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Retrieval of photon blockade effect in the dispersive Jaynes-Cummings model
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We propose a reliable scheme to recover the conventional photon blockade effect in the dispersive Jaynes-
Cummings model, which describes a two-level atom coupled to a single-mode cavity field in the large-detuning
regime. This is achieved by introducing a transversal driving to the atom and then photonic nonlinearity is
obtained. The eigenenergy spectrum of the system is derived analytically and the photon blockade effect is
confirmed by numerically calculating the photon-number distributions and equal-time second-order correlation
function of the cavity field in the presence of system dissipations. We find that the conventional photon blockade
effect can be recovered at proper atomic and cavity-field drivings. This work will provide a method to generate
the conventional photon blockade effect in the dispersively coupled quantum optical systems.
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I. INTRODUCTION

The photon blockade (PB) effect [1], as one of the physical
methods for generation of single photons, has received con-
siderable research interest in the past two decades. Depending
on the underlying physical mechanisms, conventional [1] and
unconventional PBs [2,3] have been proposed. Physically, the
conventional PB effect is induced by the anharmonicity in the
eigenenergy spectrum of the physical systems, while the un-
conventional PB effect is created by the quantum interference
effect among different transition paths existing in physical
systems.

By far, the conventional PB effect has been studied mostly
in various nonlinear quantum optical systems, such as cavity
quantum electrodynamical (QED) systems [4–14] and circuit
QED systems [15], which describe the interaction between
fields and atoms. In addition, the conventional PB effect
has been studied in coupled waveguide systems [16,17] and
various nonlinear bosonic-mode systems, such as Kerr-type
nonlinear cavities [18–22], cavity optomechanical systems
[23–30], and coupled nonlinear cavities [31–33]. In particular,
the conventional PB effect has been experimentally demon-
strated in coupled atom-field systems, including a single
two-level atom coupled to an optical cavity [34,35], a quantum
dot coupled to a photonic-crystal cavity [36,37], and a single
superconducting artificial atom coupled to a transmission-line
resonator [38,39]. In parallel, the unconventional PB effect
has been studied theoretically [2,3,40–53] and experimentally
[54,55] in various coupled quantum optical systems.

In coupled atom-cavity-field systems, both the resonant
and off-resonant couplings have been studied and the optimal
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drivings for the PB effect have been found in these cases
[34,56–59]. For example, the photon blockade effect has been
experimentally demonstrated in the resonantly coupled atom-
cavity-field system [34] and it has been found that there are
two optimal drivings for photon blockade corresponding to the
single-photon resonant transition. In addition, the influence
of the detuning between the atom and the cavity field on the
cavity-field statistics has recently been investigated [56–59].
It has been found that there exist some optimal detunings cor-
responding to smaller values of the second-order correlation
function than that in the resonant atom-field coupling case
[56]. It should be emphasized that these detuning-coupled
atom-field systems do not enter the large-detuning regime,
in which the system should be described by the dispersive
JC model.

In the dispersive JC model, the conventional PB effect dis-
appears because there is no photonic nonlinearity.1 Therefore,
an interesting question arising here is whether it is possible
to retrieve the PB effect in the dispersive JC model using
proper quantum manipulation. In this paper we propose an
experimentally accessible method to recover the photonic
nonlinearity in the system via introducing a transversal driv-
ing to the two-level atom. We obtain the analytical energy
spectrum of the model, which gives the analytical result of
the optimal driving frequency of the cavity field. We also
get the steady state of the system by numerically solving the
quantum master equation in the open-system case. We further
calculate the photon-number distributions and the equal-time
second-order correlation functions of the cavity field in the
steady state. The results indicate that the PB effect can be

1We analyzed the energy spectrum of the dispersive JC model and
checked the second-order correlation function of the cavity field in
the steady state. The results indicate that there is no photon blockade
effect in the dispersive JC model.
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FIG. 1. (a) Schematic of the driven dispersive JC model, which
is composed of a single-mode cavity field coupled to a two-level
atom via the dispersive JC type of interaction. A transversal driving is
applied to the atom to recover the optical nonlinearity in this system.
(b) Diagram of the eigenenergy levels of the Hamiltonian H (I )

ddJC in
the subspaces associated with zero, one, and two photons.

recovered under proper atomic and cavity-field drivings. We
also evaluate the validity of the driven dispersive JC model by
presenting the detailed derivation of the effective Hamiltonian
and checking the fidelity between the exact and approximate
states, which are governed by the effective Hamiltonian and
the approximate Hamiltonian, respectively. This work will
provide an experimentally implementable method for the ob-
servation of the PB effect in dispersively coupled atom-field
systems.

