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Nonclassicality criteria for NV-dimensional optical fields detected by quadratic detectors
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Nonclassicality criteria for general N-dimensional optical fields are derived. They involve intensity moments,
the probabilities of photon-number distributions, or combinations of both. The Hillery criteria for the sums of the
probabilities of even or odd photon numbers are generalized to N-dimensional fields. As an example, the derived
nonclassicality criteria are applied to an experimental three-mode optical field containing two types of photon-
pair contributions. The accompanying nonclassicality depths are used to mutually compare their performance.
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I. INTRODUCTION

Identification of nonclassicality of optical fields [1] has
a long-lasting tradition in quantum optics. For many years,
the nonclassicality was identified and quantified by specific
physical quantities suitable for revealing the nonclassicality
of different kinds of quantum fields [1]. The Fano factor that
quantifies the strength of photon-number fluctuations and the
principal squeeze variance [2] that measures the squeezing
of field phase fluctuations serve as typical examples. With
the fast development of quantum optics, a large variety of
nonclassical fields has been suggested and experimentally
realized [3,4]. Many of them have no distinct properties
that would allow us to tailor specific nonclassicality criteria
(NCCa) for them. For this reason, the NCCa started to be
investigated from the general point of view.

Here, we address the NCCa based on the measurement
of photon-number distributions [5] by quadratic detectors.
Although these criteria are not sensitive to the phases of
optical fields, they are extraordinarily useful for (spatio-
spectrally) multimode optical fields. The multimode character
of these fields implies that their statistical properties are fully
characterized by photon-number measurements. The NCCa
are traditionally written as the nonclassicality inequalities
that involve the moments of integrated intensities. These
integrated-intensity moments denote the normally ordered
photon number moments [5] that are derived from the photon-
number distributions and their usual photon-number moments
with the help of the commutation relations [6]. A great deal of
attention has been devoted to such NCCa for one-dimensional
(1D) [7-9] and two-dimensional (2D) [10-16] optical fields
for practical reasons. Among others, they allow us to identify
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the nonclassicality of sub-Poissonian fields (1D) and twin
beams (2D). Useful NCCa were derived by several approaches
including the Cauchy-Schwarz inequality, majorization the-
ory, and by using the classically non-negative polynomials.
They were summarized in Ref. [17] for 1D and in Ref. [18]
for 2D optical fields.

Klyshko suggested in Ref. [19] the use of the Mandel
detection formula [1,5] in combination with the NCCa in-
volving the intensity moments to arrive at the NCCa written
in the photon-number probabilities. These criteria are in gen-
eral more sensitive to the nonclassicality [20-23]. Some of
them also allow us to identify the regions of photon-number
distributions where the nonclassicality resides. They were
extensively studied in Ref. [24] for 1D and Ref. [6] for 2D
optical fields.

The 1D and 2D NCCa represent special variants of the
general NCCa written for arbitrary dimensions and addressed
in this paper. They are applied to marginal 1D and 2D fields
of the general N-dimensional fields obtained by tracing out
over the remaining dimensions. Thus the NCCa for dimen-
sions greater than two are in principle more general than
those written in 1D and 2D. They are indispensable for iden-
tification and quantification of the nonclassicality of fields
exhibiting genuine higher-order quantum correlations. This
is topical for three-dimensional (3D) fields generated in the
process of third-harmonic generation (triples of photons) [25],
cascaded second-order processes [26,27], or by postselec-
tion [28] (GHZ-like states).

Here, we provide the derivation of the NCCa for general
N-dimensional optical fields by generalizing the approaches
applied earlier to 1D and 2D optical fields. We reveal gen-
eral relations among the derived NCCa. We show that the
commonly used NCCa originating in the matrix approach
using 2 x 2 matrices form a subset inside the group of the
NCCa stemming from the Cauchy-Schwarz inequality. We
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further show that the NCCa provided by the majorization
theory can be decomposed into the much simpler ones. These
fundamental NCCa can easily be derived by assuming simple
non-negative polynomials. In general, we identify the funda-
mental nonclassicality inequalities, i.e., the inequalities that
are not implied by other even simpler nonclassicality inequal-
ities. We develop the approach for deriving an N-dimensional
form of the Hillery nonclassicality criteria [29]. We also
suggest a new type of the NCCa: the hybrid NCCa. They
contain the field intensity moments in some dimensions while
using the probabilities of photon-number distributions in the
remaining dimensions.

The NCCa allow not only to identify the nonclassicality
but are also useful in quantifying the nonclassicality when the
Lee concept of nonclassicality depth (NCD) [30] or the non-
classicality counting parameter [31] are applied. This allows
us to judge the performance of NCCa and identify the NCCa
suitable for revealing the nonclassicality for given types of
nonclassical states. Moreover, when a greater number of the
NCCa is applied, the maximal reached NCDs are assumed to
give fair estimate of the overall nonclassicality of the analyzed
state. This is important in numerous applications that exploit
nonclassical states.

