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Extending the Hong-Ou-Mandel effect: The power of nonclassicality
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We show that the parity (evenness or oddness) of a nonclassical state of light has a dominant influence on the
interference effects at a balanced beam splitter, irrespective of the state initially occupying the other input mode.
Specifically, the parity of the nonclassical state gives rise to destructive interference effects that result in deep
valleys in the output joint number distribution of which the Hong-Ou-Mandel (HOM) effect is a limiting case.
The counterintuitive influence of even a single photon to control the output of a beam splitter illuminated by any
field, be it a coherent or even a noisy thermal field, demonstrates the extraordinary power of nonclassicality. The
canonical example of total destructive interference of quantum amplitudes leading to the absence of coincidence
counts from a 50:50 beam splitter (BS) is the celebrated HOM effect, characterized by the vanishing of the joint
probability of detecting singe photons in each of the output beams. We show that this is a limiting case of more
general input states upon which a 50:50 BS can create total, or near total, destructive interference of quantum
amplitudes. For the case of an odd photon-number input Fock state of arbitrary value n > 0 we show that the
joint photon-number probabilities vanish when detecting identical photon numbers in each output beams. We
specifically examine the mixing of photon-number states of n = 1, 2, and 3 with a continuous-variable state,
such as a coherent state of arbitrary amplitude, and a thermal state. These vanishing joint probabilities form
what we call a central nodal line: A contiguous set of zeros representing complete destructive interference of
quantum amplitudes. We further show that with odd or even photon-number Fock states n, with n > 1, there will
be additional off-diagonal curves along which the joint photon-number probabilities are either zero, or near zero,
which we call pseudonodal curves, which constitute a near, but not complete, destructive interference pattern
in the photon-number space. We interpret all of these interference effects as an extension of the HOM effect.
We explain the origin of these effects and explore the experimental prospects for observing them with currently
available number-resolving detectors in the presence of a small amount of noise.

DOI: 10.1103/PhysRevA.105.013712

I. INTRODUCTION

The generation of two-mode entangled states of light can
be accomplished by mixing nonclassical single-mode states
of light at a beam splitter (BS) [1]. The process that gives
rise to such two-mode states of light via beam splitting is
known as multiphoton interference [2] and serves as a criti-
cal element in several applications including quantum optical
interferometry [3] and quantum state engineering where beam
splitters and conditional measurements are utilized to perform
postselection techniques such as photon subtraction [4–6],
photon addition [7], and photon catalysis [8–10].

In spite of its name, multiphoton interference does not
involve the interference of photons. Rather, as has been em-
phasized by Glauber [11], it is always the addition of the
quantum amplitudes (themselves being complex numbers)
associated with these states that gives rise to interference
effects. The amplitudes to be added are those associated with
different paths (or processes) to obtain a given final output
state. Thus, the term multiphoton interference must be under-
stood to mean interference with states containing numerous
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photons. The canonical example of this kind of interference is
what has come to be known as the Hong-Ou-Mandel (HOM)
effect [12], which is a two-photon interference effect wherein
single photons in either of the output beams of a 50:50 beam
splitter emerge together (probabilistically). Detectors placed
at each of the output ports will yield no simultaneous coin-
cident clicks. That is, the input state |1, 1〉ab results in the
output state 1√

2
(|2, 0〉ab + |2, 0〉ab). The absence of |1, 1〉ab

in the output is due to the complete destructive interference
between the quantum amplitudes of the two processes (both
photons transmitted or both reflected) that potentially would
lead to the state being in the output. The essence of this effect
from an experimental point of view is that the joint probability
Pab(1, 1) for detecting one photon in each of the output beams
vanishes, i.e., Pab(1, 1) = 0.

In this paper we show that the same complete destructive
interference demonstrated by the HOM effect persists for
more generalized input states such that the joint probability of
measuring equal numbers of photons at the output ports of a
50:50 BS vanishes. These situations arise from the mixing of a
one-photon (Fock state) and a continuous-variable (CV) state
at the BS. That is, the input states could be |�〉ab = |1〉a|ψ〉b

or ρab = |1〉a〈1| ⊗ ρb, where |ψ〉b and ρb are CV pure and
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mixed states, respectively. For these situations we find that
for a 50:50 BS the output probabilities Pab(m′, m′) = 0
for all integers m′ ∈ Z�0. This means we obtain a central
nodal line (CNL), or a line of zeros representing complete
destructive interference, along the diagonal of the output
joint photon-number distribution. We can understand this
CNL [i.e., that Pab(m′, m′) = 0] to be a higher-order form
of the HOM effect. We further show that the mixing of
odd-photon-number states with CV states, of the composite
form |n〉a〈n| ⊗ ρb with odd n ∈ Zodd

�0 , results in a CNL
Pab(m′, m′) = 0 for arbitrary states ρb.

The Hong-Ou-Mandel effect is often characterized (e.g.,
observed experimentally) by the dip in the rate of coincident
single-photon detections as a function of the position of the
beam splitter (or, equivalently, the difference in the arrival
times of the two single photons at the BS). We take the
position that the whole of the dip is not, in and of itself, the
central feature of the HOM effect. Rather, the HOM effect is
the quantum amplitude interference effect that occurs when
two photons enter a beam splitter simultaneously from oppo-
site sides. The dip in the curve is the result of what needs
to be performed experimentally to prepare and verify the
required input state |1, 1〉ab. In the HOM experiment, the two
photons involved originate from the same source and adjust-
ing the position of the beam splitter is required to ensure that
the photons arrive there simultaneously. The HOM effect is
the complete destructive interference between two photons
simultaneously arriving (zero time delay) at opposite sides
of a 50:50 BS, as opposed to it being the whole HOM dip
(e.g., a scan across the difference in arrival times between the
two photons). In short, we distinguish the HOM effect as the
center (theoretical minimum) of the experimental dip, that is,
the point at which the output amplitude for coincident counts
vanishes due to complete destructive quantum interference.

In the case of mixing a single photon with coherent light
at a beam splitter, the photons involved are from independent
sources. Furthermore, the coherent state is a CV state obtained
from a phase-stabilized laser continuously being shone upon
the BS. The single (signal) photon will be known to have
arrived at the BS by the heralding of its (idler) twin from a
spontaneous parametric down-converter. Thus, the mixing of
the single photon with a coherent light beam will result in mul-
tiphoton interference in bursts conditioned by the heralding of
the (signal) photon. Therefore, there will be no manifestation
of an HOM dip in experiments of the type envisioned here.
The canonical (|1, 1〉ab input state) HOM dip occurs because
there is no single-photon continuous-variable state that could
be prepared and continuously shone upon a BS. It is the
quantum amplitude interference effects themselves that are
extensions of the HOM effect. In addition to the diagonal CNL
of zeros, for any n > 1, even or odd, there exist sets of noncon-
tiguous nondiagonal zeros lying on what we term pseudonodal
curves (PNCs), or near-nodal curves, of the output joint proba-
bilities that lie symmetrically placed about the diagonal. In the
case of n = 2 there are two nondiagonal PNCs and no CNLs,
while for n = 3 there are two nondiagonal PNCs that lie
symmetrically placed on either side of the diagonal CNL. The
more photons we mix on the BS, the more PNCs we obtain.
In fact, the mixing of the n-photon Fock state (FS) with a CV
state or a thermal state (TS) at a 50:50 BS results in the gener-

FIG. 1. Measurement of ma and mb photons in the output ports
of a BS of transmissivity T = cos2(θ/2) with input Fock state |n〉a

and (a) coherent state |β〉b and (b) thermal state ρ thermal
b .

ation of n PNCs or CNLs (i.e., n nondiagonal PNCs for n even
and n − 1 PNCs for n odd, with the addition of one diagonal
CNL). The effect of the PNCs is to furcate (i.e., multiply di-
vide) the output joint probability distribution into n + 1 peaks
with n valleys. While these valleys are not true nodal curves,
they do appear as minima in the output joint probability dis-
tribution since actual collections of (noncontiguous) zeros lie
along these PNCs. All of these generalized quantum interfer-
ence effects, the CNLs and the PNCs, are what we refer to as
the extended HOM effect. An important point to mention here
is that these effects (CNLs and PNCs) are independent of the
level of excitation of the CV states. In fact, these effects are
fundamental intrinsic properties of the BS itself, particularly
when used in a 50:50 configuration, when acting upon discrete
nonclassical (Fock) states (hence states built up from these
component states). Specifically, the appearance of the CNLs
and PNCs is independent of the amplitudes that describe the
a- and b-mode input states, as long as there are only odd-
numbered FSs entering the a mode, i.e., as long as one of
the states entering the BS is a state of odd-parity [13,14], a
definitively nonclassical state. The above effects involving a
CV state, specifically a coherent state (CS) mixed with an
n-photon FS on a 50:50 BS [Fig. 1(a)], were reported by
Birrittella, Mimih and Gerry (BMG) [15] and are shown in the
left columns of Figs. 2 and 3. The FS-CS case investigated by
BMG illustrates the above CNL and PNC features for the case
of n = 1, 2, 3 and serves as an archetypal example. The right
columns of Figs. 2 and 3 illustrate the analogous CNLs and
PNCs for the situation of a FS-TS input to a 50:50 BS as illus-
trated in Fig. 1(b). The similarity of the two cases illustrated in
Figs. 2 and 3 is readily apparent and exemplifies the universal
behavior of the CNLs and PNCs as interference patterns in the
space of photon numbers arising from the 50:50 BS. The focus
of BMG was devoted to quantum interferometry, and the CNL
and PNC effects were not fully explored in that work. The
goal of the present work is to fully explore these effects both
analytically and numerically for general states and place them
in the context of previous work on multiphoton interference
effects. As mentioned previously, the HOM effect [12] was the
first discovered effect of this type in the laboratory, although
there were hints of such an effect in the theoretical work by
other workers at around the same time. The history of the
HOM effect and many of its ramifications has recently been
reviewed by Bouchard et al. [16].

Ou [17] studied the multiphoton interference obtained by
a single photon mixing with an n-photon-number state at a
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FIG. 2. Diagonal central nodal line and off-diagonal pseudonodal curves for output probability P(ma, mb|n) for (a) and (b) n = 0 and
(c) and (d) n = 1, for measurement of ma and mb photons at the output ports of a 50:50 BS for input Fock state |n〉a, and (a) and (c) coherent
state |β〉b with average photon number n̄ = 9 and (b) and (d) thermal state ρ thermal

b with average photon number n̄ = 9, as depicted in Fig. 1.

50:50 beam splitter, where it was shown that a strong destruc-
tive interference effect was manifested in the photon-number
distribution in the output. For an n-photon-number state mix-
ing with the vacuum, the joint photon-number distribution of
the output state is a two-mode binomial. With the mixing of
one photon with the n-photon state one finds, if n is odd,
that the joint probability for detecting (n + 1)/2 photons in
each mode is zero, i.e., Pab((n + 1)/2, (n + 1)/2) = 0, as a
consequence of quantum interference. However, if n is even,
the combinatorics of mixing with one photon simply does
not allow for output states with equal photon numbers in
each mode to yield Pab(m, m) = 0 for all m for those cases.
In the same paper, Ou studied the mixing of a single pho-
ton with coherent light and with thermal light at a 50:50
beam splitter and noted that similar interference effects could
be observed by balanced homodyne detection. Subsequently,
Kuzmich et al. [18] demonstrated this effect in the laboratory
for coherent light mixing with a single photon. Ou [17] and
Kuzmich et al. [18] studied only the case where one photon
is mixed with a CV state at a beam splitter. Though they
noted the important interference effects, they did not explicitly
describe the existence of a nodal line of zeros representing
complete destructive interference in the joint photon-number
distribution for the output fields, as was done by BMG [8].
Furthermore, the former authors did not extend their consider-
ation to mixing CV states of light with two or more photons, as
was done by BMG [15]. Rarity et al. [19] experimentally ex-
plored the HOM effect for the mixing of a single-photon state

with a separate weak coherent state and showed (via the HOM
dip procedure; see their Fig. 4 in [12]) that the probability of
observing one photon in each beam-splitter output approaches
zero (at the minimum of the dip) due to destructive interfer-
ence. Recently, Podoshvedov and An [20] have proposed the
generation of even-odd CV states by quantum interference of
CV states with a delocalized photon (occupying two different
spatial modes) on a beam splitter. The emphasis of their work
was on the entanglement properties of such generated states,
as opposed to interference effects as discussed in this work.
The paper that we have found that comes closest to the spirit of
this present work is that of Lai, Bužek, and Knight (LBK) [21]
which looked at the BS transformation on dual FS inputs to a
fiber-coupler BS, including scattering losses (due to sidewall
roughness). The authors reported the following: “If the same
number state enters both ports of the coupler, the probability
of finding an odd number of photons at either of the output
ports vanishes for a particular choice of the coupler length.”
The authors did not explicitly mention that this length is the
one appropriate for a 50:50 fiber-coupler BS, which is most
certainly the case. Additionally, the authors also considered
a FS-CS input including fiber losses, but were primarily con-
cerned with this case being a generator of displaced FS states,
with the coupler behaving essentially as a homodyne detector.
The inclusion of photon loss was obtained by averaging the
joint photon-number distribution over a Bernoulli distribu-
tion with a Beer’s law loss parameter given by ν = e−2γ L,
resulting again in marginal distributions remaining binomial
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FIG. 3. Same as Fig. 2 [(a) and (c) CS and (b) and (d) TS], but now with (a) and (b) n = 2 and (c) and (d) n = 3.

