z, k‖)N/A is the effective Rabi frequency.

Equations (5) and (6) indeed have the form of a quantum-
mechanical two-level system. However, the excited state is
now a collective spin-wave excitation in the ensemble of
nuclei embedded in the cavity, rather than one of the single-
nucleus excitations considered in the many-body equations (2)
and (3). Furthermore, the properties of the effective two-level
system are different compared to the bare nuclei. First, an
additional detuning term �CLS appears, which shifts the tran-
sition energy of the two-level system and which is known as
the collective Lamb shift [26,31,34–40]. Second, the radiative
decay rate is enhanced by the additional superradiant [37,62–
65] contribution �SR as compared to the single-particle de-
cay. Third, the light-matter coupling depends on the effective
in-plane nuclear number density N/A, which appears as a
result of the two-dimensional in-plane Fourier transformation.
The explicit expressions for the aforementioned constants are
discussed in Sec. II C below. Importantly, they can be tuned
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via the cavity structure and the angle of incidence of the x
rays. For this reason, we refer to the effective description as a
tunable artificial two-level system.

C. Coupling constants

It remains to discuss the coupling constants entering the
equations of motion (2) and (3), and (5) and (6) in the
many-body and the spin-wave basis, respectively. Within
macroscopic QED, these constants can be expressed in terms
of the Green’s function characterizing the cavity environment
[60,61]. For the present case of a layered dielectric medium,
analytic expressions for the Green’s function are derived in
[59].

In the many-body basis, the coupling and (cross-)decay
constants evaluate to

Jnn′ = μ0ω
2
nucd∗ · Re[G(rn, rn′ , ωnuc)] · d, (7)

�nn′ = 2μ0ω
2
nucd∗ · Im[G(rn, rn′ , ωnuc)] · d, (8)

where μ0 is the vacuum permeability and G(rn, rn′ , ωnuc) the
Green’s function evaluated at the position of two nuclei n, n′
and the nuclear transition frequency ωnuc.

In the effective description, the frequency shift �CLS and
the enhancement of the spontaneous decay rate �SR can be
written as

�CLS = −N

A
μ0ω

2
nucd∗ · Re[G(z, z, k‖, ωnuc)] · d, (9)

�SR = 2
N

A
μ0ω

2
nucd∗ · Im[G(z, z, k‖, ωnuc)] · d, (10)

where G(z, z, k‖, ωnuc) is the in-plane Fourier transformed
electromagnetic Green’s function related to the position-space
Green’s function via

G(r, r′) =
∫

d2k‖
(2π )2

G(z, z′, k‖)eik‖·(r‖−r′
‖ ). (11)

Both remaining spatial arguments are evaluated at the nuclear
layer depth z. Explicit expressions for the Green’s function for
the archetypal cavity considered in this paper are provided in
Appendix B 1.

Finally, we discuss the driving field E in(k‖, z) appearing
in Eq. (5). It relates to its real-space representation by the in-
plane Fourier transform,

E in(r) =
∫

d2k‖
(2π )2

E in(z, k‖)eik‖·r‖ . (12)

Inside the cavity, the externally applied field is modified due
to absorption and reflection by the cavity materials. Quantita-
tively, its frequency space solutions can be obtained, e.g., by
recursively solving for the reflection and transmission formu-
las in layered media, a method known as Parratt’s formalism
[66] in the x-ray context. For the system at hand, we give the
explicit form of the field inside the cavity in Appendix B 2.
Note that this field is to be calculated without considering
the nuclear resonance, but including the electronic index of
refraction of the nuclear layer.

FIG. 2. Cavity observables and visibility of the nuclear response
in the reflection spectrum. (a) Schematic representation of the lead-
ing interfering contributions to the electronic cavity reflectance. For
the actual calculation, reflections at the remaining layers, e.g., the
57Fe layer, have to be taken into account as well. (b) Electronically
reflected intensity (rocking curve) as calculated by the contributions
in (a) using Parratt’s formalism [66]. (c) Electronic rel and nuclear
rnuc contributions to the reflectance as a function of the frequency
ω for a fixed angle of incidence θin. (d) Full reflection spectrum
given by the sum of both (complex-valued) contributions. The peak-
to-peak amplitude of the resulting Fano resonance is taken as the
visibility criterion.

D. Observables

1. Reflection spectrum

The key observable for nuclei embedded in thin-film cavi-
ties, dominating the experimental work up to now, is the linear
spectrum of the reflected light measured for a fixed incidence
angle of the probing x rays (see Fig. 2). Following Ref. [25],
we summarize the relevant aspects of this observable in the
present context.

Noting that the Fresnel coefficients for s and p polariza-
tion become equivalent at grazing incidence [67] and that the
electronic scattering and the scattering on the single unsplit
nuclear resonance leave the polarization of the incident x
rays unchanged, we subsequently focus on the treatment of
s-polarized light and omit the vectorial nature of the electric
field and Green’s function.

The reflection spectrum comprises contributions by the
purely electronic reflection at the different layer boundaries
and by the artificial nuclear two-level system. We illustrate
these in Fig. 2. We calculate the purely electronic reflection
rel using Parrat’s formalism [66], which sums all the different
scattering contributions arising from the material boundaries.
Although in principle the electronically reflected light has a
frequency dependence, it can be neglected on scales of the
linewidth of the nuclei. The artificial two-level system gives
rise to a Lorentzian spectrum in linear response. However,
the nuclear response acquires an additional complex-valued
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weight upon propagation to the cavity surface and inter-
feres with the electronically reflected background, which
is complex valued. Details on the calculation are found in
Appendix A.

In combination, the overall reflected intensity normalized
to the incoming intensity is given by

|r(k‖, ω)|2 =
∣∣∣∣|rel| + |C|eiϕ

� + i�

∣∣∣∣
2

. (13)

Depending on the relative phase ϕ of both contributions, dif-
ferent nuclear Fano line shapes arise in the spectra [55,68–
70]. The response is centered at the transition frequency of
the collective two-level system and superradiantly broadened
such that

� = ω − (ωnuc + �CLS), (14)

� = γ0 + �SR

2
. (15)

The relative weight of the nuclear contribution C, resulting
from the coupling of the nuclei to the driving field as well as
the propagation of the nuclear response to the cavity surface,
can be expressed as

C = −N

A
μ0ω

2
nuc|d|2G(0, z, k‖, ωnuc)Ein(z, k‖, ωnuc), (16)

again using the Green’s function. Finally, the relative phase
between these two contributions determining the line shape of
the nuclear resonance is [68–70]

ϕ = arg(C) − arg(rel ). (17)

Explicit expressions for the Green’s function, the electric field
configuration, and the electronic cavity reflection are provided
in Appendix B.

2. Visibility of the nuclear response in the reflection spectrum

From Eqs. (13) and (16) it is clear that the nuclear sig-
natures in the reflection spectrum can be strongly suppressed,
e.g., by the Green’s function contribution. One obvious reason
for strong attenuation are thick or highly absorptive cavity
layers. This poses the problem that the inverse design may
lead to optimized solutions that in practice cannot be observed
via the reflection spectrum. In such situations, the formally
best cavity structures may not be the most relevant ones
for experimental purposes. This challenge can be tackled by
including conditions on the practical relevance, such as the
observability, into the design rules.

Considering the line shape of a Fano resonance, a suitable
criterion for the visibility of the nuclear signatures is the
peak-to-peak amplitude of the resonance in the normalized
reflection spectrum [see Fig. 2(d)]. In the optimization, one
may then set a minimum visibility as a boundary condition or
optimize the visibility for an otherwise specified design goal.