We note that the NCCa can also be applied to optical fields
that are modified before detection. This improves the ability of
the NCCa to reveal the nonclassicality. Mixing of an analyzed
field with a known coherent state at a beam-splitter serves as
a typical example [32,33].

To demonstrate the performance of the derived NCCa, we
apply the derived NCCa to a 3D optical field that is built
from two photon-pair contributions. This example allows us
to demonstrate the main features of the derived NCCa.

The paper is organized as follows: We bring the intensity
NCCa in Sec. II whose subsections are devoted to specific
kinds of the NCCa. The probability NCCa are summarized
in Sec. III. Hybrid criteria are introduced in Sec. IV. The
general derivation of the Hillery criteria is contained in Sec. V.
Section VI is devoted to nonclassicality quantification. As
an example, an experimental 3D optical field with pairwise
correlations is analyzed in Sec. VII. Conclusions are drawn in
Sec. VIIIL

II. INTENSITY NONCLASSICALITY CRITERIA

In this section, we pay attention to the nonclassicality
inequalities that use the (integrated) intensity moments [5].
In the following sections, we apply the Cauchy-Schwarz in-
equality, the matrix approach, the majorization theory and
the method that uses non-negative polynomials to arrive at
the intensity NCCa in N dimensions. We consider N fields
described by their intensities W; and photon numbers n;,
j=1,...,N. To formally simplify the description we write
the intensities W; of the constituting fields as the elements of
an N-dimensional intensity vector W = {W, ..., Wy}. Simi-
larly, the corresponding photon numbers n; occurring in the
detection of the constituting fields are conveniently arranged
into a photon-number vector n = {ny, ..., ny}. The joint state
of these fields is characterized by the joint quasidistribu-
tion P(W) of integrated intensities and joint photon-number
distribution p(mn). Intensity moments of the overall field can

then be expressed as (W') = (Wli' e Wlf,"’> using the integer
vector i = {i], ..., iy} containing the powers in individual
dimensions. We also introduce the notation for N-dimensional
factorial i! = i;!...in!.

A. Intensity criteria based on the Cauchy-Schwarz inequality

For 2D optical fields, the Cauchy-Schwarz inequality
provides a group of powerful criteria [6,23]. When
we consider the real functions f(W)= WVZk and
g(W) = WY2HK' for arbitrary integer vectors 1, k, and k/,
the Cauchy-Schwarz inequality | f f (W)g(W)P(W)dW|? <
[ FAW)P(W)AW [ g2 (W)P(W)dW written for a classical
non-negative probability distribution P(W) takes the form

(Wl+k+k/)2 g (Wl+2k> <Wl+2k/>, (1)

where we use the notation (---) = deP(W) ... for the
mean value and dW = dW, - - - dWjy. Introducing the integer
vectors n = 1 + k + k’ and m = 1 + 2k we derive the follow-
ing NCCa from the classical inequality (1):

CIM = (W™) (W) — (W")? < 0. @)

B. Intensity criteria based on the matrix approach

Non-negative quadratic forms are conveniently written in
the matrix form. Their consideration leads to powerful and
versatile NCCa for 1D [17] and 2D [34-37] optical fields.
Considering the determinant of the 2 x 2 matrix

der [ gnes S |} = OV - w2

describing the quadratic form (WX 4+ W")2, we arrive at the
NCCa that form a subset of the group C7' in Eq. (2) [n <«
k+1,m <« 2l].

On the other hand, the quadratic form (WX 4+ W! 4 W™)?2
encoded into the 3 x 3 matrix

W2k Wk+l Wk+m
Wl+k W2l Wl+m ( 4)
Wm+k Wm+l W2m

provides the powerful NCCa with the complex structure
Miam = {(W?)[(W?) (W2™) — (WH™)2]
+ (klm) < (Imk) + (klm) <« (mkl)}
A+ 2L(WEH (Wi (W) — W2y (W2 (W2 |
<0. )

The symbol < used in Eq. (5) stands for the terms derived
from the explicitly written ones by the indicated change of
indices.

C. Intensity criteria originating in majorization theory
and non-negative polynomials

In the majorization theory [38] many classical inequali-
ties for polynomials written in fixed numbers of independent
variables are derived [39]. The inequalities describing “the
movement of one ball towards the right” [38] represent the
basic building blocks of the remaining inequalities. Assum-
ing the integer vectors i and i = {iy, ..., +1,...,i —
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1,...,in}, k <, such that the vector i’ majorizes the vector
i@~ —1z2bp-12-Zia—-12=>---20i2
iiv1+ 1>+ 2 iy + 1) they give rise to the following non-
classicality inequalities:
D W) < Y (Wi, 6)
Pil Pi

In Eq. (6), the symbol Pi stands for all permutations of the
elements of vector i.