in the presence of dissipation. Since the inclusion of loss
is essentially straightforward, following LBK [21] [see Eqs.
(41)–(43) therein] and recently Laiho et al. [22], we will
ignore dissipation in the main exposition of this work and
consider only an ideal lossless BS. The reason for this is
so that we can concentrate on the universality of the CNL
and PNC features discussed in this work. In a later section
we show plots of the output joint photon-number distribution
from the BS with loss included. In addition, with today’s
advances in number-resolving photon detectors (discussed
in the penultimate section), photon numbers up to 5–6 can
be reliably distinguished experimentally [and at some wave-
lengths, up to 10–20 (see [23,24])]. We will return to these
considerations at the end of this work. This paper is organized
as follows. In Sec. II we derive our main results concerning
the CNL and PNC for a general input state and a BS with
an arbitrary transmission T = cos2(θ/2) and reflection coeffi-
cient R = sin2(θ/2). Based solely on the properties of the BS
rotation coefficients, we derive the general condition for the
appearance of the CNL and PNC for a-mode input states con-
taining only an odd-numbered (nonclassical) FS. In Sec. IV A
we specialize to the important case of a 50:50 BS (θ = π/2)
and explore the PNC in general, as well as for the specific
case considered by BMG of a FS-CS input state |n〉a|β〉b with
n ∈ {2, 3} and an arbitrary CS of mean photon number n̄b =
|β|2. We present analytic formulas for the zeros of the PNC.
We present illustrative cases for various odd-parity a-mode
input states including an odd FS, photon-added single-mode
squeezed state, and an odd (CS-based) cat state mixing on a

50:50 BS with a b-mode CS |β〉b. Additionally, we investigate
the case of a non-50:50 BS θ = π/3 and explore the existence
of analytic solutions for the PNC of the BMG scenario of a
FS-CS input state |n〉a|β〉b with n ∈ {2, 3} mixing with a CS.
In Sec. V we discuss the possible experimental realization of
these effects in light of current photon-number-resolving tran-
sition edge sensors in the presence of a small amount of noise.
We show plots of the output joint photon-number distribution
from the BS with and without loss. Finally, in Sec. VI we
conclude and discuss our general results. In Appendix A we
provide the details of the derivation of the specific form of the
beam-splitter coefficients upon which our main results rely.
In Appendix B we provide the proof of a crucial property of
the beam-splitter coefficients that is central to the appearance
of the CNL. Appendix C provides tables of analytic results
for zeros indicating complete destructive interference in the
case of a non-50:50 beam splitter. In Appendix D we discuss
the extended HOM effect and the analog of the CNL for a
collection of atoms (Dicke states) using the Schwinger rep-
resentation of su(2) in terms of pseudo-angular-momentum
states formed from two bosonic modes.

II. GENERAL CONSIDERATIONS

The HOM effect [12] is the textbook example [25,26]
of the destructive interference of quantum amplitudes at a
BS. We choose the convention for the BS unitary trans-
formation (see Appendix A) with transmission coefficient
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FIG. 4. Contour plots of the output joint probability P(ma, mb, θ = π/2) for a coherent state |β = 3〉b entering mode b of a 50:50 BS and
a-mode input states containing only odd numbers of photons: (a) |3〉a, (b) (|1〉a + |3〉a)/

√
2, (c) photon-added single-mode squeezed state

a†|SMSS〉a, and (d) odd cat state |αc〉a = N−1(|α〉a − | − α〉a), all showing a central nodal line along the diagonal ma = mb. The black lines
and blue dots in (a) for n = 3 are explained in the text. (Note that all contour plots in this work are constructed by interpolating discrete data
sets as displayed in the histogram plots of Figs. 2 and 3.)

T = cos2(θ/2) as (see Fig. 13)

�a†(θ ) =
[

a†(θ )

b†(θ )

]
≡ U (θ )

[
a†

b†

]
U †(θ ) =

[
cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

][
a†

b†

]
≡ SBS(θ )�a† (1)

for 0 � θ � π such that a 50:50 BS is given by θ = π/2 (T = R = 1/2). Consider two single-mode FSs |�in〉ab = |1〉a|1〉b =
a†b†|0, 0〉ab entering the BS. The well-known transformation proceeds as

|�out〉ab = U (θ )a†b†|0, 0〉ab = a†(θ )b†(θ )|0, 0〉ab = [a† cos(θ/2) + b† sin(θ/2)][b† cos(θ/2) − a† sin(θ/2)]|0, 0〉ab

=
[

1√
2

(
− (a†)2

√
2

+ (b†)2

√
2

)
sin(θ ) + a†b† cos(θ )

]
|0, 0〉ab

θ→π/2−→ 1√
2

(−|2, 0〉ab + |0, 2〉ab), (2)

where the minus sign in front of |2, 0〉ab arises from our choice of the BS transformation (1) and could be removed by a
trivial change in phase accomplished by a† → ia† (see [25], Chap. 5). The interference of the amplitudes indicated by the
cos(θ ) in front of |1, 1〉ab arises of course from the destructive interference of the two possible paths to obtain the coincident
measurement Pab(1, 1) = cos2(θ ), i.e., the a and b mode are either both transmitted or both reflected into separate detectors,

with equal amplitude magnitudes cos2(θ/2) = sin2(θ/2)
θ→π/2−→ = 1/2, though opposite in sign, for a 50:50 BS. In general, since
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any two-mode state (pure or mixed) can be expanded in a dual FS number basis |n, m〉ab, we need to know how each basis state
transforms under the action of the BS. As shown in Appendix A 3 (see also [25], Chap. 5, and [21]), we have

∣∣n, m(out)
ab

〉 = U (θ )|n, m〉ab =
n+m∑
p=0

f (n,m)
p (θ )|p〉a|n + m − p〉b, (3a)

f (n,m)
p (θ ) =

n∑
q=0

m∑
q′=0

δp,q+q′

(
n

q

)(
m

q′

)√
p!(n + m − p)!

n!m!
(−1)q′

[cos(θ/2)]m+(q−q′ )[sin(θ/2)]n−(q−q′ ). (3b)

In Appendix A we show that through clever use of the lower factorial function (x)k ≡ (x − 0)(x − 1)(x − 2) · · · [x − (k − 1)] =
x!

(x−k)! [27] we can rewrite Eq. (3b) in the compact form [see (A7a) and (A7b)]

f (n,m)
p (θ ) ≡ (−1)p+n

√
n!(m + n)n

√(
m + n

p

)
[cos(θ/2)]m−p[sin(θ/2)]p−ng(n,m)

p (θ ), (4a)

where we have defined the quantity g(n,m)
p (θ ) as

g(n,m)
p (θ ) ≡

n∑
q=0

(
n

q

)
(−1)q(p)n−q[cos(θ/2)]n−q(m + n − p)q[sin(θ/2)]q, (4b)

which will play a central role throughout this paper. Of primary interest will be the probability amplitude A(ma, mb, θ |n, m) for
the measurement (projection) Mab ≡ |ma, mb〉ab〈ma, mb| of ma photons in mode a and mb photons in mode b given by

A(ma, mb, θ |n, m) = ab〈ma, mb|n, m〉(out)
ab = f (n,ma+mb−n)

ma
(θ )δm,ma+mb−n. (5)

The delta function δm+n,ma+mb ensures that one can only measure output states |ma, mb〉 exiting the BS such that the output sum
ma + mb is equal to the total number of photons n + m entering the BS. The particular machinations that we have made in
Eq. (4b) were in anticipation of the measurement Mab that induces p → ma and m + n − p → (ma + mb − n) + n − ma = mb,
as given by the δ function in Eq. (5). It is therefore useful to rewrite Eqs. (4a) and (4b) (apropos just after the BS, but before
measurement) one final time for indices representing measurement of the output joint probability distribution of the BS. We then
explicitly have [see Eqs. (A8a) and (A8b)]

f (n,ma+mb−n)
ma

(θ ) = (−1)ma+n

√
n!(ma + mb)n

√(
ma + mb

ma

)
[cos(θ/2)]mb−n[sin(θ/2)]ma−ng(n,ma+mb−n)

p (θ ), (6a)

g(n,ma+mb−n)
ma

(θ ) = δma+mb,n+m

n∑
q=0

(
n

q

)
(−1)q(ma)n−q[cos2(θ/2)]n−q(mb)q[sin2(θ/2)]q ≡ g(ma, mb|n, m). (6b)

Equations (6a) and (6b) are the primary equations of interest and their implications are the main focus of this work.
Let us now consider a general bipartite (in general, mixed) state ρab impinging on the BS with input modes a and b. The prob-

ability P(ma, mb, θ ) to measure ma photons in the output mode a and mb photons in the output mode b upon exit from the BS is
given by

ρab =
∑

n,n′,m,m′
ρnm,n′m′ |n, m〉ab ab〈n′, m′| U (θ )−→ ρ

(out)
ab =

∑
n,n′,m,m′

ρnm,n′m′ |n, m〉(out)
ab

(out)
ab 〈n′, m′| (7a)

⇒ P(ma, mb, θ ) = Tr
[
Mabρ

(out)
ab

] =
∑

n,n′,m,m′
ρnm,n′m′ ab〈ma, mb|n, m〉(out)

ab
(out)
ab 〈n′, m′|ma, mb〉ab

=
∑

n,n′,m,m′
ρnm,n′m′ f (n,ma+mb−n)

ma
(θ )δm,ma+mb−n f (n′,ma+mb−n′ )

ma
(θ )δm′,ma+mb−n′ . (7b)

Let us designate pure states in modes a and b as |ψ〉a = ∑∞
n=0 cn|n〉a and |φ〉b = ∑∞

m=0 dm|m〉b, respectively, with
∑∞

n=0 |cn|2 =∑∞
m=0 |dm|2 = 1, and a mixed state ρb in mode b as

∑∞
m,m′=0 ρ

(b)
m,m′ |m〉b〈m′| with

∑∞
m=0 ρ (b)

m,m = 1. Specializing the general
case (7b) to interesting specific cases, we obtain

|�in〉ab = |n, m〉ab ⇒ P(ma, mb, θ ) = | f (n,ma+mb−n)
ma

(θ )|2 (FS-FS case), (8a)

|�in〉ab = |n, φ〉ab ⇒ P(ma, mb, θ ) = |dma+mb−n|2| f (n,ma+mb−n)
ma

(θ )|2 (FS-PS case), (8b)

ρ
(in)
ab = |n〉a〈n| ⊗ ρb ⇒ P(ma, mb, θ ) = ρ

(b)
ma+mb−n,ma+mb−n| f (n,ma+mb−n)

ma
(θ )|2 (FS-MS case), (8c)

|�in〉ab = |ψ, φ〉ab ⇒ P(ma, mb, θ ) =
∣∣∣∣∣

∞∑
n=0

cndma+mb−n f (n,ma+mb−n)
ma

(θ )

∣∣∣∣∣
2

(PS-PS case), (8d)
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|�in〉ab = |ψ〉a〈ψ | ⊗ ρb ⇒ P(ma, mb, θ )

=
∣∣∣∣∣

∞∑
n,n′=0

cnc∗
n′ρ

(b)
ma+mb−n,ma+mb−n′ f (n,ma+mb−n)

ma
(θ ) f (n′,ma+mb−n′ )

ma
(θ )

∣∣∣∣∣
2

(PS-MS case), (8e)

where we have used the denotations FS for Fock state, PS for
pure state, and MS for mixed state and from now on drop
the subscript ab on the output joint probability distribution
P(ma, mb, θ ).

The important point to note is that for Eqs. (8a)–(8c) with a
single FS |n〉a in the a mode, we isolate a single beam-splitter
coefficient (BSC) f (n,ma+mb−n)

ma
(θ ) ∝ g(ma, mb, θ ) [Eq. (6b)].

Therefore, if g(ma, mb, θ ) → 0, then the joint probabil-
ity P(ma, mb, θ ) → 0 independently of the amplitudes or
density-matrix elements that define the b-mode input state.
We will see shortly that this always occurs for the case of
n odd (where n labels the FS of the a-mode input state)
and for a 50:50 BS (θ = π/2) when ma = mb = m′, i.e.,
P(m′, m′, π/2) = 0 for joint coincidences of the same number
of photons in the output modes of the 50:50 BS. For the
situations of a pure state in the a mode and either a pure
or a mixed state in the b mode, from Eqs. (8d) and (8e) we
see that we have additional sums over the amplitudes and/or
density-matrix elements defining the a- and b-mode input
states. However, if the a-mode state contains only a super-
position of odd number of photons (FS), i.e., an odd-parity
state, then when each of the BSCs is evaluated at θ = π/2
for a 50:50 configuration each of the BSC will separately go
to zero, independently of the amplitudes or density-matrix
elements defining the states, and once again the diagonal of

the joint probability P(m′, m′, π/2) will go to zero. The proof
of these claims is developed in the next section.