An efficient calculation of the visibility criterion is possible
via analytical expressions for the positions of the two extrema

of Eq. (13) in terms of �,

�± = − 1

2|rel|
[
|C| sec(ϕ) + 2|rel|� tan(ϕ)

± sec(ϕ)
√

|C|2 + 4|rel|2�2 + 4|C||rel|� sin(ϕ)
]
. (18)

In part of the following calculations, we will use this visibility
criterion as an additional design constraint.

III. INVERSE DESIGN OF THE ARTIFICIAL TWO-LEVEL
SYSTEM

For the archetypal cavity system, we explore the combi-
nations of CLS and SR that are in principle accessible. Once
the accessible parameter space is known, at least one cavity
structure can be associated with each case, thereby allowing
for the inverse design of the artificial two-level system.

For the discussion we employ the Pt/C/57Fe/C/Pt/Si
cavity of Fig. 1, similar to cavities commonly used in ex-
periments. The resonant layer, i.e., the layer containing the
nuclear resonances, is chosen to be about two atomic layers
of 57Fe, which corresponds to a layer thickness of 0.574 nm,
as has been utilized in [26]. At such low layer thicknesses,
long-range magnetic order and magnetic hyperfine splittings
are suppressed such that the iron nuclei can be approximated
as unsplit two-level systems. The other layer thicknesses as
well as the angle of incidence remain as tuning parameters.

We explore the accessible quantum optical properties of the
two-level scheme, and later on also further observables, by nu-
merical means. To quantify the maximum tuning capabilities,
we consider the set of realizable observables and calculate
its surface. We do so by constructing scalar cost functions
from the respective observables of the two-level system and
maximize these as functions of the cavity parameters, that
is, the angle of incidence and layer thicknesses. A detailed
account of this approach is given in Appendix C, where we
illustrate the basic concept of the method with an example
and give a comprehensive overview of the workflow of our
numerical computations. Throughout the paper, we refer to
the set of variables over which we perform the optimization as
the cavity parameter space. In contrast, the set of all possible
values of a given combination of observables will be referred
to as the observables’ space (OS). Note that, throughout the
analysis, we will consider different OSs, depending on the
respective desired optimization goals.

A. Frequency shift and decay enhancement as the design goals

Results for the CLSs and SRs in the archetypal cavity of
Fig. 1 are shown in Fig. 3(a). The blue shaded area indicates
the combinations of �CLS and �SR that can be realized. Inter-
estingly, we find this set to be circular. Enhanced spontaneous
emission is found everywhere, except at one point, whereas
the CLS can take positive, zero, and negative values. The
whole circle is slightly shifted to a negative CLS. Being able
to give explicit cavity geometries for each individual point
within the set, we achieve the basis for the inverse design of
artificial two-level schemes.

In order to explain the highly symmetric set of the CLS
and SR, we can consider a cavity at the boundary of the
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FIG. 3. Accessible OS for the resonance frequency shift �CLS and the linewidth broadening �SR of the artificial x-ray two-level system. The
figure shows the archetypal cavity with Pt/C/57Fe/C/Pt/Si structure, as illustrated in Fig. 1. (a) The blue shaded area indicates the accessible
combinations of �CLS and �SR. Starting from the topmost point with the highest SR, the outermost black dash-dotted circle is traversed upon
tuning the angle of incidence around the first cavity resonance. The circles with smaller radii are accessed by tuning the incidence angle around
the higher cavity modes. (b) Explicit parametrization of the trajectory in (a) in terms of �CLS and �SR via the angle of incidence. (c) Poles
of the Green’s function against the angle of incidence, which can be associated with the individual cavity modes. The dots on the curve in
(a), labeled with lowercase roman numerals, relate the structures in (a) to the poles in (c). The cavity structure corresponding to the circles in
(a) and the results in (b) and (c) is Pt(80.4 nm)/C(46.0 nm)/57Fe(0.57 nm)/C(46.1 nm)/Pt(17.8 nm)/Si.

blue circle in Fig. 3(a), e.g., the cavity featuring highest SR.
Fixing this cavity structure and tuning the angle of incidence
around the first cavity resonance, the outermost black dash-
dotted trajectory indicated in Fig. 3(a) is traversed clockwise
with increasing incidence angle. Increasing the angle further
towards the next-higher cavity resonance, the second-largest
circle indicated in the figure is traversed and so on. The
explicit parametrization of this trajectory with the angle of
incidence is shown in Fig. 3(b). For each resonance structure,
indicated by a peak in the SR and a zero in the CLS, a circle of
different radius is traversed. Since the circle with the largest
diameter constitutes the boundary of the accessible CLSs and
SRs, we find that the highest possible CLSs and SRs can be
achieved within a single cavity geometry. This is consistent
with previous predictions [71].

Figure 3(c) shows the pole structure of the Green’s func-
tion as a function of the angle of incidence. Noting that the
resonant layer is placed precisely in the center of the guiding
layer for the cavity considered in Fig. 3, the thick absorptive
cladding layers on both sides of the guiding layer effectively
ensure a mirror symmetry around the resonant layer. There-
fore, the odd-parity modes in the guiding layer feature nodes
at the nuclear layer and only even parity modes can couple to
the nuclei. For this reason we leave out every second roman
numeral for the labeling of the poles in Fig. 3.

Notably, we find that each circle in Fig. 3(a) is associated
with a respective pole in Fig. 3(c). The circles are traversed in
a continuous way upon passing by the corresponding poles. To
understand this behavior, we can express the Green’s function
by a Mittag-Leffler pole expansion [72–74] in the angle of
incidence θ at constant frequency, i.e., we write it as

G(θ ) = G(θ = 0) +
∑
θ0

Res(G, θ0)

(
1

θ0
+ 1

θ − θ0

)
, (19)

where θ0 are the poles of the Green’s function and Res(G, θ0)
the respective residua. Each pole can be associated with a cav-
ity mode coupling to the resonant layer [74]. The imaginary
part of the pole then sets the width of the respective mode.
For the cavity at hand, Fig. 3(c) indicates that the imaginary
parts of the poles are very small as compared to their real
part separation. Being close to one pole thus allows us to
accurately describe the Green’s function by a single-mode
approximation

GSM(θ ) = C + Res(G, θ0)

θ − θ0
, (20)

where C accounts for the relevant terms constant in θ . Upon
tuning θ , the expression maps to a circle in the complex plane
spanning the CLS and SR. This is in accordance with the
single-mode approximation being a Möbius transformation.
The residues and imaginary parts may vary among the differ-
ent poles, which explains the distinct radii for the first three
modes, visible in the trajectory in Fig. 3(a).

The small imaginary part of the poles is understood when
realizing that the cavity design chosen for this discussion (i.e.,
the one at the boundary of the circle) features very thick
cladding layers. This is not surprising since the latter raise the
intracavity reflectivity and hence form the basis for stronger
internuclear couplings, thus accounting for larger collective
effects. Likewise, larger intracavity reflectivity allows for
more narrow modes, which explains the poles’ behavior.