The nonclassicality inequalities (6) can be conveniently
decomposed into the much simpler ones expressed as

. L . )
= (W = Wi)?) = (Wi W 2w
_ 2Wkik+1Wi1+1 + WikvVIil+2)> <0; (7
Wiy =W W Wiyt -+ Wim Wiy - Wy and iy =
{iy, RS /S TR /ST TRV S TR | R DA ,iy}. The mequahty (6)

can be expressed in terms of the 51mpler inequalities Elkl
follows (i; = i)):

N k-1
ol
> Z Rl it it
K'=11'=1 piL
14
KU K
+ EP"/P’/{ A OO | +E77A’f’73,"{.,.,ik73 i+1,..}
KU
+oet EPk Pl esit+ 1 =3,...} +E7J;;’7>;’[...,i, ..... i—2,...)
EXL 0 8
T Epepr (i, ik—l,...}] < ®)
andP,f{...,ik,...,ik/, ..}={...,ikf,...,ik,...}.

As a consequence, any nonclassicality inequality stemming
from the majorization theory is implied by the nonclassicality
inequalities EX' given in Eq. (7). They can simply be general-
ized into the NCCa

N N
Ef = <Wi1"[ [T w- W»Z’“> <0, ©)

k=1 I1=k+1

in which the integers I;; form an upper triangular matrix 1.
Also, other NCCa based on non-negative polynomials can

be constructed. They are useful for the states with specific

forms of correlations. As an example, we write the NCCa P¥

and P
N 2
= <(Z We —ZWk) > (10)
k'=1

N 2/ N 2
=1 r=1

which is useful for the nonclassicality analysis of the states in
Sec. VL.

III. PROBABILITY NONCLASSICALITY CRITERIA

The Mandel detection formula [1,5] written for an N-
dimensional optical field as

p(n) = $ / dWW" exp (—XW)P(W), (12)

with ¥W = Zszl Wi, allows us to derive the probability
NCCa from the corresponding intensity NCCa according to
the following mapping (for details, see the next section):

W? < nlpm)/p(0), 13)

where the symbol 0 denotes the vector with all elements equal
to zero.

Using the mapping (13), the intensity NCCa C' from
Eq. (3) derived from the Cauchy-Schwarz inequality give the
following probability NCCa:

. (2n —m)'m
(n!)*
Similarly, the intensity NCCa My, in Eq. (5) obtained

by the matrix approach are transformed into the following
probability NCCa:

G = pm)pn —m) — ) < 0. (14)

- 1+ m)!??
Mym = {p(2k>[p<2l>p<2m> - mpza + m>}

+ (klm) < (mkl) + (klm) < (Imk)}

(k +D!(k +m)!(1+ m)!
+ [ (2K)!2D!(2m)!

pk +Dp(k 4+ m)

x p(l+m) — p(2k)p(2l)p(2m)] < 0. (15)

Finally, the NCCa E} from Eq. (7) give rise to the follow-
ing probability NCCa:

M= G+ 2+ DpCoyig + 2,00, .0)
+ G +2)0G+DpC. ik, .., +2,..0)

2+ DG+ Dp(. i+ 1,000, +1,...) <O.

(16)

IV. HYBRID NONCLASSICALITY CRITERIA

In general, via the mapping in Eq. (13), we may map the
intensity moments to the probabilities only in some dimen-
sions. This leads to hybrid NCCa that combine the intensity
moments and probabilities. This results in the use of “mixed
moments” that are determined by using the formula

: 1
(W), o) = / dWy Wiy — / dW, Wy
p\ip p
x exp (—EW,P(Wy, W), (17)

in which we split the elements of integer vector i describing
the intensity-moment powers into two groups. In Eq. (17), we
denote the corresponding integer vectors by iy and i, and the
corresponding intensities by Wy, and W,.

To reveal the mapping between the intensity and
probability NCCa, let us consider the normalized distribution
P'(Wy, W,) = exp(—ZW,)P(Wy, W,)/[[ dW}, de;,
exp(—ZW,)P(Wy,, W))] that stays non-negative provided
that the original distribution P(Wy, W,) is non-negative.
Thus the moments ((W;{,V W"’)) of this distribution,

(Wi wiy) = /dWW/deW“M}WL”

x P'(Wy, W,), (18)
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when substituted into the nonclassicality inequalities with in-
tensity moments in Sec. II, give rise to the NCCa. When we
express these NCCa in terms of the mixed moments defined
in Eq. (17), we reveal the following mapping:

W W — Wi 1) (i,)/pp(0) (19)

in which the marginal photon-number distribution p,, is de-
fined in the dimensions grouped into the integer vector i

. 1 i
pp(i,) = i_fdw,,wjf exp (—XW,)

!
X deWP(WW, W,,). (20)

As an example of mapping in Eq. (19), we write the hy-
brid NCCa derived from the intensity NCCa in Eq. (2) that
originate in the Cauchy-Schwarz inequality:

Cmw.my (2n, — mp)!mpl( 2nW7mw>
ny.,n, — (np!)z w pp(2n,—m,)
2
my, _ ny
<AW" )y~ (W )y < O

2n

where the hybrid moments are determined by using Eq. (17).