III. ANGULAR PORTION g(ma, mb, θ) FOR A 50:50 BS

The focus of this section is to explore the angular
portion g(ma, mb, θ ) [Eq. (6b)] of the probability ampli-
tude ab〈ma, mb|n, m〉(out)

ab arising from the BS amplitude
f (n,m)

p (θ ) [Eq. (4a)] of the transformed basis state |n, m〉(out)
ab =

U (θ )|n, m〉ab after the measurement Mab is made of ma and
mb photons in the output a and b modes, respectively. Of
particular interest will be g(ma, mb, π/2) in the 50:50 BS
configuration θ = π/2. It will be instructive to examine
g(ma, mb, π/2) explicitly in the case of low photon numbers
n ∈ {1, 2, 3} where it is easy to see how the symmetry in
(ma, mb) gives rise to the interference effects that apply for
general n. Later on, we return to these photon-number cases
when we examine other than 50:50 BS angles.

A. g(ma, mb, θ): General case

In general, g(ma, mb, θ ) is given by Eq. (6b), which gener-
alizes Eqs. (7)–(10) of the angular portion of the formulas in
Ref. [15]. For n ∈ {1, 2, 3} Eq. (6b) explicitly yields

g(ma, mb, θ |1) = [ma cos2(θ/2) − mb sin2(θ/2)], (9a)

g(ma, mb, θ |2) = [ma cos2(θ/2)(ma − 1) cos2(θ/2) − 2ma cos2(θ/2)mb sin2(θ/2) + mb sin2(θ/2)(mb − 1) sin2(θ/2)], (9b)

g(ma, mb, θ |3) = [ma cos2(θ/2)(ma − 1) cos2(θ/2)(ma − 2) cos2(θ/2) − 3ma cos2(θ/2)(ma − 1) cos2(θ/2)mb sin2(θ/2)

+ 3ma cos2(θ/2)mb sin2(θ/2)(mb − 1) sin2(θ/2) − mb sin2(θ/2)(mb − 1) sin2(θ/2)(mb − 2) sin2(θ/2)],

(9c)

where P(ma, mb, θ |n) ∝ g2(ma, mb, θ |n). Here we have writ-
ten g(ma, mb, θ |n) and P(ma, mb, θ |n) since the value of m
is given by the δ function δma+mb,n+m in Eq. (6b) that en-
sures that the total number of photons ma + mb measured
upon exit of the BS is equal to the total number of input
photons n and m from the dual basis state |n, m〉ab. We
see that in Eq. (6b) and explicitly in Eqs. (9a)–(9c) that
each factor of (ma − j) j∈{0,...,[(n−k)−1]} in (ma)n−k is associ-
ated with a factor of T = cos2(θ/2) and similarly that each
factor of (mb − j) j∈{0,...,(k−1)} in (mb)k is associated with a
factor of R = sin2(θ/2). Note that for a single a-mode input
FS |1〉a, Eq. (9a) indicates that individual nodes or zeros
of P(ma, mb, θ |1) are given for a general BS angle θ by
tan2(θ/2) = ma/mb and not just for the 50:50 BS case of
BMG of θ = π/2 ⇒ ma = mb. However, we are ultimately
interested in nodal curves, i.e., curves of zeros representing
complete destructive interference that occur for some relation-
ship between ma and mb and for some angle θ . Our primary

result is that we can always produce such a nodal line for a
50:50 BS (θ = π/2) with ma = mb = m′ if the input state to
mode a is an odd-numbered FS |n = 2n′ + 1〉a regardless of
the input state entering the b mode. Equation (6b) has a kind of
hyperbinomial formula structure. The function g(ma, mb, θ |n)
can be formally summed as

g(ma, mb, θ |n, m)

= δma+mb,n+m(ma)n[cos2(θ/2)]n
2F1[−mb,−n; 1

+ ma − n; − tan2(θ/2)], (10)

where 2F1(a, b; c; z) = ∑∞
k=0

(a)(k) (b)(k)

(c)(k)
zk

k! is the hypergeomet-

ric function, with x(n) = (x + 0)(x + 1)(x + 2) · · · [x + (n −
1)] = (z+k)

(z) , and x(0) ≡ 1, x(1) = x, x(2) = x(x + 1), etc., is
the rising or ascending factorial function or Pochhammer
symbol [27]. While Eq. (10) reproduces Eq. (6b), the former
involves ratios of  functions of negative integers, which in-
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dividually are infinite, but whose ratios are finite. Further, for
a 50:50 BS (θ = π/2) the function 2F1(−mb,−n; 1 + ma −
n; −1) does not have a representation in terms of any simple
known special function [28] whose properties we can exploit,
while g(n,ma+mb−n)

ma
(π/2) ∝ ∑n

q=0

(n
q

)
(−1)q(ma)n−q(mb)q is

precisely the functional (nearly binomial) form from which
the interference effects discussed in this work can be easily
inferred and derived. Therefore, we find Eq. (6b) more intu-
itively appealing and useful due to its hyperbinomial formula
structure.

B. Effects at a 50:50 BS: CNL for n odd, ma = mb = m

An examination of Eq. (6b) reveals that it is invariant, up to
a crucial overall sign (−1)n, under the interchange of ma ↔
mb and θ → π − θ , i.e.,

g(mb, ma, π − θ |n) = (−1)ng(ma, mb, θ |n). (11)

This can be seen by noting that θ → π − θ exchanges
cos(θ/2) ↔ sin(θ/2). When setting ma ↔ mb in Eq. (6b) we
note that we can write the binomial coefficient

(n
q

)
as

( n
n−q

)
.

Defining q′ = n − q or q = n − q′ interchanges the indices
q and n − q to n − q′ and q′, respectively. Finally, the term
(−1)q → (−1)n−q′ = (−1)n(−1)q′

. Therefore, upon factoring
out the term (−1)n we can relabel q′ → q to finally arrive at
Eq. (11).

Thus, for an input state |n, m〉ab and for the case of joint
coincident counts with equal numbers of measured photons in
each output port of a 50:50 BS, i.e., θ = π/2 and ma = mb ≡
m′, Eq. (11) yields

|�in〉ab = |n, m〉ab, 50:50 BS(θ = π/2),

ma = mb ≡ m′

⇒ g(m′, m′, π/2|n) = (−1)ng(m′, m′, π/2|n)
n odd−→ 0

⇒ P(m′, m′, π/2|n)
n odd= 0. (12)

That is, for n odd we have a CNL of contiguous zeros for all
integers m ∈ Z�0 in the b mode. This result depends solely on
the intrinsic properties of the BS in a 50:50 configuration and
is independent of the b-mode input FS state, as long as n is
odd for the a-mode input Fock state.

The above result is evident in Eq. (9a), where for θ = π/2
and n = 1 we have

g(ma, mb, π/2|1) = 1
4 (ma − mb)

ma=mb−→ 0 (13a)

and for n = 3 from Eq. (9c) we have

g(ma, mb, π/2|3) = 1
8 [(ma)3 − 3(ma)2(mb)1

+ 3(ma)1(mb)2 − (mb)3]
ma=mb−→ 0. (13b)

In general, for n odd there are n + 1 even number of terms
in g(ma, mb, π/2|n) with a symmetric binomial coefficient(n

q

)
with alternating signs (−1)q so that the first (n + 1)/2

terms have equal magnitude, but opposite signs of the latter
(n + 1)/2 terms [e.g., for n = 5, the alternating binomial co-
efficients are (1,−5, 10,−10, 5,−1)]. When ma = mb → m
as for a 50:50 BS, these even numbers of terms cancel in pairs
to yield zero.

For n = 1, g(m′, m′, θ |n = 1) = m′ cos(θ )
θ=π/2−→ 0 for a

50:50 BS. A closer examination of Eqs. (6b) and (10) re-
veals the following behavior (obtained by induction) for
g(m′, m′, θ |n) for n odd and even:

g(m′, m′, θ |n = 2n′ + 1) = (m′)n′

23n′−1
cos(θ )polyn′ (m′, θ )

θ=π/2−→ 0 for n = 2n′ + 1 odd, (14a)

g(m′, m′, θ |n = 2n′) = (m′)n′+1

23n′−1
poly′

n′ (m′, θ )
θ=π/2
�= 0 for n = 2n′ even. (14b)

In Eq. (14a) with n′ > 0, polyn′ (m′, θ ) is a polynomial of order
n′ in m and involves cos(k2θ ) terms for k ∈ {1, 2, . . . , n′}
such that polyn′ (m′, θ = π/2) �= 0. The crucial point is that
for n odd, a factor of cos(θ ) can always be factored out of
the full expression for g(m′, m′, θ |n) (see the formal proof in
Appendix B), with cos(θ = π/2) = 0 for a 50:50 BS. For n
even, no such trigonometric term factors out of the full expres-
sion for g(m′, m′, θ |n) in Eq. (14b). In Eq. (14b) poly′

n′ (m, θ )
has the same characteristics (form) as polyn′ (m, θ ) in
Eq. (14a), most importantly that poly′

n′ (m, θ = π/2) �= 0 for
a 50:50 BS.

It should be noted that half the points on the CNL for
the dual FS input |n, m〉(in)

ab have P(m′, m′, π/2|n = odd) = 0
trivially, since if m is even there simply is no output state
|m′, m′〉(out)

ab with an equal number of photons for both the a
and b modes. For example, for input state |1, 2〉(in)

ab , the out-
put state |1, 2〉(out)

ab from a 50:50 BS is spanned by the
basis states {|0, 3〉ab, |1, 2〉ab, |2, 1〉ab, |3, 0〉ab}. Thus, no com-
plete destructive interference is occurring (the HOM effect)

since a diagonal output state is simply not present. How-
ever, if m is also odd, then n + m is even and the output
contains the diagonal state |m′, m′〉ab with m′ = (n + m)/2

whose coefficient is proportional to cos(θ )
θ=π/2−→ 0. This is

the HOM effect, i.e., complete destructive interference for
the amplitude of the diagonal output state of a 50:50 BS.
In a sense, the 50:50 BS acts like a (notch) filter that sin-
gles out FS output pairs |m′, m′〉ab (with n and m both
odd) and tags them with a factor proportional to cos(θ ),
which can then be made zero for a 50:50 BS. For exam-
ple, for input state |1, 3〉(in)

ab the output states are spanned by
{|0, 4〉ab, |1, 3〉ab, |2, 2〉ab, |3, 1〉ab, |4, 0〉ab} and the diagonal
output state |2, 2〉ab has a coefficient proportional to cos(θ )
for a BS of arbitrary reflectivity. Note that the input state
|0, 4〉(in)

ab (as well as input states |2, 2〉(in)
ab and |4, 0〉(in)

ab ) also
contains the diagonal output state |2, 2〉ab. However, because
n (and m) is even in this case one will not be able to factor out
the term cos(θ ) from f n=2,m=2

p=2 (θ ) and hence no HOM effect
occurs.
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Explicitly, for input states |2, m〉 there are no out-
put states of the form |m′, m′〉ab with m odd since that
would imply that m′ = (n + m)/2 would be a half-integer.
For m even we have from Eq. (14b) that P(m′, m′, θ |n =
2) = 1

4 m′[2m′ − 3 + (2m′ − 1) cos(2θ )] for m′ = (n + m)/2.
Thus, input states {|2, 2〉ab, |2, 4〉ab, |2, 6〉ab, . . .} contain out-
put states {|2, 2〉ab, |3, 3〉ab, |4, 4〉ab, . . .}, respectively, but
their coefficients are not proportional to cos(θ ). If we in-
stead consider input states |3, m〉ab, states with m even again
simply do not produce diagonal output states. The remain-
ing input states {|3, 1〉ab, |3, 3〉ab, |3, 5〉ab, . . .} with m odd do
produce diagonal output states {|2, 2〉ab, |3, 3〉ab, |4, 4〉ab, . . .},
respectively. From Eq. (14a) we have P(m′, m′, θ |n = 2) =
1
4 m′(m′ − 1) cos(θ )[2m′ − 7 + (2m′ − 1) cos(2θ )], which is

proportional to cos(θ )
θ=π/2−→ 0 and hence gives rise to the

extended HOM effect for a 50:50 BS. [Note that for input
states |1, m〉ab, we have P(m′, m′, θ |n = 1) = m′ cos(θ ), with
m′ = (1 + m)/2, which again implies that the extended HOM
effect occurs for n = 1 and m odd.]

The main result here is that for the dual FS input states
|n, m〉ab, with both n and m odd, the diagonal of the output
joint probability distribution P(m′ = (n + m)/2, m′, θ |n) ∝
cos2(θ )

θ=π/2−→ 0 for a 50:50 BS, which is an extended form
of the HOM effect. These zeros make up half the points on
the output diagonal CNL.