IV. INVERSE DESIGN WITH VISIBILITY AS AN
ADDITIONAL DESIGN GOAL

In Sec. III A we found that the highest possible CLS and
SR at the circle’s boundary in Fig. 3(a) are realized in a cavity
with thick cladding layers. However, while this increases the
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FIG. 4. Characterization of a cavity setup with the additional constraint of visibility of the nuclear Fano line signature in the
reflection spectrum given by 50% of the incident x-ray intensity, again realized in a Pt/C/57Fe/C/Pt/Si cavity. Panels (a), (c),
and (d) are analogous to the corresponding panels in Fig. 3. Panel (b) further shows the reflected intensity (rocking curve) as
a function of the angle of incidence θ . The cavity structure corresponding to the circles in (a) and the results in (b)–(d) is
Pt(2.7 nm)/C(45.7 nm)/57Fe(0.57 nm)/C(46.1 nm)/Pt(307.3 nm)/Si.

cavity-mediated exciton self-coupling and thereby enhances
the collective effects, it at the same time suppresses the cou-
pling of light into and out of the cavity mode. Practically,
this means that the associated artificial two-level schemes
cannot be observed via the reflectance with high visibility in
experiments. In order to quantify this practical restriction, we
add the visibility, defined in Sec. II D 2, as a third observable
characterizing the cavity performance.

As the first step towards practically relevant settings, we
consider cavities with a visibility of about 50%, i.e., the reflec-
tion spectrum is modulated by half the intensity impinging on
the cavity. Here we once again search for the cavity realizing
the highest SR possible. Again fixing the different layer thick-
nesses and varying the angle of incidence, Fig. 4 shows the
characteristics of this cavity, in a representation analogous to
Fig. 3. Owing to the considerably reduced top cladding-layer
thickness (2.7 nm), the SR accessible in this cavity is clearly
lower, however, still significant. In addition to the previous
panels, we also consider the intensity as reflected on the cavity
in Fig. 4(b), which was not a meaningful observable in Fig. 3
because of the high top-layer thickness leading to a vanishing
visibility of the cavity modes. Comparing Figs. 4(b) and 4(c),
we see that only every second mode couples to the resonant
layer. Although the poles in the Green’s function are in prin-
ciple present for modes (ii) and (iv), their numerical effect
in Fig. 4(c) is negligible due to their odd parity resulting in
nodes at the resonant layer. While for higher-order modes the
minima of the reflected intensity [Fig. 4(b)] do not coincide
with the poles’ real parts due to overlapping modes, these
multimode effects [74] are suppressed in the Green’s function
since relevant modes have roughly twice the distance. Thus,
the Green’s function can still be treated by the single-mode
expression (20) and we find circles in Fig. 4(a).

To arrive at a comprehensive description of the relation
between visibility and quantum optical parameters of the
two-level scheme, we numerically determine the surface of
the OS for the visibility, the CLS, and the SR. The result

of this optimization is shown in Fig. 5. Note that the ring-
like structures visible in Fig. 5(a) do not correspond to the
seemingly similar structures in Figs. 3(a) and 4(a). While
the former are obtained with different cavity structures, the
latter are drawn for a single one. Likewise, Fig. 5(b) shows a
three-dimensional representation of the overall possible com-
binations of the CLS, SR, and visibility. Clearly, as discussed
above, the maximum SR and CLS result in near-zero signature
in the reflectance. As we approach the interior of the circular
set, the accessible visibilities become larger and eventually,
and indeed quite abruptly, a saturation to values very close to
one (color coded red in Fig. 5) is observed, while still allowing
for comparatively high SR and CLS.

We can explain this peculiar abrupt saturation by a
qualitative change in the optimum geometry of the cavity.
Counterintuitively, the optimum cavities giving rise to this
plateau of highest visibilities do not have any upper cladding
layer. This is unexpected, as such structures are more similar
to single-mirror settings rather than cavities.

We illustrate the performance of such a cavity without top
cladding in Fig. 6 (cf. indication in Fig. 5). For the specific
setting, the SR takes values up to about 40γ0 while maintain-
ing a large visibility. In contrast to the previous examples in
Figs. 3 and 4, the cavity is not symmetric anymore and the
coupling of different modes to the nuclei in the resonant layer
in Fig. 6(c) does not follow a simple pattern as before. Promi-
nently, the incoupling into the first mode and the coupling
of the first mode to the resonant layer are most pronounced.
Since neighboring modes are not well separated on the scale
of their widths, the single-mode approximation of Eq. (20)
is not applicable. In particular for higher-order modes, the
trajectories in Fig. 6 thus lose their circular appearance and
become spiral-like as also nearby poles contribute. For future
experiments, the plateau in Fig. 5 points to a new, possibly
preferential approach since cavities without upper cladding
provide very clear spectral signatures while still showing sig-
nificant collective effects.
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FIG. 5. Accessible OS for the artificial x-ray two-level system
with the three design goal parameters �SR, �CLS, and visibility as ob-
tained upon varying all layer thicknesses and the angle of incidence.
Results are shown for Pt/C/57Fe/C/Pt/Si cavity structures. (a) Pro-
jection of the OS into the �CLS − �SR plane with the visibility color
coded. (b) Three-dimensional representation of the OS in (a), which
shows a plateau of high visibility as a distinct parameter region.
Note that the accessible parameter combinations are not restricted to
the surface only, but also encompass combinations inside the shown
structure. The cavities used for Figs. 3, 4, and 6 are marked in the
figure. Details on the numerical approach to generate the shown data
are provided in Appendix C.

With the foregoing discussion we not only are able to give
precise cavity structures for the realization of a desired quan-
tum optical two-level scheme, but can also quantify to what
extent it will be visible in the reflectance. To showcase the suc-
cessful inverse design, Fig. 7 presents the cavity parameters
that constitute the surface of optimal visibility at fixed CLS
and SR in Fig. 5. The cavities are characterized by five pa-
rameters, which are shown in Figs. 7(a)–7(e). For each desired
parameter set of the artificial two-level system, the corre-
sponding cavity design can directly be read off. From Fig. 7(e)
we clearly see that the bottom cladding-layer thickness is not
described by a function continuous in the CLS and SR. The
reason for this is that the design constraints used to obtain the
results do not uniquely fix the bottom cladding-layer thick-
ness. This can be understood by the fact that from a certain

thickness on, the system for all practical purposes is indiffer-
ent to a further increase in this thickness as the transmission
through the bottom cladding is suppressed exponentially. Fig-
ure 7 also suggests that for most applications the usage of
a thick bottom cladding is preferential. For the remaining
parameters we find mostly continuous dependences on the
CLS and SR, which is somewhat unexpected as only three
external constraints (CLS, SR, and visibility) were imposed
and our numerical procedure was not biased towards this
continuous dependence. Overall, this completes the inverse
design of artificial two-level schemes under the constraint of
the nuclear response visibility in the reflection spectrum.

V. INVERSE DESIGN WITH INTRACAVITY FIELD
ENHANCEMENT AS AN ADDITIONAL DESIGN GOAL

In the previous sections we found that the highest SR
and CLS are realized in cavity structures with thick cladding
layers, which do not allow for efficient in- and outcoupling of
light and therefore lack good visibility in the reflectance. In
this section we further explore this aspect by contrasting the
CLS and SR with the intracavity enhancement of an external
driving field at the resonant layer. These two design criteria
are expected to lead to different optimal cavity designs, since
the CLS and SR are maximized in the absence of coupling
in- and out of the cavity mode, while the optimization of the
intracavity enhancement of the externally applied field relies
on a compromise between coupling of external fields to the
cavity mode and enhancement of the light inside the cavity by
multiple reflections.

First, we analyze the possible combinations of these quan-
tities for the archetypal cavity of Fig. 1 and comment on
the peculiarities of this very setting. Subsequently, we pro-
ceed to compare the results to the behavior expected for
an optical Fabry-Pérot cavity and outline the conceptional
differences.