The rest of this paper is organized as follows. In Sec. II
we introduce the physical model and present the Hamiltonian.
In Sec. III we investigate the PB effect by calculating the
photon-number distributions and the equal-time second-order
correlation function of the cavity field with the method of the
quantum master equation. In Sec. IV we discuss the detailed
derivation of the effective Hamiltonian. We also evaluate the
validity of the approximate Hamiltonian by calculating the fi-
delity between the exact and approximate states. A discussion
of the experimental implementation of this model is presented
in Sec. V. Finally, we conclude this work with a summary in
Sec. VI.

II. MODEL AND HAMILTONIAN

We consider a driven dispersive JC model consisting of a
single-mode cavity field and a two-level atom, as shown in
Fig. 1(a). Here the cavity field is coupled to the atom via a
dispersive JC type interaction, and a monochromatic field is
applied to transversally drive the atom. The Hamiltonian of

the driven dispersive JC model reads (h̄ = 1) [60]

HddJC = ωca†a + ω0 + χ

2
σz + χa†aσz

+ �R

2
(σ+e−iωd t + σ−eiωd t ), (1)

where a (a†) is the annihilation (creation) operator of the
single-mode cavity field with resonance frequency ωc. The
operators σz = σ+σ− − σ−σ+ and σx = σ+ + σ− are, respec-
tively, the Pauli operators of the z and x directions for the
two-level atom with bare transition frequency ω0 and energy
shift χ . Here σ+ = |e〉〈g| (σ− = |g〉〈e|) is the raising (lower-
ing) operator defined based on the ground state |g〉 and excited
state |e〉 of the atom. The third term in Eq. (1) describes the
dispersive JC type of interaction between the cavity mode
and the atom with the coupling strength χ . The last term in
Eq. (1) denotes a monochromatic driving to the atom, with
�R/2 and ωd the driving strength and driving frequency, re-
spectively. Here the motivation for introducing the transversal
driving to the atom is to recover the photonic nonlinearity,
which provides the physical mechanism for generation of the
conventional PB effect. Note that the present driven dispersive
JC model was recently implemented in a circuit QED system,
in which a superconducting resonator was coupled disper-
sively to a superconducting transmon qubit [60]. We will
present a detailed derivation of the driven dispersive JC
Hamiltonian and evaluate the quality of the approximate
Hamiltonian in Sec. IV.

In a rotating frame with respect to ωd (a†a + σz/2), the
Hamiltonian HddJC becomes

H (I )
ddJC = �′

ca†a + �0

2
σz + χa†aσz + �R

2
σx, (2)

with �′
c = ωc − ωd and �0 = ω0 + χ − ωd = �′

0 + χ ,
where �′

c (�′
0 = ω0 − ωd ) is the driving detuning of the

cavity-field resonance (atomic bare transition) frequency ωc

(ω0) with respect to the atomic-driving frequency ωd . In the
following, we consider the case in which the cavity field
is coherently driven by a monochromatic field with driving
frequency ωL and driving strength η. In this case, the total
Hamiltonian of the whole system in the Schrödinger picture
can be expressed as Htot = HddJC + η(a†e−iωLt + aeiωLt ).
In a rotating frame defined by the unitary operator
exp[−iωdt (a†a + σz/2) − iωLta†a], the Hamiltonian Htot

becomes

HI = �ca†a + �0

2
σz + �R

2
σx + χa†aσz + η(a† + a), (3)

where �c = �′
c − ωL is the difference between the driving

detuning �′
c and the cavity-field driving frequency ωL.

To analyze the PB effect in this system, we need to know
the eigensystem of the driven dispersive JC Hamiltonian
H (I )

ddJC, which takes a time-independent form in the rotating
frame. The eigensystem of the Hamiltonian H (I )

ddJC can be
obtained as

H (I )
ddJC|εm,±〉 = Em,±|εm,±〉, (4)

where the eigenvalues are given by

Em,± = m�′
c ± 1

2

√
(�0 + 2mχ )2 + �2

R (5)
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and the corresponding eigenstates are defined by |εm,±〉 =
|m〉a|±(m)〉. Here |m〉a (m = 0, 1, 2, . . .) are the photon num-
ber states and the photon-number-dependent atomic states
|±(m)〉 are given by

|+(m)〉 = cos θm|e〉 + sin θm|g〉, (6a)

|−(m)〉 = − sin θm|e〉 + cos θm|g〉, (6b)

where the mixing angle θm is defined by tan(2θm) =
�R/(�0 + 2mχ ).