The above results apply to each two-mode FS basis
input state |n, m〉ab entering the BS. However, since we
can expand any b-mode pure state |ψ〉b = ∑

m dm|m〉b in
terms of basis states {|m〉b}, the above results also apply to
any input state of the form |n〉a|ψ〉b. Therefore, Eq. (12)
has wide-ranging universal implications. For a-mode input
states that contain superpositions of only odd FSs, the
probability P(ma, mb, θ ) will involve the square of a sum
of BSCs g(ma, mb, θ |n → odd), each of which goes to zero
for a 50:50 BS and for ma = mb, regardless of the input
state entering mode b, pure or mixed. This can be seen
from the general formula for the joint photon probability

distribution from Eqs. (8a)–(8e) when n (or n′) is odd
in each BSC f (n,ma+mb−n)

ma
(θ ). Such candidate example

states include (but are not limited to) (|1〉a + |3〉a)/
√

2,
a photon-added single-mode squeezed state (SMSS)
cosh−1(r)a†|ξ 〉a = S(ξ )|1〉a, with a SMSS |ξ 〉a = S(ξ )|0〉a =
e(ξa2†−ξ∗a2 )/2|0〉a = 1√

cosh(r)

∑∞
n=0 einϕ tanhn(r)

√
(2n)!

n!2n |2n〉a,

with ξ = reiϕ [see [25], Eqs. (2.18) and (2.24)], which
contains only odd-number FSs (see [25], Chap. 4.6, pp.
89–90), or equivalently a photon-subtracted single-mode
squeezed state e−iϕ sinh−1(r)a|ξ 〉a = S(ξ )|1〉a, and an odd
cat state

|αc〉a = N−1(|α〉a − | − α〉a) = 2N−1

(
e−|α|2/2

∞∑
n=0

snα
n

√
n!

)
,

with

sn ≡ 1 − (−1)n

2
=

{
0, n even

1, n odd

and normalization factor N = (2 − 2e−2|α|2 )1/2 [see [25],
Chap. 4.1, Eqs. (4.2) and (4.4) with phase choice ϕ = π ]. The
joint photon-number probability P(ma, mb) is plotted below
for the above states in Fig. 4, clearly showing a CNL along
the diagonal ma = mb.

The case of an odd cat state mixed with a CS is a simple
illustrative example of how this CNL occurs for pure states of
odd parity entering mode a and any pure state entering mode b
[Eq. (8d)]. The odd cat state input can be written as |�in〉ab =
|αc〉a|β〉b = 2N−1e−(|α|2+|β|2 )/2 ∑∞

n=0

∑∞
m=0

αnsn√
n!

βm√
m!

|n, m〉ab.
As described previously, the BS transforms the input

pair of dual basis FSs to |n, m〉ab
U (θ )−→ |n, m〉(out)

ab =∑n
p=0 f (n,m)

p (θ )|p, n + m − p〉ab. Inserting this into the
above and projecting onto |ma, mb〉ab for the measurement
of ma photons in mode a and mb photons in mode b (which
produces the δ functions δp,ma and δm,ma+mb−n) and performing
the sum over p and m, we obtain

P(ma, mb, θ ) =
(

2

N

)2

e−(|α|2+|β|2 )

∣∣∣∣∣
∞∑

n=0

αnsn√
n!

βma+mb−n

√
(ma + mb − n)!

f (n,ma+mb−n)
ma

(θ )

∣∣∣∣∣
2

θ=π/2−→
ma=mb

0. (15)

This occurs because the factor of sn from the odd cat
state ensures there are only odd values of n present and

each BSC f (n,ma+mb−n)
ma

∝ g(ma, mb, θ |n → odd)
θ=π/2−→
ma=mb

0, as

discussed above. Note that the amplitudes of the input coher-
ent state for |β〉b just go along for the ride here. Neither was it
crucial what the amplitudes for the input state in mode a were.
What was critical was the fact the one of the input states to the
BS (here the a mode) had only an odd number of FSs, which
then plucked out BSCs f (n,m=ma+mb−n)

p (θ ) ∝ g(ma, mb, θ |n)
with odd n, each of which goes to zero for a 50:50 BS and
for (number-resolved) coincident measurements with equal
numbers of photons in each mode, i.e., ma = mb. That the
CNL for a 50:50 BS with ma = mb measurements is a general

universal result is illustrated in Fig. 4 for the representative
case of a CS of amplitude β = 3 (n̄b = |β|2) in mode b mixed
with various a-mode states containing only odd numbers of
photons, including |3〉a [Fig. 4(a)] (the black solid diagonal
line is the CNL), (|1〉a + |3〉a)/

√
2 [Fig. 4(b)], the photon-

added single-mode squeezed state a†|SMSS〉a [Fig. 4(c)], and
the odd cat state |αc〉a [Fig. 4(d)].

The main results of this section can be summarized as
follows: For the measurement of the joint probability distri-
bution P(m′, m′, π/2|n) with equal numbers of photons in
both output modes of a 50:50 BS we have, for n = 2n′ +
1 odd, P(m′, m′, π/2|2n′ + 1) ∝ g2(m, m, π/2|2n′ + 1) ≡ 0,
regardless of the input state in mode b, pure or mixed, which
we term a (diagonal) central nodal line [see Eq. (14a)], and
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for n = 2n′ even, P(m′, m′, π/2|2n′) ∝ g2(m, m, π/2|2n′) �=
0 [see Eq. (14b)].

IV. PSEUDONODAL CURVES FOR A 50:50
AND A NON-50:50 BS

As we have seen in the preceding section, central nodal
lines exist for a-mode input states containing superpositions
of odd-numbered FSs (or individual n-odd FSs) when detect-
ing ma = mb for a 50:50 BS with θ = π/2. These are the
CNLs in the bottom rows of Fig. 2 for P(ma, mb|n = 1) and
Fig. 3 for P(ma, mb|n = 3) for a FS |n〉a mixed with a CS |β〉b

(left column) and TS ρb (right column).

In addition to the CNLs, we also observe in Figs. 2–4 what
appear to be PNCs [e.g., the black dashed lines in Fig. 4(a)
passing through the blue dots, which have value zero] sym-
metrically placed about the center line (diagonal) ma = mb

[e.g., black solid line in Fig. 4(a)] of the joint output photon-
number distribution for all n > 0, even or odd, when in a 50:50
BS configuration. We now seek to understand and quantify
their origin. Without a loss of generality, we will explore the
case of an initial FS-CS input |�in〉ab = |n〉a|β〉b for n = 2, 3
in Figs. 3(a) and 3(c), respectively, and for n = 3 in Fig. 4(a)
and recall that P(ma, mb, θ ) ∝ [g(ma, mb, θ )]2.

For a dual FS basis input state |n, m〉ab the expressions for
g(ma, mb, θ |n) for n = 2, 3 are given by

g(ma, mb, θ |2) = ma(ma − 1)[cos2(θ/2)]2 − 2mamb[cos2(θ/2)][sin2(θ/2)] + mb(mb − 1)[sin2(θ/2)]2 (16a)

θ→π/2−→ 1
4 [ma(ma − 1) − 2mamb + mb(mb − 1)] (16b)

θ→π/3−→ 1
16 [9ma(ma − 1) − 3mamb + mb(mb − 1)], (16c)

g(ma, mb, θ |3) = ma(ma − 1)(ma − 2)[cos2(θ/2)]3 − 3ma(ma − 1)mb[cos2(θ/2)]2[sin2(θ/2)]

+ 3mamb(mb − 1)[cos2(θ/2)][sin2(θ/2)]2 + mb(mb − 1)(mb − 2)[sin2(θ/2)]3 (16d)

θ→π/2−→ 1
8 [ma(ma − 1)(ma − 2) − 3ma(ma − 1)mb + 3mamb(mb − 1) − mb(mb − 1)(mb − 2)] (16e)

θ→π/3−→ 1
64 [27ma(ma − 1)(ma − 2) − 27ma(ma − 1)mb + 9mamb(mb − 1) − mb(mb − 1)(mb − 2)], (16f)

where we have evaluated the expressions for the two angles
θ = π/2 (50:50 BS) and θ = π/3 (non-50:50 BS).

A. PNCs for a 50:50 BS

A necessary condition for the existence of solutions of
g(ma, mb, θ |n) = 0 for integer values of (ma, mb) is that the
above polynomials in ma and mb have integer coefficients,
which occur when T = cos2(θ/2), and hence R = sin2(θ/2),
is a rational number, i.e., a fraction given by the ratio of
integers. For the cases chosen θ = π/2 (50:50 BS) yields
(cos2(θ/2), sin2(θ/2)) = (1/2, 1/2), and for θ = π/3 (non-
50:50 BS) (cos2(θ/2), sin2(θ/2)) = (3/4, 1/4). Polynomial
equations with integer coefficients and integer solutions are
known as Diophantine polynomials. Isolated zeros of these
equations can be found by a simple brute force search (BFS)
over integer values of (ma, mb). Analytic solutions can be
found by various different methods, one of which is by assum-
ing a parametric form of (ma(k), mb(k)) in terms of another
integer k ∈ Z. For a 50:50 BS (θ = π/2) and low values of n,
we have found that quadratic polynomials in k of the paramet-
ric form ma(k) = a0 + a1k + a2k2 and mb(k) = b0 + b1k +
b2k2, with {a0, a1, a2, b0, b1, b2} ∈ Z again integers, are suffi-
cient to find analytic solutions for the PNCs in the cases of
n = 2 and 3 for a 50:50 BS, i.e., P(ma(k), mb(k), π/2|n =
2, 3) ≡ 0, identically.

In Fig. 5 we plot the case of a 50:50 BS (θ = π/2)
for g(ma, mb, θ = π/2|n = 2) [Fig. 5(a)] and g(ma, mb, θ =
π/2|n = 3) [Fig. 5(b)] with the plot markers indicat-
ing the zeros arising from polynomials (ma(k), mb(k)) (for

ma �= mb), which lie on the solid curves (the PNCs).
An example of such a parametric solutions for n =
2 is (ma(k), mb(k)) = (2k2 − k, 2k2 − 3k + 1), while for

FIG. 5. Plots of zeros of (a) g(ma, mb, θ = π/2|n = 2) and
(b) g(ma, mb, θ = π/2|n = 3) for a 50:50 BS with θ = π/2. Closed
plot markers show upper and lower branch solutions analytically
found by Reduce [29] in Mathematica and open markers show upper
and lower branch solutions found by a BFS over approximately
11.4 × 106 (left) and 9.5 × 108 (right) 6-tuple integer coefficients
(a0, a1, a2, b0, b1, b2) of two quadratic polynomials (in k, an integer)
for (ma = a0 + a1k + a2k2, mb = b0 + b1k + b2k2), which identi-
cally solve g(ma, mb, θ = π/2|n) = 0 analytically (see Tables II
and III in Appendix C). Note that the black dashed line in (a) is the
diagonal drawn for symmetry for n = 2, while the solid black line in
(b) is the CNL for n = 3.
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FIG. 6. Contour plot of the output joint probability
P(ma, mb, θ = π/2) in Fig. 3(a) for input state |2〉a|β〉b with PNCs
(nondiagonal black dashed curves). The blue circles are points for
which g(ma, mb, π/2|n = 3) ≡ 0 through which the PNCs pass. The
green dots are points for which dg(ma, mb, π/2|n = 3)/dma = 0
(extremal values of near, but not complete, destructive interference).
The yellow dot-dashed line is drawn to highlight the diagonal
symmetry.

n = 3 an example is (ma(k), mb(k)) = (6k2 + 7k + 2, 6k2 +
13k + 7) (see Tables II and III, respectively, in Appendix C).
The black dashed central (symmetry) line represents a CNL
solution (ma = mb) only for n = 3. For n = 2 we have drawn
it as a diagonal in order to see the symmetric behavior of the
plotted points. In both cases n = 2, 3, the colored solid lines in
Fig. 5 are the PNCs on which the (isolated, noncontiguous) ze-
ros (indicated by the plot markers) of g(ma, mb, θ = π/2|n =
2, 3) lie that were generated from the quadratic polynomial
solutions (ma(k), mb(k)).

For the case of n = 3 we have overlaid the CNL [black
solid diagonal line of complete destructive interference
g(m′, m′, π/2|n = 3) = 0] and the PNC (black dashed non-
diagonal curve) of Fig. 5(a) onto the contour plot of Fig. 4(a).
The blue dots in the latter plot are the points (ma, mb �= ma)
of complete destructive interference where g(ma, mb, π/2|n =
3) = 0 through which the PNCs (black dashed curves) pass.
Along the PNC, in between the zero values (blue dots),
g(ma, mb, π/2|n = 3) obtains nearly (but not) complete de-
structive interference (fringes), i.e., extremal values. This
statement is most clearly illustrated by explicitly examining
the case of n = 2 for the input state |2〉a|β〉b in Fig. 3(a) as
well as in Fig. 6.