A. Results for x-ray thin-film cavities

The accessible combinations of CLS, SR, and field en-
hancement at the nuclear layer are shown in Fig. 8(a). As
expected, we find minimal field enhancement for the case
of maximum CLS and SR. In going towards higher field
enhancement, the maximum possible CLS and SR decrease.
Interestingly, the set of possible parameter combinations fea-
tures a double tip near the maximum field enhancements,
which is marked in black for clarity. To analyze its origin, we
show a cut through Fig. 8(a) along the SR axis in Fig. 8(b)
(green shaded area). This panel also shows corresponding
results for a cavity without the topmost cladding layer (orange
shaded area). One can clearly see that one of the two peaks
can be attributed to cavities without the topmost layer. The
second peak with similar maximal field enhancement is due to
an entirely different cavity structure with a cladding layer. As
in Sec. III, we again find that cavities without upper cladding
layer may form an equally good, or even superior, approach to
designing x-ray layer structures.

To contextualize these observations, we finally consider
cavities in which the cladding material is changed from
Pt to Pd. Results are shown with (blue) and without (red)
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FIG. 6. Characterization of a C(80.1 nm)/57Fe(0.57 nm)/C(102.6 nm)/Pt(17.6 nm)/Si cavity setup, corresponding to a two-level system
with high visibility of about 94%. This cavity is marked in the OS shown in Fig. 5. The panels are analogous to those in Fig. 4.

top cladding in Fig. 8(b). For this material combination,
no double-tip appears and the noncladded system is outper-
formed by the system with the topmost Pd layer. This indicates
that the Pt/C cavity system is peculiar, but also that the mate-
rial choice is of great significance.

However, before we elaborate on the topic of different
materials below, there is yet another striking feature visible
in Fig. 8(b). The decay enhancement for a quantum system is
linked to the photonic density of states (DOS) at its position
[75]. Considering Fig. 8, we clearly see that the maximal
field enhancement is achieved in a different cavity geometry
than the maximal SR. This observation is counterintuitive,
especially considering that for standard optical cavities, one
might expect the coincidence of these limits. In Sec. V B we
illustrate this aspect further by comparing the x-ray thin-film
cavities to Fabry-Pérot cavities.

B. Comparison with optical Fabry-Pérot cavities

To illustrate this qualitative difference, we analyze a one-
dimensional lossy Fabry-Pérot cavity as shown in Fig. 9(a).

The mirror material is chosen as diamond for its compar-
atively large refractive index of n = 2.4, yet noting that
variations of this refractive index only lead to quantitative,
but not qualitative, changes. The cavity is illuminated at the
resonance wavelength of the two-level system (chosen around
700 nm) orthogonally to the mirror surface. For this setting,
we seek the achievable combinations of frequency shift, decay
enhancement, and field enhancement at the two-level system.
It is readily described by the previously used formalism of
Eqs. (1)–(3) in the limit of a single atom. The coupling con-
stants can be obtained from the Green’s function in Appendix
B, which reduces to the one-dimensional real-space Green’s
function upon setting k‖ = 0.

To ensure comparability to the x-ray scenario, we not only
vary the thicknesses of the layers and the position of the two-
level system therein, but also take the resonance frequency of
the two-level system as a parameter. Varying the frequency in
this setting is tantamount to changing the angle in the x-ray
case, as the angle can be used to tune the thin-film cavity in
and out of its resonances, which can be mapped to changing
the frequency [28].

FIG. 7. Inverse design of the artificial two-level system. Results are shown for Pt/C/57Fe/C/Pt/Si cavity systems. The panels show cavity
parameters that allow for the design of the two-level systems of optimal visibility (see Fig. 5). These include (a) the angle of incidence, (b) the
top cladding-layer thickness, (c) the guiding-layer thickness, (d) the relative position of the resonant layer in the guiding layer, and (e) the
bottom cladding-layer thickness. See Fig. 1 for an illustration of the cavity parameters.
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FIG. 8. Accessible OS for the artificial x-ray two-level system
with the cavity-induced field enhancement at the position of the
nuclei as an additional design goal. (a) The surface of all accessi-
ble combinations of the three observables, the CLS, SR, and field
enhancement, is obtained and shown as a three-dimensional plot
with color coding. Combinations on and beneath the surface are
accessible. The coloring highlights the double-tip structure of the OS
close to the highest possible field enhancements. This panel shows
results for Pt/C/57Fe/C/Pt/Si cavity structures. (b) Section through
(a) along the SR axis. The graph further compares the results for
cavities with and without top cladding, as well as Pd and Pt as
cladding materials, to explain the origin of the double-tip structure
visible in (a).

Figure 9(b) shows the set of accessible combinations of
field enhancement at the two-level system’s position, level
shift, and decay enhancement. For clarity, we also show the
projection of the set onto the SR-field enhancement plane.
Clearly, the maximal SR coincides with the largest possible
field enhancement, as was suspected for this setting.

We can identify two major differences between the x-ray
cavities and the Fabry-Pérot setting: First, x-ray materials
tend to have high absorption compared to dielectrics avail-
able in the optical regime, and second, the grazing-incidence
setup allows for total reflection and thus provides a different
mechanism of trapping light. Regarding the second point,
it is important to note that x-ray cavities as in Fig. 1 are
operated below the angle of total reflection of the cladding
layer such that the in- and outcoupling will take place evanes-
cently. Therefore, the coupling of light into and out of the
cavity may be suppressed by thick cladding layers even in

FIG. 9. Accessible OS for a two-level atom in a Fabry-Pérot
cavity, as a reference for comparison with the x-ray thin-film cavity
case in Fig. 8. (a) Schematic layout of the setup. The cavity is formed
by diamond front and rear mirrors with rear thickness chosen large.
A single two-level atom is coupled to the cavity field. The cavity is
probed with light resonant to the atomic transition frequency. (b) The
OS of accessible frequency shifts � and decay rate enhancements �

in the Fabry-Pérot cavity. For each pair � and �, the possible field
enhancements at the atom’s position z are obtained and shown as the
third axis. The projection of the OS onto the � − |Ein (z, ω)|2 plane
is indicated. Unlike in the x-ray cavity case, the maxima of the line
broadening � and the field enhancement |Ein (z, ω)|2 coincide.

the absence of absorption in the mirror material. In contrast,
in this case, the photonic DOS may still be high, since it is
limited essentially only by the absorption of the guiding layer.
This illustrates why the field enhancement and the DOS are
related in a different way than in the Fabry-Pérot cavity case.
Hence, we can attribute the counterintuitive behavior of the
photonic DOS and field enhancement to the grazing-incidence
setup. Striving for higher-finesse cavities, as is done in the
visible domain, thus would go in line with neither driving
nor observing the nuclear dynamics in our regime. We note,
however, that different in- and outcoupling schemes such as
front coupling [24,76,77] or intracavity generation of light
[55] could allow one to enhance the intracavity field enhance-
ment without reducing the SR and CLS.

Finally, for the x-ray thin-film case, we further note that
although the SR and the field enhancement at the nuclear layer
assume their respective maxima at different cavity parameters,
the maxima may still coincide as a function of the angle of
incidence only within a given cavity structure.