It can be seen from Eq. (5) that the eigenenergy of the
system is a nonlinear function of the photon number m. This
nonlinearity in the eigenenergy spectrum is the physical origin
of the PB effect in this system. However, the anharmonicity
will become weak in both the weak- and strong-driving cases.
This point can be seen from the fact that the eigenvalues are re-
duced to Em,± ≈ m�′

c ± (�0 + 2mχ )/2 and Em,± ≈ m�′
c ±

�R/2 in the cases of �R � �0 + 2mχ and �R � �0 + 2mχ ,
respectively. In these two cases, the energy spectrum of the
photonic part is approximately harmonic. In Fig. 1(b) we
schematically show the eigenenergies Em,± of the system in
the few-photon subspaces (m = 0, 1, 2). It can be seen that
the energy spectrum of the driven dispersive JC model in the
rotating frame is anharmonic, which motivates us to study the
PB effect in this system.

III. PHOTON BLOCKADE EFFECT

In this section we study the PB effect in this system by
numerically calculating the photon-number distributions and
the equal-time second-order correlation function of the cavity-
field mode. In particular, we obtain the steady state of the
system and the field statistics by numerically solving the
quantum master equation in the open-system case.

In a realistic situation, the physical system will inevitably
interact with its environment. In this work we assume that the
cavity field and the two-level atom are connected with two
individual vacuum baths. Then the dynamics of the system is
governed by the quantum master equation

ρ̇ = i[ρ, HI ] + Da[ρ] + Dσ [ρ], (7)

where ρ is the density matrix of the system, HI is given by
Eq. (3), and the Lindblad superoperators are given by [61]

Da[ρ] = κ

2
(2aρa† − a†aρ − ρa†a), (8a)

Dσ [ρ] = γ

2
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−), (8b)

with κ (γ ) the decay rate of the cavity-field mode (atom).
By numerically solving Eq. (7), the steady-state density
operator ρss of the system can be obtained [62,63]. Then
the photon-number distributions Pn = Tr[|n〉a a〈n|ρss] and
the equal-time second-order correlation function g(2)(0) =
Tr(a†2a2ρss )/[Tr(a†aρss )]2 can be obtained accordingly.

To study the statistical properties of the cavity field, we plot
the photon-number distributions Pn=0,1,2 as functions of the
scaled driving detuning �c/κ in Fig. 2(a). We can see that the
photon-number distributions satisfy P0 ≈ 1 and P0 � P1 �
P2 in the weak-driving case. In addition, it can be seen that
there are some peaks in the curves of P1 and P2. By analyzing

FIG. 2. (a) Photon-number distributions Pn=0,1,2 as functions of
the scaled driving detuning �c/κ . (b) Equal-time second-order cor-
relation function g(2)(0) as a function of the scaled driving detuning
�c/κ . The other parameters are γ /κ = 0.5, χ/κ = 15, �R/χ = 2,
�0 = 0, and η/κ = 0.1.

the energy spectrum of the system [see Fig. 1(b)], we find
that the locations of the four peaks dn=1,2,3,4 in P1 correspond
to the single-photon resonant transitions |ε0,+〉 → |ε1,±〉 and
|ε0,−〉 → |ε1,±〉, with the resonance conditions �c = �1,±

0,+ =
[∓

√
(�0 + 2χ )2 + �2

R +
√

�2
0 + �2

R]/2 and �c = �1,±
0,− =

[∓
√

(�0 + 2χ )2 + �2
R −

√
�2

0 + �2
R]/2, respectively. More-

over, the locations of the four main peaks pn=1,2,3,4 in P2 are
associated with the two-photon resonant transitions |ε0,+〉 →
|ε2,±〉 and |ε0,−〉 → |ε2,±〉; the corresponding resonance con-

ditions are given by �c = �2,±
0,+ = [∓

√
(�0 + 4χ )2 + �2

R +√
�2

0 + �2
R]/4 and �c = �2,±

0,− = [∓
√

(�0 + 4χ )2 + �2
R −√

�2
0 + �2

R]/4, respectively. In addition, the other two peaks
in P2 are induced by the single-photon resonant transitions.