For n = 2 we have g(ma, mb, π/2|n = 2) = 1/4[ma(ma −
1) − 2mamb + mb(mb − 1)] [Eq. (16b)]. Temporarily treat-
ing ma and mb ≡ mb(ma) as continuous variables, let us
formally solve dg(ma, mb, π/2|n = 2)/dma = 0 for dmb

dma
=

2(mb−ma )+1
2(mb−ma )−1 . Solving this ordinary differential equation for

mb(ma) yields m(±)
b = ma + 1±√

1+8ma+k
2 , where k ∈ Z is an

arbitrary integration constant such that for ma ∈ Z�0 we
accept only integer solutions of mb ∈ Z�0. [An obvious
example solution is (ma = 1, k = 0) leading to solutions

(ma = 1, m(+)
b = 3) and (ma = 1, m(−)

b = 0).] These are the
green dots in Fig. 6 [(ma, m(+)

b ) and (ma, m(−)
b ) upper and

lower branches, respectively], the center of which is where
the PNCs lie, as well as the exact zeros (blue dots) of
g(ma, mb, π/2|n = 2). While dg(ma, mb, π/2|n = 2)/dma is
not a proper derivative (since ma and mb are discrete), the
points along which it takes zero values (green dots) are
extremal points of near, but not complete, destructive inter-
ference (fringes), i.e., valleys of the output joint probability
distribution. The valley floor is the PNCs (black dashed lines)
of minimal values, along which are scattered exact zeros
(blue dots) of g(ma, mb, π/2|n = 2) representing nondiago-
nal points of complete destructive interference. Thus, we can
say for PNCs of general n that {(ma, mb)|g(ma, mb, π/2|n) =
0} ⊂ {(ma, mb)|dg(ma, mb, π/2|n)/dma = 0} (i.e., blue dots
⊂ green dots). These PNCs furcate (multiply divide) the out-
put joint probability distribution into peaks and carved out
valleys, as evident in Figs. 2 and 3.

B. PNCs for a non-50:50 BS

The question naturally arises whether such polynomial
solutions (ma(k), mb(k)) also exist for non-50:50 BS angles
θ �= π/2 again with (T = cos2(θ/2), R = sin2(θ/2)) rational
numbers. The primary difference in the form of the Dio-
phantine equations for arbitrary BS angles is now the integer
coefficients are not alternating symmetric [i.e., of the binomial
form

(n
q

)
(−1)q] as in the 50:50 BS case. In Fig. 7(a) we plot

the PNCs for g(ma, mb, θ = π/3|n = 2) for a non-50:50 BS
angle θ = π/3, again with the colored solid lines indicating
the PNCs on which the (isolated, noncontiguous) zeros (in-
dicated by the plot markers) of g(ma, mb, θ = π/3|n = 2) lie
which are generated from the quadratic polynomial solutions
(ma(k), mb(k)). An example of such a parametric solution
for n = 2 is (ma(k), mb(k)) = (12k2 + k, 36k2 − 9k) (see Ta-
ble IV in Appendix C). The (non-CNL) black dashed line
ma = mb is drawn to simply draw attention to the rotation of
the PNC from this diagonal symmetry line from the previous
50:50 BS solution. Figure 7(a) is a contour plot blowup of the
lower (ma, mb) pair region.

Finding analytic solutions for g(ma, mb, θ = π/3|n = 3)
for the same non-50:50 BS angle of θ = π/3 (Fig. 8) has
proven to be problematic. Isolated zeros are easily found by
a BFS double looping over ma, mb ∈ {1, . . . , 104} produc-
ing (ma, mb) ∈ {(1, 0), (1, 1), (1, 11), (2, 0), (3, 1), (11, 55),
(70, 162)}. The candidate solutions (ma, mb) ∈ {(1, 0),
(1, 1), (2, 0)} are trivially nonphysical due to the δ-function
constraint δma+mb,n+m since n + m � 3 for the FS input
state |3〉a. A BFS over quadratic polynomials of the form
ma(k) = a0 + a1k + a2k2 and mb(k) = b0 + b1k + b2k2 with
{a0, a1, a2, b0, b1, b2} ∈ Z with both coefficients ak and bk

in the search range {−10, 50} (i.e., 51.5 × 109 6-tuples)
failed to produce any analytic solutions. Similarly, another
BFS over cubic polynomials for the form ma(k) = a0 +
a1k + a2k2 + a3k3 and mb(k) = b0 + b1k + b2k2 + b3k3

with {a0, a1, a2, a3, b0, b1, b2, b3} ∈ Z with both coefficients
ak and bk in the search range {−10, 10} (i.e., 37.8 × 109

8-tuples) also failed to produce any analytics solutions.
These numerical searches for exact polynomial solutions
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FIG. 7. (a) Plots of zeros of g(ma, mb, θ = π/3|n = 2) for a non-50:50 BS with θ = π/3. Closed plot markers show upper branch solutions
analytically found by Reduce in Mathematica and open markers show the lower branch solutions found by BFS over approximately 9.6 × 108

6-tuple integer coefficients (a0, a1, a2, b0, b1, b2) of two quadratic polynomials (in k, an integer) for (ma = a0 + a1k + a2k2, mb = b0 + b1k +
b2k2) which identically solve g(ma, mb, θ = π/3|n = 2) = 0 analytically. See Table IV of Appendix C. (b) Contour plot blowup of the lower
(ma, mb) pair region for a coherent b-mode input state.

(ma(k), ma(k)) of parametric form in k ∈ Z clearly do not
exclude the possibility for other forms of analytic solutions
[e.g., solutions of cubic equations, if one naively solves
g(ma, mb, π/3|n = 3) = 0 for mb(ma) as a function of ma,
requiring mb ∈ Z�0 [29]].

As a conjectured explanation for the failure to find many
zeros for g(ma, mb, π/3|n = 3) it should be noted that as
we rotate the BS angle from θ = π/2 (50:50) to either
extreme θ = 0 (T = 1) or θ = π (R = 1) the polynomial
g(ma, mb, θ |n) for general θ and n degenerates to either
(ma)n or ±(mb)n respectively, since (cos2(θ/2), sin2(θ/2)) →
{(1, 0), (0, 1)}, respectively, where no PNCs exist. That is, as
we rotate θ any PNCs that lie symmetrically placed about the
CNL (n odd) or diagonal ma = mb (n even) must eventually
vanish. We conjecture that this vanishing of the PNC for
non-50:50 BS angles happens more severely in g(ma, mb, θ |n)
for n � 3.

FIG. 8. Same as Fig. 7(b), except for n = 3, with g(ma, mb, θ =
π/3|n = 3).

V. PROSPECTS FOR EXPERIMENTAL REALIZATION

The potential for experimental realization of the CNLs and
PNCs discussed in this work rests on the ability to perform
photon-number-resolving detection. Most detectors such as
avalanche photodiode detectors are “bucket” detectors, mean-
ing that they record either no signal (in the absence of spurious
dark counts, which are always present, but quantifiable) or
a single “click” from the collection of photons that enter
the detector in the sampling window. Such click–no-click
detectors can be multiplexed to achieve a quasi-photon-
number resolution [23]. However, in those cases the fidelity
of the measured state is always degraded compared to true or
intrinsic photon-number-resolving detection. In many appli-
cations, however, multiplexed click detectors are sufficient to
achieve high-fidelity state characterization [23].

Since 1998, great progress has been made in the de-
velopment of true number-resolving detectors, specifically
superconducting transition edge sensors (TESs). In contrast
to simple click–no-click detectors, the TES output contains
information about the number of photons absorbed. Transition
edge sensors are highly sensitive microcalorimeters that are
used as microbolometers to detect radiation from submillime-
ter wavelengths to γ rays. From the review article by Gerrits
et al. [23], the optical TES is a superconducting sensor mea-
suring the amount of heat absorbed from an optical photon
with energy on the order of 1 eV. When an optical photon is
absorbed by the sensor, the associated photon energy is trans-
formed into a measurable temperature change of the sensor.
Typical TESs operate at temperatures below 1 K. Transition
edge sensors typically resolve photons over a range from 1
to 10 or 20, depending on the wavelength, heat capacity of
the device, and steepness of the superconducting resistance
transition.

Germane to our consideration, Gerrits et al. [23] have
measured a coherent state with mean photon number |β|2 ≈ 5
using an optimum filter analysis to determine the pulse-height
histogram. Well-defined nonoverlapping peaks for zero to four
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photons are clearly discernible [see Fig. 2.8(c) of [23]]. Re-
cently, Schmidt et al. [24], using quantum-dot-based photon
sources emitting at 932 nm (1.33 eV), have reported that
adjacent photon-number states up to 25 photons can be dis-
criminated with the TES detectors with efficiencies exceeding
87% using principal component (PC) analysis (see Fig. 3
of [24]). In the optical regime an exemplary analog signal out-
put of zero to six photons can be clearly distinguished by pulse
heights at a wavelength of 653 nm (1.9 eV) (see Fig. 1, bottom
and middle, of [24]). In these experiments each photon state
in the photon-number distributions obtained from the pulse
area and the PC analyses is fitted with a Gaussian function.
The corresponding full width at half maximum is interpreted
as the energy resolution �EFWHM of the TES detectors.

Thus, the prospect to observe the predicted CNLs and
PNCs by plotting as a histogram the photon-number-resolved
output of the BS in the range (ma, mb) ∈ {0, 1, 2, 3, 4, 5}
seems very promising. This of course assumes that one can
prepare a-mode input states with only odd numbers of photons
(odd-parity state), such as odd-numbered FSs, photon-added
or photon-subtracted single-mode squeezed states, or, e.g.,
an odd (coherent-state-based) cat state. The most promising
of these prospects that appears most readily achievable with
today’s current technology is an input state consisting of a
single-photon FS |1〉a in the a mode (obtained by heralding on
either the signal or idler component of a biphoton two-mode
squeezed state), mixed with either a weak CS or possibly
a weak TS [see Figs. 2(c) and 2(d)] with a midrange mean
photon number around n̄ ≈ 3.

Realistic experiments will always involve the use of im-
perfect detectors. The inclusion of loss is easily performed by
averaging the joint photon-number distribution P(ma, mb, θ )
over a Bernoulli distribution with a Beer’s law loss parameter
(detector efficiency, probability) given by 0 � η = e−2γ L �
1, as discussed by LBK [21] and more recently by Laiho
et al. [22]. The basic idea is that if ma photons are detected
in the a-mode output of the BS, it could have resulted from a
total of Ma � ma photons, all of which (except for ma) were
lost, and hence not registered by the detector. The same is
true for the detection of mb photons in the b-mode output of
the BS.

Let us define the a-mode projection operator

�a =
∞∑

Ma�ma

(
Ma

ma

)
ηma (1 − η)(Ma−ma )|Ma〉〈Ma| (17)

and an analogous expression for �b. The Bernoulli factor in
the summation is the probability for ma a-mode photons to
traverse the BS with detection probability η per photon, with
the remaining Ma − ma suffering loss (nondetection) with
probability 1 − η. These latter Ma − ma “lost” photons can be
considered as having been “reflected” into a scattering mode
with probability R = 1 − η, which is then not observed [e.g.,
via an additional virtual BS with transmissivity T = η and
R = 1 − η (see Ref. [30] and Appendix C of [31])]. Note that
as the detector efficiency goes to unity η → 1, implying no
loss, the factor (1 − η)(Ma−ma ) is nonzero only when Ma = ma

and the projection operator collapses to �a
η→1−→ |ma〉a〈ma|.

The output joint probability distribution
P̃(ma, mb, θ ; ηa, ηb) of the BS, with efficiencies ηa and

ηb in modes a and b, respectively, is now given by

P̃(ma, mb, θ ; ηa, ηb) = Trab
[
�a ⊗ �bρ

(out)
ab

]
=

∞∑
Ma�ma

∞∑
Mb�mb

ηma
a (1 − ηa)(Ma−ma )

×η
mb
b (1 − ηb)(Mb−mb)P(Ma, Mb, θ ).

(18)

In Fig. 9 we plot the output joint probability distribution
P(ma, mb, π/2|n = 1) for a FS-CS input |�in〉ab = |1〉a|β〉b

for an ideal lossless 50:50 BS with mean number of photons
n̄b = |β|2 in the b mode. Figure 9(a) is for n̄b = 1, while
Fig. 9(b) is for n̄b = 3. The probability distribution matrix is
plotted directly below in the second row for the corresponding
plot immediately above, with rows ma and columns mb labeled
by the indices (ma, mb) ∈ {0, 1, 2, 3, 4, 5}. Due to the small
average photon numbers used in the a- and b-mode input
states, dictated by the discriminating capability of current
(e.g., TES) photon-number-resolving detectors, by the time
we get to ma, mb = 3 we must be able to distinguish a nonzero
probability for joint photon detection from zero probability
to roughly 1%. While challenging, such measurements are
nonetheless within the realm of possibility with today’s cur-
rent technology.

In Fig. 10 we show the same plot as in Fig. 9 but now with
the inclusion of loss, with ηa = ηb = η = 0.95 (5% loss) in
Eq. (18). The diagonal CNL is no longer exactly zero due
to the presence of a small amount of loss, but there is still a
discernible nearly central nodal line that furcates the output
joint probability distribution. It should be noted that losses
in a quantum integrated waveguide-coupler BS can be as low
as 1%.