Even though the qualitative behavior of the OS is not
affected by absorption, we nevertheless find it to exert striking
influence on the quantitative performance of cavities. There-
fore, the influence of guiding and cladding material properties
is discussed in the following section.
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FIG. 10. Survey of the tunability of the artificial x-ray two-level system as a function of the chosen layer materials. (a) Achievable SR
and (b) achievable field enhancement at the position of the nuclei. In each panel, the top (left) axis determines the real (imaginary) part of
the refractive index n = 1 − δ + iβ of the guiding-layer material. Analogously, the bottom (right) axis characterizes the refractive index of
the cladding material. The different cladding (guiding) materials are shown as blue rectangles (red circles) in the plot. Each line connecting a
guiding-layer with a cladding-layer material defines a cavity structure. The optimum performance possible with this material combination is
then color coded in the line linking the two materials.

VI. INFLUENCE OF LAYER MATERIALS ON
THE OBSERVABLES’ SPACE ACCESSIBLE BY

THE INVERSE DESIGN

X-ray materials are commonly found to have refractive
indices close to and slightly below one, conventionally rep-
resented in the form [67]

n = 1 − δ + iβ, (21)

where δ and β are small real numbers. For the design of
x-ray thin-film cavities, the guiding principle commonly ap-
plied is taking high-Z , i.e., high electron density, materials
for the cladding and low-Z materials for the guiding layer
[5,8,26,42,46,47,78]. This guideline ensures high contrast in
the real parts of the refractive indices and thus a compara-
tively large Fresnel reflectivity between adjacent layers. High
electron densities, however, come along with high absorption,
which affects the cavity performance. The interplay between
absorption and reflectivity of the cladding is not immediately
clear, which is why we devote this section to the systematic
analysis of the performance of different material combinations
for the archetypal cavity of Fig. 1.

To derive trends for the material choice, we sample the
cladding and guiding materials from a range of elements as
well as a few chemical compounds known to be suitable for
the manufacturing process. The 57Fe layer as well as the
silicon substrate is left unchanged and the materials of the
two cladding layers are taken to be the same. We note that
related material samplings have previously been reported in
the context of bandpass filtering of broadband synchrotron
radiation with grazing-incidence antireflection films [79].

For each material combination we seek the highest possible
field enhancement at the nuclear layer as well as the highest
possible SR. From the circular structures in Fig. 3(a) and the

pole expansion (20), it can be expected that the cavities opti-
mizing the SR also optimize the CLS. The best extremization
outcomes for the SR and the field enhancement are shown in
Figs. 10(a) and 10(b), respectively.

As expected, we find that the best cavities feature low
absorption in the guiding layers. For the cladding materials,
however, common materials such as Pt are not among the
best cavities for SR or for the field enhancement. This is
unexpected, since Pt is a high-Z material with comparatively
high δ which gives rise to a high Fresnel reflectivity at the
cladding-guiding boundary. Overall, we find that Pt is not an
exception, because the best cavities are achieved not via a high
contrast in the refractive indices’ real parts, but rather with the
low absorption in the cladding as a selection criterion. Most
strikingly, all metals are outperformed by the MgO compound
as the cladding material.

These results indicate that the paradigm of high-Z
cladding–low-Z guiding material as a cavity design crite-
rion has to be reconsidered. Instead, implementing low-Z
cladding-layer–lower-Z guiding-layer materials shows a clear
potential for improving the performance of state-of-the-art
cavities and their applications.

Finally, we note that optimizing the top and the bottom
cladding-layer materials independently still suggests that the
best performance will be achieved if both layers have low
absorption.

VII. INFLUENCE OF RESONANT ISOTOPES
ON THE OBSERVABLES’ SPACE ACCESSIBLE BY

THE INVERSE DESIGN

Having discussed the accessible CLSs and SRs, the re-
flection spectrum visibility of the nuclear response, the field
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TABLE I. Properties of the Mössbauer isotopes 57Fe, 119Sn, and
45Sc and the carbon guiding layer at the respective Mössbauer res-
onance frequencies. The electronic refractive index of the resonant
isotope at its transition frequency is defined as nisotope = 1 − δiso +
iβiso and the respective one of carbon reads nC = 1 − δC + iβC. The
isotope’s transition frequency is given by ωnuc. The parameters are
taken from Ref. [80] or calculated with the PYNUSS [81] software
package.

Isotope ωnuc (keV) 106(δiso + iβiso ) 106(δC + iβC)

57Fe 14.4 7.3 + 0.33i 2.3 + 1.2 × 10−3i
119Sn 23.9 2.2 + 0.037i 0.82 + 2.8 × 10−4i
45Sc 12.4 3.8 + 0.13i 3.1 + 2.2 × 10−3i

enhancement, and relevant material aspects for thin-film
cavities, it remains to address the influence of different res-
onant isotopes. Taking a key role in the properties of the
artificial quantum system to be designed, their influence is
twofold.

First, each isotope comes with intrinsic properties. They
determine the coupling of the nuclear transition to the elec-
tromagnetic environment and thus fix the scale of collective
effects. Second, even ultrathin layers of resonant isotopes
modify the field configuration in the cavity by their elec-
tronic refractive index. Exchanging the resonant isotope thus
strongly affects the cavity mode structure. Furthermore, the
refractive indices of the cavity materials and the optimal ge-
ometries are subject to the light’s wavelength and thus to the
nuclear transition frequency, which thereby also influences the
modal structure.

In the following, we disentangle the influence of both ef-
fects on the cavity performance and outline the consequences
on the design of artificial few-level systems. To this end,
we consider the accessible parameter combinations of the
SR and the field enhancement at the resonant layer for the
isotopes 57Fe, 119Sn, and 45Sc. These isotopes all have transi-
tion frequencies accessible with state-of-the-art pulsed x-ray
sources, but feature rather different properties. The transition
frequencies and electronic refractive indices of these isotopes
are given in Table I. The isotopes are chosen to be embedded
in a Pd/C/isotope/C/Pd/Si cavity. We note that for better
comparability, we choose the thickness of the resonant layer
as 0.574 nm in all cases, as was previously used for the 57Fe
cavities. The accessible parameter combinations are shown
in Fig. 11. 45Sc and 119Sn stand out with very high field
enhancements, but comparably low tuning capability in the
SR. In comparison, 57Fe exhibits comparatively high possible
SR in combination with moderate field enhancement. This
highlights that in optimizing x-ray cavity structures towards
a given design goal, also the resonant isotope should be con-
sidered as an important design parameter.

A. Direct impact of nuclear properties

To disentangle the effects of exchanging the nuclear iso-
tope on the cavity performance, we first try to compare the
results for the different isotopes via a naive scaling of their
parameters. We start with �CLS, �SR ∝ ω2

nuc|d|2G(ωnuc)N/A,

FIG. 11. Accessible combinations of the SR of the artificial
x-ray two-level system and the cavity-induced field enhancement
at the position of the nuclei as a function of the chosen reso-
nant isotope. In all cases, the optimization was performed with a
Pd/C/isotope/C/Pd/Si cavity structure. It can be seen that cavities
with 119Sn and 45Sc feature superior field enhancements, while the
57Fe cavities offer comparably large SR in units of the respective
natural linewidths γ0.

following Eqs. (9) and (10). We can express the dipole mo-
ment in this relation as [25]

|d|2 = 2πγ0

ω3
nuc

1

2(1 + α)

2Ie + 1

2Ig + 1
, (22)

where α is the coefficient of internal conversion and Ie (Ig) is
the nuclear spin of the excited (ground) state of the transition.
Moreover, the effective in-plane nuclear number density can
be written as

N

A
= d3ρNa fLM, (23)

with the Lamb-Mössbauer factor fLM, the number density per
volume of the material ρN, the thickness of the resonant layer
d3, and the abundance a of the resonant isotopes therein.