Usually, the PB effect will sensitively depend on the
frequency of the cavity-field driving. This is because this
frequency determines the resonance of the single-photon
physical transitions. To find the optimal driving frequency of
the PB effect, in Fig. 2(b) we plot the equal-time second-order
correlation function g(2)(0) as a function of the scaled driving
detuning �c/κ . It can be observed that the locations of these
dips dn and peaks pn in the curve of g(2)(0) correspond to the
single- and two-photon resonant transitions, respectively. In
particular, we find that the optimal PB effect [the correlation
function g(2)(0) � 1] takes place at single-photon resonant
transitions �c = �1,±

0,+ and �c = �1,±
0,− (the location of dn).

As analyzed in Sec. II, the photonic nonlinearity will disap-
pear in the weak- and strong-atomic-driving cases. Therefore,
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FIG. 3. Equal-time second-order correlation function g(2)(0) as a
function of the ratio �R/χ of the atomic-driving strength �R over
the dispersive coupling strength χ at χ/κ = 5, 10, and 15 for four
single-photon resonant transition cases: (a) �c = �1,+

0,−, (b) �c =
�1,−

0,−, (c) �c = �1,+
0,+, and (d) �c = �1,−

0,+. The other parameters are
γ /κ = 0.5, �0 = 0, and η/κ = 0.1.

it is an interesting topic to study the influence of the
atomic-driving strength on the PB effect. In Fig. 3 the equal-
time second-order correlation function g(2)(0) is plotted as a
function of the ratio �R/χ of the atomic-driving strength �R

over the dispersive coupling strength χ at different single-
photon resonant transitions �c = �1,±

0,+ and �c = �1,±
0,−. Here

the blue dashed curves, green solid curves, and red dash-
dotted curves correspond to the scaled dispersive coupling
strengths χ/κ = 5, 10, and 15, respectively. We can see that
the envelope of the correlation functions is lower for a larger
value of the scaled dispersive coupling strength χ/κ . This
means that the PB effect is stronger for a larger dispersive JC
coupling strength. In addition, for a given χ , as the atomic-
driving strength �R/χ increases, the values of the correlation
functions first decrease and then increase. This indicates that
there is an optimal transversal driving strength of the atom.
Physically, around the optimal atomic driving, the photon
nonlinearity in the eigenenergy spectrum is strong. Here we
can see that the optimal value of �R/χ is around 2. This is
because the photonic nonlinearity becomes important when
�d is almost large as 2mχ , where the contributing m is 1 in
the photon blockade regime. In the weak- and strong-atom-
driving cases, the PB effect disappears gradually. As shown
in Fig. 3, the correlation function g(2)(0) approaches 1 in the
limit cases �R/χ → 0 and �R/χ � 2m.

The optimal atomic-driving phenomenon can also be
quantitatively explained by analyzing the photon-number dis-
tributions. In the weak-driving regime, the involved photon
number is small and the second-order correlation function
can be approximately expressed with the single- and two-
photon distributions as g(2)(0) ≈ 2P2/P2

1 . In Fig. 4 we plot
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FIG. 4. Variables 2P2 and P2
1 versus the ratio �R/χ for four cases

of the single-photon resonant transition: (a) �c = �1,+
0,−, (b) �c =

�1,−
0,−, (c) �c = �1,+

0,+, and (d) �c = �1,−
0,+. The other parameters are

γ /κ = 0.5, �0 = 0, χ/κ = 15, and η/κ = 0.1.

2P2 and P2
1 [the numerator and denominator of g(2)(0)]

as functions of the ratio �R/χ at different single-photon
resonant transitions �c = �1,±

0,+ and �c = �1,±
0,−, correspond-

ing to the cases (χ/κ = 15) in the four panels of Fig. 3. It can
be seen from Figs. 4(b) and 4(c) that P2

1 is a monotonically
increasing function of the ratio �R/χ , but 2P2 first decreases
and then increases with the increase of �R/χ . As a result, the
second-order correlation function g(2)(0) has a similar curve
monotonicity as 2P2, corresponding to the dash-dotted curves
in Figs. 3(b) and 3(c). In Figs. 4(a) and 4(d), both 2P2 and
P2

1 are monotonically decreasing functions of the ratio �R/χ .
Since the curve of the numerator 2P2 has a larger curvature
than that of the denominator P2

1 , the value of the correlation
function g(2)(0) will experience a change of the monotonicity.
With the increase of �R/χ , 2P2 first decreases faster than
P2

1 and then decreases slower than P2
1 . Consequently, g(2)(0)

first decreases and then increases with the increase of the
ratio �R/χ .