V. GENERALIZED HILLERY NONCLASSICALITY
CRITERIA

The Hillery NCCa were derived for the sums of probabili-
ties of even and odd photon numbers for 1D optical fields [29].
They are suitable, e.g., for evidencing the nonclassicality of
single-mode squeezed-vacuum states.

To reveal their N-dimensional generalizations, we first con-
sider the following classical inequality:

/ dW ch(W,) exp (—W,)P(W) > 1/2, (22)

valid for any classical non-negative distribution P(W). In
Eq. (22), ch stands for the hyperbolic cosine and W, = ¥W.
A suitable unitary transformation to new variables that in-
volves the variable W, and replacement of ch function by the
defining exponentials immediately reveal the inequality (22).
The Taylor expansion of the ch function and the use of multi-
nomial expansion transform the inequality (22) into the form:

Z Z %/dWW“exp(—WJr)P(W)}l/Z. (23)

=0 n=0,3"n=2/

The comparison of integrals in Eq. (23) with the Mandel
detection formula (12) results in the following generalized
Hillery NCC H, for the probabilities of even-summmed pho-
ton numbers:

oo oo
Hy = Z Z p(n) —1/2 < 0. (24)
1=0 n=0,y" n=2I
The second Hillery NCC is obtained starting from the
classical inequality

/ dW [sh(W,.) — ch(W,) + 1]exp (—W,)P(W) >0, (25)

in which sh denotes the hyperbolic sine. Similarly as above,
the use of the Taylor expansion for sh and ch functions, multi-
nomial expansion, and the Mandel detection formula leaves
us with the following NCC:

Yoo pm=) Y pm)+p®) <0.

[=0 n=0,) n=1+2/ =0 n=0,) n=21

(26)

The use of the normalization condition ) o, p(n) =1 in
Eq. (26) leads to the second generalized Hillery NCC H, for
the probabilities of odd-summed photon numbers:

Hy=Y > pm)—[l1-p@®]/2<0 (@27

[=0 n=0,>" n=1+2/

VI. QUANTIFICATION OF NONCLASSICALITY

The above written NCCa can be used not only as nonclas-
sicality identifiers. When we apply the concept of the Lee
nonclassicality depth [30], they also quantitatively character-
ize the nonclassicality. This quantification is based upon the
properties of optical fields described in different field-operator
orderings [5]. Whereas the normally ordered intensity mo-
ments contain only the intrinsic noise of the field, the general
s-ordered intensity moments involve an additional “detection”
thermal noise with the mean photon number (1 — s)/2 per one
mode [5,30]. Such noise gradually decreases the nonclassi-
cality as the ordering parameter s decreases. The threshold
value sy, at which a given field loses its nonclassicality then
determines the nonclassicality depth (NCD) ¢ [30]:

I —sm
T =
2
We note that, alternatively, we may apply the nonclassicality
counting parameter introduced in Ref. [31].

To arrive at the NCDs t of the above written NCCa, we
have to transform the mixed moments (W’v{,V )poi,) Of Eq. (17)

(28)

to their general s-ordered form (Wivg )p,(iy).s- Using the results
of Refs. [5,6], the corresponding transformation is accom-
plished via the matrices Sy and S, appropriate to the intensity
moments and probabilities, respectively,

ly
<W;)‘l)‘//>pp(i,,),s = Z SW (ilw ’ i,lw;s’ le) T

o
iy, =1

oo
Sw (iny + ingy 385 My ) D Sp(in, 13 35, My

i\ =0
<= Sy (v iy 3 5, My, ) (Wyy )pp @) (29)
1={1,1,...} and integer vectors My = {M,,,, ..., My,}

and M, = {Mlp, R MNp} give the numbers of modes in all
dimensions of the analyzed optical field. In Eq. (29), the
transformation matrices Sy and S, are defined as follows:

. F . M 1_ i—i
Sw(i,i'ss. M) = (;)ﬁ( : S) RET)
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noise field 3
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( 3 ) (signal fields)
photon-pair ﬁeldy photon-pair field 23
’/—ﬁs ﬁ\
(1 ) (2 ) (dierfields)
\__/ -

noise field 1 noise field 2

FIG. 1. Structure of the analyzed 3D optical field composed of
ideal photon-pair fields 13 and 23 and noise fields 1, 2, and 3.