To see the effect of loss on the nondiagonal PNC, we
plot in Fig. 11 the output joint probability distribution
P(ma, mb, π/2|n) for n = 2 [Figs. 11(a) and 11(c)] and
n = 3 [Figs. 11(b) and 11(d)] with inclusion of loss ηa =
ηb = η = {1.0, 0.95} ↔ {0%, 5%} [Figs. 11(a) and 11(b) and
Figs. 11(c) and 11(d), respectively] for a FS-CS input
|�in〉ab = |n = 2, 3〉a|β = √

3〉b for a 50:50 BS with mean
number of photons in the b mode n̄b = |β|2 = 3. While
the degradation of the CNL for n = 3 is clearly discernible
[Figs. 11(b) and 11(d)] with the inclusion of a small amount of
loss, one can also observe the increase in the “valley floor” for
the PNC, for both n = 2 and n = 3, illustrated in Figs. 11(c)
and 11(d) with 5% loss (η = 0.95), over that of the ideal
BS (no loss η = 1.0) in Figs. 11(a) and 11(b). These results
indicate that experimental observation of the CNL and PNC
in the presence of a small amount of noise is within the realm
of possibility, modulo the difficulty or complexity of creating
an a-mode input FS (especially for n > 1).

The difficulty in observing the PNC for the |2〉a|β〉b FS-CS
input in Figs. 11(a) and 11(c) is of course the preparation of
the n = 2 a-mode FS. One possibility is to first use another
canonical HOM setup with a single photon in each of the
input ports (a′ and b′) of a 50:50 BS [generated from two mul-
tiplexed spontaneous parametric down-conversion (SPDC)
sources, each of which heralds on its own idler], in order to
create two separate signal photons|1, 1〉a′b′ . When these two
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FIG. 9. Output joint probability distribution P(ma, mb, π/2|n = 1) for a FS-CS input |�in〉ab = |1〉a|β〉b for a 50:50 BS with the mean
number of photons in the b mode n̄b = |β|2: (a) n̄b = 1 and (b) n̄b = 3. (c) and (d) Probability matrix P(ma, mb, π/2|n = 1) for the plot in
(a) and (b), respectively, with rows ma and columns mb labeled by the indices (ma, mb) ∈ {0, 1, 2, 3, 4, 5}.

photons enter a 50:50 BS, the output amplitude for the state
|1, 1〉a′,b′ will suffer complete destructive interference, leading
to the output state |1, 1〉(out)

a′b′ = (|2, 0〉a′b′ + |0, 2〉a′b′ )/
√

2 from
Eq. (2). If one then heralds on a null measurement [7,32] in the
a′-mode output, then two photons must emerge in the b′-mode
output (and vice versa), which can subsequently be used as the
a-mode n = 2 FS input state |2〉a|β〉b for Figs. 11(a) and 11(c).
This null measurement occurs with probability 1/2, if the time
delay between the two a′ and b′ input photons arriving at the
first BS is zero.

The advantage of the above measurement scheme is that
is does not require the use of number-resolving photon
detection. However, if one does have access to number-
resolving photon detection (e.g., a TES discussed above), then
a straightforward scheme to generate a two- or three-photon
FS is to simply herald one arm of a (biphoton) two-

mode squeezed state (TMSS) |ξ 〉a′b′ = ∑∞
n=0

√
p(ξ )

n |n, n〉a′,b′ ,
where p(ξ )

n = tanh2n(r)/cosh2(r) with squeezing parameter
r > 0. The amount of squeezing (in decibels) is given
by 10 log10[(�X )2/(1/4)] = 10 log10[e−2r] [25,26,33], where
(�X )2 is the variance of the quadrature that undergoes
squeezing and 1/4 (in these units) is the variance of the vac-
uum state. Typical values of r for strongly squeezed sources
are in the range of r ≈ 1.4–1.6, leading to −12.2 to −13.9 dB
of squeezing (for comparison, −3 dB of squeezing corre-
sponds to r = 0.35).

We are now interested in the probability to detect the
a′-mode FS state |n〉a′ from the TMSS source |ξ 〉a′b′ with
a number-resolving photon detector with efficiency (detec-
tion probability) η. Following Motes et al. [34] and Nunn
et al. [32], the conditional probability PD(t |n′) to detect
t photons given that n′ � t were actually present is given

FIG. 10. Same as Fig. 9 but with the inclusion of loss: ηa = ηb = η = 0.95 (5% loss) in Eq. (18).
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FIG. 11. Output joint probability distribution P(ma, mb, π/2|n) for (a) and (c) n = 2 and (b) and (d) n = 3, with inclusion of loss [detector
efficiencies ηa = ηb = η in Eq. (18)] for a FS-CS input |�in〉ab = |n〉a|β = √

3〉b for a 50:50 BS with mean number of photons in the b mode
n̄b = |β|2 = 3: (a) and (b) η = 1.0, lossless, and (c) and (d) η = 0.95, 5% loss.

by PD(t |n′) = (n′
t

)
ηt (1 − η)n′−t , which is again the same

Bernoulli factor arising from the “fictitious BS” that was used
in Eq. (17) to model loss. Therefore, the total probability of
detecting t photons in the heralding arm of a single TMSS
source is given [34] by

PSPDC
D (t ) =

∞∑
n′=t

PD(t |n′)p(ξ )
n′ =

∞∑
n′=t

(
n′

t

)
ηt (1 − η)n′−t p(ξ )

n′ ,

(19)

which is the single-mode version of Eq. (18). For example,
PSPDC

D (2) is the probability to detect two photons in the herald-
ing arm of the TMSS source when n′ are present, but n′ − 2
have been lost (unregistered by the detector) and then summed
over all possible values of n′ � 2.

Ultimately, we are interested in the inverse conditional
probability P|n〉a′ (n′|t ) that given t photons were detected in
the heralding arm (mode a′), these detections actually arose
from the input state |n′〉a′ , implying that the output state in the
heralded arm is |n′〉b′ . From the Bayes rule we have

P|n′〉a′ (n
′|t ) = PD(t |n′)p(ξ )

n′

PD(t )
= PD(t |n′)p(ξ )

n′∑∞
n′′=t PD(t |n′′)p(ξ )

n′′
, (20)

where the numerator (denominator) in Eq. (20) is the sum-
mand (entire sum) in Eq. (19). In Fig. 12 we plot P(n|n) ≡
P|n〉a′ (n|t = n) as a function of detector efficiency η for n ∈
{1, 2, 3}.

As expected, P(n|n) monotonically increases with η such
that at perfect detection efficiency η = 1 for the number-
resolving detector, it is certain that the n photons detected

FIG. 12. Conditional probability P(n|n) ≡ P|n〉a′ (n|t = n) as a
function of detector efficiency η for n ∈ {1, 2, 3} that, given n pho-
tons were detected in the heralding arm (mode a′) of the TMSS
source, it arose from the state |n〉a′ .
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arose from the input state |n〉a′ . As discussed above, state-
of-the-art number-resolving TESs have efficiencies exceeding
87% [24]. This implies a probability of P(2|2) = 0.71 to
detect the FS state |2〉a′ from a strong TMSS source (r =
1.5 ↔ −13 dB of squeezing) at η = 0.87, resulting in the
output state |2〉b′ → |2〉a that can subsequently be mixed
with the CS |β〉b to observe the CNLs and PNCs described
above. For |3〉b′ → |3〉a the probability drops to P(3|3) =
0.63 for the same values of r and η. Bright SPDC sources
in combination with photon-number-resolving detectors have
been used recently to experimentally realize multiphoton sub-
tracted TMSSs by Magaña-Loaiza et al. (see Fig. 2 of [6]) up
to ten photons, based on theoretical proposals of Carranza and
Gerry [5].

Since the extended HOM effects discussed in this work,
CNLs and PNCs, depend on the properties of the beam-splitter
coefficients for nonclassical FS input states, it is natural to
inquire if such analogous effects are also present for a collec-
tion of atoms. The answer is affirmative, and this analogy is
discussed in Appendix D through the use of the Schwinger
representation of su(2) and the formal correspondence be-
tween a pair of dual-mode Fock basis states |n, m〉ab with
angular momentum states |J, M〉 often used to describe a
collection of atoms.

VI. CONCLUSION

In this work we have shown that the parity of a nonclassical
state of light has a dominant influence on the interference
effects at a beam splitter, irrespective of the state it is mixed
with at the other input port. The parity of the nonclassical in-
put carves deep valleys in the output joint number distribution.
A limiting case of our analysis is the Hong-Ou-Mandel effect,
but we found dramatic additional richness in the interferences
beyond this. This counterintuitive influence of even a single
photon to control the output of a beam splitter illuminated
by any field, e.g., coherent or even a noisy thermal field,
demonstrates the extraordinary power of nonclassicality. We
explained the origin of these effects and explored prospects
for observing them with currently available number-resolving
detectors.

The extension of the HOM effect arises from the inherent
filtering property of a 50:50 BS when acting on nonclassical
states. We have shown that if the a mode of the BS contains
only odd numbers of photons (an odd-parity state), a central
nodal line exists for the output joint probability distribution
P(ma, mb, θ = π/2) for measuring ma photons in the a mode
and mb photons in the b mode, independently of the input
state in the b mode, pure or mixed. In the simplest case of
a single-photon FS-FS input state |1, 1〉ab, this result reduces
to the well-known Hong-Ou-Mandel effect for the destructive
interference of the quantum amplitude for the output |1, 1〉ab

state of a 50:50 BS. We have shown that this CNL results from
the intrinsic property of the BS itself acting on nonclassical
Fock states of odd number. This produces zeros in the angu-
lar portion of the beam-splitter coefficients which dictate the
mixing of the nonclassical basis photon-pair FS |n, m〉ab (for
which arbitrary a- and b-mode input states can be expanded)
such that ma + mb = n + m.

We have further shown that for a 50:50 BS there always
exists off-diagonal pseudonodal curves upon which numerous
sets of noncontiguous zeros lie, which carve out valleys (lo-
cal minima) in the output photon-number distribution. These
PNCs lie symmetrically placed about the diagonal symmetry
line ma = mb of the output joint photon-number distribution
and exist for any input FS |n > 0〉a entering the a mode, with
n even or odd. For the case of a FS-CS input |n〉a|β〉b we
have provided explicit analytic solutions in parametric form
(ma(k), mb(k)) in terms of another integer k ∈ Z. That the
results presented in this work are universal has been explicitly
demonstrated for various combinations of odd-parity input
states containing odd numbers of photons entering the a mode
mixed with arbitrary states entering the b mode. In addition,
we have explored the existence of the PNC for a BS of arbi-
trary reflectivity, in particular θ = π/3, and shown that they
must disappear as one approaches the extreme limits of 0 or
100% BS transmittance.

With today’s state-of-the-art photon-number-resolving de-
tectors (TESs) using principal component analysis to plot as
a histogram the energy bins for a low number of photons (up
to roughly 5 reliably, possibly 10–20 in some special cases,
with high detection efficiencies), experiments to verify the
predicted CNLs and PNCs should be experimentally feasible,
even in the presence of a small amount of noise.

There is another feature of the output state joint photon-
number distribution that was first highlighted in BMG’s
paper [15] (where the CNL was noted and briefly discussed)
having to do with the relative heights of the constructive in-
terference fringes appearing when mixing coherent light with
increasing numbers of n photons. As evident from Figs. 2
and 3, increasing the number of photons in the Fock state
initially occupying the a mode tends to push the peaks to-
wards the two axes, creating a U-shaped distribution along
the antidiagonal that becomes more pronounced as n is taken
to be larger. This is similar to the familiar distribution one
gets when mixing twin Fock states at a balanced beam splitter
to produce the arc sine states [35,36]. Such a distribution,
owing to its similarity to the well-known N00N state [37],
has been known to be conducive to enhanced phase sensi-
tivity beyond the standard quantum limit in interferometric
measurements [38]. Further investigation of the structure of
this antidiagonal U-shaped distribution in light of the extended
HOM effect is left for future work.

As a potential application, the results obtained in this work
can be used in quantum key distribution protocols. If Al-
ice and Bob decide to exchange qubits using nonorthogonal
quantum states with different parity (i.e., odd or even photon
number), the ability to produce a joint photon distribution us-
ing number-resolving detectors can help detect the presence of
an eavesdropper. In principle, when using multiphoton states,
an eavesdropper can gain sufficient information by carrying
out a photon-number-splitting attack through quantum nonde-
molition measurements. Eve separates the photons using an
adjustable beam splitter, thereby sending a portion of the pho-
tons to Bob and storing the rest with her. However, because
Bob only detects Eve by examining the detection rate, Eve’s
presence can go unnoticed unless he uses methods such as a
decoy state technique to overcome a photon-number-splitting
attack. However, investigating the photon statistics on his end
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can be used to reveal the presence of Eve. Suppose Alice and
Bob agree ahead of time that when they are ready to check for
the presence of Eve, Alice will send a state of n photons. As
described, the joint photon distribution will exhibit n PNCs
if n is even and n − 1 PNCs plus one CNL if n is odd. If Eve
collects some of the photons transmitted to Bob, the number of
PNCs or PNCs and CNLs will change, revealing the presence
of the eavesdropper. If Eve tries to detect photons and then
transmit a copy, she will send an incorrect number of photons
unless she has a perfect detector. This method requires that the
same state must be transmitted enough times to build up the
joint photon-number distribution.