To clearly explain the physical reason for the optimal
atomic-driving effect, it will be helpful to further analyze
the dependence of the photon-number distributions P1 and
P2 on the driving strength �R. In the weak cavity-field
driving regime, the system can be reduced to a six-level
system by restricting the system to the zero-, one-, and
two-photon subspaces, as shown in Fig. 1(b). Based on the
relations |εm,±〉 = |m〉a| ± (m)〉, the photon-number distribu-
tions Pm can be obtained as Pm ≡ Tr[|m〉a a〈m|ρss] = Pm,+ +
Pm,−, where Pm,± = Tr[|εm,±〉〈εm,±|ρss] are the populations
of the eigenstates. As a result, the photon-number distribu-
tions can be obtained by calculating the population of these
six eigenstates |εm,±〉 for n = 0, 1, and 2. For this six-level
system, we cannot obtain the analytical result of the steady-
state populations, and hence it is hard to know the dependence
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FIG. 5. Equal-time second-order correlation function g(2)(0) as a
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2, and 5 for four single-photon resonant transition cases: (a) �c =
�1,+

0,−, (b) �c = �1,−
0,−, (c) �c = �1,+

0,+, and (d) �c = �1,−
0,+. The other

parameters are γ /κ = 0.5, �0 = 0, and η/κ = 0.1.

of the photon-number distributions Pm on the atomic-driving
strength �R. However, we roughly estimated the detun-
ing of the second-photon transitions and found that the
populations P2,± of the two-photon eigenstates |ε2,±〉 and the
corresponding detunings have an inverse dependence on the
atomic-driving strength �R. This phenomenon can qualita-
tively explain the optimal atomic-driving effect, because a
large detuning will suppress the quantum transition induced
by the absorbtion of the second photon.

We also analyze the dependence of the PB effect on the
dispersive JC coupling strength χ . In Fig. 5 we plot the equal-
time second-order correlation function g(2)(0) as a function of
the ratio χ/κ at different single-photon resonant transitions
�c = �1,±

0,+ and �c = �1,±
0,−. Here the blue dashed curves,

green solid curves, and red dash-dotted curves correspond to
the ratios �R/χ = 1, 2, and 5, respectively. It can be seen
that the values of the correlation function g(2)(0) first increase
and then decrease with the increase of the ratio χ/κ . The
reason is that the larger the scaled dispersive coupling strength
χ/κ , the stronger the nonlinearity of the driven dispersive
JC model. For generation of a strong PB effect, the system
should work in the strong dispersive JC coupling regime
χ/κ � 1 [64], which is a stronger parameter requirement
than the strong-coupling condition g � κ because of the re-
lations χ = g2/(ω0 − ωc) and χ � κ and the large-detuning
condition |ω0 − ωc| � g. In addition, it can be seen from
Figs. 5(b) and 5(c) that the values of the correlation func-
tions at the atomic-driving strength �R/χ = 5 are larger than
that at �R/χ = 2 in the cases of �c = �1,+

0,+ and �c = �1,−
0,−.

This feature is a consequence of the nonmonotonicity of the
dependence of the correlation function g(2)(0) on the driving
strength �R.

IV. VALIDITY OF THE DRIVEN DISPERSIVE
JC HAMILTONIAN

In this section we discuss the validity of the driven dis-
persive JC Hamiltonian (2). Concretely, we present a detailed
derivation of the effective Hamiltonian of the driven JC sys-
tem working in the large-detuning regime. We also analyze
the difference between the derived effective Hamiltonian and
the driven dispersive JC Hamiltonian (2) by calculating the
fidelity between the two states, which are governed by the
derived Hamiltonian and the Hamiltonian (2), respectively.

A. Derivation of the driven dispersive JC Hamiltonian

Here we present a detailed derivation of the driven disper-
sive JC Hamiltonian based on the driven JC model, in which
the atom is largely detuned coupled with the cavity field and
the atom is driven by a monochromatic field. The Hamiltonian
of the driven JC model reads

HdJC = ωca†a + ω0

2
σz + g(a†σ− + σ+a)

+ �R

2
(σ+e−iωd t + σ−eiωd t ), (9)

where g is the coupling strength between the cavity field and
the atom and the operators and other parameters have been
defined in Eq. (1).