S (5. M) 2 \M"/14+5\ [1-5\
ii's,M) =
A 3—s 1—s 3—s

4

5 Z (1)~ <zl) (i +1 +iM - 1)
=0

4 I
) <(1+s><3—s>> ‘ Gb

VII. APPLICATION OF THE DERIVED
NONCLASSICALITY CRITERIA TO A
THREE-DIMENSIONAL OPTICAL FIELD

We demonstrate the performance of the above written
NCCa in revealing the nonclassicality using a 3D optical
field containing two types of photon pairs. This 3D field was
generated in the pulsed multimode spontaneous parametric
down-conversion from two nonlinear crystals that produced
two types of photon pairs differing in polarization (for details,
see Ref. [15]). While the idler fields constitute fields 1 and
2, the signal fields overlap in a common detection area and
together form field 3, as schematically shown in Fig. 1. The
experimental photocount histogram f(cy, ¢z, ¢3) that gives the
normalized number of simultaneous detections of ¢; photo-
counts in field i, i = 1, 2, 3, in 1.2 x 10° measurements [15]
was reconstructed by using the maximum likelihood (ML)
approach [40,41]. The iteration algorithm (j numbers the it-
eration steps)

oo

f(c)T(C, n)
c=0 Zl(?l<’3:0 T(c, n/)p(j)(n/)

provided the reconstructed 3D photon-number distribution
p(ny, ny, n3) that we analyze below from the point of view of
its nonclassicality. In Eq. (32), the detection function 7T (c, n)
gives the probability of detecting ¢ photocounts at N detectors
being illuminated by n photons. The theoretical prediction
f"(c) for the photocount histogram is obtained as f(c¢) =
Zf‘o: o T (¢, n)p(m). The analyzed photon-number distribution
p is shown in Fig. 2 in two characteristic cuts suitable for
visualization of its pairwise structure.

The experimental 3D optical field was also fit by the model
of two ideal multimode Gaussian twin beams (6.15 = 0.05
and 5.95 £ 0.05 mean photon pairs) and three multimode

pim) = (32)

10 p

10

I 0.0 I 0.0
0.2 0.2

|04 04
06 0.6
o os
5 nz=n, 10
(a)

FIG. 2. Photon-number distribution p(n;, n,, n3) obtained by
ML approach in 2D cuts: (a) p(n; = ny, n3) and (b) p(n, ny, n3 =
10). Relative errors are better than 1%.

Gaussian noise fields (0.11 & 0.02, 0.07 & 0.01, and 0.02 £+
0.01 mean noise photons). Details are found in Ref. [15].

By definition, the nonclassicality of an optical field means
that its quasidistributions Py of integrated intensities attain
negative values for ordering parameters s > sy where sy
denotes a threshold value of the ordering parameter. An s-
ordered quasidistribution Py (W) of integrated intensities for
one effective mode in each field is obtained by the following
formula [5]:

N 25W) o= p(n)
v = e (1) 57

n=0

=" 4w 4
x s+ Ly, ! .~ AWy i
s—1 1 —s2 1 —s2

(33)

where [; stand for the Laguerre polynomials [42]. We
demonstrate the nonclassical behavior of quasidistribution
Py in Fig. 3 where we plot two characteristic cuts for s =
0.02. Whereas the quasidistribution Py creates hyperbolic
structures in planes (W;, W) (for fixed values of intensity
W3), it forms the structure of rays coming from the point
(W1, W, W3) = (0, 0, 0) in plane (W; = W, W3) that is well
known for twin beams [18].

Now we apply the appropriate NCCa of Sec. II for the
introduced N = 3 dimensional optical field. We address in
turn intensity NCCa, probability NCCa and hybrid NCCa.

FIG. 3. Quasidistribution Py (W, W,, W3) of integrated intensi-
ties for the ordering parameter s = 0.02 and the field obtained by ML
approach in 2D cuts: (a) Py (W, = W, W3) and (b) Py (Wi, Wy, W5 =
7.9).
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FIG. 4. Nonclassicality depths t for (a) 3D and (b) 2D intensity
NCCa. Isolated symbols with error bars are drawn for the experi-
mental photocount histogram (red *) and field reconstructed by ML
approach (green A); solid blue curves originate in 3D Gaussian
model.

A. Application of intensity nonclassicality criteria

The intensity NCCa containing the lower-order intensity
moments are in general stable when applied to the experimen-
tal data. This is a consequence of the fact that all experimental
data are exploited when the intensity moments are determined.
This contrasts with the probability NCCa where only a rather
limited amount of the experimental data is used for each NCC.
It holds in general for the intensity NCCa that the greater the
order of the moments used in a given NCC is the greater the
experimental error is. Nevertheless, the NCCa containing the
lowest-order intensity moments are usually reliable and very
efficient in revealing the nonclassicality.