Through the past three decades many researchers have
hinted at the existence of features analogous to the CNL for
special specific input state cases (typically involving a single
photon in the a mode and some interesting state in the b
mode). However, very little, if any, attention has been paid
to the existence and origin of the PNC. This work represents a
comprehensive amalgamation of such past observations, plus
a systematic explanation for their occurrence, as an intrinsic
property of the 50:50 BS itself acting on nonclassical states.
Our results reduce to the well-known HOM effect in the limit-
ing case of two single-photon inputs to the BS, and hence can
be rightfully deemed a general extension of the HOM effect.
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APPENDIX A: ACTION OF THE BS ON |n, m〉ab

We need to know how an ideal lossless BS acts on an ar-
bitrary two-mode FS input basis state |n, m〉ab presented at its
two input ports. Let us define the BS transformation (Hamil-
tonian) on two modes a and b as B = (θ/2)(ab† + a†b).
Here T ≡ cos2(θ/2) is the BS transmissivity and R = (1 −
T ) = sin2(θ/2) is the BS reflectivity such that R + T = 1, as
shown in Fig. 13. [Note that we call the quantities sin(θ/2)
and cos(θ/2) reflection and transmission coefficients, respec-
tively.] The factor of 1/2 in the argument θ/2 is introduced so
that θ = π/2 represents a 50:50 BS.

1. Conventions and operator transformations

The action of the BS on an arbitrary Fock pair basis
state |n〉a|m〉b ≡ (a† )n√

n!
(b† )m√

m!
|0〉a|0〉b is straightforwardly com-

puted (see Chap. 5 of [25]) by applying the BS transformation

FIG. 13. Two optical modes a and b mixing on a BS of transmis-
sivity T = cos2(θ/2). Here the bottom of the BS imparts a π phase
shift of −1 upon reflection

to the last expression and expanding terms using the binomial
theorem (since a† and b† commute).

Here we take the fundamental transformation of the anni-
hilation operators by the unitary U (θ ) ≡ UBS(θ ) to be

aout =
[

aout

bout

]
= U (θ )

[
ain

bin

]
U †(θ )

=
[

cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

][
ain

bin

]
≡ ST

BS(θ )�ain, (A1)

where we have defined the matrix ST
BS(θ ) by the 2 × 2 rotation

matrix in Eq. (A1).
Note that if we write the BS transformation SBS of the out

operators in terms of the in operators as �a†
out = ST

BS�a†
in, then

to transform an input state such as |1〉a|0〉b = a†
in|0〉a|0〉b, we

need to write the in operators in terms of the out operators
using the transpose transformation SBS as �a†

in = SBS�a†
out [39]

via

�a†
in =

[
a†

in

b†
in

]
=

[
cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

][
a†

out

b†
out

]
≡ SBS�a†

out

(A2)

⇒ U (θ )�a†
inU

†(θ ) = SBS�a†
out. (A3)

We can now drop all the in and out labels and just remember to
use the transformation SBS when applying the BS transforma-
tion to creation operators when transforming from input states
to output states, i.e.,

|ψin〉ab ≡ f (�a†)|0〉a|0〉b for some function f of �a† =
[

a†

b†

]
(A4a)

⇒ |ψout〉ab = U (θ )|ψin〉ab (A4b)

= U (θ ) f (�a†)U †(θ )U (θ )|0〉a|0〉b

= f (SBS�a†)|0〉a|0〉b using �a† U (θ )−→ SBS�a†, (A4c)

SBS =
[

cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

]
. (A4d)
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Equations (A4a), (A4b), and (A4d) are the primary BS oper-
ator transformation equations that we will employ throughout
this work.

2. BS transformation of the state |n, m〉ab and examples

We are now interested in the BS transformed output state
|n, m〉(out)

ab = U (θ )|n, m〉ab when n photons are present at input
mode a and m photons are present at input mode b. The
derivation is easily carried out (see [25] and Sec. VI) with
the results given below using SBS to transform an input state
|n〉a|m〉b to an output state, yielding

|n, m〉ab → |n, m〉(out)
ab ≡

n+m∑
p=0

f (n,m)
p |p〉a|n + m − p〉b,

(A5a)

f (n,m)
p =

n∑
q=0

m∑
q′=0

δp,q+q′

(
n

q

)(
m

q′

)√
p!(n + m − p)!

n!m!

× (−1)q′
[cos(θ/2)]m+q−q′

[sin(θ/2)]n−q+q′

(A5b)

[40]. Note that the δ function δp,q+q′ ensures that the BS
mixes the original input state |n〉a|m〉b only among the
n + m + 1 states of total photon number n + m of the form
{|0〉a|n + m〉b, |1〉a|n + m − 1〉b, . . . , |n〉a|m〉b, . . . , |n + m −
1〉a|1〉b, |n + m〉a|0〉b}. The (real) BS coefficients f (n,m)

p are
easily worked out by hand by considering states |n〉a|m〉b

up to n + m = 2 at the input ports of BS, as shown in
Table I.

TABLE I. Beam-splitter coefficients f (n,m)
p (θ ) for fixed input

numbers of photons: (a) n + m = 1 and (b) n + m = 2.

(a)

�����p
f

f (0,1)
p (θ ) f (1,0)

p (θ )

0 cos(θ/2) sin(θ/2)
1 − sin(θ/2) cos(θ/2)

(b)

�����p
f

f (0,2)
p (θ ) f (1,1)

p (θ ) f (2,0)
p (θ )

0 cos2(θ/2) 1√
2

sin(θ ) sin2(θ/2)
1 − 1√

2
sin(θ ) cos(θ ) 1√

2
sin(θ )

2 sin2(θ/2) − 1√
2

sin(θ ) cos2(θ/2)

Note that for each (n, m) we have
∑n+m

p=0 | f (n,m)
p |2 = 1,

which just indicates that the BS transformation is unitary.
Note that the f (n,m)

p (θ ) are just the Wigner rotation coefficients
for the representation of a system with spin J = (n + m)/2
in the angular momentum basis |J, M〉 with 2J + 1 = n +
m + 1 states M ∈ {−J,−J + 1, . . . , J}, where M(p) = −J +
p(2J )/(n + m) for p ∈ {0, . . . , n + m} (see also Appendixes
A and B of [13]).

3. Derivation of the BS coefficients f (n,m)
p (θ) [Eq. (A5b)] and

their hyperbinomial form

The derivation of the BS coefficients f (n,m)
p (θ ) in Eq. (A5b)

is a straightforward exercise (see [25], Chap. 5). Consider the
dual Fock input state |n〉a|m〉b entering the BS. Using the BS
transformation rules and the binomial expansion, we have

|n〉a|m〉b = (a†)n

√
n!

(b†)m

√
m!

|0, 0〉ab
U (θ )−→ [a† cos(θ ) + b† sin(θ )]n

√
n!

[b† cos(θ ) − a† sin(θ )]m

√
m!

|0, 0〉ab

= 1√
n!m!

n∑
q=0

(
n

q

)
[cos(θ/2)a†]q[sin(θ/2)b†]n−q

m∑
q′=0

(
m

q′

)
[cos(θ/2)b†]m−q′

[− sin(θ/2)a†]q′ |0, 0〉ab,

≡
n+m∑
p=0

f (n,m)
p |p〉a|n + m − p〉b, (A6a)

where we define

f (n,m)
p (θ ) ≡

n∑
q=0

m∑
q′=0

δp,q+q′

(
n

q

)(
m

q′

)√
p!(n + m − p)!

n!m!
(−1)q′

[cos(θ/2)]m+(q−q′ )[sin(θ/2)]n−(q−q′ ) (A6b)

=
√

p!(n + m − p)!

n!m!
[cos(θ/2)]m−p[sin(θ/2)]n+p(−1)p

n∑
q=0

(
n

q

)(
m

p − q

)( −1

tan2(θ/2)

)q

. (A6c)

Note that in Eq. (A6a) we have introduced the new sum-
mation variable p ∈ {0, n + m} and the boundary condition
that p ≡ q + q′ by including

∑n+m
p=0 δp,q+q′ to ensure that the

FSs |p〉a and |n + m − p〉b stay in bounds. In Eq. (A6c) we
have performed the sum over q′, yielding q′ = p − q [and
noting that if the q index goes out of bounds we obtain 0
from the binomial coefficients, i.e.,

( m
p−q

) = 0 for p − q < 0,

since 1/(−k)! = 0 for integer k ∈ Z�0], and then pull out all
non-q-dependent terms from the sum over q.

We now put Eq. (A6c) in one last final hyperbinomial
form, which will be beneficial when we compute probabil-
ities of ma and mb photons in modes a and b, respectively.
Let us consider the binomial term

( m
p−q

) = m!
(p−q)!(m−p+q)! ≡
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m!
(p−q)![(m+n−p)−(n−q)]! in the summation in Eq. (A6c). Now

using the definition of the falling factorial (x)k = x!
(x−k)! , we

can replace the factorial terms in the denominator using
1

(x−k)! = (x)k

x! so that
( m

p−q

) = m!(p)q (m+n−p)n−q

p!(m+n−p)! . In anticipation
of measurement results to come, we also write m! ≡ [(m +

n) − n]! = (m+n)!
(m+n)n

. This yields the final desired form
( m

p−q

) =(m+n
p

) (p)q (m+n−p)n−q

(m+n)n
. Finally, by multiplying the summand by

1 = tan2n(θ/2)
tan2n(θ/2) and pulling out all non-q terms from the summa-

tion, we can write Eq. (A6c) finally as

f (n,m)
p (θ ) = (−1)p+n

√
n!(m + n)n

√(
m + n

p

)
[cos(θ/2)]m−p[sin(θ/2)]p−ng(n,m)

p (θ ), (A7a)

g(n,m)
p (θ ) ≡

n∑
q=0

(
n

q

)
(−1)q(p)n−q[cos2(θ/2)]n−q(m + n − p)q[sin2(θ/2)]q. (A7b)

We see that the zeros of f (n,m)
p (θ ) are governed by the summation over the q term g(n,m)

p (θ ) in Eq. (A7a).

Since the state exiting the BS with a dual FS input |n, m〉ab is given by |n, m〉(out)
ab = ∑n+m

p=0 f (n,m)
p |p〉a|n + m − p〉b, the

amplitude to be in the output state |ma, mb〉ab is given by ab〈ma, mb|n, m〉(out)
ab = f (n,m)

p (θ )δp,maδm,ma+mb−n. Note that the particular
form of Eq. (A7b) was chosen in anticipation of the above δ functions which set p → ma and m + n − p → (ma + mb −
n) + n − ma) = mb. It is therefore useful to rewrite Eqs. (A7a) and (A7b) one final time in terms of the measured number
of photons (ma, mb) at the output ports of the BS since the joint photon-number probability P(ma, mb, θ ) is proportional to
[g(n,m=ma,mb)

p=ma
(θ )]2 ≡ [g(ma, mb, θ |n)]2. From Eqs. (A7a) and (A7b) we write the beam-splitter coefficient after measurement as

f (n,m=ma+mb−n)
p=ma

(θ ) = (−1)ma+n

√
n!(ma + mb)n

√(
ma + mb

ma

)
[cos(θ/2)]mb−n[sin(θ/2)]ma−ng(n,ma+mb−n)

p=ma
(θ ), (A8a)

g(n,m=ma,mb)
p=ma

(θ ) =
n∑

q=0

(
n

q

)
(−1)q(ma)n−q[cos2(θ/2)]n−q(mb)q[sin2(θ/2)]q ≡ g(ma, mb, θ |n) (A8b)

≡ (ma)n[cos2(θ/2)]n
2F1( − mb,−n; ma + 1 − n; − tan2(θ/2)). (A8c)

Equations (A8a) and (A8b) are the primary equations from
which we deduce the main results of this work. Note that
Eq. (A8c) defines the formal sum of Eq. (A8b) in terms of the
hypergeometric function 2F1(a, b; c; z) with a and b negative
integers, which is well defined (see [28]) but nonetheless not
representable in any form of special function whose properties
can be readily exploited, even at the 50:50 BS angle θ = π/2.
However, in practice we find Eq. (A8b) more useful and more
intuitively appealing for deriving the results in this paper.
The crucial property of Eq. (A8b) is that one can always
factor cos(θ ) when n is odd. This nontrivial (and heretofore
overlooked) property is not readily apparent from Eq. (A8c)
and properties of the hypergeometric function 2F1, since the

latter involves factors of cos2(θ/2) and tan2(θ/2) vs cos(θ ) =
cos2(θ/2) − sin2(θ/2). Note that if n is odd, Eq. (A8b) con-
tains an even number of terms, while if n is even the sum
contains an odd number of terms. It is the particular nearly
binomial form of Eq. (A8b), with even and odd numbers of
terms, that has allowed us to deduce properties of FSs and
hence superposition of FSs entering the ports of the BS.