In a rotating frame with respect to ωd (a†a + σz/2), the
Hamiltonian HdJC can be expressed as

H (I )
dJC = H0 + HI + Hd , (10)

with

H0 = �′
ca†a + �′

0

2
σz, (11a)

HI = g(a†σ− + σ+a), (11b)

Hd = �R

2
σx, (11c)

where �′
0 = ω0 − ωd and �′

c = ωc − ωd have been intro-
duced in Eq. (2). In the large-detuning case |�| = |�′

0 −
�′

c| � g
√

n + 1, with n the maximally dominated photon
number involved in the cavity field, the Hamiltonian of the
driven dispersive JC model can be obtained by using the
Fröhlich-Nakajima transformation [65,66]. To this end, we
introduce an anti-Hermite operator S, which is determined by
the equation HI + [H0, S] = 0. Then the anti-Hermite opera-
tor S can be derived as

S = g

�
(a†σ− − σ+a). (12)

Up to the second order of the ratio g/�, the effective
Hamiltonian describing the system can be approximately
obtained as

Heff = e−SH (I )
dJCeS

≈ �′
ca†a + �′

0

2
σz + χ

[
σza

†a + 1

2
(σz + I )

]
+ �R

2
σx

+ �R

2

g

�
σz(a† + a), (13)
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where we introduced the dispersive JC coupling strength
χ = g2/�.

To maintain consistency between the effective Hamiltonian
Heff and the Hamiltonian given by Eq. (2), we introduce
the variables �0 = �′

0 + χ ; then the effective Hamiltonian
becomes

Heff = �′
ca†a + �0

2
σz + χσza

†a + �R

2
σx

+ �R

2

g

�
σz(a† + a), (14)

where we discarded the constant term χ/2. The last term in
Eq. (14) can be regarded as a conditional cavity-field driving
term depending on the states of the two-level atom. Under
the parameter condition of �Rg/2|�| � |�′

c + χ |, the last
term in Eq. (14) can be approximately neglected and then the
effective Hamiltonian (14) is reduced to the driven dispersive
JC Hamiltonian given by Eq. (2).

B. Evaluation of the validity of the driven dispersive JC model

To quantitatively evaluate the validity of the driven dis-
persive JC Hamiltonian (2), we check the fidelity F (t ) =
|〈ψ (t )|ϕ(t )〉|2 between the state |ψ (t )〉 governed by the ef-
fective Hamiltonian (14) and the state |ϕ(t )〉 governed by the
dispersive JC Hamiltonian (2). Below we derive the expres-
sion of the two states by solving the equations of motion for
these probability amplitudes in the two cases.

Corresponding to the effective Hamiltonian (14), the state
of this system at time t is defined as

|ψ (t )〉 =
∞∑

n=0

[An(t )|e, n〉 + Bn(t )|g, n〉], (15)

where An(t ) and Bn(t ) are the probability amplitudes. Accord-
ing to the Schrödinger equation, the equations of motion for
these amplitudes are obtained as

Ȧn = −i(n�′
c + �0/2 + nχ )An − i

�R

2
Bn

− i
�R

2

g

�
(
√

nAn−1 + √
n + 1An+1), (16a)

Ḃn = −i(n�′
c − �0/2 − nχ )Bn − i

�R

2
An

+ i
�R

2

g

�
(
√

nBn−1 + √
n + 1Bn+1). (16b)

For the dispersive JC Hamiltonian (2), we assume that the
state of the system takes the form

|ϕ(t )〉 =
∞∑

n=0

[an(t )|e, n〉 + bn(t )|g, n〉], (17)

with the probability amplitudes an(t ) and bn(t ). The evolution
of these probability amplitudes is determined by the equations

ȧn = −i(n�′
c + �0/2 + nχ )an − i

�R

2
bn, (18a)

ḃn = −i(n�′
c − �0/2 − nχ )bn − i

�R

2
an. (18b)
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FIG. 6. Fidelity F (t ) as a function of the scaled time χt at
different values of the ratio g/�. The other parameters are �0 = 0,
�′

c = �0 − χ − �, �′
c/χ = −1 − (�/g)2, and �R/χ = 2.