The following intensity NCCa (arranged according to the
increasing order of involved intensity moments) derived from
the general ones in Egs. (2), (5) [assuming k = (1,0,0),1 =
(0,1,0),m = (0,0, 1)], (10), and (11) are capable of identi-
fying the nonclassicality of the analyzed field:

PV = (Wi +Wa = W3)%) <0,
PV = (=W + W + W3)* (Wi + Wa — W3)?) <
PP = (W) — Wa + W3)* (W, + W — W3)*) < 0
Ci = (WiW3 ) Wi W3) — (W, WaWs)? < 0,
CHY = (WiWa)(WaW3) — (Wi WaWs)? < 0,
10?12 = (WPW2)W5) — (W, WaWs)?* < 0,
= (W)W )WZ) + (Wi Wa) (Wi Ws) (WaWs)
— (W) (WaW5)? — (W5 ) (W W)
— (W)W Wh)2. (34)

The polynomial NCC P%+3 and the matrix NCC M" provide
the greatest values of their NCDs t around 0.4, as follows
from the graph in Fig. 4(a). Whereas the matrix NCCa
with their complex moment structures are in general success-
ful in revealing the nonclassicality, the simple polynomial
NCC P"3 complies with the pairwise structure of the ana-
lyzed field. The specific type of pairwise correlations in the
analyzed field is also detected by the fourth-order Cauchy-
Schwarz NCCa Clllzf, Clzlli), and C??lz though the values of

the corresponding NCDs t are smaller. Also the fourth-order
polynomial NCCa P":13 and PV:23 reveal the nonclassicality,
owing to the involved term (W, + W, — W; )? that they share
with the powerful NCC P%:3.

More detailed information about the structure of corre-
lations in the analyzed field is obtained when the marginal
intensity quasidistributions are analyzed. The following
fourth-order intensity NCCa derived from Egs. (2) and (5) [as-
suming k = (0, 0), 1 = (1, 0), m = (0, 1)] were found useful
for this task:

(wit)ws)
Cho = (W2)(W5) — (wiwa)? < 0,
Cory = (W22><W32> — (WLW3)° <0,
MY = (W2W?) + 20W:) (W) (WiW;)
— (W2 (W) — (W2)W))? — (Wiw;)
(i, j) = (1,2), (1,3)(2. 3). (35)

The corresponding NCDs t are shown in Fig. 4(b). They
reveal strong correlations in the marginal fields (1,3) and (2,3)
and no correlation in the marginal field (1,2), in agreement
with the structure of the experimentally generated 3D field.
Both the matrix and the Cauchy-Schwarz NCCa lead to the
values of NCDs t around 0.25 for the fields (1,3) and (2,3).
The NCDs t shown in Fig. 4 indicate slightly greater nonclas-
sicality in the field (2,3) compared with the field (1,3).

The values of NCDs t in Fig. 4 determined for the model
Gaussian field (solid blue curves) are slightly greater than
those obtained for the analyzed field reconstructed by the ML
approach (green A). This reflects the fact that the Gaussian
model partly conceals the noise present in the experimental
data. For comparison, we plot in Fig. 4 also the values of
the NCDs 1 determined directly from the experimental photo-
count histogram f (red *). Whereas the NCCa P"-* and M"
give the greatest values of NCDs t already for the histogram
f,the NCCa P"!* and P"-23 do not indicate the nonclassical-
ity in the histogram f’; they need stronger and less-noisy fields
for successful application.

B. Probability nonclassicality criteria

In general, the probability NCCa are more efficient in
revealing the nonclassicality [23,24] compared with their in-
tensity counterparts. The reason is that they test the field
nonclassicality locally via the probabilities in the field photon-
number distribution. On the other hand, the determination of
probabilities is more prone to experimental errors compared
with the intensity moments whose determination involves all
probabilities.

Local nonclassicality can be investigated by using suit-
able probability NCCa containing only the probabilities from
small regions. We illustrate this approach by defining the
probability NCCa C? and M? that are in fact specific groups
of the Cauchy-Schwarz and the matrix NCCa from Eqgs. (14)
and (15):

Cr = min
m, Im—n|<1
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I 0.0
0.1

FIG. 5. Nonclassicality depths t for probability NCCa (a),
(b) CP, (c), (d) MP, and (e), (f) EP»'3 as they depend on photon
numbers n;, 1y, and n3 in 2D cuts; n3 = 10 in panels (b) and (f),
2n3 = 10 in panel (d). Only the NCCa for which the mean value
of the used probabilities is greater than 0.001 are taken into account.
Relative errors in panels (a), (b); (c), (d); and (e), (f) are in turn better
than 3%, 8%, and 2%, respectively.