Regarding the Green’s function (B1), we note that the Fres-
nel coefficients in Eq. (B2) are unaffected by the frequency
dependence such that we find a scaling G(ωnuc) ∝ 1/ωnuc with
the isotope’s transition frequency, owing to β j ∝ ωnuc.

Taking into account all these scalings, we can estimate
the CLS and SR of a specific isotope on the basis of the
numerically calculated performance of 57Fe. However, upon
comparing these estimates to the results in Fig. 11, we find that
the SRs actually calculated for 119Sn and 45Sc are significantly
higher than those expected from the naive scaling. This is a
clear indication that the nuclear transition properties alone are
not sufficient to characterize the performance of an isotope in
a thin-film cavity. Instead, also the modification of the cavity
environment due to the exchange of the isotope layer must be
considered.

B. Impact of the nuclear isotope on the cavity environment

Next we study the influence of the isotope choice on
the electromagnetic environment provided by the cavity. Ex-
changing the resonant isotope alters the photonic DOS as, on
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the one hand, each resonant isotope comes with its specific
electronic refractive index and, on the other hand, its reso-
nance frequency affects the refractive indices of the remaining
layers. As can be seen from Table I, the carbon guiding
layer’s refractive index is approaching unity with increasing
frequency of the isotopes, as common for x-ray materials [67].
For the refractive index of the resonant isotopes themselves
there is no such clear trend with respect to transition frequency
as it competes with their electron density.

To estimate the effect of the isotope choice on the photonic
DOS, we take the achievable field enhancement at the nuclear
layer as shown in Fig. 11. Even though in Sec. V we noted that
field enhancement and SR are realized in different geometries,
this is a sensible choice as we do not compare geometries but
the materials of the resonant layer. Also, the results in Sec. VI
suggest that within one setting of materials, the maximum
achievable SR and field enhancement are correlated with each
other. Finally, the field enhancement is particularly useful as
it is irrespective of the direct impact of the nuclear properties.

Comparing the refractive indices in Table I to the results
in Fig. 11, it is clear that low absorption in the cavity and in
particular in the resonant layer is the driving factor for the
photonic environment. The very high field enhancement for
119Sn and significantly reduced enhancement for 57Fe due to
the electromagnetic environment complement very well the
incompleteness of the description found in Sec. VII A upon
considering the nuclear properties only.

This shows that considering the nuclear properties alone
is not sufficient to estimate an isotope’s potential. Rather, the
effect of the isotope on the electromagnetic environment has
to be taken into account for a comprehensive description.

VIII. CONCLUSION AND OUTLOOK

In summary, we introduced the inverse design of an artifi-
cial x-ray two-level system, realized by an archetypal x-ray
thin-film cavity with a single layer of Mössbauer nuclei.
In particular, we investigated and explained the accessible
combinations of the superradiant line broadening and the
transition energy shifts of the artificial two-level system and
studied their connection to the experimentally relevant visi-
bility of the collective effects in the reflection spectra.

We further studied the interplay of the driving field en-
hancement at the nuclear layer with the frequency shift and
decay enhancement. Strikingly, our analysis revealed that the
maximal field enhancement is not found in the same cavity ge-
ometry as the largest decay enhancement. Opposed to that, we
showed that a two-level system in an optical Fabry-Pérot cav-
ity exhibits a common optimal geometry for both quantities.
We could attribute this qualitative difference to the grazing-
incidence nature of the x-ray cavity setting. This feature is
not limited to the archetypal system, discussed in this work,
but can be applied to essentially all x-ray thin-film cavity
systems. It thus helps to broaden the intuitive understanding
of thin-film cavity systems in general, which is crucial for the
development of novel ideas and applications.

To explore the possible scope of the inverse design ap-
proach, we systematically sampled different materials for
guiding and cladding layers. Our results promote a different

perspective on the impact of the cladding layer’s absorption
on the overall performance. The analysis indicates that low-
Z cladding materials outperform high-Z ones, i.e., the (real
part) refractive index contrast of guiding and cladding layers
is subordinate to the cladding layer’s absorption. As a re-
sult, for particular settings, cavities with no upper cladding
(mirror) layer at all are found to be superior. Applying a
low-Z cladding–lower-Z guiding design paradigm, the field
enhancement in the cavity as well as collective effects can
be enhanced. This insight not only is applicable to cavities
beyond the archetypal systems at hand, but might also prove
interesting for x-ray photonic environments in general.

Subsequently, we completed the discussion of the inverse
design scope by analyzing the influence of different resonant
isotopes on the field enhancement and collective effects. Here
it became clear that the overall impact of the Mössbauer nuclei
on the photonic environment of the cavity cannot be neglected
for a comprehensive discussion.

Our results can readily be extended to more general artifi-
cial x-ray level schemes realized with x-ray thin-film cavities
featuring multiple isotope layers. Artificial x-ray three-level
systems have already been successfully employed, e.g., in
the observation of electromagnetically induced transparency
[27] and vacuum generated coherences [42]. However, the
full tuning capabilities of x-ray three-level systems remain to
be explored, as well as systems with more than three energy
levels. In this regard, the ability of the platform to simulate
external coherent driving fields via cavity-mediated couplings
between different resonant layers is of particular importance,
as x-ray control laser fields are typically not available in
present-day experiments. We envision, for example, that the
inverse design approach could allow one to maximize a co-
herent enhancement of the nonlinear nuclear susceptibility
[41], thereby rendering nonlinear x-ray–nucleus interactions
accessible. It could also facilitate the experimental realization
of a full inversion of the nuclear ensemble, by enhancing the
x-ray–nucleus coupling [51]. Future research might encom-
pass the inverse design of other photonic environments in the
x-ray regime such as waveguides, nanowires, or crystal envi-
ronments, also involving electronic resonances [82]. Beyond
these geometries, more general forms of inverse design could
be explored [3], either with effectively enhanced x-ray wave-
lengths such as in the grazing-incidence setting considered
here or on manufacturing-limited scales larger than the x-ray
wavelength. Such approaches will also be of interest beyond
the realization of artificial level schemes, e.g., in the context of
manipulating core-hole excitations [56,57] and lifetimes [58],
the optimization of novel x-ray source concepts [55], and the
engineering of couplings to other degrees of freedom in the
sample [23]. We expect that the inverse design approach and
the qualitative results developed here will form a solid basis
for these subsequent endeavors, thus furthering the field of
x-ray quantum optics.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN IN THE LOW-EXCITATION REGIME

Following Ref. [25], here we revise the derivation of the
effective two-level scheme in the low-excitation regime. Start-
ing from the many-body description (1)–(3), the equation
of motion for the expectation value σ−

n ≡ 〈σ̂−
n 〉 in the low-

excitation regime σ z
n ≈ −1 reads

σ̇−
n = − i

(
ωnuc − i

γ0

2

)
σ−

n

+ i
∑

n′

(
Jnn′ + i

�nn′

2

)
σ−

n′ + id∗ · E(rn). (A1)

Inserting this equation into the definition (4) and approximat-
ing the nuclear layer to be homogeneous, the discrete Fourier
transforms become continuous ones and we can rewrite the
equation of motion for the expectation value of the spin-wave
operator σ−

k‖ ≡ 〈σ̂−
k‖ 〉 as

σ̇−
k‖ = − i

(
ωnuc + �CLS − i

γ0

2
− i

�SR

2

)
σ−

k‖

+ i
N

A
d∗ · E in(z, k‖). (A2)

Clearly, a single spin wave is only coupled to itself and the
dynamics bound to the respective subspace. The very same
equation is retrieved upon calculating the dynamics of σ−

k‖
from the effective description (5) and (6) when assuming a
linear response, σ z

k‖ ≈ −1. Hence, in this regime, the dynam-
ics is equally well characterized by the effective few-level
description.