By solving Eqs. (16) and (18) under a given initial state,
we can obtain the states |ψ (t )〉 and |ϕ(t )〉 accordingly. Then
the fidelity can be obtained as

F (t ) = |〈ψ (t )|ϕ(t )〉|2

=
∣∣∣∣∣

∞∑
n=0

[A∗
n(t )an(t ) + B∗

n(t )bn(t )]

∣∣∣∣∣
2

. (19)

Note that in a realistic calculation, we need to truncate the
dimension of the Hilbert space of the cavity field up to a
finite number, which is determined by the photon-number
distribution in the cavity under a given initial state.

To confirm the parameter conditions of the driven disper-
sive JC model, in Fig. 6 we plot the fidelity F (t ) as a function
of the evolution time χt at different values of g/�. Here we
choose the initial state of the system as |ψ (0)〉 = |α〉(|g〉 +
|e〉)/

√
2, with |α〉 the coherent state (α = 1). It can be seen

that the fidelity is high for a large ratio of |�|/g. This means
that, in the large-detuning regime, the present physical system
can be well described by the driven dispersive JC model.

V. EXPERIMENTAL IMPLEMENTATION
OF THE SCHEME

In this section we discuss the experimental implementation
of the present scheme. It can be seen from the Hamiltonian
in Eq. (3) that, to implement the present physical scheme,
the candidate physical setups should be able to implement
the dispersive JC interaction, the transversal atom driving,
and the cavity-field driving. In particular, to observe the
photon blockade effect in the dispersive JC model, the system
should work in the strong dispersive JC interaction regime,
in which the photon-number dependent qubit energy shift can
be resolved. Generally speaking, both the atom driving and
the cavity-field driving are experimentally accessible in most
physical systems. Therefore, the key point for experimental
implementation of this scheme should be the realization of
the strong dispersive JC interaction.

Currently, the strong dispersive JC interaction has been
experimentally implemented in a circuit QED system [60,64].
Below we discuss the parameter analysis of the dispersive
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JC interaction in a circuit QED system consisting of a su-
perconducting charge qubit and a coplanar superconducting
transmission-line resonator [64]. In this system, the reso-
nant frequency of the coplanar cavity is ωr/2π = 5.7 GHz
and the decay rate of the cavity is κ/2π = 250 kHz. The
transition frequency between the superconducting qubit is
ωa/2π = 6.9 GHz and the qubit relaxation rate is γ /2π =
1.8 MHz, which indicates that the frequency detuning be-
tween the qubit and the coplanar cavity is �/2π = (ωa −
ωr )/2π = 1.2 GHz. The coupling strength between the qubit
and the cavity is g/2π = 105 MHz and the effective Stark
shift induced per photon is χ = g2/� = 2π × 9.188 MHz,
i.e., χ/κ ≈ 36.75. In addition, the driving strengths (�R

and η) of the qubit and the cavity field are experimentally
adjustable. In our simulations, we used the parameters γ /κ =
0.5, χ/κ = 15, �R/χ = 2, and η/κ = 0.1, which are exper-
imentally accessible in circuit QED systems. These analyses
indicate that the present scheme should be within the reach of
current experimental techniques.

VI. CONCLUSION

We have proposed an experimentally realizable method to
recover the PB effect in a dispersively coupled atom-field
system, in which the PB effect has been shown to vanish in the
dispersive parameter regime. This is realized by introducing a
transversal driving to the atom, and this model has been exper-
imentally implemented by superconducting quantum circuits

[60,64]. In the absence of the cavity-field driving, we have
obtained the analytical eigenvalues and eigenstates of the
driven dispersive JC model. We have also studied the PB effect
by numerically calculating the photon-number distributions
and the equal-time second-order correlation function of the
cavity field. It was found that the PB effect can be observed
in the single-photon resonant driving case. The influence of
the system dissipation on the PB effect has been investigated
by solving the quantum master equation. Our scheme presents
a method to recover the PB effect in the strong dispersive JC
model. Therefore, this work not only realizes the generation
of the PB effect in a wider detuning parameter space of the JC
model, but also provides inspiration for generating the con-
ventional PB effect in dispersively coupled quantum systems.
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Vučković, Coherent generation of non-classical light on a chip
via photon-induced tunnelling and blockade, Nat. Phys. 4, 859
(2008).

[37] A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy,
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