APPENDIX B: PROOF OF Eq. (14a)

In this Appendix we prove that we can always factor out
cos(θ ) from g(ma, mb, θ |n) when n is odd, which is the origin
of the CNL in the extended HOM effect. From Eq. (A8b) we
have

g(ma, mb, θ |n) =
n∑

q=0

(
n

q

)
(−1)q(ma)n−q[cos2(θ/2)]n−q(mb)q[sin2(θ/2)]q (B1a)

ma=mb=m′�⇒ g(m′, m′, θ |n) =
n∑

q=0

(
n

q

)
(−1)q(m′)n−q(m′)q[cos2(θ/2)]n−q[sin2(θ/2)]q (B1b)

≡
n∑

q=0

(
n

q

)
(−1)q(m′)n−q(m′)qxn−qyq, (B1c)

where for convenience we have defined x = cos2(θ/2) and y = sin2(θ/2). The goal is to show that for n odd, one can always

factor out x − y = cos2(θ/2) − sin2(θ/2) = cos(θ )
θ=π/2−→ 0 for a 50:50 BS [since the CNL is then given by P(m′, m′, θ |n) ∝

g2(m′, m′, θ |n)
θ=π/2−→ 0].
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For n odd, there is an even number of terms in Eq. (B1c), the first (n − 1)/2 of which have the same magnitude but opposite
sign of the latter (n − 1)/2 terms. This allows us to write

g(m′, m′, θ |n) =
(n−1)/2∑

q=0

(
n

q

)
(−1)q(m′)n−q(m′)q[xn−qyq − xqyn−q] (B2a)

≡ (x − y)
(n−1)/2∑

q=0

(
n

q

)
(−1)q(m′)n−q(m′)qxqyq

[
n−2q∑
k=1

x(n−2q)−kyk−1

]
, (B2b)

which is the proof of the main assertion. In moving from
Eq. (B2a) to Eq. (B2b) we have used the algebraic identities
that for fixed q ∈ {0, 1, . . . , (n − 1)/2} with n odd and for any
integer r we have

xn−qyq − xqyn−q = xqyq(xn−2q − yn−2q )

= xqyq(x − y)
n−2q∑
k=1

x(n−2q)−kyk−1, (B3a)

xr − yr = (x − y)
r∑

k=1

xr−kyk−1. (B3b)

Equation (B3b) follows simply by expanding the terms on
the right-hand side and seeing that all terms cancel in pairs,
except for the first and last unpaired terms xr and −yr . The
first identity (B3a) is best illustrated by explicitly checking its
validity on small values of n and then proving by induction.
For example, using n = 5, Eq. (B3a) yields

xn−qyq − xqyn−q → n = 5, q ∈ {0, 1, 2}, (B4a)

x5 − y5 = x0y0(x5 − y5) (for q = 0) (B4b)

= (x − y)(x4 + x3y + x2y2 + xy3 + y4),

x4y − xy4 = x1y1(x3 − y3) (for q = 1) (B4c)

= xy(x − y)(x2 + xy + y2),

x3y2 − x2y3 = x2y2(x1 − y1) (for q = 2), (B4d)

where we have made repeated use of Eq. (B3b). Thus, for each
summand labeled by q above, one is able to factor out the term
(x − y). The general proof then follows by induction.

APPENDIX C: ANALYTIC POLYNOMIALS ma(k) AND
mb(k) FOR PNC IN FIGS. 5 AND 7

In this Appendix we provide Tables II–IV, which list
analytic results for zeros indicating complete destructive in-
terference in the case of a non-50:50 beam splitter.

TABLE II. Polynomials (ma(k), mb(k)) (with mb � ma) that
identically solve g(ma, mb, θ = π/2|n = 2) = 0 [see upper branch
of Fig. 5(a). Lower branch solutions are given by the pairs
(mb(k), ma(k)).

(ma(k), mb(k))

(2k2 − k, 2k2 − 3k + 1)
(2k2 + k, 2k2 + 3k + 1)
(8k2 + k, 8k2 + 6k + 1)

(2k2 − 5k + 3, 2k2 − 3k + 1)
(2k2 + 3k + 1, 2k2 + 5k + 3)
(8k2 + 6k + 1, 8k2 + 10k + 3)
(2k2 + 5k + 3, 2k2 + 7k + 6)
(2k2 + 7k + 6, 2k2 + 9k + 10)

TABLE III. Polynomials (ma(k), mb(k)) (with mb � ma) that
identically solve g(ma, mb, θ = π/2|n = 3) = 0 (with CNL ma =
mb = k) [see the upper branch of Fig. 5(b). Lower branch solutions
are given by the pairs (mb(k), ma(k)).

(ma(k), mb(k))

(k, k)
(6k2 + 7k + 2, 6k2 + 13k + 7)
(6k2 + 5k + 1, 6k2 + 11k + 5)

TABLE IV. Polynomials (ma(k), mb(k)) that identically solve
g(ma, mb, θ = π/3|n = 2) = 0. See the legends of Fig. 7.

(ma(k), mb(k))

(12k2 + k, 36k2 − 9k)
(12k2 + k, 36k2 + 15k + 1)
(12k2 + 7k + 1, 36k2 + 9k)

(12k2 + 7k + 1, 36k2 + 33k + 7)
(12k2 + 17k + 6, 36k2 + 39k + 10)

(12k2 + 23k + 11, 36k2 + 57k + 22)

APPENDIX D: THE HOM EFFECT AND
THE ANALOGOUS CNL FOR ATOMIC SYSTEMS

The HOM effect depends upon the properties of the
beam-splitter coefficients for nonclassical FS input states.
Since these coefficients are essentially the components of the
Wigner SU(2) rotation matrices [13], it is natural to ask if
complete destructive interference of quantum amplitudes, as
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well as features analogous to the CNL, also exists for col-
lections of atoms. The answer is yes if one makes use of the
formal correspondence of the Schwinger representation for
su(2) in terms of a pair of bosonic modes [41]

Jx = 1
2 (ab† + a†b), (D1a)

Jy = i

2
(ab† − a†b), (D1b)

Jz = 1
2 (a†a + b†b), (D1c)

with commutators [Ji, Jj] = εi jkJk , i ∈ {1, 2, 3} ↔ {x, y, z}.
In Eq. (D1a) [Eq. (D1b)], Jx (Jy) has the form of a BS
transformation of unitary form U (θ ) = e−iJxθ (e−iJyθ ).
Because of the use of the pseudo-angular-momentum
formalism involved in the Schwinger representation,
a two-mode photon state |�〉 = ∑∞

n,m=0 cn,m|n, m〉ab

can also be written in the angular momentum form
|�〉 = ∑∞

J={0,1/2,1,3/2,...}
∑J

M=−J cJ+M,J−M |J, M〉ab for
angular momentum states |J, M〉 with angular momentum
J = (n + m)/2 and spin projections M = (n − m)/2 ∈
{−J,−J + 1, . . . , J}.

For NA two-level atoms, the collective atomic spin
operators Ji = 1

2

∑NA
k=1 σ

(k)
i define the Dicke (pseudo-angular-

momentum) states given by |J, M〉 with effective angular
momentum J = NA/2 and effective spin projections M ∈
{−J,−J + 1, . . . , J}. The Dicke states |J, M〉 are defined in
terms of the individual ground |g〉 and excited |e〉 atomic
states as |J, J〉 = |e〉⊗NA=2J (all atoms excited) and |J,−J〉 =
|g〉⊗NA=2J (all atoms in the ground state) with intermediate
steps consisting of superpositions of J + M atoms in the ex-
cited state and J − M atoms in the ground state.

A general collective atomic (input) state (for a fixed num-
ber NA of atoms) is given by |�A〉 = ∑J

M=−J cM |J, M〉. The
analogy of the 50:50 BS is the π/2 pulse of the Ramsey
sequence acting on each angular momentum state

|J, M〉 UBS−→ |J, M〉(out) = e−iJxθ |J, M〉 =
∑
M ′

|J, M ′〉dJ
M ′,M (θ )

(D2)

for a general BS angle θ . Here the Wigner rotation matrices
dJ

M ′,M (θ ) are related to the BS coefficients f (n,m)
p (θ ) via

d (n+m)/2
p−(n+m)/2,(n−m)/2(θ ) ≡ f (n,m)

p (θ ). (D3)

We can express each angular momentum state in terms
of a pair of dual (Schwinger) a and b number states
(FSs) via

|J, M〉JM ↔ |n = J + M, m = J − M〉ab, (D4a)

|n, m〉ab ↔
∣∣∣J = n + m

2
, M = n − m

2

〉
J,M

. (D4b)

Here J + M is the number of atoms in their excited state and
J − M is the number of atoms in their ground state. In the
above we have put the subscript JM on the atomic Dicke states
to distinguish them from the a- and b-mode FSs.

With the above correspondences in hand, consider the
general atomic input state for a fixed number of atoms
NA = 2J given by |�in〉A = ∑2J

n=0 cn|J, M = n − J〉JM =∑2J
n=0 cn|n, m = 2J − n〉a,b, which is transformed by the

BS transformation U (θ ) = e−iJxθ to
∑2J

n=0 cn|n, m = 2J −
n〉(out)

a,b = ∑2J
n=0

∑2J
p=0 cn f (n,2J−n)

p (θ )|p, 2J − p〉a,b. If we now
project this onto the dual FS |ma, mb〉ab, and consider
only states with odd n, we formally have the output joint
probability distribution

P(ma, mb, θ ) =
∣∣∣∣∣

2J∑
n=0

cn f (n,2J−n)
p (θ )

∣∣∣∣∣
2

(D5a)

ma=mb=m′=J−→
n odd

P(m′, m′, θ )

=
∣∣∣∣∣

2J∑
n (odd)=0

cn f (n,2J−n)
J (θ )

∣∣∣∣∣
2

(D5b)

= cos2(θ )

∣∣∣∣∣
2J∑

n (odd)=0

cn f̃ (n,2J−n)
J (θ )

∣∣∣∣∣
2

, (D5c)

where we have used ma + mb = n + m = 2J in Eq. (D5a)
and ma = mb = m′ = J in Eq. (D5b). Here the summation∑2J

n (odd)=0 indicates a sum over odd n ∈ {1, 3, 5, . . . , n(max)
odd },

where n(max)
odd = 2J − 1 (2J ) if J is an integer (half-

integer). Finally, in Eq. (D5b) we have used f (n,2J−n)
J (θ ) ≡

cos(θ ) f̃ (n,2J−n)
J (θ ) for each n odd [see Eq. (14a) and Ap-

pendix B]. Therefore, P(m′, m′, π/2) = P(J, J, π/2) = 0 for
a 50:50 BS (θ = π/2) regardless of the coefficients cn, as long
as n is odd.

Now the projection onto the dual FS |m′, m′〉ab = |J =
m′, M = 0〉JM is a projection onto the atomic state with equal
numbers of atoms in the ground and excited states for a collec-
tion of NA = 2J = 2m′ atoms. The state |J, M = 0〉 can only
occur of course for integer J ∈ Z�0. Equation (D5c) shows
that the quantum amplitude for this state will suffer complete
destructive interference for a 50:50 BS [cos(π/2) = 0] and
hence will not be present in the output state (the HOM ef-
fect). For half-integer values of J there is simply never the
possibility of an output state from the BS of equal numbers of
atoms in both their excited and ground states [see the similar
discussion after Eq. (14b) for photons], and hence no quantum
interference effect is taking place.

With respect to the concept of the CNL (as in the photonic
case), we will also find that for m̃ �= m′, P(m̃, m̃, π/2) = 0,
but this will now entail having to make a measurement on
a new number of atoms given by ÑA = 2J̃ = 2m̃ �= NA. This
means that the atomic “CNL” is spread out over a collec-
tion of measurements of experiments involving a different
number of atoms for each diagonal element of the output
probability distribution P(m′, m′, π/2) = P(J, J, π/2), i.e., it
is not a contiguous set of zeros representing complete de-
structive interference for a single collection of atoms NA.
However, for a given fixed number of atoms NA = 2J , with
input states of the form

∑2J
n (odd)=0 cn|J, M = n − J〉JM , we

have P(J, J, π/2) = 0, which is the extended HOM effect.
Once again [see the discussion after Eq. (14b)] half the points
in the atomic CNL (spread out over a different number of
atoms NA = 2J) are trivially zero, since the state |J, M = 0〉
is simply not capable of being present in the output (for J a
half-integer), while the other half of points (for J an integer)
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correspond to diagonal output states that have coefficients

proportional to cos(θ )
θ=π/2−→ 0 for a 50:50 BS, which is the ex-

tended HOM effect of complete destructive interference of the
output amplitude for the state |J, M = 0〉 (i.e., equal numbers

of atoms in the excited and ground states). This is the atomic
analog of the CNL in the photonic case where the extended
HOM effect occurs on output states |m′ = (n + m)/2, m′〉ab

with equals number of photons in each mode.
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