1. Reflection spectrum

Fourier transforming σ−
k‖ = ∫

dω e−iωtσ−
k‖ (ω), the fre-

quency space solution is readily found to be

σ−
k‖ (ω) = − d∗ · E in(z, k‖, ωnuc)N/A

ω − ωnuc − �CLS + i(γ0 + �SR)/2
. (A3)

The collective dynamics of the nuclei at position z modify the
overall electric field E(0, k‖, ω) at the surface, which can be
calculated by the generalized input-output relation [60]

E(0, k‖, ω) = E in(0, k‖, ωnuc)

+ μ0ω
2
nucG(0, z, k‖, ωnuc) · d σ−

k‖ (ω). (A4)

Note that in Eqs. (A3) and (A4) we used the fact that the
incoming electric field and the Green’s function can be ap-
proximated as constant in frequency on scales of the nuclear
linewidth.

Finally, for the incoming field strength normalized to one,
the overall reflection coefficient is given by subtracting the
incident field strength from the overall electric field (here
without polarization),

r(k‖, ω) = E (0, k‖, ω) − 1

= rel + μ0ω
2
nucG(0, z, k‖, ωnuc)dσ−

k‖ (ω), (A5)

where we use the electronic cavity reflectivity

rel = Ein(0, k‖, ωnuc) − 1, (A6)

given by the (cavity modified) electric field at the cavity sur-
face without the incoming field strength. Inserting Eq. (A3)
into Eq. (A5) in turn yields Eq. (13) in the main text, where
the parameters (14)–(17) can be read off.

APPENDIX B: RELEVANT GREEN’S FUNCTION
EVALUATIONS AND FIELD CONFIGURATIONS FOR

THE ARCHETYPAL CAVITY

Here we summarize the formulas for the Green’s function
and field configuration as needed for the explicit calculation
of the observables in the archetypal cavity of Fig. 1. The
formulas are taken from Ref. [59].

1. Green’s function

The in-plane Fourier transformed Green’s function for s
polarization at equal z in the third (resonant) layer is given
by

G(z, z, k‖, ω) = i

2β3

eiβ3d3

1 − r3/0r3/6e2iβ3d3

× (
eiβ3(z−d3 ) + r3/6e−iβ3(z−d3 )

)(
e−iβ3z + r3/0eiβ3z

)
, (B1)

where

r3/0 = −r23 + r2/0e2iβ2d2

1 − r23r2/0e2iβ2d2
,

r3/6 = r34 + r4/6e2iβ4d4

1 + r34r4/6e2iβ4d4
,

r2/0 = − r12 + r01e2iβ1d1

1 + r12r01e2iβ1d1
,

r4/6 = r45 + r56e2iβ5d5

1 + r45r56e2iβ5d5
.

(B2)

Here ri j denotes the Fresnel coefficient of light in layer i

reflected at adjacent layer j. Furthermore, β j =
√

k2
j − k2

‖,

where k j = n jω is the wave number in layer j obtained from
the refractive index nj . The thicknesses d j are enumerated
according to Fig. 1 and z denotes the distance to the third
layer top surface which will generally be set to the center
of the ultrathin resonant layer z = d3/2. It should be noted
that simpler cavity structures can be obtained by setting the
respective thicknesses to zero. The additional δ contribution
to the Green’s function, apparent in [59], renormalizes the
free-space transition frequency and decay. It is thus taken to
be already included in the respective parameters [25].

The Green’s function propagating the nuclear response to
the surface is further given by

G(0, z, k‖, ω) = i

2β0

t0/3eiβ3d3

1 − r3/0r3/6e2iβ3d3

× (
e−iβ3(d3−z) + r3/6eiβ3(d3−z)

)
. (B3)

The additional coefficients are defined as

t0/3 = t0/2t23eiβ2d2

1 − r2/0r23e2iβ2d2
, t0/2 = t01t12eiβ1d1

1 + r01r12e2iβ1d1
, (B4)

with the Fresnel coefficients ti j of light in layer i being trans-
mitted to adjacent layer j.
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FIG. 12. Numerical methods for the determination of the surface of an OS, applied to a two-dimensional nonconvex example. (a) Two-
dimensional set whose boundary is determined numerically. (a)–(e) Different trials to determine the boundary of the set in (a). (b) Linear
combinations of the observables x and y according to Eq. (C1) are taken as cost functions. The cost function is parametrized by an angle
which is sampled equidistantly in the [0, 2π ) interval. The blue dots indicate the outcomes of the optimization for each angle. For two of these
samples (red and cyan) the line of constant cost function as converged to a boundary point is shown. Clearly, this sampling mode can only
determine the convex hull of the set in (a). (c) Analogous to (b) but for nonlinear combinations of x and y corresponding to comparatively
broad parabolas as curves of constant cost functions [see Eqs. (C3) and (C4)]. The boundary of the set in (a) is sampled beyond the convex
hull; however, the parabola is not narrow enough to successfully determine the whole surface. This is improved in (d), where a more narrow
parabola is used to construct the cost functions. This allows for the determination of the entire surface. For (b)–(d) the curves, on which the
cost function is constant, are rotated around the origin. (e) Effect of choosing a different center of rotation, indicated as a black dot. Three
different parabolas, on which the respective cost functions are constant, are shown and their orientation to the point of rotation is illustrated
by colored dashed lines. The homogeneity of the boundary points found by this class of cost functions is significantly reduced as compared to
the case in (d). (f) Typical result where the cost function is chosen suitably [identically to (d)], but the optimizations are only partly converged.
Expecting a smooth surface, one can however identify potentially nonconverged points (indicated in red) and refine the optimization towards
convergence.

2. Field configuration

The electric field strength at the third, resonant layer is
given as [59]

Ein(z, k‖, ω) = t0/3eiβ3d3

1 − r3/0r3/6e2iβ3d3

× (
eiβ3(z−d3 ) + r3/6e−iβ3(z−d3 )

)
, (B5)

where as before we evaluate the field at the center of the
ultrathin layer, z = d3/2. For the calculation of the electronic
cavity reflection the field strength at the surface is used,

Ein(0, k‖, ω) = 1 + rel = 1 + 1

1 − r3/0r3/6e2iβ3d3

× [
r0/3 + (t0/3t3/0 − r0/3r3/0)r3/6e2iβ3d3

]
, (B6)

where the additional coefficients are

r0/3 = r01 + r1/3e2iβ1d1

1 + r01r1/3e2iβ1d1
,

t3/0 = t3/1t10eiβ1d1

1 + r1/3r01e2iβ1d1
,

r1/3 = r12 + r23e2iβ2d2

1 + r12r23e2iβ2d2
,

t3/1 = t32t21eiβ2d2

1 + r23r12e2iβ2d2
.