M? =

n

KL {Mian} <0, (36)
where |m —n| < 1 stands for the simultaneous conditions
|m; — n;] < 1fori=1,2,3. We also consider the probability
polynomial NCCa E?'® derived from the intensity NCCa in
Eq. (7) because these NCCa are efficient in identifying the
nonclassicality originating in photon pairing [6]:

ny+2
EPP = mp(nl +2,ny,n3) +

nz +2
: p(ny, ny, n3 +2)
1

m+1
—2p(m +1,m,n3+1) <0. 37

The cuts of the probability NCCa C?, M?, and E?'3 plotted
in Fig. 5, which correspond to the cuts of the photon-number
distribution p in Fig. 2, reveal that the greatest values of the
NCDs t occur in the central part of the 3D photon-number
distribution p. These values drop down as we move towards
the photon-number distribution tails. As documented in the
graphs of Fig. 5 the matrix NCCa M? perform the best fol-
lowed by the Cauchy-Schwarz NCCa C?; both types of NCCa
indicate the greatest values of NCDs t close to 0.5. The
polynomial NCCa E”!* give the maximal values of NCDs
7 only around 0.3, which is a consequence of their structure

that is sensitive only to photon pairs in the field 13. Com-
paring the probability NCCa with their intensity counterparts,
the NCDs t are greater by around 0.1 (0.2) for the matrix
(Cauchy-Schwarz) NCCa.

Contrary to the probability NCCa discussed above and
containing finite numbers of probabilities, the Hillery criteria
H, and H, from Eqs. (24) and (27) contain infinite numbers
of probabilities. However, they did not perform well when
analyzing the 3D field reconstructed by the ML approach:
Only the NCC H, applied in 3D provided a nonzero value
of NCD 7t = 0.020 £ 0.001. On the other hand, for the model
Gaussian field, the NCCa H, revealed the nonclassicality of
3D field (r = 0.211) as well as the marginal 2D fields (1,3)
(r =0.015) and (2,3) (r = 0.050). This indicates that the
Hillery criteria are not suitable for identifying the nonclas-
sicality in experimental photon-number distributions because
of the inevitable noise.

C. Hybrid nonclassicality criteria

The hybrid criteria that contain both probabilities and in-
tensity moments represent in a certain sense a bridge between
the intensity and probability NCCa. Their expected perfor-
mance in revealing the nonclassicality and resistance against
the experimental errors lie in the middle. On one side they
are less efficient but more stable than the probability NCCa,
on the other side they are more powerful but less stable than
the intensity NCCa. With their help, we can monitor specific
aspects of the nonclassicality of the analyzed fields including
the experimental issues.

To demonstrate their properties, we first consider the fol-
lowing Cauchy-Schwarz and the matrix NCCa derived from
Eq. (21) [assuming my = (0, 2), ny = (1, 1), m, = (i —
myg), n, = (n;)] and Eq. (5) converted partly into the prob-
ability NCCa via the mapping in Eq. (19) [assuming k =
0,0, n),1=(1,0,n), m = (0, 1, np)]:

owi e+ m)! (e — my)!

< iz)ﬂk (ne+my.)

e (i 1)?
2 A7\ 2
X (WJ >pk(nk—mk) - <VVZW]>Pk(nk) < 0’
Wk __ 2 2
Mﬂk - <1>Pk(2”1<)(vvi )pk(an)<Wj >pk(2nA)

+ 2<Wi>pk(2nk) <Wj>pk(2nk) <VVin>pk(2nk)

2

- W, <W/2>pk(2nk) - (m2>pk<2nk><wf)pk<2nk>

Pre(2ng)

2
- <l)pk(2nk)(vVin)pk(2”k) < 07

i j.k)=1(1,2,3), (2,3,1), 3,1,2). (38)

The Cauchy-Schwarz NCC CPY* for m; = 0 represents
a 2D intensity NCC for the field (i, j) conditioned by the
detection of n; photons in field k. The values of NCDs t for
the field (2,3) lie around 0.35, as documented in Fig. 6(a).
They are greater by around 0.1 compared with the value
T = 0.257 £ 0.007 for the NCC C{ of the marginal field
(2,3). This is explained as follows: The conditional fields
occur in the decomposition of the marginal field (2,3) (with
appropriate weights). Composing the marginal field from its
conditional constituents we partly conceal the nonclassical-
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FIG. 6. Nonclassicality depths t for hybrid NCCa (a) C%W‘l,
(b) Cﬁw" , () MPW-3 and (d) MP"! as they depend on the correspond-
ing photon numbers n;, 2n;, and 2n;. Isolated symbols with error
bars are plotted for the field reconstructed by ML approach (green
A); solid blue curves originate in 3D Gaussian model.

ity. The Cauchy-Schwarz NCC CP"* in its general form
(my # 0) involves the moments of three 2D fields (i, j)
conditioned by the detection of ny, — my, nyg, and ng + my
photons in field k. In its general form it allows us to reach
even greater values of the NCDs t, as demonstrated in
Fig. 6(b).

Two limiting cases of the behavior of the nonclassicality
when composing the field from its conditional constituents
are shown in Figs. 6(c) and 6(d) considering the matrix NCCa
MPY-1 and MPW-3 from Eq. (36). Whereas the hybrid NCCa
MPY-3 indicate the NCDs 7 around 0.22 for the conditional
fields (1,2) in Fig. 6(c), the marginal field (1,2) is classical
(MY?3 = 0). On the other hand, the hybrid NCCa M*":!
assign the NCDs t around 0.35 for the conditional fields (2,3)
and similar value T = 0.28 £ 0.01 is obtained for the marginal
field (2,3) applying the NCC M"-23, We note that, in Fig. 6,
similarly as in the case of intensity NCCa, the values of NCDs
7 obtained from the model Gaussian field are slightly greater
than those characterizing the field reconstructed by the ML
approach.

As another example, we consider the following hybrid
Cauchy-Schwarz and matrix criteria C¥»# and M" 77 obtained
from Eq. (21) [assuming my = (0), ny = (1), m, =n, =
(nj, nt)] and Eq. (5) converted into the probability NCCa [as-
suming k = (0, nj, me), 1 = (1, nj, ng), m = (2, nj, ny )] using
the mapping in Eq. (19):

Wpii _ [yi2 — (W.\2

Cn,,nk - < i )pjk(n,,nk)(1>p/'k(”j~"k) <W/l>[’jk("j»”k) <0,
Wpi __ 2 4

Mnj,nk - (1>pfk<2n,,2nk)<wi )pjk(2n>,-,2nk)<vvi >p,-1{(2n‘,v,2nk)

o
I
o
N

8 on 12 8 on, 12
(c) (d)

FIG. 7. Nonclassicality depths t for hybrid NCCa (a) C"»!,
(b) C"P3, (c) MWP!, and (d) M"P3 as they depend on the corre-
sponding photon numbers n;, ny, ns, 2n;, 2n,, and 2n3. Relative
errors in panels (a) and (b) [(c) and (d)] are better than 3% (15%).

2 3
+ 2<M>Pik(2"/v2”k)<vvi )pjk(2nj,2nk)(‘/vi >pjk(2n_,',2nk)

3\2 2

- <1)ij(2n/q2nk><Wi )pfk(zn,,zzzk) - (‘/Vi>P/'k(2”jv2”k)
4 2\3

x (W, )p,kanj,znk) - W >pjk(2n,»,2nk)

@, j,k)y=(01,2,3), (2,3,1), (3,1,2). (39)

<0,

The hybrid NCCa in Eq. (39) represent 1D intensity NCCa for
the field i conditioned by simultaneous detection of 7; photons
in field j and n; photons in field k.

For the analyzed 3D field, the conditional fields 1 are less
nonclassical than the conditional fields 3, as evidenced in the
graphs of Fig. 7 showing the NCDs t of the NCCa CW7!
and M" P! belonging to conditional fields 1 and C"7-3 and
M"YP3 quantifying the nonclassicality of conditional fields 3.
The NCCa C"?! and M"»! (C"P3 and M"P3) assign the
values of NCDs t around 0.2 (0.3) for the conditional fields 1
(3). This asymmetry originates in the structure of the analyzed
3D field. Whereas the nonclassicality in conditional fields 1
is caused by photon pairs residing in the fields 13 and 23
whose numbers are chosen by “two-step” postselection based
on the detection of given numbers of photons in the fields 2
and 3, the nonclassicality of conditional fields 3 has its origin
in both types of photon pairs (residing in fields 13 and 23) and
independent postselections requiring the detection of given
numbers of photons in the fields 1 and 2.

VIII. CONCLUSIONS

Using the Cauchy-Schwarz inequality, non-negative
quadratic forms, the majorization theory and non-negative
polynomials we have formulated large groups of nonclassi-
cality criteria for general N-dimensional optical fields. The
nonclassicality criteria were written in intensity moments,
probabilities of photon-number distributions and a specific
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hybrid form that simultaneously includes both intensity
moments and probabilities. The derived nonclassicality
criteria were decomposed into the simplest building blocks
and then mutually compared. The fundamental nonclassicality
criteria suitable for application were identified. As a
special example, an N-dimensional form of the Hillery
nonclassicality criteria was derived.

Discussing the transformation of intensity moments and
photon-number distributions between different field-operator
orderings, quantification of the nonclassicality based on these
criteria and using the nonclassicality depth was accomplished.

The properties as well as the performance of the de-
rived nonclassicality criteria were demonstrated considering
an experimental three-dimensional optical field containing
two types of photon pairs. It was shown that the intensity
nonclassicality criteria are both efficient in revealing the non-
classicality and robust with respect to experimental errors.

The ability of the probability nonclassicality criteria to pro-
vide insight into the distribution of nonclassicality across the
profile of photon-number distribution was demonstrated. The
hybrid nonclassicality criteria were presented as a useful alter-
native to the intensity and probability nonclassicality criteria.

The analyzed experimental example proved that the
nonclassicality criteria represent a very powerful tool in
identifying and quantifying the nonclassicality in its vari-
ous forms. The derived nonclassicality criteria are versatile
and as such they can be successfully applied to any optical
field.
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