(B7)

APPENDIX C: NUMERICAL METHODS

Throughout this work, we identify how far the properties
of the artificial two-level system can be tuned as functions
of the cavity parameters. That is, we determine the surfaces

of the respective multidimensional OSs. In principle, this can
be achieved by enforcing a fixed value for all but one of the
observables and maximizing the remaining one. However, this
turns out to be numerically expensive. Here we employ a
different approach that works without setting such constraints,
but relies on constructing suitable scalar cost functions f from
the observables which can then be passed to the maximization
algorithm. Maximizing the functions f will then be equiva-
lent to determining surface points of the desired OS. In the
following, we explain the conceptual basis and challenges of
our approach, using the example shown in Fig. 12. A compre-
hensive overview of an exemplary workflow of the approach
is given in Fig. 13.

We illustrate the optimization by the determination of the
surface of the exemplary two-dimensional OS in Fig. 12(a).
The OS comprises all possible combinations of two observ-
ables x and y of a model system, e.g., a cavity structure.
Its surface therefore represents the maximum possible values
for the two observables. The most straightforward way of
constructing a joint cost function of several observables is
taking linear combinations. Maximizing a single observable,
e.g., f = x or f = y, as a function of the cavity parameters
would correspond to determining a boundary point of the OS
in a specific direction. Likewise, using a cost function

fϕ (x, y) = x sin ϕ + y cos ϕ (C1)

allows us to change this direction of maximization by a ro-
tation angle ϕ. We equidistantly sample the angle ϕ in this
function between 0 and 2π and maximize the respective cost
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FIG. 13. Schematic workflow for the numerical determination of OS surfaces, using the example of Fig. 12. Initially, the observables x
and y for which the OS surface is determined are chosen. Next a suitable cost function fϕ (x, y) is defined as a function of these observables.
The cost function is parametrized by ϕ to probe the surface in different directions. An adequate number of samples ϕ j has to be selected from
the domain of the parametrization. As a start, choosing a linear cost function according to Eq. (C1) and a number of homogeneously spaced
samples ϕ j is reasonable. In the next step, the cost function is maximized over the cavity parameters c (i.e., the angle of incidence and the
layer thicknesses in the main text). The maximization is carried out independently for each value of the parametrization ϕ j which yields the
respective maximal cavity parameters cϕ j ,max. The observables x and y are evaluated at these cavity parameters to yield the samples of the OS in
the x − y plane. Subsequently, it has to be verified that for each ϕ j the numerical maximization is converged. An indication of bad convergence
can be discontinuities in the surface samples, as illustrated in Fig. 12(f). If not all points are fully converged, the maximization should be
refined, e.g., by carrying out the maximization for more initial guesses for the cavity parameters c and selecting the best maximization result. If
convergence is achieved, the subsequent step is to verify that the whole surface of the OS is sampled sufficiently. If this is not the case, refining
the cost function and/or increasing the number of samples of the parametrization is necessary. This could include the use of nonlinear cost
functions such as in Eq. (C3) or of a different set of transformations applied to the cost function. When the cost functions and the sampling of
the parametrization are chosen suitably, the surface of the OS is finally obtained.

functions. Each value ϕ yields a blue dot in Fig. 12(b) by
evaluating x and y at the cavity parameters that maximize fϕ .
It can be seen that we only determine points on the convex
hull of the surface. This is understood when considering that
the curves where the cost functions fϕ are constant in the
x-y plane are simply straight lines. The red line in Fig. 12(b)
exemplifies this for one specific angle. The red dot corre-
sponds to the resulting surface point which is the outermost
point to which the red line can be shifted such that it still
touches the surface. Obviously, this is not sufficient, as we
are not capable of determining the whole OS surface by this
approach. The geometrical picture developed above suggests
that by constructing a cost function which is constant on a
suitable curve, the entire surface can be sampled. In order
to do so, we first consider the curve where the linear cost
function (C1) is constant,

{(x, y) ∈ R2 | x sin ϕ + y cos ϕ = C}
= {(x, y) ∈ R2 | y′ = C, r′ = R−1(ϕ)r}
= R(ϕ){(x, y) ∈ R2 | y = C}. (C2)

Here r = (x, y)T, r′ = (x′, y′)T, C is a constant, and R(ϕ) is a
standard two-dimensional rotation matrix. A simple general-
ization of the rotated line is a rotated parabola, given by

R(ϕ){(x, y) ∈ R2 | y − αx2 = C}
= {(x, y) ∈ R2 | y′ − αx′2 = C, r′ = R−1(ϕ)r}, (C3)

where α characterizes the parabola’s width. By analogy to
Eq. (C2), we retrieve the corresponding cost functions fϕ as

fϕ (x, y) = y′ − αx′2, (C4)
where r′ = R−1(ϕ)r.

Figure 12(c) shows sampling points as obtained by using a
comparatively broad parabola. Clearly, the surface is sampled
better than with the linear cost functions, but not yet fully
covered by the sampling points. Similar to the linear cost
function shown in red in Fig. 12(b), the parabola is too broad
to resolve the full boundary. However, upon reducing the
width of the parabola, we finally retrieve the full surface of
the two-dimensional OS [see Fig. 12(c)].

It is clear that only the surfaces of certain sets can be fully
sampled using parabolas and, in principle, more complex cost
functions could be considered. However, it is important to
note that the surface points obtained using a particular class
of cost functions are valid solutions to the problem, even
if the cost functions are not capable of sampling the entire
surface. Hence, it is possible to certify the applicability of
a particular class of cost functions by assessing whether it
samples the whole surface of the given set. This is not the case
in Figs. 12(b) and 12(c), but a sampling of the entire surface
is achieved in Fig. 12(d).

It may be computationally demanding to sample the entire
surface with a class of complex cost functions. It is therefore
favorable to start any determination of a surface by a simple
linear combination of observables. Only in the next steps,
increasingly more sophisticated cost functions are used to
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refine the procedure in undetermined surface regions until
full coverage of the surface is reached. The surface points
obtained with all considered classes of cost functions are then
combined for a comprehensive determination of the surface.
This approach was used, e.g., in the determination of Fig. 5.
The entire iterative procedure of our numerical approach is
summarized in Fig. 13. For the optimizations considered in
the present work, parabolas proved sufficient.

For Figs. 12(b)–12(d) we only considered parabolas ro-
tated around the origin, which conveniently coincided with
the center of the two-dimensional OS. However, more general
transformations of the considered class of cost functions are
possible, e.g., rotations around different centers of rotation.
For the example in Fig. 12(a), we find that the homogeneity
of the obtained surface points is largely reduced by changing
the center of rotation [see Fig. 12(e)]. This suggests that more
general transformations of a given class of cost functions may
be useful to cover larger surface parts in other systems.

The results given for the exemplary two-dimensional
setting readily generalize to three dimensions, e.g., when con-
sidering SR, CLS, and the visibility as the OS. The respective

cost function can then be given as

f (x, y, z) = z′ − α(x′2 + y′2),

r′ = R−1(θ, ϕ)r, (C5)

with r = (x, y, z)T, r′ = (x′, y′, z′)T, and a three-dimensional
rotation matrix R(θ, ϕ), parametrized by polar and azimuthal
angle.

Finally, the previous discussion focused only on the
construction of suitable cost functions. However, for each op-
timization of a cost function, we further have to ensure that the
maximization as a function of the cavity parameters converges
to its global optimum and not a local one. To this end, we
use the SCIPY.OPTIMIZE [83] package for the maximization. To
support the convergence, we repeat the same maximization
for many different initial conditions which we Monte Carlo
sample from a meaningful range in the cavity parameters.
Furthermore, nonconverged points are typically visible as dis-
continuities in otherwise smooth surfaces [see Fig. 12(f)]. In
the case of nonconverged points, the number of maximizations
with different initial conditions can be increased until all cost
functions converge to the boundary of the OS.
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